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Complementary Fine-Structure Constants
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Łukaszyk Patent Attorneys, ul. Głowackiego 8, 40-052 Katowice, Poland; szymon@patent.pl

Abstract: Three Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene

establish three complementary fine-structure constants, two of which are negative. Each introduces its own specific

set of Planck units. Hence, two sets of basic Planck units are real and two are imaginary. The elementary charge is

the same in all those sets of Planck units, establishing equality between the products of each fine-structure constant

and the speed of light it is associated with. All fine-structure constants are related to each other through the

constant of π, which indicates that they do not vary over time. The negative complementary fine-structure constant

established by the graphene reflectance is dual to the fine-structure constant. The assumption of universality of

the black hole entropy formula to the remaining two stellar objects emitting perfect black-body radiation less dense

than a black hole (neutron stars and white dwarfs) renders their energies exceeding their mass-energy equivalence.

To accommodate this unphysical result, we introduced an imaginary mass and defined three complex energies in

terms of real and imaginary Planck units, storing the surplus energy in their imaginary parts. It follows that black

holes are fundamentally uncharged and have a vanishing imaginary mass. We have derived the lower bound on

the mass of a charged black-body object, the upper bound on a white dwarf radius, and the equilibrium density of

all three complex energies. The complex force between real masses and imaginary charges leads to the complex

black-body object’s surface gravity and generalized Hawking radiation complex temperature. Furthermore, based

on the Bohr model for the hydrogen atom, we show that complex conjugates of this force represent atoms and

antiatoms. The proposed model considers the value(s) of the fine-structure constant(s), which is(are) otherwise

neglected in general relativity, and explains the registered (GWOSC) high masses of neutron star mergers and the

associated fast radio bursts (CHIME) without resorting to any hypothetical types of exotic stellar objects.

Keywords: emergent dimensionality; fine-structure constant; Planck units; gravitational observations; holographic

principle; mathematical physics

1. Introduction

The universe began with the Big Bang, a prevailing scientific opinion. However, this Big Bang was
not an explosion of 4-dimensional spacetime, which is also a current prevailing scientific opinion, but
an explosion of dimensions that started in (−1)-dimensional void. The only exception to the general
formula for the integral of a volume unit an, where a is the length of the edge in any dimension n is
n = −1, where a jump discontinuity occurs and

´
a−1da = ln(a). A first 0-dimensional point appeared

in the (−1)-dimensional void, inducing the appearance of other points that were indistinguishable
from the first. The breach made by the first operation of the dimensional successor function of the
Peano axioms inevitably continued leading to the formation of 1-dimensional, real and imaginary
lines, allowing for an ordering of points using multipliers of real units (ones) or imaginary units
(a ∈ R ⇔ a = 1b, and a ∈ I ⇔ a = ib, where b ∈ R). Then, out of the two lines of each kind, crossing
each other only at one initial point (0, 0), the dimensional successor function formed 2-dimensional R2,
I2, and R× I Euclidean planes, with I2 being a mirror reflection of R2. Thus, forming n-dimensional
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Euclidean spaces Ra × Ib with a ∈ N real and b ∈ N imaginary lines, n = a + ib, and the scalar product
defined by

x · y =
(

x1, . . . , xa, ix′1, . . . , ix′b
)(

y1, . . . , ya, iy′1, . . . , iy′b
)

:=
a

∑
k=1

xkyk +
b

∑
l=1

x′ly
′
l , (1)

where x, y ∈ Ra × Ib. With the appearance of the first 0-dimensional point, information has begun to
evolve [1–9], initially using undirected exploration in a selectionless [8] and a timeless [9] assembly
process.

The mathematical properties of particular dimensions are not the same. For regular convex
n-polytopes, for example, there are countably infinitely many regular convex polygons, five regular
convex polyhedra (Platonic solids), six regular convex 4-polytopes and only three regular convex
n-polytopes if |n| > 4 and |n| < 0 [10]. In particular, a 4-dimensional Euclidean space is endowed with
a peculiar property known as exotic R4 [11], absent in other dimensionalities. Owing to this property,
R3 × I Euclidean space provides a continuum of homeomorphic but non-diffeomorphic differentiable
structures. Each piece of individually memorized information is homeomorphic to the corresponding
piece of individually perceived information but remains non-diffeomorphic (non-smooth). This allows
the variation of phenotypic traits within populations of individuals [12]. Hence, selection [8] and
time [9] emerged and the evolution of information had to inevitably exploit directed exploration
provided by biological evolution. Exotic R4 solves the problem of extra dimensions of nature, and
perception requires a natural number of (thus independent) dimensions to form perceived space [13].
Each biological cell and each biological agent perceives an emergent space of three real dimensions
and one imaginary (time) observer-dependently [14] and at present, when i0 = 0 is real, through a
spherical Planck triangle corresponding to one bit of information in units of −c2, where c is the speed
of light in vacuum. This is the principle of emergent dimensionality (ED) [5,6,9,12,15,16].

Human perception involves measuring and measuring requires measurement units. In 1899 Max
Planck derived the natural units of measure as "independent of special bodies or substances, thereby
necessarily retaining their meaning for all times and for all civilizations, including extraterrestrial and
nonhuman ones" [17]. Planck units utilize the Planck constant h introduced in his black-body radiation
formula. Earlier, in 1881, George Stoney derived a system of natural units [18] based on the elementary
charge e (Planck’s constant was unknown at this time). The ratio of Stoney units to Planck units is

√
α,

where α is the fine-structure constant. This study derives three complementary sets of Planck units
based on the three complementary fine-structure constants established by the Fresnel coefficients for
the normal incidence of electromagnetic radiation on monolayer graphene (MLG) and hints at certain
areas of their applicability.

The paper is organized as follows. Section 2 shows that the Fresnel coefficients for the normal
incidence of electromagnetic radiation on MLG include three complementary fine-structure constants,
including two negative ones and hinting that the negative complementary fine-structure constant α2

established by the graphene reflectance is dual to the fine-structure constant α. Section 3 presents
complementary sets of α∗-Planck units established by these three fine-structure constants. Section
4 introduces the concept of a black-body object in thermodynamic equilibrium that emits perfect
black-body radiation and reviews its necessary properties. Section 5 introduces complex energies
expressed in terms of real and imaginary α−-Planck units and applies them to black-body objects to
show that in this model α and α2 are indeed dual to each other. Section 6 considers the observed
mergers of black-body objects to show that the observed data can be explained without the need to
introduce hypothetical exotic stellar objects. Section 7 discusses fluctuations of black-body objects.
Section 8 defines complex forces based on the products of the complex energies. The complex force
between real masses and imaginary charges is applied in Section 9 to the Bohr model of the hydrogen
atom and in Section 10 to derive a black-body object surface gravity and the generalized Hawking
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radiation temperature. Section 11 summarizes the findings of this study. Certain prospects for further
research are provided in the Appendices.

2. Three Complementary Fine-Structure Constants

Numerous publications provide Fresnel coefficients for the normal incidence of electromagnetic
radiation (EMR) on monolayer graphene (MLG), which are remarkably defined only by π and the
fine-structure constant α having the inverse

α−1 =
( qP

e

)2
=

4πϵ0h̄c
e2 ≈ 137.036, (2)

where qP is the Planck charge, h̄ is the reduced Planck constant, ϵ0 ≈ 8.8542× 10−12 [kg−1 ·m−3 · s2 ·C2]

is the vacuum permittivity (electric constant), and e is the elementary charge. We choose this set of
units over [F·m−1] for ϵ0, since the mass, length, time, and charge units can express all the electrical
units and together with temperature, amount of substance, and luminous intensity, these are the base
units of the International System of Quantities (ISQ). Furthermore, in this notation we see that ϵ0 is
dependent on the unit of time. Transmittance (T) of MLG

T =
1(

1 + πα
2
)2 ≈ 0.9775, (3)

for normal EMR incidence was derived from the Fresnel equation in the thin-film limit [19] (Eq. 3),
whereas a spectrally flat absorptance (A) A ≈ πα ≈ 2.3% has been reported [20,21] for photon energies
between approximately 0.8011 × 10−19 and 4.0054 × 10−19 [J]. T is related to reflectance (R) [22] (Eq.
53) as R = π2α2T/4, i.e,

R =
1
4 π2α2(

1 + πα
2
)2 ≈ 1.2843 × 10−4, (4)

The above equations for T and R, as well as the equation for the absorptance

A =
πα(

1 + πα
2
)2 ≈ 0.0224, (5)

were also derived [23] (Eqs. 29-31) based on the thin-film model (setting ns = 1 for the substrate). The
sum of the transmittance (3) and reflectance (4) at normal EMR incidence on the MLG was derived [24]
(Eq. 4a) as

T + R = 1 − 4ση

4 + 4ση + σ2η2 + k2χ2 =
1 + 1

4 π2α2(
1 + πα

2
)2 ≈ 0.9776, (6)

where η ≈ 376.73 [kg · m2 · s · C−2] is the vacuum impedance, σ = e2/(4h̄) = πα/η ≈ 6.0853 × 10−5

[kg−1 · m−2 · s−1 · C2] is the MLG conductivity [25], k is the wave vector of light in vacuum, and
χ = 0 is the electric susceptibility of vacuum. Therefore, these coefficients are well established both
theoretically and experimentally [19–21,24,26,27].

As a consequence of the conservation of energy

R + (T + A) = 1. (7)

In other words, the transmittance in the Fresnel equation describing the reflection and transmission
of EMR at normal incidence on a boundary between different optical media is, in the case of the
2-dimensional (boundary) MLG, modified to include its absorption (cf. Appendix C). We note that
each conservation law is associated with a certain symmetry, as asserted by Noether’s theorem. In this
case, the symmetry involves the fine-structure constant α and π.
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2.1. Reflectance

The reflectance R = 0.013% (4) of the MLG can be expressed as a quadratic equation of α

R
(

1 +
πα

2

)2
− 1

4
π2α2 = 0,

1
4
(R − 1)π2α2 + Rπα + R = 0, (8)

which can be expressed in terms of the reciprocal of α, defining β := 1/α as

Rβ2 + Rπβ +
1
4
(R − 1)π2 = R

(
β +

π

2

)2
− π2

4
= 0. (9)

The quadratic equation (9) has two roots

β = α−1 =
−πR + π

√
R

2R
≈ 137.036, and (10)

β2 = α−1
2 =

−πR − π
√

R
2R

≈ −140.178. (11)

Therefore, equation (8) includes the second negative fine-structure constant α2. It turns out that the
sum of the reciprocals of these fine-structure constants (10) and (11)

α−1 + α−1
2 =

−πR + π
√

R − πR − π
√

R
2R

=
−2π

2
= −π, ∀R ̸= 0, (12)

is a transcendental number independent of the value of the reflectance R. Furthermore, the minimum
of parabola (9) amounts −π2/4 ≈ −2.4674 and occurs at −π/2 ≈ −1.5708, as shown in Figure 1. Also,
these values are independent of the reflectance.

−150 −100 −50 0 50 100 150
−3

−2

−1.5

−1

−0.5

0

0.5

β α=1/

− /2π 4 + +π π π
3 2

−4 − −2π π π
3 2

8 +2 +3π π π
3 2

− /4π
2

Figure 1. MLG reflectance as a function of β := 1/α.

These results are also intriguing in the context of a peculiar expression for the fine-structure
constant [28] as a transcendental number

α−1 = 4π3 + π2 + π ≈ 137.036303776 (13)

that contains a free π term and is very close to the physical definition (2) of α−1, which according to the
CODATA 2022 value is 137.035999177. We note that CODATA values are computed by averaging the
measurements.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2024                   doi:10.20944/preprints202212.0045.v19

https://doi.org/10.20944/preprints202212.0045.v19


5 of 38

Using equations (12) and (13), we can express the negative reciprocal of the 2nd fine-structure
constant α−1

2 that emerged in the quadratic equation (8) also as a function of π only:

α−1
2 = −π − α−1

1 = −4π3 − π2 − 2π ≈ −140.177896429. (14)

2.2. Transmittance and Absorptance

The transmittance (3) of MLG can also be expressed as a quadratic equation of α

1
4

Tπ2α2 + Tπα + (T − 1) = 0, (15)

having two roots

α =
−T +

√
T

1
2 πT

≈ (137.036)−1 and α3 =
−T −

√
T

1
2 πT

≈ (−0.7809)−1 ≈ −1.2805, (16)

where α3 is the third negative fine-structure constant. Their sum hints taxicab geometry (where π = 4)

α + α3 = − 4
π

∀T ̸= 0, (17)

and is also independent of the value of the transmittance T. The third complementary fine-structure
constant expressed by π using relations (13) and (17) is

α3 = −16π2 + 4π + 5
4π3 + π2 + π

. (18)

Finally, the absorptance (5) of MLG can be expressed as a quadratic equation of α

1
4

Aπ2α2 + (A − 1)πα + A = 0, (19)

having two roots

α =
2
(
(1 − A)−

√
1 − 2A

)
πA

≈ (137.036)−1 and α4 =
2
(
(1 − A) +

√
1 − 2A

)
πA

≈ (0.0180)−1 ≈ 55.5387, (20)

where α4 is the fourth positive fine-structure constant. Their product

αα4 =
4

π2 ∀A ̸= 0, (21)

is also a transcendental number independent of the value of the reflectance A. The minimum of
parabola (19) amounts (2A − 1)/A ≈ −42.6257 and occurs at 2(1 − A)/(πA) ≈ 27.7730. The fourth
complementary fine-structure constant expressed by π using relations (13) and (21) is

α4 =
4

π2

(
4π3 + π2 + π

)
. (22)

2.3. Summary

The form of the relations (13), (14) is the same (contains the same like-terms with respect to π) as
the relation (98) describing the information capacity of a black body object after absorption or emission
of a particle. Furthermore, the relation (12) corresponds to the following identity

α + α2

αα2
= −π, (23)
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between the roots (10) and (11), which is also derivable from the Fresnel equations and the correspond-
ing Euclid formula (cf. Appendix C). Because the fine-structure constants α∗ are expressible by π only,
we conjecture that they do not vary over time. They could not vary in the first undirected [8] and
timeless [9] part of the evolution of information in the universe. Also, combining relations (23) with
(17) and (21) yield

α + α2

αα2
=

α + α3

αα4
= −π. (24)

Finally, α3 < α2 < 0 < α < α4. Therefore, we conclude that only α and α2 are dual to each other and
we introduce α⋆ for α or α2. The relation (23) is not satisfied by any other pair of α∗s.

Using relations (13), (14), (18), and (22) the MLG coefficients (3)-(5) can be expressed simply
by π (cf. Appendix A) and introduce three pairs of π-like constants for two surfaces with positive
and negative Gaussian curvatures (cf. Appendix B). Interestingly, T(α4) = R(α) and R(α4) = T(α).
Furthermore,

√
R(α1,4) +

√
T(α1,4) = 1 and A1,4 = 2

√
R(α1,4)T(α1,4). Notably for Fresnel coefficients

(A12) (cf. Appendix C),
√

RF +
√

TF = 1 solves to n1 = n2 which implies no refraction.
In the following section, we derive the complementary sets of Planck units corresponding to

the complementary fine-structure constants α∗. We shall use the subscript "∗" as a placeholder for
all four fine-structure constants, and the subscripts "+", "−" to describe respectively positive α or α4

and negative α2 or α3 and quantities associated with them. Occasionally we use the subscript 1 for
quantities associated with α1 := α.

3. Complementary Sets of Planck Units

Natural units can be derived from numerous starting points [6,29] (cf. Appendix E). The central
assumption in all systems of natural units is that the quotient of the unit of length ℓ∗ and time t∗ is a
unit of speed; we call it c = ℓ∗/t∗. It is the speed of light in vacuum c in all systems of natural units,
except for Hartree and Schrödinger units, where it is cα, and Rydberg units, where it is cα/2. Hence, α

is coupled with c in Hartree, Schrödinger, and Rydberg measurement units.
We chose Planck units over other natural unit systems not only because they incorporate the

fine-structure constant α and the Planck constant h. Other systems of natural units (except for Stoney
units) also incorporate them. This is because only the Planck area defines one bit of information on a
patternless black hole surface given by the Bekenstein bound (51) and the binary entropy variation [5,6].

The fine-structure constant can be defined as the quotient (2) of the squared (and thus positive)
elementary charge e and the squared Planck charge α = e2/q2

P. To accommodate the negativity of
the fine-structure constants α− discovered in the preceding section, we must introduce the imaginary
Planck charge such that its square would yield a negative value.

For example, in the case of α2

q2
P =

e2

α
̸= q2

P2 =
e2

α2
⇒ qP2 = ±ae, a =

1√
α2

∈ I. (25)

Therefore
e2 = q2

P∗α∗. (26)

We note that an imaginary qP−, which must have a physical definition analogous to qP, requires either
a real, negative speed of light or some complementary real, negative electric constant (h is positive).
Let us call them c− and ϵ̃0

q2
P = 4πϵ0h̄c > 0, q2

P− = 4πϵ̃0h̄c− < 0. (27)

From this equation, we find that ϵ̃0c− < 0, because the values of the other constants are known.
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The fine-structure constant can also be defined as the ratio of Coulomb’s law for two elementary
charges to Newton’s law of gravity for two Planck masses separated by the same distance. Constructing
the same ratio for the remaining α∗ leads to

1
4πR2

e2

ϵ0
= α∗G

m2
P∗

R2 , (28)

where the area of a 3-ball (4πR2) in the denominator of the Coulomb force requires further investigation.
Hence, the quotient of the squared Planck charge and mass must be the same for all sets of Planck
units. Therefore

q2
P∗

m2
P∗

= 4πϵ0G, (29)

is independent of the unit of time (even though ϵ0 and G are) and introduces the imaginary Planck
masses mP−. The masses mP∗ can be calculated from the equation (29) by determining the value of the
Planck charge qP∗ from the equation (26). From (29) we also conclude that ϵ̃0 = ϵ0 > 0 and then by (30)
that µ2 > 0 and c2 < 0. Next, we assume that the solution of Maxwell’s equations in vacuum is valid
for other values of the constants involved. Let us call the unknown magnetic constant, corresponding
to c∗, µ∗. Therefore,

µ0ϵ0c2 = µ∗ϵ0c2
∗ = 1, (30)

from which the bivalued c∗ = ±1/
√

µ∗ϵ0 can be obtained. Unlike the electric constant ϵ0, magnetic
constants µ∗ are independent of the unit of time. Furthermore, Maxwell’s equations in vacuum are not
directly dependent on the fine-structure constant(s), which is included in the magnetic constant µ0.
Finally, combining relations (26) and (27) yields

e2 = 4πϵ0h̄c∗α∗, (31)

which establishes the universality of the elementary charge e that defines both matter and antimatter
and leads to the following important relation between the speeds of light in vacuum c∗, and the
fine-structure constants α∗

cα = c2α2 = c3α3 = c4α4. =
e2

4πϵ0h̄
. (32)

cα is also the velocity of the electron in the first circular orbit in the Bohr hydrogen atom model to
which we shall return in Section 9. Because c∗ derivable from the final Maxwell equation (30) are
bivalued, all sets of α∗-Planck units have four forms equal in modulus: real positive, real negative,
imaginary positive and imaginary negative. However, due to the relation (32), we consider mostly real,
positive α+-Planck units and imaginary, positive α−-Planck units. We note that switching the signs of
c∗ in the relation (32) would require the imaginary charge ei = ie. Therefore, we consider real Planck
units associated with the positive speed of light c2+ associated with α2 in the Appendix D only.

Complementary speeds of light c∗ (32) introduce complementary sets of Planck units, wherein
basic α−-Planck units are imaginary since they are defined as square roots containing c− raised to odd
powers (1, 3, 5). Furthermore, the speed of electromagnetic radiation is the product of its wavelength
and frequency, and these quantities would be imaginary in terms of imaginary Planck units; a negative
speed of light is necessary to accommodate this.

α2-Planck units that can be expressed, using the relation (32), in terms of base Planck units qP, ℓP,
mP, tP, and TP are

qP2 =
√

4πϵ0h̄c2 = qP

√
α

α2
≈ i1.8969 × 10−18 [C] (|qP2| > |qP|), (33)
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ℓP2 =

√
h̄G
c3

2
= ℓP

√
α3

2
α3 ≈ i1.5622 × 10−35 [m] (|ℓP2| < |ℓP|), (34)

mP2 =

√
h̄c2

G
= mP

√
α

α2
≈ i2.2012 × 10−8 [kg] (|mP2| > |mP|), (35)

tP2 =

√
h̄G
c5

2
= tP

√
α5

2
α5 ≈ i5.0942 × 10−44 [s] (|tP2| < |tP|), (36)

TP2 =

√
h̄c5

2
Gk2

B
= TP

√
α5

α5
2
≈ i1.4994 × 1032 [K] (|TP2| > |TP|). (37)

Most Planck units derived from the α2-Planck base units (33)-(37) are also imaginary. These
include the α2 Planck volume

ℓ3
P2 =

(
h̄G
c3

2

)3/2

= ℓ3
P

√
α9

2
α9 ≈ i3.8127 × 10−105 [m3]

(
|ℓ3

P2| < |ℓ3
P|
)

, (38)

the α2 Planck momentum

pP2 = mP2c2 =

√
h̄c3

2
G

= mPc

√
α3

α3
2
≈ i6.7506 [kg m/s] (|mP2c2| > |mPc|), (39)

the α2 Planck energy

EP2 = mP2c2
2 =

√
h̄c5

2
G

= EP

√
α5

α5
2
≈ i2.0701 × 109 [J] (|EP2| > |EP|), (40)

and the α2 Planck acceleration

aP2 =
c2

tP2
=

√
c7

2
h̄G

= aP

√
α7

α7
2
≈ ±i6.0198 × 1051 [m/s2] (|aP2| > |aP|). (41)

However, the α2-Planck density

ρP2 =
mP2

ℓ3
P2

=
c5

2
h̄G2 = ρP

α5

α5
2
≈ −5.7735 × 1096 [kg/m3] (|ρP2| > |ρP|), (42)

and the α2-Planck area

ℓ2
P2 =

h̄G
c3

2
= ℓ2

P
α3

2
α3 ≈ −2.4406 × 10−70 [m2]

(
|ℓ2

P2| < |ℓ2
P|
)

, (43)

are real and negative. Interestingly, both Planck forces FP and

FP2 =
c4

2
G

=
c4

G
α4

α4
2
= FP

α4

α4
2
≈ 1.3251 × 1044 [N] (FP2 > FP), (44)

are strictly positive. The remaining sets of Planck units are listed in Table 1.
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Table 1. Complementary fine-structure constants α2-α4 and the associated physical quantities and sets
of Planck units.

α α2 α3 α4

π-form 1
4π3+π2+π

−1
4π3+π2+2π

− 16π2+4π+5
4π3+π2+π

4
π2

(
4π3 + π2 + π

)
Identity α+α3

αα4
= −π α+α2

αα2
= −π α + α3 = − 4

π αα4 = 4
π2

α∗ 0.0073 −0.0071 −1.2805 55.5387
α−1
∗ 137.0363 −140.1779 −0.7809 0.0180

c∗ [m/s] 299792458 −3.0667 × 108 −1.7084 × 106 3.9390 × 104

qP∗ [C] 1.8755 × 10−18 1.8969 × 10−18i 1.4158 × 10−19i 2.1499 × 10−20

ℓP∗ [m] 1.6162 × 10−35 1.5622 × 10−35i 3.7570 × 10−32i 1.0731 × 10−29

mP∗ [kg] 2.1765 × 10−8 2.2013 × 10−8i 1.6430 × 10−9i 2.4948 × 10−10

tP∗ [s] 5.3911 × 10−44 5.0941 × 10−44i 2.1991 × 10−38i 2.7243 × 10−34

TP∗ [K] 1.4168 × 1032 1.4994 × 1032i 3.4733 × 1026i 2.8037 × 1022

ℓ3
P∗ [m3] 4.2218 × 10−105 3.8124 × 10−105i 5.3030 × 10−95i 1.2358 × 10−87

pP∗ [kg m/s] 6.5249 6.7506i 0.0028i 9.8272 × 10−6

EP∗ [J] 1.9561 × 109 2.0702 × 109i 4.7954 × 103i 0.3871
aP∗ [m/s2] 5.5609 × 1051 6.0200 × 1051i 7.7686 × 1043i 1.4459 × 1038

ρP∗ [kg/m3] 5.1553 × 1096 −5.7740 × 1096 −3.0982 × 1085 2.0188 × 1077

ℓ2
P∗ [m2] 2.6122 × 10−70 −2.4404 × 10−70 −1.4115 × 10−63 1.1516 × 10−58

FP∗ [N] 1.2103 × 1044 1.3252 × 1044 1.2764 × 1035 3.6072 × 1028

µ∗ [kg m C−2] 1.2569 × 10−6 1.2012 × 10−6 0.0387 72.8061
T T(α) ≈ 0.9775 T(α2) ≈ 1.0228 T(α3) = T(α) T(α4) = R(α)
A A(α) ≈ 0.0224 A(α2) ≈ −0.0229 A(α3) ≈ −3.9323 A(α4) = A(α)
R R(α) ≈ 1.2843 × 10−4 R(α2) = R(α) R(α3) ≈ 3.9548 R(α4) = T(α)
π1 = πα∗/α -3.0712 -551.2868 2.3910 × 104

π2 = πα/α∗ -3.2136 -0.0179 4.1278 × 10−4

Contrary to the elementary charge e (26), there is no physically meaningful elementary mass
Me = ±1.8592 × 10−9 [kg] satisfying the relation (35)

M2
e = α∗m2

P∗. (45)

There is no physically meaningful elementary length Le ≈ ±2.5927 × 10−32 [m] satisfying the relation
(34)

L2
e =

ℓ2
P∗

α3∗
, (46)

or an elementary temperature Te ≈ ±6.4450 × 1026 [K] satisfying the relation (37)

T2
e = α5

∗T2
P∗, (47)

and close to the Hagedorn temperature of grand unified string models, or an elementary period te =

±1.1851 × 10−38 satisfying the relation (36)

t2
e =

t2
P∗
α5∗

. (48)

However, the relations between periods (48) and temperatures (47) are inverted. Hence, the energy-
time version of Heisenberg’s uncertainty principle (HUP) is saturated using energy from the equiparti-
tion theorem for one bit of information [5,6,30] both by Planck temperatures and times and elementary
temperatures and periods (48), (47)

1
2

kBTP∗tP∗ =
1
2

kBTete =
h̄
2

. (49)
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The Planck charge relation (26) and charge conservation principle imply that the elementary
charge e, unlike mass Me is the same in all systems of Planck units, even though the same forms of the
relations (26) and (45) reflect the same forms of Coulomb’s law and Newton’s law of gravity, which are
inverse-square laws.

In the following, where deemed appropriate, we express the physical quantities in Planck units:

M+ := m+mP+, M− := m−mP−, m+, m− ∈ R
E+ := m+EP+ E− := m−EP−,
Q+ := qe, Q− := iQ+ = iqe, q ∈ Z,
λ+ := lℓP, λ− := l−ℓP−, l+ = 2π

m+
, l− = 2π

m−
,

{R+, D+} := {r+, d+}ℓP+, {R−, D−} := {ri, di}ℓP−, r+, d+, r−, d− ∈ R,

(50)

where uppercase letters M, E, Q, λ, R, and D denote masses, energies, charges, Compton wavelengths,
radii, and diameters (or lengths), lowercase letters m, l, etc. denote multipliers of the real α+ and
imaginary α− Planck units, respectively, and q is an integer multiplier of the elementary charge e. The
latter assumption is most likely too far-reaching, considering the fractional charges of quasiparticles,
particularly in the open research problem of the fractional quantum Hall effect (cf. Appendix G) and
energy-dependent fractional charges in electron pairing [31].

4. Black Body Objects

There are only three observable objects in nature that emit perfect black-body radiation: un-
supported black holes (BHs, the densest), neutron stars (NSs), supported, as believed, by neutron
degeneracy pressure, and white dwarfs (WDs), supported, as believed, by electron degeneracy pres-
sure (the least dense). We collectively refer to these black-body objects (BBs). The spectral density in
sonoluminescence, that is light emission by sound-induced collapsing gas bubbles in fluids, was also
shown to have the same frequency dependence as black-body radiation [32,33]. Thus, sonolumines-
cence, particularly shrimpoluminescence [34], is probably emitted by collapsing micro-BBs. Micro-BH
induced in glycerin by modulating acoustic waves has also been reported [35].

The term black-body object is not used in general relativity (GR) and standard cosmology, but stan-
dard cosmology scrunches under embarrassingly significant failings, not just tensions as is sometimes
described, as if to somehow imply that a resolution will eventually be found [36]. In addition, James
Webb Space Telescope data show multiple galaxies that grew too massive too soon after the Big Bang,
which is a strong discrepancy with the Λ cold dark matter model (ΛCDM) expectations of how galaxies
formed at early times at both redshifts, even when considering observational uncertainties [37]. For
example, the supermassive BH of J1120+0641 quasar with mass MBH = 1.52 ± 0.17 × 109M⊙ assem-
bled in less than 0.77 billion years after the Big Bang [38,39]. This is an important unresolved issue,
indicating that fundamental changes to the reigning ΛCDM model of cosmology are required [37].
In particular, it is well known that entropic gravity [30] explains the galaxy rotation curves without
resorting to dark matter (dark matter is not required to explain the rotation curves of certain galaxies,
such as the massive relic galaxy NGC 1277 [40]), has been experimentally confirmed [41], and is
decoherence-free [42].

The term object as a collection of matter is a misnomer because it neglects the (quantum) nonlocal-
ity [9,43] that is independent of the entanglement among particles [44], as well as the Kochen-Specker
contextuality [45], and increases as the number of particles increases [46,47]. Macro-realistic theories
are false [48]. Thus, we use emphasis for (perceivably indistinguishable) particle and (perceivably distin-
guishable) object, as well as matter and distance. The ugly duckling theorem [49,50] asserts that every
two objects we perceive are equally similar (or equally dissimilar). These terms do not have an absolute
meaning in the ED. In particular, given the observation of quasiparticles in classical systems [51]. Within
the ED framework, no object is enclosed in space. The interiors of the BBs are inaccessible to an exterior
observer [52], which makes them similar to interior-less mathematical points representing real numbers
on a number line. Thus, the term object is a particularly staring misnomer if applied to BBs.
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It has been experimentally confirmed that (so-called) accretion instability is a fundamental physical
process [53]. We conjecture that this process, which has already been recreated under laboratory
conditions [54], is common for all BBs. As black-body radiation is a radiation of global thermodynamic
equilibrium, it is patternless [55] (thermal noise) radiation that depends only on one parameter. In
the case of BHs, this is known as Hawking [56] radiation, and this parameter is the BH temperature
TBH = TP/(2πdBH) corresponding to the BH diameter [6] DBH = dBHℓP. Furthermore, BHs absorb
patternless information [6,57]. Therefore, because Hawking radiation depends only on the diameter of
a BH, it is the same for a given BH, even though it fluctuates (cf. Section 7).

As black-body radiation is patternless, triangulated [6] BBs contain a balanced number of Planck
area triangles, each having binary potential δφk = −c2 · {0, 1}, as has been shown for BHs [6], based
on the Bekenstein-Hawking (BH) entropy [52] SBH = kBNBH/4, where NBH := 4πR2

BH/ℓ2
P = πd2

BH
is the information capacity of the BH surface, i.e., the ⌊NBH⌋ ∈ N0 Planck triangles corresponding
to bits of information [5,6,30,52,58], and the fractional part triangle(s) having the area {NBH}ℓ2

P =

(NBH − ⌊NBH⌋)ℓ2
P too small to carry a single bit of information [5,6], where "⌊x⌋" is the floor function

that yields the greatest integer less than or equal to its argument x.
BH entropy can be derived from the Bekenstein bound

S ≤ 2πkBRE
h̄c

= πkBm1d1, (51)

which defines an upper limit on the thermodynamic entropy S that can be contained within a sphere of
radius R and energy E. Substituting BH (Schwarzschild) radius RBH = 2GMBH/c2 and mass-energy
equivalence EBH = MBHc2, where MBH is the BH mass, into the bound (51), it reduces to the BH
entropy. In other words, the BH entropy saturates the Bekenstein bound (51). Furthermore, the
Bekenstein bound can be derived from the BH entropy

SBH =
1
4

kBNBH =
1
4

kB
4πR2

ℓ2
P

= kB
πRR
ℓ2

P
≤ kBπR

2GE
c4

c3

h̄G
=

2πkBRE
h̄c

, (52)

where we used M ≤ Rc2

2G and E = Mc2.
The patternless nature of perfect black-body radiation was derived [6] by comparing the BH

entropy with the binary entropy variation δS = kBN1/2 ([6] Eq. (55)), which is valid for any HS, where
N1 ∈ N denotes the number of active Planck triangles with a binary potential δφk = −c2. Thus, the
entropy of all BBs is

SBB =
1
4

kBNBB. (53)

Furthermore, N1 = NBB/2 confirms the patternless thermodynamic equilibrium of BBs by maximizing
Shannon entropy [6]. In complex Euclidean Ra × Ib space, a n-ball (n = a + bi ∈ C) is spherical only
for b = 0, i.e. when perceived. Not only BBs are perfectly spherical, when perceived; their mergers
(cf. Section 6) are also perfectly spherical. Furthermore, the trigonometric member of its volume and
surface formulas vanishes for the radius r = 1/

√
π (R = ℓP/

√
π) [5,16], resulting in its information

capacity N = 4, one unit of BH entropy [52]. This corroborates the universality and applicability of BH
entropy (53) to all BBs. Furthermore, some binary strings of of length NBB ≥ 4 can be assembled in
less than NBB − 1 steps. There is no disorder or uncertainty in a binary string of length NBB ≤ 3 [9].

We shall define the generalized radius of a BB (this definition applies to all HSs) having mass
MBB as a function of GMBB/c2 multiplier k ∈ R, k ≥ 2

RBB := k
GMBB

c2 , dBB = 2kmBB, (54)
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and the generalized BB energy EBB (this definition also applies to all HSs) as a function of MBBc2

multiplier a ∈ R
EBB := aMBBc2, EBB = amBBEP. (55)

Substituting MBB from the generalized radius definition (54) into the generalized BB energy definition
(55) and the latter into the Bekenstein bound (51), we obtain

S ≤ 1
2

kB
a
k

NBB, (56)

which equals BB entropy (53) if a
2k = 1

4 ⇔ a = k
2 . Thus, the energy (55) of all BBs with a generalized

radius (54) turns into

EBB =
k
2

MBBc2 =
k
2

mBBEP =
dBB

4
EP, (57)

with k = 2 in the case of the BHs, setting the lower bound for the other BBs. We further call coefficient k
the size-to-mass ratio (STM). This is similar to the specific volume (reciprocal of density) of BB. We derive
the upper STM bound in Section 5. The energy (57) of BBs other than BHs (i.e., for k > 2) exceeds
the mass-energy equivalence E = Mc2, which is the limit of the maximum real energy. Therefore,
we consider this surplus energy that exceeds MBBc2 as related to charge and we shall model it as
imaginary and thus unmeasurable.

According to the no-hair theorem, all BHs general relativity (GR) solutions are characterized
by only three parameters: mass, electric charge, and angular momentum. However, BHs are funda-
mentally uncharged, because the parameters of any conceivable BH, in particular, charged (Reiss-
ner–Nordström) and charged-rotating (Kerr–Newman) BH, can be arbitrarily altered, provided that
the BH area does not decrease [59] using Penrose processes [60,61] to extract the electrostatic and/or
rotational energy of BH [62]. Thus, any BH is defined by only one real parameter: its diameter, mass,
temperature, energy, etc., each differing from each other by a multiplicative constant. A BH can
embrace the real number that defines it as a curvature of a spherical triangle corresponding to one bit
of classical information. The area of a spherical triangle is larger than that of a flat triangle defined by
the same vertices and depends on its curvature.

However, it is accepted that in the case of NSs, electrons combine with protons to form neutrons,
such that NSs are composed almost entirely of neutrons. However, it is never the case that all electrons
and protons of an NS become neutrons. WDs are charged by definition because they are believed to be
mostly composed of electron-degenerate matter. But how can a charged BB store both its curvature
corresponding to its mass and an additional parameter corresponding to its charge? Fortunately, the
relation (26) ensures that the elementary charge is the same in all systems of Planck units. Therefore,
charge of a spherical Planck triangle of a BB surface can link the perceivable Euclidean space R3

α × Iα

parameterized by Planck units with the parameterization provided by one of the remaining negative
fine-structure constants α−. This can be considered in a polyspherical coordinate system, in which
gravitation/acceleration acts in a radial direction (with the entropic gravitation acting inwardly and
acceleration acting in both radial directions) [6], while electrostatics act in a tangential direction.
Contrary to the no-hair theorem, we characterize BBs only by mass and charge, neglecting the angular
momentum because the latter introduces the notion of time, which we find redundant in the BB
description of a patternless thermodynamical equilibrium. Time is required for directed exploration
only [8,9].

5. Complex Energies

A complex energy formula

ER := EMR + iEQR = MRc2 +
iQR

2
√

πϵ0G
c2, (58)
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where EMR and iEQR represent the real and imaginary energies of an object having mass MR and charge
QR was proposed in ref. [63]. Equation (58) considers the real masses MR and charges QR which in
ref. [63] are defined in CGS units. We adopted SI units and modified this formula to a form involving
real physical expressed in terms of real α+-Planck units and imaginary quantities expressed in terms
of the imaginary α−-Planck units using relations (32), (35), (40), (50), and (31) as

e
2
√

πϵ0
=
√

α+c+ h̄ =
√

α−c− h̄. (59)

To this end, we defined the following three complex energies linking mass, imaginary mass, and
charge: the complex energy of real mass and imaginary charge

EMQi
:= EM+

+ EQ− = M+c2
+ +

Q−
2
√

πϵ0G
c2
+ = (m+mP+ + iq

√
α+mP+)c2

+ = (m+ + iq
√

α+)EP+, (60)

of real charge and imaginary mass

EQMi
:= EQ+

+ EM− =
Q+

2
√

πϵ0G
c2
− + M−c2

− = (q
√

α−mP− + m−mP−)c2
− =

α2
+

α2
−

(
q
√

α+ +

√
α+
α−

m−

)
EP+, (61)

and of real mass and imaginary mass

EMMi := M+c2
+ + M−c2

− =

(
m+ +

√
α5
+

α5
−

m−

)
EP+. (62)

We neglected the energy of real and imaginary charges EQQi , because by equation (26), the elementary
charge is the same in all systems of measurement units, and hence we use the same elementary charge
multiplier q in (50). Furthermore, the mass-energy equivalence relates the mass M+ or M− to the
speed of light c+ or c−, which subsequently parameterizes both parts of the energies EMQi and EQMi

(cf. Appendix F). We express all energies (60)-(62) in terms of the same Planck energy EP+ in order to
be able to compare them, as we assume that they are fundamental to any object and particle. We also
note that the complex conjugates EMQi and EMQi of the energy (60) represent respectively particle and
antiparticle. We note that antimatter obeys gravity [64], which is consistent with the definition (60) and
the findings of this study.

In the remainder of this section we shall analyze the energies (60)-(62) for different pairs of
{α+, α−} in order {α1, α2}, {α4, α2}, {α1, α3}, and {α4, α3}. Our aim is to determine which pair is the
most plausible physically.

Energies (60) and (61) yield two different charge energies corresponding to the elementary charge,
imaginary quantum

EQ−(q = ±1) = ±i
√

α+EP+ ≈ ±{1.6710 × 108, 2.8848}i [J], (63)

and the - larger in modulus - real quantum

EQ+(q = ±1) = ±√
α−EP− ≈ ±{1.7684 × 108, 5.4265 × 103} [J]. (64)

Furthermore, ∀q, α2
+EQ− = iα2

−EQ+ .
The universal character of the charges is additionally emphasized by the real

√
α multiplied by i

in the imaginary charge energy (60) and imaginary
√

α2 in the real charge energy (61).

Theorem 1. The complex energies (60)-(62) cannot be all balanced complex quantities.

Proof. The complex energies EMQi and EQMi are balanced if their real and imaginary parts are equal
in modulus. This holds for
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q2α+ = m2
+ = −α+

α−
m2

−. (65)

However, if balanced with each other, they cannot be balanced with the energy EMMi , which is balanced
for

m2
+ = −

α5
+

α5
−

m2
− ̸= −α+

α−
m2

−, (66)

defining the energy balance of uncharged masses. Similarly, the complex energies EQMi and EMMi can
be balanced with each other but not with EMQi since

α4
+

α4
−

q2α+ = −
α5
+

α5
−

m2
− = m2

+ ̸= q2α+ (67)

and likewise for EMQi and EMMi .

The squared moduli of the complex energies (60)-(62), expressed in terms of the Planck energy,
are

|EMQi |
2 =

(
M2

+ + q2α+m2
P+

)
c4
+ =

(
m2

+ + q2α+
)

E2
P+, (68)

|EQMi |
2 =

α4
+

α4
−

(
q2α+m2

P+ − M2
−

)
c4
+ =

α4
+

α4
−

(
q2α+ − α+

α−
m2

−

)
E2

P+, (69)

|EMMi |
2 =

(
M2

+ −
α4
+

α4
−

M2
−

)
c4
+ =

(
m2

+ −
α5
+

α5
−

m2
−

)
E2

P+, (70)

ad shown in Figure 2.

Figure 2. Squared moduli of three complex energies linking mass m+, imaginary mass m−, and charge
q through pairs of positive and negative fine-structure constants.

Equalities of the squared moduli of the complex energies lead to the following results

|EMQi |
2 = |EQMi |

2 ⇔ m− = ±

√√√√α−
α+

[
q2α+

(
1 −

α4
−

α4
+

)
−

α4
−

α4
+

m2
+

]
, (71)

|EMQi |
2 = |EMMi |

2 ⇔ m− = ±q

√
−

α5
−

α4
+

= ±q{0.0807, 1.3935 × 10−9, 3.4846 × 104, 6.0157 × 10−4}, (72)

|EQMi |
2 = |EMMi |

2 ⇔ m+ = ±q

√
α5
+

α4
−

= ±q{0.0894, 4.5170 × 108, 2.7741 × 10−6, 1.4019 × 104}, (73)
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Because the mass multiplier m− ∈ R, the square root argument must be nonnegative in equation
(71), which leads to (the sign of this inequality changes, as α− < 0)

m+ ≥ |q|

√√√√α+

(
α4
+

α4
−
− 1

)
≈ |q|{0.0263, 4.5170 × 108, 0.0854i, 1.4019 × 104}, (74)

which is imaginary for
√

α(α4/α4
3 − 1) ruling out the third pair of alphas {α1, α3}. Otherwise, we

would have to exclude objects having the same energies EMQi and EQMi from our model. Furthermore,
for q = 0 equation (71) yields

m− = ±m+

√
−

α5
−

α5
+

≈ ±m+

{
0.9449, 1.8699 × 10−10, 4.0791 × 105, 8.0722 × 10−5

}
, (75)

which corresponds to equation (66).
Furthermore, the relation (74) means that the masses of the uncharged micro-BHs (q = 0) can be

arbitrary (m ≥ 0). However, micro NSs and micro WDs, which are also in thermodynamic equilibrium,
are charged. Thus, even a single elementary charge (q = 1) of a white dwarf renders its minimum
allowable mass (74) MWD ≥ 5.7275 × 10−10 [kg] comparable to the mass of a sand grain.

Theorem 2. Moduli of the complex energies (68)-(70) are equal

|EMQi |
2 = |EQMi |

2 = |EMMi |
2 =

(
1 +

α4
2

α4

)
m2E2

P =

(
1 +

α4

α4
2

)
q2αE2

P = −
(

1 +
α4

2
α4

)
α9

α9
2

m2
i E2

P := A2E2
P, A ∈ R, (76)

for

q2α = −α5

α5
2

m2
i =

α4
2

α4 m2, m2
i = −

α9
2

α9 m2 ≈ 0.8155m2. (77)

Proof. If the squared moduli (68)-(70) are equal to some constant energy then q2α drops out by

subtracting |EMQi |
2 − α4

2
α4 |EQMi |

2, yielding

m2 +
α

α2
m2

i = A2

(
1 −

α4
2

α4

)
. (78)

Subtracting this from |EMMi |2 yields

m2
i = −A2 α9

2
α5(α4 + α4

2)
, (79)

which substituted into the relation (78) yields

m2 = A2 α4

α4 + α4
2

. (80)

Finally, substituting m2 (80) into equation |EMQi |
2 (68) yields

q2α = A2 α4
2

α4 + α4
2

. (81)

We can interpret the squared generalized energy of the BBs (57) as the squared modulus of each
of the complex energies (68)-(70). That is, for EMQi (60) and for EMMi (62), we assume that the real
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mass energy EBB = MBBc2 of the BB is the observable real part of this complex energy. For |EMQi |
2 (68)

we have
k2

4
m2

BB = m2
BB + q2

BBα+ ⇔ qBB
√

α+ = ±mBB

√
k2

4
− 1, (82)

where q2
BBα+ represents the charge surplus energy exceeding MBBc2. We note that k = 2 implies

qBB = 0, confirming the vanishing charge of BHs. For |EMMi |2 (70) we have

k2

4
m2

BB = m2
BB −

α5
+

α5
−

m2
iBB ⇔ miBB = ±mBB

√
α5
−

α5
+

(
1 − k2

4

)
, (83)

where the square root argument must be nonnegative, which implies (along with (82)), as expected,
k ≥ 2, where k = 2 implies miBB = 0. Finally, for |EQMi |

2 (69) we have

k2

4
m2

BB =
α4
+

α4
−

(
q2

BBα+ − α+
α−

m2
iBB

)
⇔ miBB = ±mBB

√√√√α−
α+

[
k2

4

(
1 −

α4
−

α4
+

)
− 1

]
, (84)

where we substituted q2
BBα+ as a function of m2

BB from equation (82). Comparison of miBB given by
(84) with mi given by (71) also leads to k ≥ 2, and for k = 2 or q = 0 corresponds to the balance
of uncharged masses (66), (75) which are unrelated to any assumptions regarding BB energy and
independent of STM. Comparing equations (71), as a function of charge q, and (84), as a function of
the STM k, leads, as expected, to the relation (82).

Furthermore, the square root argument in equation (84) must be nonnegative, because mBB, miBB ∈
R. This leads to the maximum STM-bound

k ≤ 2√
1 − α4

−
α4
+

= kmax ≈ {6.7933, 2.0000, 6.4949 × 10−5i, 2.0000}, (85)

where again third pair of examined alphas {α1, α3} must be ruled out, while pairs {α2, α4} and {α3, α4}
do not allow to extend our model above the STM of BH. The relations (82) and (84) are shown in
Figure 3 for α and α2.
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Figure 3. Ratios of imaginary mass MiBB to real mass MBB (green) and real charge qBBmP
√

α to MBB

(red) of a BB as a function of the size-to-mass ratio 0 ≤ k ≤ 10. The mass MiBB is imaginary for k ⪅ 6.79.
The charge qBB is real for k ≥ 2.
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The maximum STM-bound kmax (85) sets the bounds on BB energy (57), mass, and radius (54)

RBH =
2GMBB

c2 ≤ RBB ≤ kmaxGMBB

c2 . (86)

In particular, using the relations (50), 2mBB ≤ rBB ≤ kmaxmBB or rBB/kmax ≤ mBB ≤ rBB/2.
From the relation (77) we see that uncharged BHs (q = 0) cannot remain in a nonvanishing

equilibrium of complex energies (76), even though they are in thermodynamic equilibrium. It was
shown [5] based on the Mandelstam-Tamm [65], Margolus–Levitin [66], and Levitin-Toffoli [67]
theorems on the quantum orthogonalization interval that a BH is represented by a qubit |ψBH⟩ =

1√
2
(|0⟩+ |EBH⟩) in an equal superposition of the eigenstates corresponding to the BH energy EBH =

MBHc2 and vanishing ground state energy. However, such a nonvanishing equilibrium of complex
energies (76) is possible for charged BBs. We obtain it by substituting squared generalized energy of
the BBs (57) into equation (76) as A2 = 1

4 k2m2
BB and solving for

(
1 + α4

−/α4
+

)
m2

BB. This yields

keq = 2

√
1 +

α4
−

α4
+

≈ {2.7665, 2.0000, 6.1586 × 104, 2.0000} (87)

where all three energies are equal. The equilibrium keq (87) and maximum kmax (85) STMa satisfy
k2

eq + 16/k2
max = 8 (which resolves to 2 ≤ |keq| < 2

√
2, |kmax| ≥

√
2, ∀keq, kmax ̸= 0 ∈ R).

The relations (74), (85), and (87) show that the negative fine-structure constant α− corresponding
to α is α2 not α3. As we have seen in Section 2.3, α and α2 are dual to each other. The BB hav-
ing the STM keq ≈ 2.7665 (87) and the elementary charge (q2 = 1) would have mass MBB(keq) ≈
±1.9455 × 10−9 [kg], imaginary mass MiBB(keq) ≈ ±i1.7768 × 10−9 [kg], corresponding to the Comp-
ton wavelength λBB(keq) ≈ ±1.1361× 10−33 [m], and the imaginary Compton wavelength λiBB(keq) ≈
±i1.2160 × 10−33 [m]. On the other hand, equation (82) provides the BB charge in equilibrium (76) as
qBB(keq) ≈ 11.1874 mBB and the limit of the BB charge qBB(kmax) ≈ 37.9995 mBB.

We note that BBs with STMs 2 ≤ k ≤ 3 are referred to as ultracompact [68], where kps = 3 is
a photon sphere radius, at which, according to an accepted photon sphere definition, the strength
of gravity forces photons to travel in orbits. The author wonders why the photons would not travel
in orbits at a radius R = GM/c2 corresponding to the orbital velocity v2

orb = GM/R of mass M.
Obviously, according to the ED principle, photons do not travel. Any object that undergoes complete
gravitational collapse passes through an ultracompact stage [69], where k < 3. Collapse can be
approached by gradual accretion, increasing the mass to the maximum stable value, or by the loss of
angular momentum [69]. During the loss of angular momentum, the star passes through a sequence of
increasingly compact configurations until it finally collapses and becomes a BH. It was also pointed
out [70] that for a neutron star of constant density, the pressure at the center would become infinite
if k = 2.25, which is the radius of the maximal sustainable density for gravitating spherical matter
given by Buchdahl’s theorem. It was shown [71] that this limit applies to any well-behaved spherical
star, where the density increases monotonically with the radius. Furthermore, some observers would
measure a locally negative energy density if k < 2.6(6) thus breaking the dominant energy condition,
although this may be allowed [72]. As the surface gravity increases, photons from further behind
the NS become visible. At k ≈ 3.52 the entire NS surface becomes visible [73]. The relative increase
in brightness between the maximum and minimum of a light curve is greater for k < 3 than for
k > 3 [73]. Furthermore, kc =

√
27 ≈ 5.1962 defining a photon capture radius [74], the effective radius

for capturing photons that approach the black hole from infinity is about 76% of kmax (85). Therefore,
the equilibrium and maximum STM ratios (87), (85) satisfying keq < kps < kc < kmax are well within
the range of radii of ultracompact objects researched in the state-of-the-art within the GR framework.

However, aside from the Schwarzschild radius, derivable from the escape velocity v2
esc = 2GM/R

of mass M by setting v2
esc = c2, and discovered in 1783 by John Michell [75], all the remaining significant

radii of GR are only approximations. GR neglects the value of the Planck constant and the fine-structure
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constants α and α2, which, similar to π or the base of the natural logarithm, are fundamental constants
of nature. Constructive criticism of GR can be found, for example, in [76–82].

Therefore, we conjecture that keq is the correct value of the photon sphere radius and kmax is the
correct value of a photon capture radius. These radii are indirectly measured by the Event Horizon
Telescope (EHT), a telescope array consisting of a global network of radio telescopes, each associated
with an atomic clock. The signals collected by each telescope are stored along with time stamps and
subsequently shipped to one location to be synchronized and processed. The EHT observational
targets are the Milky Way’s BH, Sagittarius A* (Sgr A*) and the M87* BH at the center of the Messier
87 galaxy. The EHT data processing model assumes a Kerr BH (uncharged, spinning) [74,83] and is
suitable for prograde accretion disks [83] (spinning in the same direction as a BH). The first assumption
is congruent with our results; in this and in the preceding sections we have shown that BHs are
fundamentally uncharged.

The processed Sgr A* and M87* signals revealed ring-like structures surrounding these BHs,
which were compared with a large suite of general-relativistic magnetohydrodynamics (GRMHD)
simulations [74,83]. However, the GRMHD simulations turned out to be more variable than the
observed signals and only a few configurations could satisfy the full set of observational constraints
apart from variability, hinting that more work is needed to fully explore the physical parameter space
and to understand this variability, as these variations challenge standard approaches to interferometric
analysis. Subsequently, measurements of the first in an infinite series of photon rings around M87*
were reported [84] based on simultaneous modeling and imaging of the EHT signals. However,
the photon ring calculated by this method turned out to be much brighter than expected, while it
should be emitting only around 20 percent of the light in the image, as general relativity predicts [85].
Therefore, it may be just picking out an unrelated structure in the image [86] and M87* and Sgr
A* EHT observations have yet to experimentally resolve any photon ring [87–90]. This ambiguity
requires a further research of these ring-like structures revealed by the EHT within the ED framework,
considering the equilibrium and maximum STM ratios keq (87) and kmax (85) that may accurately
describe them.

6. BB Mergers

As the entropy (Boltzmann, Gibbs, Shannon, von Neumann) of independent systems is additive,
a merger of BB1 and BB2 having entropies (53) S1 = 1

4 kBπd2
1 and S2 = 1

4 kBN2, produces a BBC with
entropy (we drop the HS subscripts in this section for clarity)

S1 + S2 = SC ⇔ d2
1 + d2

2 = d2
C, (88)

which shows that the resultant information capacity is the sum of the information capacities of the
merging components. Thus, a merger of two primordial BHs, each with the Planck length diameter,
the reduced Planck temperature TP

2π (the largest physically significant temperature [5]) produces a BH
having dBH = ±

√
2 which represents the minimum BH diameter allowing for the notion of time [5].

In comparison, a collision of the latter two BHs produces a BH with dBH = ±2 and the triangulation
defining only one precise diameter between its poles (cf. [6] Figure 3(b)), which is also recovered from
HUP (cf. Appendix E).

Substituting the generalized diameter (54) into the entropy relation (88) establishes a Pythagorean
relation between the generalized energies (57) of the merging components and the merger

k2
C
4

m2
C =

k2
1

4
m2

1 +
k2

2
4

m2
2, ∀mj ∈ {R, I}. (89)

It is accepted that gravitational events observations alone allow measuring the masses of the
merging components, setting a lower limit on their compactness, but it does not exclude mergers that
are more compact than neutron stars, such as quark stars, BHs, or more exotic objects [91]. We note in
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passing that describing the registered gravitational events as waves is misleading: normal modulation
of the gravitational potential, registered by LIGO and Virgo interferometers, and caused by rotating (in
the merger case, inspiral) objects, is wrongly interpreted as a gravitational wave understood as a carrier
of gravity [92]. It has also been shown that from a mathematical point of view, the quadrupolar waves
in a quantum spin nematic are in one-to-one correspondence with quantized gravitational waves in a
flat, 4-dimensional spacetime [93].

The accepted value of the Chandrasekhar WD mass limit, which prevents its collapse into a denser
form, is MCh ≈ 1.4 M⊙ [94] and the accepted value of the analogous Tolman-Oppenheimer-Volkoff
NS mass limit is MTOV ≈ 2.9 M⊙ [95,96]. There is no accepted value for the BH mass limit. The
conjectured value is 5 × 1010 M⊙ ≈ 9.95 × 1040 kg. We note in passing that a BH with a surface gravity
equal to the Earth’s surface gravity (9.81 m/s2) would require a diameter of DBH ≈ 9.16 × 1015 m
(slightly less than one light year) [6] and mass MBH ≈ 3.08 × 1042 kg exceeding the conjectured limit.
The masses of most registered merging components go well beyond MTOV. From those that do not,
most of the total or final masses exceed this limit. Therefore, these mergers (BH ⇆ BH, BH ⇆ NS,
BH ⇆ WD, NS ⇆ NS, NS ⇆ WD, WD ⇆ WD) are classified as BH mergers. Only a few were
classified otherwise, including GW170817, GW190425, GW200105, and GW200115, as listed in Table 2.

Table 2. Selected BB mergers discovered with LIGO and Virgo. Masses in M⊙.

Event M1 M2 MC k1 k2 kC
GW170817 1.46+0.12

−0.10 1.27+0.09
−0.09 2.8 4.39 4.39 3.03

GW190425 2.00+0.6
−0.2 1.4+0.3

−0.3 3.4+0.3
−0.1 4.39 4.39 3.15

GW200105 8.9+1.2
−1.5 1.9+0.3

−0.2 10.9+1.1
−1.2 2.76 4.39 2.38

GW200115 5.7+1.8
−2.1 1.5+0.7

−0.3 7.1+1.5
−1.4 3 4.39 2.64

Equation (89) explains the measurements of large masses of BB mergers with at least one charged
merging component without resorting to any hypothetical types of exotic stellar objects such as quark
stars. Interferometric data, available online at the Gravitational Wave Open Science Center (GWOSC)
portal1, indicates that the total mass of a merger is the sum of the masses of the merging components.
Thus

mC = m1 + m2 ⇔ m2
C = m2

1 + m2
2 + 2m1m2 ⇔

{
m2

C ≥ m2
1 + m2

2 if m1m2 ≥ 0
m2

C ≤ m2
1 + m2

2 if m1m2 ≤ 0
. (90)

We can use the squared moduli |EMQi |
2, |EQMi |

2, and |EMMi |2 (82)-(83) and the relation (89) to
derive some information about the merger from equation (89). We shall initially assume mj ≥ 0 ⇒
m1m2 ≥ 0, since negative masses, similar to negative lengths, and their products with positive ones,
are (in general [97]) inaccessible for direct observation, unlike charges. |EMQi |

2 (82) with the first
inequality (90) yields:

|EMQi |
2
C = |EMQi |

2
1 + |EMQi |

2
2, m2

C = m2
1 + m2

2 + (q2
1 + q2

2)α − q2
Cα ≥ m2

1 + m2
2, q2

C ≤ q2
1 + q2

2, (91)

On the other hand, |EQMi |
2 (84) with inequality (91) leads to (α− < 0, and thus the direction of the

inequality is reversed):
q2

C ≤ q2
1 + q2

2 ⇒ m2
iC ≥ m2

i1 + m2
i2. (92)

But |EMMi |2 (83) with the first inequality (90) leads to:

m2
C ≥ m2

1 + m2
2 ⇒ m2

iC ≤ m2
i1 + m2

i2, (93)

1 https://www.gw-openscience.org/eventapi/html/allevents
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contradicting inequality (92) (α5
− < 0), while |EMMi |2 with inequality (92) leads to:

m2
iC ≥ m2

i1 + m2
i2 ⇒ m2

C ≤ m2
1 + m2

2, (94)

contradicting the first inequality (90) and is consistent with the second inequality (90) introducing the
product of positive and negative masses. |EQMi |

2 with inequality (93) yields:

m2
iC ≤ m2

i1 + m2
i2 ⇒ q2

C ≥ q2
1 + q2

2, (95)

contradicting the inequality (92) and so on.
The additivity of the entropy (88) of statistically independent merging BBs, both in global ther-

modynamic equilibrium, defined by their generalized radii (54), introduces the energy relation (89).
This relation, universality of the charges (26), and the BB complex energies (68)-(70) establish imag-
inary, negative, and mixed masses during the merger. The BB merger spreads as a gravitational
event associated with a fast radio burst (FRB) event, as reported [98] based on the gravitational event
GW1904251 and FRB 20190425A event2. Furthermore, IXPE3 observations show that the polarized
X-rays detected from 4U 0142+61 pulsar exhibit a 90◦ linear polarization swing from low to high
photon energies [99]. In addition, direct evidence for a magnetic field strength reversal based on the
observed sign change and extreme variation of FRB 20190520B’s rotation measure, which changed
from ∼ 10000 [rad · m−2] to ∼ −16000 [rad · m−2] between June 2021 and January 2022, has been
reported [100], and such extreme rotation measure reversal has never been observed before in any
FRB or any astronomical object. It has been suggested that outside the GR, merging BHs may differ
from their GR counterparts [101]. Furthermore, it was experimentally confirmed [102], based on the
registered gravitational event GW170817, that BB mergers are perfectly spherical. It is concluded [102]
that an additional process seems necessary to make the merger distribution uniform. However, one
can hardly expect the collision of two perfectly spherical, patternless thermal noises to produce an
aspherical pattern instead of another perfectly spherical patternless noise. Where would information
about this pattern come from at the moment of collision? From the point of impact? No point of impact
can be considered unique on the patternless surface.

During the merger, the STM ratio kC decreases, making the BBC denser until it becomes a BH
for kC = 2 and no further charge reduction is possible (see Figure 3). From equation (89) and the first
inequality (90), we see that this holds for

k2
C

(
m2

1 + m2
2

)
≤ k2

1m2
1 + k2

2m2
2. (96)

For two merging BHs k1 = k2 = 2 and the relation (96) yields k2
C ≤ 4 ⇒ kC = 2 = kBHC . On the

other hand, if m1 = m2 then kC ≤
√
(k2

1 + k2
2)/2. The tendency to decrease the STM, given by relation

(96), is reflected in the merger statistics registered by LIGO and Virgo interferometers: the registered
fraction of BH mergers is much higher than might be expected by chance.

Table 2 lists the mass-to-size ratios kBBC calculated according to equation (89), which provide the
measured mass MBBC of the merger and satisfy inequality (96). The mass-to-size ratios kBB1 and kBB2

of the merging components were arbitrarily selected based on their masses, considering the limit of
mass MTOV of the NS.

2 Data available online at the Canadian Hydrogen Intensity Mapping Experiment (CHIME) portal (https://www.chime-frb.
ca/catalog).

3 X-ray Polarimetry Explorer (https://ixpe.msfc.nasa.gov).
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7. BB Fluctuations

A relation [103] (p.160) describing a BH information capacity, having an initial information
capacity4 Nj = 4πR2

j /ℓ2
P, after absorption of a particle having the Compton wavelength equal to the

BH radius Rj

NA
j+1 = 64π3 ℓ

2
P

R2
j
+ 32π2 + 4π

R2
j

ℓ2
P

, (97)

was subsequently generalized [6] (Eq. (18)) to all Compton wavelengths λ = lℓP = 2π
m ℓP (or frequencies

ν = c/λ = 1/(ltP)) and thus to all radiated Compton energies E = mEP, m ∈ R absorbed (+) or
emitted (−) by a BH as

NA/E
j+1 (m) = 64π3 1

l2 ± 16π2 d
l
+ πd2 = 16πm2 ± 8πdm + πd2. (98)

Equation (98) can be further generalized, using the generalized diameter d = 2km̂ (54), to all BBs
as follows

∆NA/E := NA/E
j+1 (k, m)− Nj = 16πm(m ± km̂), (99)

where m̂ represents the BB mass, and its roots are

mA/E = {0,∓km̂} =

{
0,∓d

2

}
= {0,∓r}, (100)

where it vanishes. Thus, in general, BB changes its information capacity by:

∆NA


> 0 m ∈ (−∞,−km̂) ∩ (0, ∞)

= 0 m = {−km̂, 0}
< 0 m ∈ (−km̂, 0)

, ∆NE


> 0 m ∈ (−∞, 0) ∩ (km̂, ∞)

= 0 m = {0, km̂}
< 0 m ∈ (0, km̂)

, (101)

absorbing or emitting energy m with min(∆N) = −4πk2m̂2 at m = ±km̂/2, as shown in Figure 4.
Equation (101) shows that, depending on its mass m̂, a BB can expand or contract by emitting or
absorbing energy m [6]. However, expansion by emission (∆NE > 0), for example, requires energy
m > km̂ exceeding the mass-energy equivalence of BB for k > 2, which is consistent with the results
presented in Section 5. We note that the same form of the relation (99), expressed as

NA/E
j+1 (m̂, l) = 64π3 1

l2 ± 32π2 km̂
l

+ 4πk2m̂2 (102)

contains the same like terms with respect to π as the transcendental expressions for the fine-structure
constants (13) and (14), which requires further investigation. The forms of the fine-structure constants
(18) and (22) are different.

4 We drop the HS subscripts in this section for clarity.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2024                   doi:10.20944/preprints202212.0045.v19

https://doi.org/10.20944/preprints202212.0045.v19


22 of 38

−3 −2 −1 0 1 2 3
−60

−40

−20

0

20

40

60

m

∆
N

Figure 4. BB information capacity variations ∆N after absorption (red) or emission (green) of energy
m (k = 2, m̂ = 1).

8. Complex Forces

The complex energies (60)-(62) define the complex forces (similarly to the complex energy of real
masses and charges (58); cf. ref. [63] Eq. (7)). Using the relations (50), we obtain the following three
complex products of energies

E12mqi
:= E1MQi E2MQi /E2

P = m1m2 − q1q2α + i
√

α(m1q2 + m2q1), (103)

E12qmi
:= E1QMi E2QMi /E2

P =
α4

α4
2

(
αq1q2 +

α

α2
mi1mi2 +

√
α

α2

√
α(mi1q2 + mi2q1)

)
, (104)

E12mmi
:= E1MMi E2MMi /E2

P = m1m2 +
α5

α5
2

mi1mi2 +

√
α5

α5
2
(m1mi2 + m2mi1), (105)

where E1ABi is the energy of object 1 and E2ABi is the energy of object 2. Their squared moduli are

|E12mqi |
2 = m2

1m2
2 + α2q2

1q2
2 + α

(
m2

1q2
2 + m2

2q2
1

)
,

|E12qmi |
2 =

α10
+

α10
−

(
m2

i1m2
i2 + α2

2q2
1q2

2 − α2

(
m2

i1q2
2 + m2

i2q2
2

))
,

|E12mmi |
2 = m2

1m2
2 +

α10

α10
2

m2
i1m2

i2 −
α5

α5
2
(m2

1m2
i2 + m2

2m2
i1).

(106)

Products of energies (103)-(105) define three complex forces acting over a real distance R+

FABi =
G

c4R2
+

E1ABi E2ABi =
FP

r2
+

E12abi
, (107)

and three complex forces acting over an imaginary distance R−

F̃ABi =
G

c4
2R2

−
E1ABi E2ABi =

α2

α

FP

r2
−

E12abi
, (108)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2024                   doi:10.20944/preprints202212.0045.v19

https://doi.org/10.20944/preprints202212.0045.v19


23 of 38

where A, B ∈ {M, Q} and a, b ∈ {m, q}. We express the forces (107) and (108) in terms of the Planck
force FP in order to compare them, which yields

α2r2
+FABi = αr2

− F̃ABi . (109)

In the case of two charged masses m1 and m2 in a balanced state, such as a nucleus and an electron
cloud of an atom in its non-ionized state, q1 = −q2 and switching the signs of charges (q1 → −q2,
q2 → −q1) provides complex conjugates of the energies (103) and (104), which - after such switch -
represent antimatter.

9. Extended Bohr Model

The Bohr model of the hydrogen atom is based on three assumptions that can be conveniently
expressed in terms of Planck units using relations (50). The first assumption of a natural number of
electron wavelengths λe that fits along the circumference of the electron’s orbit of radius R becomes:

nλe = 2πR ⇔ nle = 2πr, n ∈ N. (110)

The second assumption, de Broglie’s relation between electron mass Me, velocity Ve and wavelength
becomes

λe =
h

MeVe
=

2πh̄
MeVe

⇔ le =
2π

meve
, Ve := vec, ve ∈ R. (111)

Finally, the third assumption postulated equality between the centripetal force exerted on the electron
orbiting around the proton (assuming an infinite mass of the latter) and the Coulomb force between the
electron and proton becomes:

MeV2
e

R
=

1
4πϵ0

e2

R2 ⇔ mev2
e r =

e2

4πϵ0h̄c
= α. (112)

It is remarkable that such a simple postulate alone, expressed in terms of Planck units, introduces the
fine-structure constant α. Joining relations (110) and (111) yields

mever = n, (113)

which combined with (112) and using the relation (32) yields

Ve = vec =
1
n

αc ⇔ ve =
1
n

α, (114)

Thus, in the first circular orbit (n = 1) of this model, the electron velocity factor ve = α. In the Bohr
model of atoms other than hydrogen this equality of forces is extended to a point-like set of Z electrons
orbiting around a nucleus, where Z is the atomic number. Furthermore, since the proton and the
electron have different signs of the elementary charge e, the Coulomb force should be considered
negative in this model.

To correct this, we assume that the centripetal force acting on the electron is equal to the complex
force FMQi (107) with the product of real mass and imaginary charge energies (103) and, motivated
by the short multiplication formula (a + b)(a − b) and the two-body problem we describe, use the
reduced mass of the proton-electron system. This yields

memp

me + mp

v2
e

r
=

memp + α + i
√

α(me − mp)

r2 , (115)
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where we set qe = −1 and qp = 1 as the electron and proton charges, respectively, me, mp ∈ R from the
electron mass Me = memP = 9.1094 × 10−31 [kg] and the proton mass Mp = mpmP = 1.6726 × 10−27

[kg]. The equation (115) yields complex velocity

ve =

√
me + mp

r

(
1 +

α

memp

)
+ i

√
α

r
m2

e − m2
p

memp
≈ 7.2993 × 10−3 − i3.2816 × 10−21 ≈ α (116)

assuming that R is equal to the Bohr radius a0 = 5.2918 × 10−11 [m] or the complex radius

R =

(
me + mp

v2
e

(
1 +

α

memp

)
+ i

√
α

v2
e

m2
e − m2

p

memp

)
ℓP ≈ (5.2946 × 10−11 − i4.7607 × 10−29) [m] ≈ a0

(117)
assuming that the Bohr model gives the velocity of the electron, that is, ve = α. However, neglecting
their insignificant imaginary parts, they correspond to their Bohr model counterparts. This is because
gravitational attraction between the proton and the electron in hydrogen atom ( 10−47 N) is neglible
compared to the Coulomb force between them ( 10−8 N).

We further note that switching the signs of charges (qe = 1, qp = −1) provides complex conjugates
of the relation (115), which in this case describes the antihydrogen. Thus, we conjecture that the energy
generated by a hydrogen-antihydrogen collision, predicted by this extended Bohr model, is

EHMQi + EH̄MQi
= 2(memp + α)EP ≈ 2.8549 × 107[J]. (118)

Expressed in terms of Planck units and the reduced mass of the proton-electron system, the
Rydberg constant for hydrogen is

RH =
memp

me + mp

α2

4πℓP
≈ 1.0968 × 107 [1/m], (119)

and the inverse of the corresponding Rydberg formula for hydrogen can be expressed as

memp

me + mp
l =

4π

α2
n2

1n2
2

n2
2 − n2

1
=

n2
1n2

2
n2

2 − n2
1

4π3(16π4 + 8π3 + 9π2 + 2π + 1), (120)

using the wavelength relation (50) and α expression (13). The coefficients {16, 8, 9, 2, 1} form part of
the OEIS sequence A158565 for n = 10.

10. BB Complex Gravity and Temperature

We can use the complex force FMQi (107) with the product (103) (i.e., complex Newton’s law of
universal gravitation) to calculate the BB surface gravity gBB, assuming an uncharged (q2 = 0) test
mass m2 and comparing this force with Newton’s 2nd law of motion

FP

r2
BB

(mBBm2 + i
√

α+m2qBB) = M2gBB = m2mP ĝBBaP, ĝBB =
1

r2
BB

(mBB + i
√

α+qBB), (121)

where gBB = ĝBBaP, ĝBB ∈ R. Substituting qBB
√

α+ from the BB energy relation (82) and the mass
taken from the generalized BB radius (54) rBB = kmBB into the relation (121) yields

ĝBB =
1

krBB

(
1 ± i

√
k2

4
− 1

)
, (122)
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which reduces to BH surface gravity for k = 2 and in modulus

ĝ2
BB =

1
k2r2

BB

(
1 + i

√
k2

4
− 1

)(
1 − i

√
k2

4
− 1

)
=

1
4r2

BB
. (123)

for all k. In particular,

gBB(kmax) = ± aP

dBB
(0.2944 ± 0.9557i), (124)

gBB(keq) = ± aP

dBB
(0.7229 ± 0.6909i). (125)

The BB surface gravity (122) leads to the generalized complex Hawking blackbody radiation
equation:

TBB =
h̄

2πckB
gBB =

TP

kπdBB

(
1 ± i

√
k2

4
− 1

)
, (126)

describing the BB temperature by including its charge in the imaginary part, which also for k = 2 and
in modulus reduces to the BH temperature for all k. In a commonly used, equivalent form it is

TBB =
h̄c3

2k2πGMBBkB

(
1 ± i

√
k2

4
− 1

)
. (127)

In particular,

TBB(kmax) =
TP

2πdBB


√

α4
+ − α4

−

α2
+

± i
α2
−

α2
+

 (128)

TBB(keq) =
TP

2πdBB

α2
+ ± iα2

−√
α4
+ + α4

−

(129)

reduce to the BH temperature for α− = 0. Therefore, a universe without the negative fine structure
constants α− (i.e., with α− = 0) would be a black hole disallowing the directed exploration [8,9] of
the evolution of information [1–4,6,7]. This kind of exploration requires imaginary time [6]. And we
cannot zero α2 as we would have to neglect the existence of graphene, estimated to form about 1.9% of
total interstellar carbon [104] and recently discovered on the Moon [105].

It was shown [5] that BBs generate dissipative structures through the solid-angle correspondence.
The BB entropic work [5,6]

WBB = TBBSBB = TBB
1
4

kBNBB = TBB
1
4

kBπd2
BB =

dBB

4k

(
1 ± i

√
k2

4
− 1

)
EP, (130)

is the product of the BB entropy (53) and the BB temperature (126). Figure 5 shows the BB temperature
(126), energy (57), and entropic work (130) for 0 ≤ NBB ≤ 5. kB|TBB|/EBB = 2/NBB is a rational
number for natural NBB.
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Figure 5. Black body object energy EBB (green); temperature TBH (red), Re[TBB(keq)] (red, dash-dot),
Re[TBB(kmax)] (red, dash); and work WBH (blue), Re[WBB(keq)] (blue, dash-dot), Re[WBB(kmax)] (blue,
dash),as a function of its information capacity NBB in terms of Planck units, for 0 ≤ NBB ≤ 5.

11. Discussion

Complex, imaginary, and negative physical quantities are the subject of research. In particular,
the subject of scientific research is the thermodynamics in the complex plane. For example, Lee–Yang
zeros [106,107] and photon-photon thermodynamic processes under negative optical temperature
conditions [108] have been experimentally observed. Furthermore, the rendering of synthetic di-
mensions through space modulations has recently been suggested because it does not require any
active materials or other external mechanisms to break time-reversal symmetry [109]. Complexified
geodesics are investigated [110] and it was shown that from a geometric point of view the unitary
symmetries U(1) and SU(2) stem fundamentally from Schwarzschild and Reissner-Nordström metrics
through spacetime complexification if a new Euclidean metric on a complex Hermitian manifold is
provided [111]. In Lorentz signature, a Hermitian structure must necessarily be complex-valued, so its
integrability properties are more subtle than in the Euclidean case [112].

Physical quantities accessible for direct everyday observation are mostly real and positive with
the negativity of distances, velocities, accelerations, etc., induced by the assumed orientation of space.
Quantum measurement results, for example, are the necessarily real eigenvalues of Hermitian operators.
Unlike charges, negative, real masses are also generally inaccessible for direct observations. However,
dissipative coupling between excitons and photons in an optical microcavity leads to the formation of
exciton polaritons with negative masses [97]. In Section 6, we show that negative masses also result
from the merging of BBs.

The notion of atemporality, related to the prebiotic, timeless [9] part of the evolution of information
in the universe, was also investigated [113] on a black hole (BH) surface as the dynamical mechanism
responsible for the transition from a regime with a real-valued interval to an imaginary interval via
the Wick rotation. The Wick rotation between real and imaginary intervals was also analyzed in the
context of kinematics on holographic spheres [6] and quantum orthogonalization intervals of BHs [5].

By Noether’s theorem, the conservation of energy (7) between three Fresnel coefficients for the
normal incidence of electromagnetic radiation on monolayer graphene is associated with a symmetry
between the fine-structure constant α and π. This symmetry establishes three complementary fine-
structure constants, of which two are negative, wherein all fine-structure constants are related to each
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other through the constant of π, which indicates that they do not vary over time. The complementary
fine-structure constants are associated with their own sets of Planck units that allow for different
parameterization of the perceivable space R3

α × Iα Euclidean space parameterized by the fine-structure
constant α. We note in passing that the assumption of the universality of the Planck constant h and the
gravitational constant G may be too far-reaching, given that we do not need to know the gravitational
constant G or Planck constant h to find the product of the Planck length and c [114] ℓPc =

√
h̄G/c.

However, we have shown that the elementary charge and the products c∗α∗ are the same in all these
four parameterizations.

As the two sets of basic Planck units are real and two are imaginary, we have applied four
complex pairs of masses and charges defined by {α+, α−} to the complex energy formula [63] defining
three complex energies (60) and (61). The generalized energy (57) of all perfect black-body objects
(black holes, neutron stars, and white dwarfs) with a generalized radius RBB = kRBH/2, where RBH

is the Schwarzschild radius, exceeds the mass-energy equivalence if k > 2. However, the complex
energies (60)-(62) allow storage of this excess energy in their imaginary parts. Further analysis of this
model showed that the negative complementary fine-structure constant established by the graphene
reflectance is dual to the fine-structure constant and Appendix D presents some arguments to support
the claim that α parameterization sets favorable conditions for biological evolution to emerge. The
lower bound on the mass of a charged black-body object is MBB > 5.7275 × 10−10 [kg] and the upper
bound on a white dwarf radius is RWD ≲ 3.3967 RBH, where RBH is the Schwarzschild radius of the
white dwarf mass. A charged black-body object is in the equilibrium of complex energies if its radius
Req ≈ 1.3833 RBH, which is close to the photon sphere radius Rps = 1.5 RBH, and is marginally greater
than the locally negative energy density bound of 4/3 RBH. The maximum radius of the black-body
object is Rmax ≈ 3.3967 RBH, which is close to the photon capture radius Rc =

√
27 RBH/2 ≈ 2.5981 RBH.

The complex force between real masses and imaginary charges leads to the complex black-body object’s
surface gravity and generalized Hawking radiation complex temperature. Furthermore, on the basis
of the Bohr model for the hydrogen atom, we show that complex conjugates of this force represent
atoms and antiatoms. The proposed model considers the value(s) of the fine-structure constant(s),
which is(are) otherwise neglected in general relativity, and explains the registered (GWOSC) high
masses of neutron star mergers and the associated fast radio bursts (CHIME) without resorting to any
hypothetical types of exotic stellar objects.

MLG is a truly 2-dimensional material with no thickness. Although its thickness is reported [115]
as 0.37 [nm] with other reported values up to 1.7 [nm], these results are not credible, considering that
0.335 [nm] is the established interlayer distance and consequently the thickness of bilayer graphene:
the thickness of bilayer graphene is not 2 × 0.37 + 0.335 = 1.075 [nm]. In the context of the results
of this study, graphene is a keyhole to ED. The history of graphene is also instructive. Discovered in
1947 [116], graphene was long considered an academic material until it was eventually pulled from
graphite in 2004 [117] using ordinary Scotch tape (introduced into the market in 1932). These fifty-
seven years, along with twenty-nine years (1935-1964) between the condemnation of quantum theory
as incomplete [118] and Bell’s mathematical theorem [119] asserting that it is not true, and the fifty-eight
years (1964-2022) between the formulation of this theorem and the 2022 Nobel Prize in Physics for its
experimental loophole-free confirmation, should remind us that Max Planck, the genius who discovered
Planck units, has also discovered Planck’s principle.
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Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2024                   doi:10.20944/preprints202212.0045.v19

https://doi.org/10.20944/preprints202212.0045.v19


28 of 38

Abbreviations

The following abbreviations are used in this paper:

ED emergent dimensionality
EMR electromagnetic radiation
MLG monolayer graphene
T transmittance
R reflectance
A absorptance
α∗ any of the fine-structure constants
α⋆ α or α2

α+ α or α4
α− α2 or α3

BH black hole
NS neutron star
WD white dwarf
BB black-body object
HS holographic sphere
STM size-to-mass ratio
GR general relativity
HUP Heisenberg’s uncertainty principle

Appendix A. MLG Transmittance, Absorptance, and Reflectance as Functions of π Only

With definitions of α (13), α2 (14), α3 (18), and (22) MLG Fresnel coefficients (3), (4), and (5) can be
expressed simply by π. For α−1 = 4π3 + π2 + π (13) and for α4 (22) they are

T(α) = R(α4) =
4
(
4π2 + π + 1

)2

(8π2 + 2π + 3)2 ≈ 0.9775, (A1)

A(α) = A(α4) =
4
(
4π2 + π + 1

)
(8π2 + 2π + 3)2 ≈ 0.0224, (A2)

R(α) = T(α4) =
1

(8π2 + 2π + 3)2 ≈ 1.2843 × 10−4. (A3)

For α−1
2 = −4π3 − π2 − 2π (14) they are

T(α2) =
4
(
4π2 + π + 2

)2

(8π2 + 2π + 3)2 ≈ 1.0228, (A4)

A(α2) = −
4
(
4π2 + π + 2

)
(8π2 + 2π + 3)2 ≈ −0.0229, (A5)

with R(α2) = R(α) and for α3 (18) they are

A(α3) =
48π2 + 12π + 16
(8π2 + 2π + 3)2 − 4 ≈ −3.9323, (A6)

R(α3) =
(16π2 + 4π + 5)2

(8π2 + 2π + 3)2 ≈ 3.9548, (A7)

with T(α3) = T(α). A(α) > 0 and A(α2) < 0 imply a sink and source, respectively, whereas the opposite
holds for T, as illustrated schematically in Figure A1.
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T( ) < 1α

A( ) > 0α

T( ) > 1α2

A( ) < 0α2

Figure A1. Illustration of the concepts of negative absorptance and excessive transmittance of EMR
under normal incidence on MLG.

We conjecture that the negative A and T values exceeding 100% for α2 (11) and (14) could be
explained in terms of graphene spontaneous EMR emission.

Appendix B. π-like Constants

The quadratic equation (8) can also be solved for π, which yields two roots.

π(R, α⋆)1 =
2
√

R
α⋆(1 −

√
R)

and π(R, α⋆)2 =
−2

√
R

α⋆(1 +
√

R)
, (A8)

dependent on R and α⋆, where α⋆ indicates α or α2. This can be further evaluated using the MLG
reflectance R (4) or (A3), yielding four, yet only three, distinct possibilities,

π1 = π(α)1 = −π
4π2 + π + 1
4π2 + π + 2

= π
α2

α
≈ −3.0712, (A9)

π(α)2 = π(α2)1 = π ≈ 3.1416, and (A10)

π2 = π(α2)2 = −π
4π2 + π + 2
4π2 + π + 1

= π
α

α2
≈ −3.2136. (A11)

The modulus of π1 (A9) corresponds to a convex surface with a positive Gaussian curvature, whereas
the modulus of π2 (A11) corresponds to a negative Gaussian curvature. The product π1π2 = π2

is independent of α⋆, the quotient π1/π2 = α2
2/α2 is not directly dependent on π, and |π1 − π| ̸=

|π − π2|. It remains to be determined whether each of these π-like constants describes the ratio of
the circumference of a circle drawn on the respective surface to its diameter (πc) or the ratio of the
area of this circle to the square of its radius (πa). These definitions produce different results for curved
surfaces, whereas πa > πc on convex surfaces and πa < πc on saddle surfaces [122]. The remaining
π-like constants corresponding to α3 and α4 are listed in Table 1.
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Appendix C. MLG Fresnel Equation and Euclid’s Formula

The Fresnel equation for the normal incidence of EMR at the boundary of two media with
refractive indices n1 and n2 is

RF + TF =
(n1 − n2)

2

(n1 + n2)
2 +

(2
√

n1n2)
2

(n1 + n2)
2 = 1. (A12)

Substituting MLG reflectance (4) and the sum of transmittance (3) and absorptance (5) into the Fresnel
equation (A12) yields

(n1 − n2)
2

(n1 + n2)
2 =

1
4 π2α2(

1 + πα
2
)2 ,

4n1n2

(n1 + n2)
2 =

1 + πα(
1 + πα

2
)2 , (A13)

which resolves to n1 = 1 independent on α and two roots for n2

n2(α) =

{
1 + πα,

1
1 + πα

}
= {1.0229, 0.9776}, (A14)

satisfying

1 + πα =
1

1 + πα2
, (A15)

which corresponds to the identity (23). The refractive index n2 ≈ 1.0229 is close to that of liquid
helium n ≈ 1.025 at 3 K. The refractive index n2 ≈ 0.9776 is close to the refractive index of water
n = 0.99999974 = 1 − 2.6 × 10−7 for X-ray radiation at a photon wavelength of 0.04 nm. We note
that these results are different from the complex refractive index of MLG (ñg = 2.4 − 1.0i at 532 nm to
ñg = 3.0 − 1.4i at 633 nm at room temperature). However, because n1 = 1, the equation (A14) relates
to the absolute (n = c/V) refractive indices; it models MLG as a boundary between vacuum and some
other bulk medium. Refractive indices (A14) correspond to the phase velocities

V
(
−α2

α

)
= −c

α

α2
= −c2, V

(
− α

α2

)
= −c

α2

α
= − c2

c2
≈ 2.9307 × 108 [m/s] (A16)

using the relation (32). We note that the phase velocity of light −c2 > c does not carry information and
thus can be faster than the speed of light in vacuum c.

On the other hand, the Fresnel equation (A12) has the same form as the Euclid’s formula for
generating Pythagorean triples a = k2 − l2, b = 2kl, c = k2 + l2

(
k2 − l2)2

(k2 + l2)
2 +

(2kl)2

(k2 + l2)
2 = 1, (A17)

with k2 = n1 and l2 = n2. Substituting MLG reflectance (4) and the sum of transmittance (3) and
absorptance (5) into the Euclid formula (A17) yields

k =

{
√

πα + 1,−
√

πα + 1,

√
1

πα + 1
,−
√

1
πα + 1

,

}
≈ {±1.0114,±0.9887},

l = {1, 1, 1, 1},

(A18)
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generating four right triangles with edges

a(α) =
{

πα, πα,
−πα

πα + 1
,
−πα

πα + 1

}
≈ {0.0229x2,−0.0224x2},

b(α) =
{

2
√

πα + 1,−2
√

πα + 1,
2√

πα + 1
,

−2√
πα + 1

}
≈ {±2.0228,±1.9775},

c(α) =
{

πα + 2, πα + 2,
πα + 2
πα + 1

,
πα + 2
πα + 1

}
≈ {2.0229x2, 1.9776x2},

(A19)

and

a(α2) ≈ {−0.0224x2, 0.0229x2},

b(α2) ≈ {±1.9775,±2.0228},

c(α2) ≈ {1.9776x2, 2.0229x2}.

(A20)

In each case, different edge lengths satisfy πα = −πα2/(πα2 + 1), which also corresponds to the
identity (23). Furthermore

c(α⋆)− a(α⋆) = 2, b(α⋆)2 = 4
√

a(α⋆) + 1. (A21)

We further note that a(α⋆) ≈ −A(α⋆), (A2), (A5) and |b(α⋆)| ≈ T(α⋆) + 1, (A1), (A4).

Appendix D. Why α Is Better for Biological Evolution Than α2?

The probability that two nuclear particles a and b will undergo nuclear fusion by overcoming their
electrostatic barriers is given by Gamow–Sommerfeld factor

p(E) = e−
√

EG
E , (A22)

where
EG := 2

mamb
ma + mb

EP(παZaZb)
2 (A23)

is the Gamow energy, ma, mb are the masses of those particles in terms of α or α2 Planck units (50) and
Za, Zb are their respective atomic numbers.

As (πα)2 ≈ 5.2557 × 10−4 is larger than (πα2)
2 ≈ 5.0227 × 10−4, the probability (A22) is higher

for the same dimensionless parameters m∗, Z∗. Therefore, perceivable (R3
α × Iα)-space provides

more favorable conditions for the evolution of information (by nuclear fusion) than nonperceivable
(R3

α2+
× Iα2+)-space.

Furthermore, the α2+-Planck energy EP2+ and temperature TP2+ are higher than the Planck energy
EP and temperature TP. Therefore, the perceivable (R3

α × Iα)-space provides more favorable conditions
for the evolution of information than would be provided by nonperceivable (R3

α2+
× Iα2+)-space, also

owing to the minimum energy principle.

Appendix E. Planck Units and HUP

Perhaps the simplest derivation of the squared Planck length is based on HUP

δPHUPδRHUP ≥ h̄
2

or δEHUPδtHUP ≥ h̄
2

, (A24)

where δPHUP, δRHUP, δEHUP, and δtHUP denote momentum, position, energy, and time uncertainties,
respectively. Replacing energy uncertainty δEHUP = δMHUPc2 with mass uncertainty using mass-
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energy equivalence, and time uncertainty with position uncertainty using δtHUP = δRHUP/c [29]
yields

δMHUPδRHUP ≥ h̄
2c

. (A25)

Interpreting δMHUP = δRHUPc2/(2G) as the BH mass in (A25) we derive the Planck length as δR2
HUP =

ℓ2
P ⇒ δDHUP = ±2ℓP and recover [6] the BH diameter dBH = ±2.

However, using the same procedure but inserting the BH radius instead of the BH mass into the
uncertainty principle (A25) leads to δM2

HUP = 1
4 h̄c/G = 1

4 m2
P. In general, using the generalized radius

(54) in both procedures, we obtain

δM2
HUP =

1
2k

m2
P and δR2

HUP =
k
2
ℓ2

P. (A26)

Thus, if k increases, the mass δMHUP decreases, and δRHUP increases and the factor is the same for
k = 1 i.e., for the orbital speed radius δR = GδM/c2 or orbital speed mass δM = δRc2/G.

Appendix F. Other Definitions of Complex Energies

Let us define the mass/charge energies (60), (61) with different speeds of light, i.e., the charge
part of the energy EMQi with c− and the charge part of the energy EQMi with c+

ẼMQi
:= M+c2

+ +
Qi

2
√

πϵ0G
c2
− = m+mP+c2

+ + iq
√

α+mP+
α2
+

α2
−

c2
+ =

(
m+ + iq

√
α+

α2
+

α2
−

)
EP+,

ẼQMi
:=

Q
2
√

πϵ0G
c2
+ + M−c2

− = q
√

α+mP+c2
+ + m−mP+

√
α+
α−

α2
+

α2
−

c2
+ =

(
q
√

α+ + m−

√
α5
+

α5
−

)
EP+,

(A27)

If we assume that their squared moduli are equal then

m− = ±

√√√√α5
−

α5
+

[
q2α+

(
1 −

α4
+

α4
−

)
− m2

+

]
, (A28)

leads to a type mismatch since m+ ∈ R and |q|
√

α+
(
1 − α4

+/α4
−
)
∈ I. The same category error would

be obtained if EMQi was parameterized with c− and EQMi with c+. Therefore, both parts of the complex
energy EMQi (60) must be expressed by c+, while both parts of the complex energy EQMi (61) - by c−.

Appendix G. Hall Effect

The fractional quantum Hall (FQHE) effect shows a stepwise dependence of the conductance on
the magnetic field (as compared to the linear dependence of the Hall effect) with steps quantized as

R =
h

νe2 =
1

2νϵ0α∗c∗
, (A29)

where ν is an integer or fraction (for example, for ν = 5/2, R = 1/(5ϵ0αc)). The relations (A29) and (32)
suggest that the 2D FQHE links real and imaginary Planck units, similar to 2D graphene, establishing
the complementary fine-structure constants.
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