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Article

The Imaginary Universe

Szymon Łukaszyk

Łukaszyk Patent Attorneys, ul. Głowackiego 8, 40-052 Katowice, Poland; szymon@patent.pl

Abstract: Maxwell’s equations in vacuum provide a negative speed of light −c, which leads to imaginary Planck

units. However, the second, negative fine-structure constant α−1
2 ≈ −140.178, present in the Fresnel coefficients for

the normal incidence of electromagnetic radiation on monolayer graphene, establishes a different, negative speed

of light in vacuum c2 ≈ −3.06× 108 [m/s], which introduces imaginary Planck units that are different in magnitude

from those parametrized with c. Furthermore, algebraic relations between the fine-structure constants indicate

that the fine-structure constant does not vary over time. It follows that the electric charges are the same in real

and imaginary dimensions. We modeled neutron stars and white dwarfs, emitting perfect black-body radiation

as objects with energy exceeding their mass-energy equivalence ratios. Complex energies were defined in terms

of real and imaginary natural units. Their imaginary parts, which are inaccessible to direct observation, store

excesses of these complex energies. It is conjectured that the maximum atomic number Z = 238. A black-body

object is in the equilibrium of complex energies if its radius Req ≈ 1.3833 RBH, which is close to the photon sphere

radius Rps = 1.5 RBH, and is marginally greater than the locally negative energy density bound of 4/3 RBH. The

complex force between real masses and imaginary charges leads to the black-body object’s surface gravity and

generalized Hawking radiation temperature, which includes its charge. Furthermore, this force is consistent

with the Bohr model for the hydrogen atoms. The proposed model considers the value(s) of the fine-structure

constant(s), which is(are) otherwise neglected in general relativity, and explains the registered (GWOSC) high

masses of neutron star mergers and the associated fast radio bursts (CHIME) without resorting to any hypothetical

types of exotic stellar objects.

Keywords: emergent dimensionality; natural units; fine-structure constant; black holes; neutron stars; white

dwarfs; complex energy; complex force; Hawking radiation; extended periodic table; general relativity; photon

sphere; entropic gravity; gravitational observations; holographic principle; assembly theory; mathematical physics

I. Introduction

The universe began with the Big Bang, a prevailing scientific opinion. However, this Big Bang
was not an explosion of 4-dimensional spacetime, which is also a current prevailing scientific opinion,
but an explosion of dimensions. More precisely, in the −1-dimensional void, a 0-dimensional point
appeared, inducing the appearance of other points that were indistinguishable from the first one. The
breach made by the first operation of the dimensional successor function of the Peano axioms inevitably
continued leading to the formation of 1-dimensional, real and imaginary lines, allowing for an ordering
of points using multipliers of real units (ones) or imaginary units (a ∈ R⇔ a = 1b1, and a ∈ I⇔ a = ib,
where b ∈ R). Then, out of the two lines of each kind, crossing each other only at one initial point (0, 0),
the dimensional successor function formed 2-dimensional R2, I2, and R× I Euclidean planes, with I2

being a mirror reflection of R2. Thus, forming n-dimensional Euclidean spaces Ra
× Ib with a ∈ N real

and b ∈ N imaginary lines, n B a + b, and the scalar product defined by

x · y =
(
x1, . . ., xa, ix′1, . . ., ix′b

)(
y1, . . ., ya, iy′1, . . ., iy′b

)
B

a∑
k=1

xkyk +
b∑

l=1

x′l y′l , (1)

1 This is, of course, a circular definition. But it is given for clarity.
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where x, y ∈ Ra
× Ib. With the appearance of the first 0-dimensional point, information has begun to

evolve [1–9], initially using undirected exploration in a selection-less [8] and a time-less [9] assembly
process.

However, dimensional properties are not uniform. For regular convex n-polytopes in natural
dimensions, for example, there are countably infinitely many regular convex polygons, five regular
convex polyhedra (Platonic solids), six regular convex 4-polytopes and only three regular convex
n-polytopes if n > 3 [10]. In particular, a 4-dimensional Euclidean space is endowed with a peculiar
property known as exotic R4 [11], absent in other dimensionalities. Owing to this property, R3

× I space
provides a continuum of homeomorphic but non-diffeomorphic differentiable structures. Each piece
of individually memorized information is homeomorphic to the corresponding piece of individually
perceived information but remains non-diffeomorphic (non-smooth). This allows the variation of
phenotypic traits within populations of individuals [12]. Hence, selection [8] and time [9] emerged and
the evolution of information entered into directed exploration provided biological evolution. Exotic
R4 solves the problem of extra dimensions of nature, and perceived space requires a natural number of
dimensions [13]. Each biological cell perceives an emergent space of three real dimensions and one
imaginary (time) observer-dependently [14] and at present, when i0 = 0 is real, through a spherical
Planck triangle corresponding to one bit of information in units of −c2, where c is the speed of light in
vacuum. This is called the emergent dimensionality (ED) [5,6,9,12,15,16]. Appendix E presents some
arguments to support the claim that perceived dimensionality sets favorable conditions for biological
evolution to emerge.

Each dimension requires certain measurement units. In real dimensions, Max Planck in 1899
derived the natural units of measure as "independent of special bodies or substances, thereby necessarily
retaining their meaning for all times and for all civilizations, including extraterrestrial and nonhuman
ones" [17]. Planck units utilize the Planck constant h introduced in his black-body radiation formula.
However, in 1881, George Stoney derived a system of natural units [18] based on the elementary charge
e (Planck’s constant was unknown at this time). The ratio of the Stoney units to the Planck units is
√
α, where α is the fine-structure constant. This study derives a complementary set of natural units

applicable to imaginary dimensions, including imaginary units, based on the discovered negative
fine-structure constant, α2.

Imaginary and negative physical quantities are the subject of ongoing research. In particular, the
subject of scientific research is the thermodynamics in the complex plane. For example, Lee–Yang zeros
[19,20] and photon-photon thermodynamic processes under negative optical temperature conditions
[21] have been experimentally observed. Furthermore, the rendering of synthetic dimensions through
space modulations has recently been suggested because it does not require any active materials or other
external mechanisms to break time-reversal symmetry [22]. However, physical quantities accessible
for direct everyday observation are mostly real and positive with the negativity of distances, velocities,
accelerations, etc., induced by the assumed orientation of space. Quantum measurement results, for
example, are the real eigenvalues of Hermitian operators. Unlike charges, negative, real masses are
generally inaccessible for direct observations. However, dissipative coupling between excitons and
photons in an optical microcavity leads to the formation of exciton polaritons with negative masses
[23]. In Section VI, we show that negative masses also result from the merging of black-body objects.

Furthermore, the study introduces a model for storing the excess energy of neutron stars and
white dwarfs that exceeds their mass–energy equivalences in imaginary dimensions. The model results
in an upper bound on the size-to-mass ratio of their cores, where the Schwarzschild radius sets the
lower bound.

The remainder of this paper is organized as follows. Section II shows that the Fresnel coefficients
for the normal incidence of electromagnetic radiation on monolayer graphene include the second
negative fine-structure constant α2 as a fundamental constant of nature. Section III shows that this
second fine-structure constant endows us with the α2-natural units. Section IV introduces the concept
of a black-body object in thermodynamic equilibrium that emits perfect black-body radiation and
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reviews its necessary properties. Section V introduces the complex mass and charge energies expressed
in terms of real and imaginary α2-Planck units introduced in Section III and applies them to black-body
objects. Section VI considers the observed mergers of black-body objects to show that the observed data
can be explained without the need to introduce hypothetical exotic stellar objects. Section VII discusses
fluctuations of black-body objects. Section VIII defines complex forces. The complex force between real
masses and imaginary charges is used in Section IX to derive a black-body object surface gravity and
the generalized Hawking radiation temperature. Section X discusses complex forces in the context
of the Bohr model of the hydrogen atom. Section XI summarizes the findings of this study. Certain
prospects for further research are provided in the Appendices.

II. The Second Fine-Structure Constant

Numerous publications have provide Fresnel coefficients for the normal incidence of electromag-
netic radiation (EMR) on monolayer graphene (MLG), which are remarkably defined only by π and
the fine-structure constant α

α−1 =
(qP

e

)2
=

4πϵ0h̄c
e2 ≈ 137.036, (2)

where qP is the Planck charge, h̄ is the reduced Planck constant, ϵ0 ≈ 8.8542× 10−12 [kg−1
·m−3

· s2
·C2]

is the vacuum permittivity (electric constant), and e is the elementary charge. Transmittance (T) of
MLG

T =
1(

1 + πα
2

)2 ≈ 0.9775, (3)

for normal EMR incidence was derived from the Fresnel equation in the thin-film limit [24] (Equation.
3), whereas a spectrally flat absorptance (A) A ≈ πα ≈ 2.3% has been reported [25,26] for photon
energies between approximately 0.5 and 2.5 [eV]. T is related to reflectance (R) [27] (Equation 53) as
R = π2α2T/4, i.e,

R =
1
4π

2α2(
1 + πα

2

)2 ≈ 1.2843× 10−4, (4)

The above equations for T and R, as well as the equation for the absorptance

A =
πα(

1 + πα
2

)2 ≈ 0.0224, (5)

were also derived [28] (Equations 29-31) based on the thin-film model (setting ns = 1 for the substrate).
The sum of the transmittance (3) and reflectance (4) at normal EMR incidence on the MLG was derived
[29] (Equation 4a) as

T + R = 1−
4ση

4 + 4ση+ σ2η2 + k2χ2 =
1 + 1

4π
2α2(

1 + πα
2

)2 ≈ 0.9776, (6)

where η ≈ 376.73 [Ω] is the vacuum impedance, σ = e2/(4h̄) = πα/η ≈ 6.0853 × 10−5 [Ω−1] is the
MLG conductivity [30], k is the wave vector of light in vacuum, and χ = 0 is the electric susceptibility
of vacuum. Therefore, these coefficients are well established both theoretically and experimentally
[24–26,29,31,32].

As a consequence of the conservation of energy

(T + A) + R = 1. (7)
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In other words, the transmittance in the Fresnel equation describing the reflection and transmission
of EMR at normal incidence on a boundary between different optical media is, in the case of the
2-dimensional (boundary) MLG, modified to include its absorption.

The reflectance R = 0.013% (4) of the MLG can be expressed as a quadratic equation of α

R
(
1 +
πα
2

)2
−

1
4
π2α2 = 0,

1
4
(R− 1)π2α2 + Rπα+ R = 0, (8)

which can be expressed in terms of the reciprocal of α, defining β B 1/α as

Rβ2 + Rπβ+
1
4
(R− 1)π2 = R

(
β+
π
2

)2
−
π2

4
= 0. (9)

The quadratic equation (9) has two roots

β = α−1 =
−πR + π

√
R

2R
≈ 137.036, and (10)

β2 = α−1
2 =

−πR−π
√

R
2R

≈ −140.178. (11)

Therefore, equation (8) includes the second negative fine-structure constant α2. It turns out that the
sum of the reciprocals of these fine-structure constants (10) and (11)

α−1 + α−1
2 =

−πR + π
√

R−πR−π
√

R
2R

=
−2π

2
= −π, (12)

is remarkably independent of the value of the reflectance R. Furthermore, the minimum of parabola (9)
amounts −π2/4 ≈ −2.4674 and occurs at −π/2 ≈ −1.5708, as shown in Figure 1. Also, these values
are independent of the reflectance (4) value, and the same results can (only) be obtained for T + A (cf.
Appendix A).

−150 −100 −50 0 50 100 150
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−0.5

0

0.5

β α=1/

− /2π 4 + +π π π
3 2

−4 − −2π π π
3 2

8 +2 +3π π π
3 2

− /4π
2

Figure 1. MLG reflectance as a function of β B 1/α.

We further note that the relation (12) corresponds to the following identity

α+ α2

αα2
= −π, (13)

between the roots (10) and (11), which is also present in the MLG Fresnel equations and the corre-
sponding Euclid formula (cf. Appendix C).
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Owing to these dependencies on π only between the fine-structure constants α and α2 they do not
vary over time. They could not vary in the first undirected [8] and time-less [9] phase of the evolution
of information in the universe.

These results are also intriguing in the context of a peculiar algebraic expression for the fine-
structure constant [33]

α−1 = 4π3 + π2 + π ≈ 137.036303776 (14)

that contains a free π term and is very close to the physical definition (2) of α−1, which according to the
CODATA 2018 value is 137.035999084. We note that CODATA values are computed by averaging the
measurements.

Using equations (12) and (14), we can express the negative reciprocal of the 2nd fine-structure
constant α−1

2 that emerged in the quadratic equation (8) also as a function of π only:

α−1
2 = −π− α−1

1 = −4π3
−π2

− 2π ≈ −140.177896429. (15)

Using equations (14) and (15), T (3), R (4), and A (5) of MLG for the normal incidence of EMR can
be expressed simply by π (cf. Appendix B). Moreover, equation (8) includes two π-like constants for
two surfaces with positive and negative Gaussian curvatures (see Appendix D).

III. Set of α2-Planck Units

In this section, we derive the complementary Planck units based on the second fine-structure
constant α2. We further call these α2-Planck units. Natural units can be derived from numerous starting
points [6,34] (cf. Appendices F and G). The central assumption in all systems of natural units is that
the quotient of the unit of length ℓ∗ and time t∗ is a unit of speed; we call it c = ℓ∗/t∗. It is the speed of
light in vacuum c in all systems of natural units, except for Hartree and Schrödinger units, where it
is cα, and the Rydberg units, where it is cα/22. Furthermore, c as the velocity of the electromagnetic
wave is derivable from Maxwell’s equations in vacuum

∇
2E = µ0ϵ0

∂2E
∂t2 ,

∂2E
∂x2 = µ0ϵ0

∂2E
∂t2 , (16)

where E is the electric field, and µ0 is the vacuum permeability (magnetic constant). Without postulating
any solution to this equation but by simple substitution ∂x B ℓ∗ and ∂t B t∗, ∂2E B E∗ factors out, and
we obtain the well-known

1 = µ0ϵ0c2, (17)

symmetric in its electric and magnetic parts [35] from which the bivalued c = ±1/
√
µ0ϵ0 can be

obtained, knowing the values of µ0 and ϵ0. We note that it is c2, not c, present in mass-energy
equivalence, the Lorentz factor, the black hole (BH) potential, etc. Furthermore, Maxwell’s equations in
vacuum are not directly dependent on the fine-structure constant(s), which is included in the magnetic
constant µ0.

In the following, we assume the universality of the real elementary electric charge e that defines
both matter and antimatter, Planck constant h, uncertainty principle parameter, and gravitational
constant G (i.e., we assume that there are no counterparts to these physical constants in other physical
dimensions in our model and that these dimensional constants are positive). The last two assumptions
are probably too far-reaching, given that we do not need to know the gravitational constant G or Planck
constant h to find the product of the Planck length ℓP and the speed of light in vacuum [36]. We note
that antimatter obeys gravity [37], which is consistent with the findings of this study.

2 Since the square root is bivalued the unit of speed is also bivalued In Planck, Stoney, and Schrödinger units.
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The fine-structure constant can be defined as the quotient (2) of the squared (and thus positive)
elementary charge e and the squared Planck charge α = e2/q2

P. We chose Planck units over other
natural unit systems not only because they incorporate the fine-structure constant α and the Planck
constant h. Other systems of natural units (except for Stoney units) also incorporate them. This is
because only the Planck area defines one bit of information on a patternless black hole surface given by
the Bekenstein bound (47) and the binary entropy variation [5,6].

To accommodate the negativity of the fine-structure constant discovered in the preceding section,
we must introduce the imaginary Planck charge qPi such that its square would yield a negative value
of α2.

q2
P =

e2

α
, q2

Pi =
e2

α2
⇒ qPi = ae, a ∈ I,

e2 = q2
Pα = q2

Piα2.
(18)

Next, we note that an imaginary qPi, which must have a physical definition analogous to qP, requires
either a real, negative speed of light or some complementary real, negative electric constant (we assume
that h is positive). Let us call them c2 and ϵ̃0

q2
P = 4πϵ0h̄c > 0 ⇎ q2

Pi = 4πϵ̃0h̄c2 < 0. (19)

From this equation, we find that ϵ̃0c2 < 0, because the values of the other constants are known. Next,
we assume that the solution (17) of Maxwell’s equations in vacuum is valid for other values of the
constants involved. Let us call the unknown magnetic constant µ2. Therefore,

µ0ϵ0c2 = µ2ϵ̃0c2
2 = 1. (20)

From this and from ϵ̃0c2 < 0, we conclude that the product µ2c2 < 0. The quotient of the squared Planck
charge and mass introduces the imaginary Planck mass mPi

q2
P

m2
P

=
q2

Pi

m2
Pi

= 4πϵ0G. (21)

The value of the imaginary Planck mass mPi can be calculated from the equation (21) by determining
the value of the imaginary Planck charge qPi from the equation (18). From (21) we also conclude that
ϵ̃0 = ϵ0 > 0 and then by (20) that µ2 > 0 and c2 < 0. Knowing mPi we can determine the value of the
negative non-principal square root of c2 = ±1/

√
µ2ϵ0 of the relation (20) as

c2 =
q2

Pi
4πϵ0h̄

≈ −3.066 653× 108 [m/s], (22)

which is greater than the speed of light in vacuum c in modulus.
The mass, length, time, and charge units can express all the electrical units. Therefore, along with

temperature, amount of substance, and luminous intensity, these are the base units of the International
System of Quantities (ISQ). We further conclude that the magnetic constant µ2 is lower than µ0

µ0 =
4πh̄α

ce2 ≈ 1.2569× 10−6 [kg ·m ·C−2], µ2 =
4πh̄α2

c2e2 ≈ 1.2012× 10−6 [kg ·m ·C−2]. (23)

Unlike the electric constant ϵ0, both magnetic constants µ are independent of the unit of time.
Furthermore, negative α2 and c2 lead to a second, time-dependent but negative vacuum impedance

η2 = −
4πα2h̄

e2 = −
1
ϵ0c2

≈ −368.29 [kg ·m2
· s−1

·C−2] (|η2| < |η|). (24)
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Finally, combining relations (18) and (19) yields

e2 = 4πϵ0h̄cα = 4πϵ0h̄c2α2, (25)

which leads to the following important relation between the speeds of light in vacuum c and c2, and
the fine-structure constants α and α2

cα = c2α2, (26)

valid for both the principal and non-principal square roots of the equation (20). cα is also the electron’s
velocity at the first circular orbit in the Bohr hydrogen atom model3 to which we shall return in Section
X. Furthermore, the relation (26) introduces an interesting interplay between α vs. α2 and c vs. c2 that,
as we conjecture, should be able to explain ν = 5/2 state in the fractional quantum Hall effect in the 2D
system of electrons, as well as other fractional states with an even denominator [38] (cf. Appendix H).
The equation (26) is not the only α to α2 relation. Along with the two π-like constants π1, π2 (relations
(D.3) and (D.5), cf. Appendix D)

α2

α
=

c
c2

=
π1

π
=
π
π2

=
m2

P

m2
Pi

=
q2

P

q2
Pi

≈ −0.9776. (27)

Therefore, the non-principal square root of c = ±1/
√
µ0ϵ0 and principal square root of c2 =

±1/
√
µ2ϵ0 in (20) also introduce imaginary (−c)-Planck units and real (−c2)-Planck units, respectively.

In particular, the imaginary (−c)-Planck time parameterizes holographic sphere (HS) time relations
[5,6]. We conjecture that α2-Planck units are appropriate for expressing physical quantities of I3

×R
Euclidean space rather than R3

× I Euclidean space that we perceive because of the minimum energy
principle (cf. Appendix E). Furthermore, the speed of electromagnetic radiation is the product of its
wavelength and frequency, and these quantities would be imaginary in terms of imaginary Planck
units; a negative speed of light is necessary to accommodate this.

The negative speed of light c2 (22) leads to the complementary Planck charge qPi, length ℓPi, mass
mPi, time tPi, and temperature TPi that redefined by square roots containing c2 raised to odd powers
(1, 3, 5) become bivalued and real-imaginary because c and c2 are bivalued. In other words, both the
Planck and α2-Planck units have four forms equal in modulus: real positive, real negative, imaginary
positive, and imaginary negative. However, here, we consider mostly real, positive α-Planck units and
imaginary, positive α2-Planck units (hence the subscript i).

Principal square roots of the base α2-Planck units (for negative c2) that can be expressed, using
the relation (26), in terms of base Planck units qP, ℓP, mP, tP, and TP are

qPi =
√

4πϵ0h̄cn = qP

√
α
α2
≈ i1.8969× 10−18 [C] (|qPi| > |qP|), (28)

ℓPi =

√
h̄G
c3

n
= ℓP

√
α3

2

α3 ≈ i1.5622× 10−35 [m] (|ℓPi| < |ℓP|), (29)

mPi =

√
h̄cn

G
= mP

√
α
α2
≈ i2.2012× 10−8 [kg] (|mPi| > |mP|), (30)

tPi =

√
h̄G
c5

n
= tP

√
α5

2

α5 ≈ i5.0942× 10−44 [s] (|tPi| < |tP|), (31)

3 cα is also the speed unit in Hartree and Schrödinger’s natural units.
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TPi =

√
h̄c5

n

Gk2
B

= TP

√
α5

α5
2

≈ i1.4994× 1032 [K] (|TPi| > |TP|). (32)

Most Planck units derived from the α2-Planck base units (28)-(32) are also imaginary. These
include the α2 Planck volume

ℓ3Pi =

(
h̄G
c3

n

)3/2

= ℓ3P

√
α9

2

α9 ≈ i3.8127× 10−105 [m3]
(
|ℓ3Pi| < |ℓ

3
P|
)
, (33)

the α2 Planck momentum

pPi = mPicn =

√
h̄c3

n
G

= mPc

√
α3

α3
2

≈ i6.7504 [kg m/s] (|mPicn| > |mPc|), (34)

the α2 Planck energy

EPi = mPic2
n =

√
h̄c5

n
G

= EP

√
α5

α5
2

≈ i2.0701× 109 [J] (|EPi| > |EP|), (35)

and the α2 Planck acceleration

aPi =
cn

tPi
=

√
c7

n
h̄G

= aP

√
α7

α7
2

≈ ±i6.0198× 1051 [m/s2] (|aPi| > |aP|). (36)

However, the α2-Planck density

ρP2 =
mPi

ℓ3Pi

=
c5

n

h̄G2 = ρP
α5

α5
2

≈ −5.7735× 1096 [kg/m3] (|ρP2| > |ρP|), (37)

and the α2-Planck area

ℓ2Pi =
h̄G
c3

n
= ℓ2P

α3
2

α3 ≈ −2.4406× 10−70 [m2]
(
|ℓ2Pi| < |ℓ

2
P|
)
, (38)

are real and bivalued, similar to Planck density ρP and area ℓ2P. Interestingly, both Planck forces FP and

FP2 =
c4

2

G
=

c4

G
α4

α4
2

= FP
α4

α4
2

≈ 1.3251× 1044 [N] (FP2 > FP), (39)

are strictly positive.
Coulomb’s law for elementary charges and Newton’s law of gravity for Planck masses define the

fine-structure constants
1

4πR2
∗

e2

ϵ0
= αG

m2
P

R2
∗

= α2G
m2

Pi

R2
∗

, (40)

where R∗ is a real or imaginary distance and mPi is imaginary. The area of a sphere in the denominator
of the Coulomb force requires further investigation.

The relations between time (31) and temperature (32) α2-Planck units are inverted, α5t2
Pi = α

5
2t2

P,
α5

2T2
Pi = α

5T2
P, and the energy-time version of Heisenberg’s uncertainty principle (HUP) is saturated

using energy from the equipartition theorem for one bit of information [5,6,39]

1
2

kBTPtP =
1
2

kBTPitPi =
h̄
2

. (41)
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Furthermore, eliminating α and α2 from the relations (28)-(30), yields

ℓPm3
P = ℓPim3

Pi and ℓPq3
P = ℓPiq3

Pi. (42)

Contrary to the elementary charge e (18), there is no physically meaningful elementary mass
Me = ±1.8592× 10−9 [kg] that would satisfy the relation (30)

M2
e = αm2

P = α2m2
Pi. (43)

Furthermore, there is no physically meaningful elementary (and imaginary) length Le ≈ ±i9.7382 ×
10−39 [m] satisfying the equation (38)

L2
e = α3ℓ2Pi = α

3
2ℓ

2
P, (44)

(which in modulus is almost 1660 times smaller than the Planck length), or an elementary temperature
Te ≈ ±6.4450× 1026 [K] abiding by (32)

T2
e = α5T2

P = α5
2T2

Pi, (45)

and close to the Hagedorn temperature of grand unified string models.
The Planck charge relation (18) and charge conservation principle imply that the elementary charge

e is the quantum of charge in real and imaginary dimensions, while masses, lengths, temperatures, and
other derived quantities that can vary with time are not similarly quantized. The universal character
of the charges is additionally emphasized by the real

√
α multiplied by i in the imaginary charge

energy (58) and imaginary
√
α2 in the real charge energy (59). Furthermore, the same forms of the

relations (18) and (43) reflect the same forms of Coulomb’s law and Newton’s law of gravity, which are
inverse-square laws.

In the following, where deemed appropriate, we express the physical quantities in Planck units:

M B mmP, Mi B mimPi, m, mi ∈ R
E B mEP Ei B miEPi,
Q B qe, Qi B iQ = iqe, q ∈ Z,
λ B lℓP, λi B liℓPi, l = 2π

m , li = 2π
mi

,
{R, D} B {r, d}ℓP, {Ri, Di} B {ri, di}ℓPi, r, d, ri, di ∈ R,

(46)

where uppercase letters M, E, Q, λ, R, and D denote masses, energies, charges, Compton wavelengths,
radii, and diameters (or lengths), lowercase letters denote multipliers of the positive real Planck units
and imaginary α2-Planck units, respectively, and subscript i refers to the multiplication of imaginary
quantities. We note that the discretization of charges by integer multipliers q of the elementary charge
e seems too far-reaching, considering the fractional charges of quasiparticles, particularly in the open
research problem of the fractional quantum Hall effect (cf. Appendix H) and energy-dependent
fractional charges in electron pairing [40].

IV. Black Body Objects

There are only three observable objects in nature that emit perfect black-body radiation: un-
supported black holes (BHs, the densest), neutron stars (NSs), supported, as believed, by neutron
degeneracy pressure, and white dwarfs (WDs), supported, as believed, by electron degeneracy pressure
(the least dense). We collectively refer to these black-body objects (BBs). The spectral density in sonolu-
minescence, that is light emission by sound-induced collapsing gas bubbles in fluids, was also shown
to have the same frequency dependence as black-body radiation [41,42]. Thus, sonoluminescence,
particularly shrimpoluminescence [43], is probably emitted by collapsing micro-BBs. Micro-BH induced
in glycerin by modulating acoustic waves has also been reported [44].
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The term black-body object is not used in general relativity (GR) and standard cosmology, but
standard cosmology scrunches under embarrassingly significant failings, not just tensions as is
sometimes described, as if to somehow imply that a resolution will eventually be found [45]. In adition,
James Webb Space Telescope data show multiple galaxies that grew too massive too soon after the Big
Bang, which is a strong discrepancy with the Λ cold dark matter model (ΛCDM) expectations of how
galaxies formed at early times at both redshifts, even when considering observational uncertainties
[46]. This is an important unresolved issue, indicating that fundamental changes to the reigning
ΛCDM model of cosmology are required [46]. The term object as a collection of matter is a misnomer
because it neglects the (quantum) nonlocality [9,47] that is independent of the entanglement among
particles [48], as well as the Kochen-Specker contextuality [49], and increases as the number of particles
increases [50,51]. Thus, we use emphasis for (perceivably indistinguishable) particle and (perceivably
distinguishable) object, as well as matter and distance. The ugly duckling theorem [52,53] asserts that
every two objects we perceive are equally similar (or equally dissimilar), however ridiculous and
contrary to common sense4 that may sound. These terms do not have an absolute meaning in the ED.
In particular, given the observation of quasiparticles in classical systems [54]. Within the ED framework,
no object is enclosed in space.

Entropic gravity [39] explains galaxy rotation curves without resorting to dark matter (which is not
required to explain the rotation curves of certain galaxies, such as the massive relic galaxy NGC 1277
[55]), has been experimentally confirmed [56], and is decoherence-free [57]. It has been experimentally
confirmed that (so-called) accretion instability is a fundamental physical process [58]. We conjecture that
this process, which has already been recreated under laboratory conditions [59], is common for all
BBs. As black-body radiation is a radiation of global thermodynamic equilibrium, it is patternless [60]
(thermal noise) radiation that depends only on one parameter. In the case of BHs, this is known as
Hawking [61] radiation, and this parameter is the BH temperature TBH = TP/(2πdBH) corresponding
to the BH diameter [6] DBH = dBHℓP, where dBH ∈ R. Furthermore, BHs absorb patternless information
[6,62]. Therefore, because Hawking radiation depends only on the diameter of a BH, it is the same for
a given BH, even though it is momentary as the BH fluctuates (cf. Section VII).

As black-body radiation is patternless, triangulated [6] BBs contain a balanced number of Planck
area triangles, each having binary potential δφk = −c2

· {0, 1}, as has been shown for BHs [6], based
on the Bekenstein-Hawking (BH) entropy [63] SBH = kBNBH/4, where NBH B 4πR2

BH/ℓ2P = πd2
BH

is the information capacity of the BH surface, i.e., the ⌊NBH⌋ ∈ N0 Planck triangles5 corresponding
to bits of information [5,6,39,63,64], and the fractional part triangle(s) having the area {NBH}ℓ

2
P =

(NBH − ⌊NBH⌋)ℓ
2
P too small to carry a single bit of information [5,6].

BH entropy can be derived from the Bekenstein bound

S ≤
2πkBRE

h̄c
= πkBmd, (47)

which defines an upper limit on the thermodynamic entropy S that can be contained within a sphere of
radius R and energy E. Substituting BH (Schwarzschild) radius RBH = 2GMBH/c2 and mass-energy
equivalence EBH = MBHc2, where MBH is the BH mass, into the bound (47), it reduces to the BH
entropy. In other words, the BH entropy saturates the Bekenstein bound (47)6.

The patternless nature of perfect black-body radiation was derived [6] by comparing the BH
entropy with the binary entropy variation δS = kBN1/2 ([6] Equation (55)), which is valid for any HS,

4 Which inevitably enforces understanding the nature in a manner that is common to nearly all people and thus hinders its
research.

5 "⌊x⌋" is the floor function that yields the greatest integer less than or equal to its argument x.
6 Furthermore, the Bekenstein bound can be derived from the BH entropy: SBH = kBπRR/ℓ2P ≤ kBπR 2GE

c4
c3

h̄G , where we used

M ≤ Rc2

2G and E = Mc2.
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where N1 ∈ N denotes the number of active Planck triangles with a binary potential δφk = −c2. Thus,
the entropy of all BBs is

SBB =
1
4

kBNBB. (48)

There is no disorder or uncertainty in a binary string of length NBB ≤ 3 [9]. Furthermore, N1 = NBB/2
confirms the patternless thermodynamic equilibrium of the BBs by maximizing Shannon entropy [6].

We define the generalized radius of a BB (this definition applies to all HSs) having mass MBB as a
function of GMBB/c2 multiplier k ∈ R, k ≥ 2

RBB B k
GMBB

c2 , dBB = 2kmBB, (49)

and the generalized BB energy EBB (this definition also applies to all HSs) as a function of MBBc2

multiplier a ∈ R
EBB B aMBBc2, EBB = amBBEP. (50)

Substituting MBB from definition (49) into definition (50) and the latter into the Bekenstein bound (47),
we obtain

S ≤
1
2

kB
a
k

NBB, (51)

which equals BB entropy (48) if a
2k = 1

4 ⇒ a = k
2 . Thus, the energy of all BBs with a generalized radius

(49) is

EBB =
k
2

MBBc2 =
k
2

mBBEP =
dBB

4
EP, (52)

with k = 2 in the case of the BHs, setting the lower bound for the other BBs. We further call coefficient
k the size-to-mass ratio (STM). This is similar to the specific volume (reciprocal of density) of BB. We
derive the upper STM bound in Section V.

According to the no-hair theorem, all BHs general relativity (GR) solutions are characterized by
only three parameters: mass, electric charge, and angular momentum. However, BHs are fundamentally
uncharged, because the parameters of any conceivable BH, in particular, charged (Reissner–Nordström)
and charged-rotating (Kerr–Newman) BH, can be arbitrarily altered, provided that the BH area does
not decrease [65] using Penrose processes [66,67] to extract the electrostatic and/or rotational energy of
BH [68]. Thus, any BH is defined by only one real parameter: its diameter, mass, temperature, energy,
etc., each differing to one another by a multiplicative constant. In the complex Euclidean Ra

× Ib space,
an n-ball (n = a + bi ∈ C) is spherical only for a vanishing imaginary dimension and for the radius
r = 1/

√
π (R = ℓP/

√
π) [5,16], resulting in its information capacity N = 4, one unit of BH entropy [63].

This confirms the universality and applicability of BH entropy (48) to all BBs.
The interiors of the BBs are inaccessible to an exterior observer [63], which makes them similar to

interior-less mathematical points representing real numbers on a number line7. However, a BH can
embrace the real number that defines it. Three points forming a Planck triangle corresponding to a bit
of information on a BH surface can store this parameter, and this is intuitively comprehensible. The
area of a spherical triangle is larger than that of a flat triangle defined by the same vertices, provided
the curvature is nonvanishing and depends on this curvature (this additional parameter defines it).
Thus, the only meaningful spatial notion is the Planck area triangle, which encodes one bit of the
classical information and its curvature.

However, it is accepted that in the case of NSs, electrons combine with protons to form neutrons,
such that NSs are composed almost entirely of neutrons. However, it is never the case that all electrons
and protons of an NS become neutrons. WDs are charged by definition, because they are believed to be
mostly composed of electron-degenerate matter. But how can a charged BB store both its curvature and

7 Thus, the term object is a particularly staring misnomer if applied to BBs.
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an additional parameter corresponding to its charge? Fortunately, the relation (18) ensures that the
charges are the same in the real and imaginary dimensions. Therefore, each charged Planck triangle of a
BB surface is associated with at least three R× I Planck triangles, each sharing one vertex or two vertices
with this triangle in R2. This configuration is capable of storing both curvature and charge. The Planck

area ℓ2P (38) and the R× I imaginary Planck area ℓPℓPi = ℓ
2
P

√
α3

2/α3 ≈ ±0.9666iℓ2P, which is smaller in
modulus, can be considered in a polyspherical coordinate system, in which gravitation/acceleration
acts in a radial direction (with the entropic gravitation acting inwardly and acceleration acting in both
radial directions) [6], while electrostatics act in a tangential direction.

Contrary to the no-hair theorem, we characterize BBs only by mass and charge, neglecting the
angular momentum because the latter introduces the notion of time, which we find redundant in the
BB description of a patternless thermodynamical equilibrium. Time is required for directed exploration
only [8,9].

BBs are perfectly spherical. However, their mergers, to which we shall return in Section VI, are
also perfectly spherical, as experimentally confirmed [69] based on the registered gravitational event
GW170817. One can hardly expect the collision of two perfectly spherical, patternless thermal noises
to produce an aspherical pattern instead of another perfectly spherical patternless noise. Where would
information about this pattern come from at the moment of collision? From the point of impact? No
point of impact can be considered unique on the patternless surface.

The previously discussed considerations may be confusing to the reader, as the energy (52) of BBs
other than BHs (i.e., for k > 2) exceeds the mass-energy equivalence E = Mc2, which is the limit of
the maximum real energy. In the following section, we model a part of the energy of NS and WD that
exceeds Mc2 as imaginary and thus unmeasurable.

V. BB Complex Energies

A complex energy formula

ER B EMR + iEQR = MRc2 +
iQR

2
√
πϵ0G

c2, (53)

where EMR and iEQR represent the real and imaginary energies of an object having mass MR and charge
QR

8 was proposed in ref. [70]. Equation (53) considers the real masses MR and charges QR. To store
the surplus energy, we modified it to a form involving real physical quantities expressed terms in
Planck units and imaginary physical quantities expressed terms of the imaginary α2-Planck units using
relations (26), (30), (35), (46), and (25)

as
e

2
√
πϵ0

=
√

αch̄ =
√
α2c2h̄. (54)

To this end, we defined the following three complex energies, linking the mass, imaginary mass,
and charge within the ED framework, the complex energy of real mass and imaginary charge

EMQi B EM + EQi = Mc2 +
Qi

2
√
πϵ0G

c2 =
(
mmP + iq

√
αmP

)
c2 =

(
m + iq

√
α
)
EP, (55)

of real charge and imaginary mass

EQMi B EQ + EMi =
Q

2
√
πϵ0G

c2
2 + Mic2

2 = (q
√
α2mPi + mimPi)c2

2 =
α2

α2
2

(
q
√
α+

√
α
α2

mi

)
EP, (56)

8 Charges in the cited study are defined in CGS units. Here, we adopt SI.
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and of real mass and imaginary mass

EMMi BMc2 + Mic2
2 =

m +

√
α5

α5
2

mi

EP, (57)

as shown in Figure 2.

m
2

mi

2

q
2
α2

(
+

)

m
q

E

2

2

2
α

P

m E +m E
2 2 2 2

P Pi i

(
!

)

q
m

E
2

2

α
2

P

i

i

q
2
α

Figure 2. Illustration of three complex energies linking mass m, imaginary mass mi, and charge q.

We neglect the energy of real and imaginary charges EQQi , because by equation (18), the unit of
charge is the same in real and imaginary dimensions. The mass-energy equivalence relates mass M or
Mi to the speed of light c or c2.

Energies (55) and (56) yield two different charge energies corresponding to the elementary charge,
imaginary quantum

EQi(q = ±1) = ±i
√
αEP ≈ ±i1.6710× 108 [J], (58)

and the - larger in modulus - real quantum

EQ(q = ±1) = ±
√
α2EPi ≈ ±1.7684× 108 [J]. (59)

Furthermore, ∀q, α2EQi = iα2
2EQ.

The squared moduli of the complex energies (55)-(57), expressed in terms of the Planck energy, are

|EMQi |
2 =

(
M2 + q2αm2

P

)
c4 =

(
m2 + q2α

)
E2

P, (60)

|EQMi |
2 =
α4

α4
2

(
q2αm2

P −M2
i

)
c4 =

α4

α4
2

(
q2α−

α
α2

m2
i

)
E2

P, (61)

|EMMi |
2 =

M2
−
α4

α4
2

M2
i

c4 =

m2
−
α5

α5
2

m2
i

E2
P. (62)

Theorem 1. Complex energies (55)-(57) cannot simultaneously have real and imaginary parts equal in modulus.

Proof. The complex energies EMQi and EQMi are real-to-imaginary balanced if their real and imaginary
parts are equal in modulus. This holds for

q2α = m2 = −
α
α2

m2
i . (63)

However, they cannot be balancedsimultaneously with energy EMMi , which is balanced for

m2 = −
α5

α5
2

m2
i , −

α
α2

m2
i . (64)
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□

Because, owing to equation (18) charges are the same in real and imaginary dimensions, the
squared moduli of the complex energies EMQi and EQMi must be equal, allowing us to obtain the value
of the imaginary mass Mi as a function of mass M and charge Q in this equilibrium:

mi = ±

√
α2

α

q2α

1−
α4

2

α4

− α4
2

α4
m2

. (65)

In particular for q = 0 equation (65) yields

m2
i = −

α5
2

α5 m2 or Mi = ±i
α2

2

α2 M ≈ ±0.9557iM, (66)

which corresponds to equation (64). Because the mass mi ∈ R, the square root argument must be
nonnegative in equation (65)

m ≥ |q|

√
α

α4

α4
2

− 1

 ≈ |q|0.0263. (67)

This means that the masses of the uncharged micro-BHs (q = 0) in thermodynamic equilibrium can
be arbitrary. However, micro NSs and micro WDs, which are also in thermodynamic equilibrium,
are charged. Thus, even a single elementary charge (q = 1) of a white dwarf renders its mass
MWD = 5.7275× 10−10 [kg] comparable to the mass of a sand grain.

We note that only the masses satisfying M < 2πmP ≈ 1.3675× 10−7 [kg] have Compton wavelengths
larger than the Planck length [6]. It should be noted that a classical description has been ruled out on a
microgram (1× 10−9 [kg]) mass scale [71]. Comparing this bound with bound (67) yields the charge
multiplier q corresponding to an atomic number:

Z =


2π√
α
(
α4

α4
2
− 1

)
 = ⌊238.7580⌋ = 238, (68)

of a hypothetical element, which, as we conjecture, sets the limit on an extended periodic table, and
is higher than the accepted limit of Z = 184 (unoctquadium). More massive elements would have
Compton wavelengths smaller than the Planck length, which is physically implausible because the
Planck area is the smallest area required to encode one bit of information [6,39,63,64]. From equation
(67), we can also obtain the maximum wavelength l = 2π/m corresponding to the charge q. For q2 = 1
it is λ < 3.8589× 10−33 [m] with l < 238.7580 corresponding to the bound (68).

Theorem 2. Complex energies (55)-(57) are equal

|EMQi |
2 = |EQMi |

2 = |EMMi |
2 =

1 +
α4

2

α4

m2E2
P =

1 +
α4

2

α4

q2αE2
P =

1 +
α4

2

α4

α9

α9
2

m2
i E2

P (69)

for

q2α = −
α5

α5
2

m2
i =
α4

2

α4
m2, m2

i = −
α9

2

α9 m2. (70)
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Proof. Direct calculation proves the relation (69) and if the squared moduli (60)-(62) are equal to some
constant energy

|EMQi |
2 = |EQMi |

2 = |EMMi |
2 B A2E2

P, (71)

then subtracting |EMQi |
2
− |EQMi |

2 yields

m2 +
α
α2

m2
i = A2

1−
α4

2

α4

; (72)

subtracting this from |EMMi |
2 yields

m2
i = −A2

α9
2

α5(α4 + α4
2)

, (73)

which substituted into the relation (72) yields

m2 = A2 α4

α4 + α4
2

. (74)

Finally, substituting equation (74) into equation (60) yields

q2α = A2
α4

2

α4 + α4
2

. (75)

□

We can interpret the squared generalized energy of the BBs (52) as the squared modulus of the
complex energy of the real mass EMQi , taking the observable real energy EBB = MBBc2 of the BB as the
real part of this energy. Thus

k4

4
m2

BB = m2
BB + q2

BBα, q2
BBα = m2

BB

(
k2

4
− 1

)
, (76)

where q2
BBα represents the charge surplus energy exceeding MBBc2. Similarly, we can interpret the

squared generalized energy of the BBs (52) as the squared modulus of the complex energy of the
imaginary mass EQMi . Thus

k2

4
m2

BB =
α4

α4
2

(
q2

BBα−
α
α2

m2
iBB

)
. (77)

Substituting q2
BBα from equation (76) into equation (77) transforms the equilibrium condition (65) into

a function of the STM k instead of the charge q

miBB = ±mBB

√
α2

α

k2

4

1−
α4

2

α4

− 1

, (78)
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which yields the imaginary mass of a BH (for k = 2) and corresponds to the relation (66) between
uncharged masses M and Mi, which is, remarkably, independent of the STM. The square root argument
in equation (78) must be nonnegative, because mBB, miBB ∈ R. This leads to the maximum STM-bound

k ≤
2√

1−
α4

2
α4

≈ 6.7933 = kmax.
(79)

The relations (76) and (78) are shown in Figure 3.
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Figure 3. Ratios of imaginary mass MiBB to real mass MBB (green) and real charge qBBmP
√
α to MBB

(red) of a BB as a function of the size-to-mass ratio 0 ≤ k ≤ 10. The mass MiBB is imaginary for k ⪅ 6.79.
The charge qBB is real for k ≥ 2.

Furthermore, using equation (26), from equation (78) we obtain the relation between the real and
imaginary BH energies EBHi = ±iEBH, which are equal in modulus. In general, equation (78) relates
the BBO energies as

E2
BBIi = E2

BB

α4

α4
2

(
k2

4
− 1

)
−

k2

4

. (80)

The maximum STM-bound kmax (79) sets the bounds on BB energy (52), mass, and radius (49)

RBH =
2GMBB

c2 ≤ RBB ≤
kmaxGMBB

c2 . (81)

In particular, using the relations (46), 2mBB ≤ rBB ≤ kmaxmBB or rBB/kmax ≤ mBB ≤ rBB/2.
Furthermore, equations (67) and (79) expressed in terms of the generalized radius (49) k =

dBB/(2mBB) set the bound on the minimum mass of BB if |EMQi |
2 = |EQMi |

2

mBB > max

qBB

√
α

α4

α4
2

− 1

,
dBB

4

√
1−
α4

2

α4

, (82)

where

q2
BBα =

d2
BB

16

α4
2

α4
(83)

defines a condition in which neither qBB nor dBB can be further increased to reach its counterpart
(defined by dBB and qBB) in bound (82). Thus, for example, 1-bit BB (dBB = 1/

√
π) corresponds to

qBB > 1.5780, π-bit BB (dBB = 1) corresponds to qBB > 2.7969, whereas the conjectured heaviest element
with atomic number qBB (68) corresponds to
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dBB = ±
8π√
1−

α4
2
α4

≈ ±85.3666. (84)

In the case of a BB, we obtain the equality of all three complex energies (55)-(57) by substituting
A = mBBk/2 from (49) into equation (71) and comparing this with (69). This yields

keq = 2

√
1 +
α4

2

α4
≈ 2.7665, (85)

where all three energies are equal. The equilibrium keq (85) and maximum kmax (79) STMa satisfy
k2

eq + 16/k2
max = 8.

The BB in the energy equilibrium keq bearing the elementary charge (q2 = 1) would have mass
MBBeq ≈ ±1.9455 × 10−9 [kg], imaginary mass MiBBeq ≈ ±i1.7768 × 10−9 [kg], wavelength λBBeq ≈

±1.1361 × 10−33 [m], and imaginary wavelength λiBBeq ≈ ±i1.2160 × 10−33 [m]. On the other hand,
equation (76) provides the BB charge in equilibrium (71) as qBB(keq) ≈ 11.1874 mBB and the limit of the
BB charge qBB(kmax) ≈ 37.9995 mBB

We note that BBs with STMs 2 ≤ k ≤ 3 are referred to as ultracompact [72], where k = 3 is a
photon sphere radius9. Any object that undergoes complete gravitational collapse passes through an
ultracompact stage [73], where k < 3. Collapse can be approached by gradual accretion, increasing
the mass to the maximum stable value, or by the loss of angular momentum [73]. During the loss of
angular momentum, the star passes through a sequence of increasingly compact configurations until it
finally collapses and becomes a BH. It was also pointed out [74] that for a neutron star of constant
density, the pressure at the center would become infinite if k = 2.25, which is the radius of the maximal
sustainable density for gravitating spherical matter given by Buchdahl’s theorem. It was shown [75]
that this limit applies to any well-behaved spherical star, where the density increases monotonically
with the radius. Furthermore, some observers would measure a locally negative energy density if
k < 2.6(6) thus breaking the dominant energy condition, although this may be allowed [76]. As the
surface gravity increases, photons from further behind the NS become visible. At k ≈ 3.52 the entire NS
surface becomes visible [77]. The relative increase in brightness between the maximum and minimum
of a light curve is greater for k < 3 than for k > 3 [77]. Therefore, the equilibrium STM ratio keq ≈ 2.7665
(85) is well within the range of radii of ultracompact objects researched in the state-of-the-art within the
GR framework.

However, aside from the Schwarzschild radius, derivable from the escape velocity v2
esc = 2GM/R

of mass M by setting v2
esc = c2, and discovered in 1783 by John Michell [78], all the remaining significant

radii of GR are only approximations10. GR neglects the value of the fine-structure constants α and α2,
which, similar to π or the base of the natural logarithm, are fundamental constants of nature.

VI. BB Mergers

As the entropy (Boltzmann, Gibbs, Shannon, von Neumann) of independent systems is additive,
a merger of BB1 and BB2 having entropies11 (48) S1 = 1

4 kBN1 and S2 = 1
4 kBπd2

2, produces a BBC with
entropy

S1 + S2 = SC ⇔ d2
1 + d2

2 = d2
C, (86)

9 At which, according to an accepted photon sphere definition, the strength of gravity forces photons to travel in orbits. The
author wonders why the photons would not travel in orbits at a radius R = GM/c2 corresponding to the orbital velocity
v2

orb = GM/R of mass M. Obviously, photons do not travel.
10 One may find constructive criticism of GR in [79–85].
11 We drop the HS subscripts in this section for clarity.
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which shows that the resultant information capacity is the sum of the information capacities of the
merging components. Thus, a merger of two primordial BHs, each with the Planck length diameter,
the reduced Planck temperature TP

2π (the largest physically significant temperature [5]) produces a BH
having dBH = ±

√
2 which represents the minimum BH diameter allowing for the notion of time [5].

In comparison, a collision of the latter two BHs produces a BH with dBH = ±2 and the triangulation
defining only one precise diameter between its poles (cf. [6] Figure 3(b)), which is also recovered from
HUP (cf. Appendix F).

Substituting the generalized diameter (49) into the entropy relation (86) establishes a Pythagorean
relation between the generalized energies (52) of the merging components and the merger

k2
C
4

m2
C =

k2
1

4
m2

1 +
k2

2

4
m2

2, ∀mk ∈ {R, I}. (87)

It is accepted that gravitational events observations alone allow measuring the masses of the
merging components, setting a lower limit on their compactness, but it does not exclude mergers that
are more compact than neutron stars, such as quark stars, BHs, or more exotic objects [86]. We note in
passing that describing the registered gravitational events as waves is misleading: normal modulation
of the gravitational potential, registered by LIGO and Virgo interferometers, and caused by rotating (in
the merger case, inspiral) objects, is wrongly interpreted as a gravitational wave understood as a carrier
of gravity [87]. Furthermore, it has been suggested that outside the GR, merging BHs may differ from
their GR counterparts [88].

The accepted value of the Chandrasekhar WD mass limit, which prevents its collapse into a denser
form, is MCh ≈ 1.4 M⊙ [89] and the accepted value of the analogous Tolman–Oppenheimer–VolkoffNS
mass limit is MTOV ≈ 2.9 M⊙ [90,91]. There is no accepted value for the BH mass limit. The conjectured
value is 5× 1010 M⊙ ≈ 9.95× 1040 kg. We note in passing that a BH with a surface gravity equal to the
Earth’s surface gravity (9.81 m/s2) would require a diameter of DBH ≈ 9.16× 1015 m (slightly less than
one light year) [6] and mass MBH ≈ 3.08× 1042 kg exceeding the conjectured limit. The masses of most
registered merging components go well beyond MTOV. From those that do not, most of the total or
final masses exceed this limit. Therefore, these mergers are classified as BH mergers. Only a few were
classified otherwise, including GW170817, GW190425, GW200105, and GW200115, as listed in Table 1.

Table 1. Selected BB mergers discovered with LIGO and Virgo. Masses in M⊙.

Event M1 M2 MC k1 k2 kC

GW170817 1.46+0.12
−0.10 1.27+0.09

−0.09 2.8 4.39 4.39 3.03
GW190425 2.00+0.6

−0.2 1.4+0.3
−0.3 3.4+0.3

−0.1 4.39 4.39 3.15
GW200105 8.9+1.2

−1.5 1.9+0.3
−0.2 10.9+1.1

−1.2 2.76 4.39 2.38
GW200115 5.7+1.8

−2.1 1.5+0.7
−0.3 7.1+1.5

−1.4 3 4.39 2.64

Equation (87) explains the measurements of large masses of BB mergers with at least one charged
merging component without resorting to any hypothetical types of exotic stellar objects such as quark
stars. Interferometric data, available online at the Gravitational Wave Open Science Center (GWOSC)
portal12, indicates that the total mass of a merger is the sum of the masses of the merging components.
Thus

mC = m1 + m2,

m2
C = m2

1 + m2
2 + 2m1m2,

m2
C

{
≥ m2

1 + m2
2 if m1m2 ≥ 0

≤ m2
1 + m2

2 if m1m2 ≤ 0
.

(88)

12 https://www.gw-openscience.org/eventapi/html/allevents
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We can use the squared moduli |EMQi |
2, |EQMi |

2, and |EMMi |
2 to derive some information about

the merger from equation (87). We shall initially assume mk ≥ 0⇒ m1m2 ≥ 0, since negative masses,
similar to negative lengths, and their products with positive ones, are (in general [23]) inaccessible for
direct observation, unlike charges. |EMQi |

2 with the first inequality (88) yields:

|EMQi |
2
C = |EMQi |

2
1 + |EMQi |

2
2,

m2
C = m2

1 + m2
2 + (q2

1 + q2
2)α− q2

Cα ≥ m2
1 + m2

2,

q2
C ≤ q2

1 + q2
2,

(89)

On the other hand, |EQMi |
2 with inequality (89) leads to (α2 < 0, and thus the direction of the inequality

is reversed):
q2

C ≤ q2
1 + q2

2 ⇒ m2
iC ≥ m2

i1 + m2
i2. (90)

But |EMMi |
2 with the first inequality (88) leads to:

m2
C ≥ m2

1 + m2
2 ⇒ m2

iC ≤ m2
i1 + m2

i2, (91)

contradicting inequality (90) (α5
2 < 0), while |EMMi |

2 with inequality (90) leads to:

m2
iC ≥ m2

i1 + m2
i2 ⇒ m2

C ≤ m2
1 + m2

2, (92)

contradicting the first inequality (88) and is consistent with the second inequality (88) introducing the
product of positive and negative masses. |EQMi |

2 with inequality (91) yields:

m2
iC ≤ m2

i1 + m2
i2 ⇒ q2

C ≥ q2
1 + q2

2, (93)

contradicting the inequality (90) and so on.
The additivity of the entropy (86) of statistically independent merging BBs, both in global

thermodynamic equilibrium, defined by their generalized radii (49), introduces the energy relation
(87). This relation, equality of charges in real and imaginary dimensions (18), and the BB complex
energies (60)-(62) induce imaginary, negative, and mixed masses during the merger. Thus, the BB
merger spreads in all dimensions, not only observable ones, as a gravitational event associated with a
fast radio burst (FRB) event, as reported [92] based on the gravitational event GW1904251 and FRB
20190425A event13. Furthermore, IXPE14 observations show that the polarized X-rays detected from
4U 0142+61 pulsar exhibit a 90◦ linear polarization swing from low to high photon energies [93]. In
addition, direct evidence for a magnetic field strength reversal based on the observed sign change and
extreme variation of FRB 20190520B’s rotation measure, which changed from ∼ 10000 [rad ·m−2] to
∼ −16000 [rad ·m−2] between June 2021 and January 2022, has been reported [94], and such extreme
rotation measure reversal has never been observed before in any FRB or any astronomical object.

In the observable dimensions during the merger, the STM ratio kC decreases, making the BBC
denser until it becomes a BH for kC = 2 and no further charge reduction is possible (Figure 3). From
equation (87) and the first inequality (88), we see that this holds for

k2
C

(
M2

1 + M2
2

)
≤ k2

1M2
1 + k2

2M2
2. (94)

For two merging BHs k1 = k2 = 2 and the relation (94) yields k2
C ≤ 4⇒ kC = 2 = kBHC .

Table 1 lists the mass-to-size ratios kBBC calculated according to equation (87), which provide the
measured mass MBBC of the merger and satisfy inequality (94). The mass-to-size ratios kBB1 and kBB2 of
the merging components were arbitrarily selected based on their masses, considering the limit of mass
MTOV of the NS.

13 Data available online at the Canadian Hydrogen Intensity Mapping Experiment (CHIME) portal (https://www.chime-frb.ca/
catalog).

14 X-ray Polarimetry Explorer (https://ixpe.msfc.nasa.gov).
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VII. BB Fluctuations

A relation [95] (p.160) describing a BH information capacity, having an initial information
capacity15 N j = 4πR2

j /ℓ2P, after absorption of a particle having the Compton wavelength equal to the
BH radius R j

NA
j+1 = 64π3

ℓ2P
R2

j

+ 32π2 + 4π
R2

j

ℓ2P
, (95)

was subsequently generalized [6] (Equation (18)) to all Compton wavelengths λ = lℓP = 2π
m ℓP (or

frequencies ν = c/λ = 1/(ltP)) and thus to all radiated Compton energies E = mEP, m ∈ R absorbed
(+) or emitted (−) by a BH as

NA/E
j+1 (m) = 16πm2

± 8πdm + πd2. (96)

Equation (96) can be further generalized, using the generalized diameter d = 2km̂ (49), to all BBs
as follows

∆NA/E B NA/E
j+1 (k, m) −N j = 16πm(m± km̂), (97)

where m̂ represents the BB mass, and its roots are

mA/E = {0,∓km̂} =
{

0,∓
d
2

}
= {0,∓r}, (98)

where it vanishes.
Thus, in general, BB changes its information capacity by:

∆NA


> 0 m ∈ (−∞,−km̂)∩ (0,∞)

= 0 m = {−km̂, 0}

< 0 m ∈ (−km̂, 0)

, ∆NE


> 0 m ∈ (−∞, 0)∩ (km̂,∞)

= 0 m = {0, km̂}

< 0 m ∈ (0, km̂)

, (99)

absorbing or emitting energy m with min(∆N) = −4πk2m̂2 at m = ±km̂/2, as shown in Figure 4.
Equation (99) shows that, depending on its mass m̂, a BB can expand or contract by emitting or
absorbing energy m [6]. However, expansion by emission (∆NE > 0), for example, requires energy
m > km̂ exceeding the mass-energy equivalence of BB for k > 2, which is consistent with the results
presented in Section V.

−3 −2 −1 0 1 2 3
−60

−40

−20

0

20

40

60

m

∆
N

Figure 4. BB information capacity variations ∆N after absorption (red) or emission (green) of energy m
(k = 2, m̂ = 1).

15 We drop the HS subscripts in this section for clarity.
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VIII. Complex Forces

Coulomb’s force FC between two charges is positive or negative, depending on the sign and type
(real or imaginary) of the charges, as summarized below in the case of some real distance separating
the charges:

q1q2 > 0 q1q2 < 0
Qk = qke FC > 0 FC < 0
Qk = iqke FC < 0 FC > 0.

(100)

Newton’s law of universal gravitation is also positive or negative, depending on the sign and type of
masses, as summarized below:

m∗1m∗2 > 0 m∗1m∗2 < 0
Mk = mkmP FG > 0 FG < 0
Mik = mikmPi F2G < 0 F2G > 0.

(101)

In the case of imaginary distance, the signs of the inequalities are opposite. We do not consider mixed
real or imaginary radii and mixed forces (based on real and imaginary masses/charges), as the real and
imaginary dimensions are orthogonal.

Complex energies (55)-(57) define the complex forces (similarly to the complex energy of real
masses and charges (53), [70] Equation (7)) acting over the real and imaginary distances R, Ri. Using the
relations (46), we obtain the following products

E1mqiE2mqi B E1MQiE2MQi /E2
P = m1m2 − q1q2α+ i

√
α(m1q2 + m2q1), (102)

E1qmiE2qmi B E1QMiE2QMi /E2
P =

α4

α4
2

(
αq1q2 +

α
α2

mi1mi2 +

√
α
α2

√
α(q1mi2 + q2mi1)

)
, (103)

E1mmiE2mmi B E1MMiE2MMi /E2
P = m1m2 +

α
α2

mi1mi2 +

√
α5

α5
2

(m1mi2 + m2mi1), (104)

defining three complex forces acting over a real distance R

FABi =
G

c4R2
E1ABiE2ABi =

FP

r2 E1abiE2abi , (105)

and three complex forces acting over an imaginary distance Ri

F̃ABi =
G

c4
2R2

i

E1ABiE2ABi =
α2

α
FP

r2
i

E1abiE2abi , (106)

where A, B ∈ {M, Q} and a, b ∈ {m, q}, and

α2r2FABi = αr2
i F̃ABi . (107)

With a further simplifying assumption of r2 = r2
i , the forces acting on the real distance R are

stronger and opposite to the corresponding forces acting on the imaginary distance Ri even though the
Planck force is lower than the α2-Planck force (39). This is a strong assumption, but it seems correct.
The general radius (49) and energy (52) are the same in Planck units and in α2-Planck units; the STM
remains the same.
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IX. BB Complex Gravity and Temperature

We can use the complex force FMQi (105) with the product (102) (i.e., complex Newton’s law of
universal gravitation) to calculate the BB surface gravity gBB, assuming an uncharged (q2 = 0) test
mass m2 and comparing this force with Newton’s 2nd law of motion

FP

r2
BB

(
mBBm2 + i

√
αm2qBB

)
= M2gBB = m2mP ĝBBaP, ĝBB =

1
r2

BB

(
mBB + i

√
αqBB

)
, (108)

where gBB = ĝBBaP, ĝBB ∈ R. Substituting qBB
√
α from the BB equilibrium relation (76) and the mass

taken from the generalized BB radius (49) rBB = kmBB into the relation (108) yields

ĝBB =
1

krBB

1± i

√
k2

4
− 1

, (109)

which reduces to BH surface gravity for k = 2 and in modulus

ĝ2
BB =

1
k2r2

BB

1 + i

√
k2

4
− 1


1− i

√
k2

4
− 1

 = 1
4r2

BB

. (110)

for all k. In particular,

gBB(kmax) = ±
aP

dBB
(0.2944± 0.9557i), (111)

gBB(keq) = ±
aP

dBB
(0.7229± 0.6909i). (112)

The BB surface gravity (109) leads to the generalized complex Hawking blackbody radiation
equation:

TBB =
h̄

2πckB
gBB =

TP

kπdBB

1± i

√
k2

4
− 1

, (113)

describing the BB temperature16 by including its charge in the imaginary part, which also for k = 2
and in modulus reduces to the BH temperature for all k.

In particular,

TBB(kmax) = ±
TP

2πdBB


√
α4 − α4

2

α2 ± i
α2

2

α2

 = ± TP

2π3dBB

(√
π4 −π4

1 ± iπ2
1

)
= ±

TP

2ππ2
2dBB

(√
π4

2 −π
4 ± iπ2

)
,

(114)

TBB(keq) = ±
TP

2πdBB

α2
± iα2

2√
α4 + α4

2

= ±
TP

2πdBB

π2
± iπ2

1√
π4 + π4

1

= ±
TP

2πdBB

π2
2 ± iπ2√
π4

2 + π
4

, (115)

reduce to the BH temperature for α2 = 0. We note that for dBB = 1, Re(TBB(kmax)) ≈ 6.6387× 1030 [K]

has a magnitude of the Hagedorn temperature of strings, whereas TP/(2π) ≈ 2.2549× 1031 [K].

16 In a commonly used form it is TBB = h̄c3

2k2πGMBBkB

(
1± i

√
k2
4 − 1

)
.
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It was shown [5] based on the Mandelstam-Tamm [96], Margolus–Levitin [97], and Levitin-Toffoli
[98] theorems on the quantum orthogonalization interval that BBs generate dissipative structures
through the solid-angle correspondence. The BB entropic work

WBB = TBBSBB = TBB
1
4

kBNBB = TBB
1
4

kBπd2
BB =

EPdBB

4k

1± i

√
k2

4
− 1

, (116)

is the work done by all active Planck triangles [5] of a BB. It is the product of the BB entropy (48) and
the BB temperature (113). Figure 5 shows the BB temperature (113), energy (52), and entropic work
(116) for 0 ≤ NBB ≤ 5. kB|TBB|/EBB = 2/NBB is a rational number for natural NBB.
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P
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, 
W

B
H

/E
P

1
4π 1 2 ln(2) 2 π 4 5

Big Bang time →

Figure 5. Black body object energy EBB (green); temperature TBH (red), Re[TBB(keq)] (red, dash-dot),
Re[TBB(kmax)] (red, dash); and work WBH (blue), Re[WBB(keq)] (blue, dash-dot), Re[WBB(kmax)] (blue,
dash),as a function of its information capacity NBB in terms of Planck units, for 0 ≤ NBB ≤ 5.

Therefore, it seems, that a universe without α2-imaginary dimensions (i.e., with α2 = 0) would be
a black hole. Hence, the directed exploration [8,9] of the evolution of information [1–4,6,7], requires
imaginary time. And we cannot zero α2 as we would have to neglect the existence of graphene.

X. Hydrogen Atom

The Bohr model of the hydrogen atom is based on three assumptions that can be conveniently
expressed in terms of Planck units using relations (46). The assumption of a natural number of electron
wavelengths λe that fits along the circumference of the electron’s orbit of radius R becomes:

nλe = 2πR ⇔ nle = 2πr, n ∈ N. (117)

De Broglie’s relation between electron mass Me, velocity Ve and wavelength becomes

λe =
h

MeVe
=

2πh̄
MeVe

⇔ le =
2π

meve
, Ve B vec, ve ∈ R. (118)
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Finally, the postulated equality between the centripetal force exerted on the electron orbiting around
the proton (assuming an infinite mass of the latter) and the Coulomb force between the electron and
proton17 becomes:

MeV2
e

R
=

1
4πϵ0

e2

R2 ⇔ mev2
e r =

e2

4πϵ0h̄c
= α. (119)

It is remarkable that such a simple postulate, expressed in terms of Planck units, introduces the
fine-structure constant α. Joining relations (117) and (118) yields

mever = n, (120)

which combined with (119) and using the relation (26) yields

Ve = vec =
1
n
αc =

1
n
α2cn ⇔ ve =

1
n
α, (121)

Thus, in the first circular orbit (n = 1) of this model, the electron velocity factor ve = α.
Now, we assume that the centripetal force acting on the electron is equal to the complex force

FMQi (105) with the product of real mass and imaginary charge energies (102) and use the reduced
mass of the proton-electron system

memp

me + mp

v2
e
r

=
memp + α+ i

√
α(me −mp)

r2 ,

v2
e =

me + mp

r

(
1 +

α
memp

)
+ i
√
α

r

m2
e −m2

p

memp
,

r =
me + mp

v2
e

(
1 +

α
memp

)
+ i
√
α

v2
e

m2
e −m2

p

memp
,

(122)

where qe = −1 and qp = 1 are the electron and proton charges, respectively, and Mp = mpmP, mp ∈ R is
the proton mass.

For the electron mass Me = 9.1094 × 10−31 [kg] and the proton mass Mp = 1.6726 × 10−27 [kg]
the equation (122) yields ve ≈ 7.2993× 10−3

− i3.2816× 10−21
≈ α assuming that R is equal to the Bohr

radius a0 = 5.2918× 10−11 [m] or the radius R ≈ (5.2946× 10−11
− i4.7607× 10−29) [m] ≈ a0 assuming

that the Bohr model gives the velocity of the electron, that is, ve = α.
These values correspond to those given by the Bohr model. Furthermore, neglecting the

opposite signs of the charges (qe = qp = −1 or qe = qp = 1) in the relation (122) yields, respectively,
an imaginary electron velocity ve ≈ 3.2852 × 10−21

± i7.2993 × 10−3
≈ ±iα and a negative radius

R ≈ (−5.2947× 10−11
± i4.7660× 10−29) [m] ≈ −a0. We further note that switching the signs of charges

(qe = 1, qp = −1) provides complex conjugates of the relation (122), which in this case describes the
antihydrogen. Therefore, we conjecture that the energy generated during a hydrogen-antihydrogen
collision is

EH−H̄ = 2(memp + α)EP ≈ 2.8549× 107[J]. (123)

Finally, we note that the relation (122) based (as the Bohr model) on the mass of the electron provides a
better agreement with the Bohr radius and the fine-structure constant because

17 In the Bohr model of atoms other than hydrogen this equality of forces is extended to a point-like set of Z electrons orbiting
around a nucleus, where Z is the atomic number. Furthermore, since the proton and the electron have different signs of the
elementary charge e, the Coulomb force should be considered negative in this model.
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mev2
e r = memp + α+ i

√
α(me −mp),

r =
mp

α2 +
1

meα
+ iα−3/2

(
1−

mp

me

)
≈

1
meα

=
a0

ℓP
,

v2
e = αmemp + α

2 + iα3/2(me −mp) ≈ α
2.

(124)

Note that none of the charged elementary particles that form atoms and antiatoms satisfy the
complex energy equality of Theorem 2. For example, both proton (qp = 1) and electron (qe = −1) satisfy
α = α4

2m2
e /α4 and α = α4

2m2
p/α4 of equation (70) but me , mp. However, we can postulate the equality

of the products of the complex energies (102)-(104), that is, for hydrogen and antihydrogen atoms

Eepmqi = memp + α± i
√
α(me −mp),

Eepqmi =
α4

α4
2

(
−α+

α
α2

miemip ±

√
α
α2

√
α
(
mie −mip

))
,

Eepmmi = memp +
α
α2

miemip ±

√
α5

α5
2

(
memip + mpmie

)
,

Eepmqi = Eepqmi = Eepmmi ≈ α,

(125)

with "+" for hydrogen and "−" for antihydrogen. Knowing the values of me and mp the system of
equations (125) resolves to

mie = {0± i0.1314, 0± i0.0543},

mip = {−mie2,−mie1},
(126)

yielding real masses |M1| = 1.194 86× 10−9 [kg] and |M2| = 2.8929× 10−9 [kg].
Expressed in terms of Planck units and the reduced mass of the proton-electron system, the

Rydberg constant for hydrogen is

RH =
memp

me + mp

α2

4πℓP
≈ 1.0968× 107 [1/m], (127)

and the corresponding Rydberg formula can be expressed as

memp

me + mp
l =

4π
α2

n2
1n2

2

n2
2 − n2

1

=
n2

1n2
2

n2
2 − n2

1

4π3(16π4 + 8π3 + 9π2 + 2π+ 1), (128)

using the wavelength relation (46) and α algebraic expression (14). The coefficients {16, 8, 9, 2, 1} form
part of the OEIS sequence A158565 for n = 10.

XI. Discussion

The reflectance of graphene under normal incidence of electromagnetic radiation, expressed as
quadratic equation for the fine-structure constant α, includes the 2nd negative fine-structure constant α2.
The sum of the reciprocal of this 2nd fine-structure constant α2 with the reciprocal of the fine-structure
constant α (2) is independent of the reflectance value R and is remarkably equal to simply −π. The
algebraic definition of the fine-structure constant α−1 = 4π3 + π2 + π, containing the free term π,
when introduced into this sum, yields α−1

2 = −4π3
− π2

− 2π < 0 (15). The negative fine-structure
constant α2 leads to the α2-Planck units applicable to imaginary dimensions, including the imaginary
α2-Planck units (28)-(36). The real and imaginary mass and charge units (21), temperature and time
units (41), and length and mass units (42) are directly related. Furthermore, equation (18) shows that
the elementary charge e is common for both the real and imaginary dimensions.
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Applying α2 Planck units to the complex energy formula [70] yields complex energies (55) and (56),
setting the atomic number Z = 238 as the limit on an extended periodic table. The generalized energy
(52) of all perfect black-body objects (black holes, neutron stars and white dwarfs) with a generalized
radius RBB = kRBH/2 exceeds the mass-energy equivalence if k > 2. The complex energies (55)-(57)
allow storage of excess energy in their imaginary parts. The results show that perfect black-body
objects other than black holes cannot have masses lower than 5.7275× 10−10 [kg] and that kmax ≈ 6.7933
k ≤ 6.7933 defined by equation (79). In addition, it has been shown that a black-body object is in
equilibrium with complex energies if its radius Req ≈ 1.3833 RBH (85). The proposed model explains
the registered (GWOSC) high masses of neutron star mergers without resorting to hypothetical types
of exotic stellar objects.

In the context of the results of this study, monolayer graphene, a truly 2-dimensional material
with no thickness18, is a keyhole to other, unperceivable dimensionalities. The history of graphene is
also instructive. Discovered in 1947 [100], graphene was long considered an academic material until
it was eventually pulled from graphite in 2004 [101] using ordinary Scotch tape19. These fifty-seven
years, along with twenty-nine years (1935-1964) between the condemnation of quantum theory as
incomplete [102] and Bell’s mathematical theorem [103] asserting that it is not true, and the fifty-eight
years (1964-2022) between the formulation of this theorem and the 2022 Nobel Prize in Physics for its
experimental loophole-free confirmation, should remind us that Max Planck, the genius who discovered
Planck units, has also discovered Planck’s principle.
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Abbreviations

The following abbreviations are used in this manuscript:

ED emergent dimensionality
EMR electromagnetic radiation
MLG monolayer graphene
T transmittance
R reflectance
A absorptance
HUP Heisenberg’s uncertainty principle
DOF degree of freedom
BH black hole
NS neutron star
WD white dwarf
BB black-body object
HS holographic sphere
STM size-to-mass ratio
GR general relativity

18 Thickness of MLG is reported [99] as 0.37 [nm] with other reported values up to 1.7 [nm]. However, considering that 0.335
[nm] is the established interlayer distance and consequently the thickness of bilayer graphene, these results do not seem
credible: the thickness of bilayer graphene is not 2× 0.37 + 0.335 = 1.075 [nm].

19 Introduced into the market in 1932.
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Appendix A. Other MLG Quadratic Equations

The quadratic equation for the sum of transmittance (3) and absorptance (5) of MLG under normal
incidence of EMR corresponds to equation (8), substituting R = 1− T−A. However, the sums of the
roots of the other quadratic equations are not independent of T, A, or R. For example, the sum of T + R
(6) expressed as the quadratic equation (substituting CTR B T + R) is

1
4
(CTR − 1)π2α2 + CTRπα+ (CTR − 1) = 0, (A1)

and has two roots with reciprocals

α−1 =
π(CTR − 1)

−2CTR + 2
√

2CTR − 1
≈ 137.036, (A2)

and

α−1
TR =

π(CTR − 1)

−2CTR − 2
√

2CTR − 1
≈ 0.0180, (A3)

whereas their sum
α−1

TR1
+ α−1

TR2
=
−πCTR

CTR − 1
≈ 137.054 (A4)

is dependent on T and R, which suggests that in the case of MLG, transmittance (3) and absorptance (5)
should be considered together as their sum.

Appendix B. MLG Transmittance, Absorptance, and Reflectance as Functions of π Only

With algebraic definitions of α (14) and α2 (15), T (3), R (4) and A (5) of MLG for normal EMR
incidence can be expressed simply by π. For α−1 = 4π3 + π2 + π (14) they become

T(α) =
4
(
4π2 + π+ 1

)2

(8π2 + 2π+ 3)2 ≈ 0.9775, (A5)

A(α) =
4
(
4π2 + π+ 1

)
(8π2 + 2π+ 3)2 ≈ 0.0224, (A6)

while for α−1
2 = −4π3

−π2
− 2π (15) they become

T(α2) =
4
(
4π2 + π+ 2

)2

(8π2 + 2π+ 3)2 ≈ 1.0228, (A7)

A(α2) = −
4
(
4π2 + π+ 2

)
(8π2 + 2π+ 3)2 ≈ −0.0229, (A8)

with
R(α) = R(α2) =

1

(8π2 + 2π+ 3)2 ≈ 1.2843× 10−4. (A9)

(T(α) + A(α)) + R(α) = (T(α2) + A(α2)) + R(α2) = 1 as required by the law of energy conservation
(7). Each conservation law is associated with a certain symmetry, as asserted by Noether’s theorem.
A(α) > 0 and A(α2) < 0 imply a sink and source, respectively, whereas the opposite holds for T, as
illustrated schematically in Figure A1.
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T( ) < 1α

A( ) > 0α

T( ) > 1α2

A( ) < 0α2

Figure A1. Illustration of the concepts of negative absorptance and excessive transmittance of EMR
under normal incidence on MLG.

We conjecture that the negative A and T values exceeding 100% for α2 (11) and (15) could be
explained in terms of spontaneous graphene emission.

Appendix C. MLG Fresnel Equation and Euclid’s Formula

The Fresnel equation for the normal incidence of EMR at the boundary of two media with refractive
indices n1 and n2

R + T =
(n1 − n2)

2

(n1 + n2)
2 +

(
2
√

n1n2
)2

(n1 + n2)
2 = 1, (A10)

has the same form as the Euclid’s formula for generating Pythagorean triples a = k2
− l2, b = 2kl,

c = k2 + l2 (
k2
− l2

)2

(k2 + l2)2 +
(2kl)2

(k2 + l2)2 = 1, (A11)

with k2 = n1 and l2 = n2.
Substituting MLG reflectance (4) and the sum of transmittance (3) and absorptance (5) into the

Fresnel equation (C.1) yields

(n1 − n2)
2

(n1 + n2)
2 =

1
4π

2α2(
1 + πα

2

)2 ,
4n1n2

(n1 + n2)
2 =

1 + πα(
1 + πα

2

)2 , (A12)

which resolves to n1 independent on α and two forms of n2

n1 = 1,

n2(α∗) =
1

1 + πα∗
=

{
−
α2

α
,−
α
α2

}
≈ {0.9776, 1.0229},

(A13)

where α∗ indicates α or α2, satisfying 1 + πα = 1/(1 + πα2), which corresponds to the identity (13).
The refractive index n2 ≈ 1.0229 is close to that of liquid helium n ≈ 1.025 at 3 K. The refractive index
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n2 ≈ 0.9776 is close to the refractive index of water n = 0.99999974 = 1− 2.6× 10−7 for X-ray radiation
at a photon wavelength of 0.04 nm. We note that these results are different from the complex refractive
index of MLG (ñg = 2.4− 1.0i at 532 nm to ñg = 3.0− 1.4i at 633 nm at room temperature). However,
because n1 = 1, the equation (C.4) relates to the absolute (n = c/V) refractive indices; it models MLG
as a boundary between vacuum and some other bulk medium. The refractive index is related to the
phase velocity of light, which does not carry information and can be faster than the speed of light in
vacuum c.

Refractive indices (C.4) correspond to the phase velocities

V
(
−
α2

α

)
= −c

α
α2

= −c2, V
(
−
α
α2

)
= −c

α2

α
= −

c2

c2
≈ 2.9307× 108 [m/s] (A14)

using the relation (26).
On the other hand, substituting MLG R, T+A into the Euclid formula (C.2) yields

k =

√πα+ 1,−
√
πα+ 1,

√
1

πα+ 1
,−

√
1

πα+ 1
,

 ≈ {±1.0114,±0.9887},

l = {1, 1, 1, 1},

(A15)

generating four right triangles with edges

a(α) =
{
πα,πα,

−πα
πα+ 1

,
−πα
πα+ 1

}
≈ {0.0229x2,−0.0224x2},

b(α) =
{

2
√
πα+ 1,−2

√
πα+ 1,

2
√
πα+ 1

,
−2

√
πα+ 1

}
≈ {±2.0228,±1.9775},

c(α) =
{
πα+ 2,πα+ 2,

πα+ 2
πα+ 1

,
πα+ 2
πα+ 1

}
≈ {2.0229x2, 1.9776x2},

(A16)

and

a(α2) ≈ {−0.0224x2, 0.0229x2},

b(α2) ≈ {±1.9775,±2.0228},

c(α2) ≈ {1.9776x2, 2.0229x2},

(A17)

satisfying πα = −πα2/(πα2 + 1), which also corresponds to the identity (13), and

c(α∗) − a(α∗) = 2, b(α∗)2 = 4
√

a(α∗) + 1. (A18)

We further note that a(α∗) ≈ −A(α∗), (B.2), (B.4) and |b(α∗)| ≈ T(α∗) + 1, (B.1), (B.3).

Appendix D. Two π-like Constants

Quadratic equation (8), which describes the reflectance R of MLG under the normal incidence of
EMR, can also be solved for π, which yields two roots.

π(R,α∗)1 =
2
√

R

α∗(1−
√

R)
, and (A19)

π(R,α∗)2 =
−2
√

R

α∗(1 +
√

R)
, (A20)
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dependent on R and α∗, where α∗ indicates α or α2. This can be further evaluated using the MLG
reflectance R (4) or (B.5) (which is the same for both α and α2), yielding four, yet only three, distinct
possibilities,

π1 = π(α)1 = −π
4π2 + π+ 1
4π2 + π+ 2

= π
α2

α
≈ −3.0712, (A21)

π(α)2 = π(α2)1 = π ≈ 3.1416, and (A22)

π2 = π(α2)2 = −π
4π2 + π+ 2
4π2 + π+ 1

= π
α
α2
≈ −3.2136. (A23)

The modulus of π1 (D.3) corresponds to a convex surface with a positive Gaussian curvature, whereas
the modulus of π2 (D.5) corresponds to a negative Gaussian curvature. The product π1π2 = π2 is
independent ofα∗, the quotientπ1/π2 = α2

2/α2 is not directly dependent onπ, and |π1 −π| , |π−π2|. It
remains to be determined whether each of these π-like constants describes the ratio of the circumference
of a circle drawn on the respective surface to its diameter (πc) or the ratio of the area of this circle to
the square of its radius (πa). These definitions produce different results for curved surfaces, whereas
πa > πc on convex surfaces and πa < πc on saddle surfaces [106].

Appendix E. Why α-Space Is Better for Biological Evolution?

The probability that two nuclear particles a and b will undergo nuclear fusion by overcoming their
electrostatic barriers is given by Gamow–Sommerfeld factor

p(E) = e−
√

EG
E , (A24)

where
EG B 2

mamb
ma + mb

EP(παZaZb)
2 (A25)

is the Gamow energy, ma, mb are the masses of those particles in terms of α- or α2-Planck units (46) and
Za, Zb are their respective atomic numbers.

As (πα)2
≈ 5.2557 × 10−4 is larger than (πα2)

2
≈ 5.0227 × 10−4, the probability (E.1) is higher

for the same dimensionless parameters m∗, Z∗. Therefore, perceivable α-space yields more favorable
conditions for the evolution of information (by nuclear fusion) than nonperceivable α2-space.

Furthermore, the α2-Planck energy EPi and temperature TPi are higher than the Planck energy
EP and temperature TP. Therefore, the perceivable α-space yields more favorable conditions for the
evolution of information, also owing to the minimum energy principle.

Appendix F. Planck Units and HUP

Perhaps the simplest derivation of the squared Planck length is based on HUP

δPHUPδRHUP ≥
h̄
2

or δEHUPδtHUP ≥
h̄
2

, (A26)

where δPHUP, δRHUP, δEHUP, and δtHUP denote momentum, position, energy, and time uncertainties,
respectively. Replacing energy uncertainty δEHUP = δMHUPc2 with mass uncertainty using mass-
energy equivalence, and time uncertainty with position uncertainty using δtHUP = δRHUP/c [34]
yields

δMHUPδRHUP ≥
h̄
2c

. (A27)

Interpreting δMHUP = δRHUPc2/(2G) as the BH mass in (F.2) we derive the Planck length as δR2
HUP =

ℓ2P ⇒ δDHUP = ±2ℓP and recover [6] the BH diameter dBH = ±2.
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However, using the same procedure but inserting the BH radius instead of the BH mass into the
uncertainty principle (F.2) leads to δM2

HUP = 1
4 h̄c/G = 1

4 m2
P. In general, using the generalized radius

(49) in both procedures, we obtain

δM2
HUP =

1
2k

m2
P and δR2

HUP =
k
2
ℓ2P. (A28)

Thus, if k increases, the mass δMHUP decreases, and δRHUP increases and the factor is the same for
k = 1 i.e., for the orbital speed radius δR = GδM/c2 or orbital speed mass δM = δRc2/G.

Appendix G. The Stoney Units Derivation

We assume that the elementary charge is the unit of charge qS = e and that the speed of light is the
quotient of the unit of length and time c = lS/tS. Next, we compare the Coulomb force between two
elementary charges and units of mass mS with Newton’s law of gravity, acting over the same distance:

1
4πϵ0

e2

��R2
= G

m2
S

��R2
⇒ mS = ±

√
e2

4πϵ0G
. (A29)

Finally, we compare the inertial force of the unit of mass with Newton’s law of gravity:

��mS
ℓS
t2
S

= G
m�2

S

ℓ2S
⇒ ℓS = ±

√
Ge2

4πϵ0c4
, (A30)

to derive the Stoney length ℓS and the remaining Stoney units.
Using the negative c2 (22) we can determine the values of c2-Stoney units (Sn). For mass, length,

time, and energy, they are

mSn = mS =
√
αmP ≈ 0.0854mP,

ℓSn =
α2

2

α2 ℓS ≈ 0.9557lS ≈ 0.0816lP,

tSn =
α3

2

α3 tS ≈ −0.9343tS ≈ −0.0798tP,

ESn = mSc2
2 =
α2

α2
2

ES ≈ 1.0464ES ≈ 0.0894EP.

(A31)

We note that the c2-Stoney energy induced by c2 is greater than the Stoney energy and the c2-Stoney
time runs in the opposite direction. We also note that a negative value of the gravitational constant
G would yield imaginary Stoney units regardless of the sign of c, as all Stoney units (except charge)
contain c raised to even (4, 6) powers.

Appendix H. Hall Effect

The fractional quantum Hall (FQHE) effect shows a stepwise dependence of the conductance on
the magnetic field (as compared to the linear dependence of the Hall effect) with steps quantized as

R =
h
νe2 =

2�π�̄h
να4�πϵ0�̄hc

=
1

2νϵ0αc
=

1
2νϵ0α2c2

, (A32)

where ν is an integer or fraction (for example, for ν = 5/2, R = 1/(5ϵ0αc)). Relations (H.1) and (26)
suggest that 2D FQHE links real and imaginary dimensions, similar to 2D graphene, giving us the
second negative fine-structure constant α2.
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