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Article

The Imaginary Universe

Szymon Łukaszyk

Łukaszyk Patent Attorneys, ul. Głowackiego 8, 40-052 Katowice, Poland; szymon@patent.pl

Abstract: Maxwell’s equations in vacuum provide the negative speed of light −c, which leads to
imaginary Planck units. However, the second, negative fine-structure constant α−1

2 ≈ −140.178,
present in the Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer
graphene, establishes the different, negative speed of light in vacuum c2 ≈ −3.06 × 108 [m/s],
which introduces imaginary Planck units different in magnitude from those parametrized with c.
Furthermore, algebraic relations between the fine-structure constants hint that the fine-structure
constant does not vary over time. It follows that electric charges are the same in real and imaginary
dimensions. We model neutron stars and white dwarfs, emitting perfect black-body radiation, as
objects having energy exceeding their mass-energy equivalence ratios. We define complex energies in
terms of real and imaginary natural units. Their imaginary parts, inaccessible for direct observation,
store the excess of these energies. It is conjectured that the maximum atomic number Z = 238. A
black-body object is in the equilibrium of complex energies if its radius Req ≈ 1.3833 RBH, which
is close to the photon sphere radius Rps = 1.5 RBH, and marginally greater than a locally negative
energy density bound of 4/3 RBH. The complex force between real masses and imaginary charges
leads to the black-body object’s surface gravity and the generalized Hawking radiation temperature,
which includes its charge. Furthermore, this force is consistent with the Bohr model of the hydrogen
atom. The proposed model takes into account the value(s) of the fine-structure constant(s), which
is/are otherwise neglected in general relativity, and explains the registered (GWOSC) high masses
of neutron stars’ mergers and the associated fast radio bursts (CHIME) without resorting to any
hypothetical types of exotic stellar objects.

Keywords: emergent dimensionality; imaginary dimensions; natural units; fine-structure constant;
black holes; neutron stars; white dwarfs; patternless binary messages; complex energy; complex
force; Hawking radiation; extended periodic table; general relativity; photon sphere; entropic gravity;
gravitational observations; holographic principle; mathematical physics

1. Introduction

The universe began with the Big Bang, which is a current prevailing scientific opinion. But this
Big Bang was not an explosion of 4-dimensional spacetime, which also is a current prevailing scientific
opinion, but an explosion of dimensions. More precisely, in the −1-dimensional void, a 0-dimensional
point appeared, inducing the appearance of countably infinitely other points indistinguishable from the
first one. The breach made by the first operation of the dimensional successor function of the Peano axioms
inevitably continued leading to the formation of 1-dimensional, real and imaginary lines, allowing
for an ordering of points using multipliers of real units (ones) or imaginary units (a ∈ R ⇔ a = 1b1,
and a ∈ I ⇔ a = ib, where b ∈ R). Then out of two lines of each kind, crossing each other only at
one initial point (0, 0), the dimensional successor function formed 2-dimensional R2, I2, and R× I

1 This is, of course, a circular definition. But for clarity, it is given.
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Euclidean planes, with I2 being a mirror reflection of R2. And so on, forming n-dimensional Euclidean
spaces Ra × Ib with a ∈ N real and b ∈ N imaginary lines, n := a + b, and the scalar product defined by

x · y =
(

x1, . . . , xa, ix′1, . . . , ix′b
) (

y1, . . . , ya, iy′1, . . . , iy′b
)

:=

:=
a

∑
k=1

xkyk +
b

∑
l=1

x′ly
′
l ,

(1)

where x, y ∈ Ra × Ib. With the appearance of the first 0-dimensional point, information began to
evolve [1–6].

However, the dimensional properties are not uniform. Concerning regular convex n-polytopes in
natural dimensions, for example, there are countably infinitely many regular convex polygons, five
regular convex polyhedra (Platonic solids), six regular convex 4-polytopes and only three regular
convex n-polytopes if n > 3 [7]. In particular, 4-dimensional Euclidean space is endowed with a
peculiar property known as exotic R4 [8], absent in other dimensionalities. Due to this property,
R3 × I space provides a continuum of homeomorphic but non-diffeomorphic differentiable structures.
Each piece of individually memorized information is homeomorphic to the corresponding piece
of individually perceived information but remains nondiffeomorphic (non-smooth). This allowed
the variation of phenotypic traits within individuals’ populations [9] and extended the evolution of
information into biological evolution. Exotic R4 solves the problem of extra dimensions of nature,
and perceived space requires a natural number of dimensions [10]. Each biological cell perceives
an emergent space of three real dimensions and one imaginary (time) observer-dependently [11]
and at present, when i0 = 0 is real, through a spherical Planck triangle corresponding to one bit
of information in units of −c2, where c is the speed of light in vacuum. This is the emergent
dimensionality (ED) [5,9,12–14]. Appendix F presents some arguments to support the claim that
perceived dimensionality sets favourable conditions for biological evolution to emerge.

Each dimension requires certain units of measure. In real dimensions, Max Planck in 1899 derived
the natural units of measure as “independent of special bodies or substances, thereby necessarily retaining
their meaning for all times and for all civilizations, including extraterrestrial and nonhuman ones” [15].
Planck units utilize the Planck constant h that he introduced in his black-body radiation formula.
However, in 1881, George Stoney derived a system of natural units [16] based on the elementary charge
e (Planck’s constant was unknown then). The ratio of Stoney units to Planck units is

√
α, where α is

the fine-structure constant. This study derives the complementary set of natural units applicable to
imaginary dimensions, including imaginary units, based on the discovered negative fine-structure
constant α2.

Imaginary and negative physical quantities are the subject of research. In particular, the subject
of scientific research is thermodynamics in the complex plane. For example, Lee–Yang zeros [17,18]
and photon-photon thermodynamic processes under negative optical temperature conditions [19]
have been experimentally observed. Furthermore, the rendering of synthetic dimensions through
space modulations has recently been suggested because it does not require any active materials or
other external mechanisms to break the time-reversal symmetry [20]. However, physical quantities
accessible for direct everyday observation are mostly real and positive with the negativity of distances,
velocities, accelerations, etc., induced by the assumed orientation of space. Quantum measurement
results, for example, are real eigenvalues of Hermitian operators. Unlike charges, negative, real masses
are generally inaccessible for direct observation. However, dissipative coupling between excitons
and photons in an optical microcavity leads to the formation of exciton polaritons with negative
masses [21]. In Section 6 we show that negative masses also result from merging black-body objects.

Furthermore, the study introduces a model for storing the excess energy of neutron stars and
white dwarfs that exceed their mass–energy equivalences in imaginary dimensions. The model results
in the upper bound on the size-to-mass ratio of their cores, where the Schwarzschild radius sets the
lower bound.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 October 2023                   doi:10.20944/preprints202212.0045.v16

https://doi.org/10.20944/preprints202212.0045.v16


3 of 37

The paper is structured as follows. Section 2 shows that Fresnel coefficients for the normal
incidence of electromagnetic radiation on monolayer graphene include the second negative
fine-structure constant α2 as a fundamental constant of nature. Section 3 shows that by this second
fine-structure constant nature endows us with the α2-natural units. Section 4 introduces the concept
of a black-body object in thermodynamic equilibrium, emitting perfect black-body radiation, and
reviews its necessary properties. Section 5 introduces complex mass and charge energies expressed in
terms of real and imaginary α2-Planck units introduced in Section 3 and applies them to black-body
objects. Section 6 considers observed mergers of black-body objects to show that the observed data
can be explained without the need to introduce hypothetical exotic stellar objects. Section 7 discusses
fluctuations of black-body objects. Section 8 defines the complex forces that are used in Section 9 to
derive a black-body object surface gravity and the generalized Hawking radiation temperature, and in
Section 10 - in an extended Bohr model of the hydrogen atom. Section 11 summarizes the findings of
this study. Certain prospects for further research are given in the Appendices.

2. The Second Fine-Structure Constant

Numerous publications provide Fresnel coefficients for the normal incidence of electromagnetic
radiation (EMR) on monolayer graphene (MLG), which are remarkably defined only by π and the
fine-structure constant α

α−1 =
( qP

e

)2
=

4πǫ0h̄c

e2 ≈ 137.036, (2)

where qP is the Planck charge, h̄ is the reduced Planck constant, ǫ0 ≈ 8.8542× 10−12 [kg−1 ·m−3 · s2 ·C2]

is vacuum permittivity (the electric constant), and e is the elementary charge. Transmittance (T) of
MLG

T =
1

(

1 + πα
2

)2 ≈ 0.9775, (3)

for normal EMR incidence was derived from the Fresnel equation in the thin-film limit [22] (Equation
(3)), whereas spectrally flat absorptance (A) A ≈ πα ≈ 2.3% was reported [23,24] for photon energies
between about 0.5 and 2.5 [eV]. T was related to reflectance (R) [25] (Equation (53)) as R = π2α2T/4,
i.e,

R =
1
4 π2α2

(

1 + πα
2

)2 ≈ 1.2843 × 10−4, (4)

The above equations for T and R, as well as the equation for the absorptance

A =
πα

(

1 + πα
2

)2 ≈ 0.0224, (5)

were also derived [26] (Equations (29)–(31)) based on the thin film model (setting ns = 1 for substrate).
The sum of transmittance (3) and the reflectance (4) at normal EMR incidence on MLG was derived [27]
(Equation (4a)) as

T + R = 1 − 4ση

4 + 4ση + σ2η2 + k2χ2 =

=
1 + 1

4 π2α2

(

1 + πα
2

)2 ≈ 0.9776,
(6)

where η ≈ 376.73 [Ω] is the vacuum impedance, σ = e2/(4h̄) = πα/η ≈ 6.0853 × 10−5 [Ω−1]

is the MLG conductivity [28], k is the wave vector of light in vacuum, and χ = 0 is the electric
susceptibility of vacuum. Therefore, these coefficients are well established theoretically and
experimentally [22–24,27,29,30].
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As a consequence of the conservation of energy

(T + A) + R = 1. (7)

In other words, the transmittance in the Fresnel equation describing the reflection and transmission
of EMR at normal incidence on a boundary between different optical media is, in the case of the
2-dimensional (boundary) of MLG, modified to include its absorption.

The reflectance R = 0.013% (4) of MLG can be expressed as the quadratic equation of α

R
(

1 +
πα

2

)2
− 1

4
π2α2 = 0,

1
4
(R − 1)π2α2 + Rπα + R = 0,

(8)

which can be expressed in terms of the reciprocal of α, defining β := 1/α as

Rβ2 + Rπβ +
1
4
(R − 1)π2 = R

(

β +
π

2

)2
− π2

4
= 0. (9)

The quadratic Equation (9) has two roots

β = α−1 =
−πR + π

√
R

2R
≈ 137.036, and (10)

β2 = α−1
2 =

−πR − π
√

R
2R

≈ −140.178. (11)

Therefore, the Equation (8) includes the second negative fine-structure constant α2. It turns out that
the sum of the reciprocals of these fine-structure constants (10) and (11)

α−1 + α−1
2 =

−πR + π
√

R − πR − π
√

R
2R

=
−2π

2
= −π, (12)

is remarkably independent of the value of the reflectance R. Furthermore, the minimum of the
parabola (9) amounts −π2/4 ≈ −2.4674 and occurs at −π/2 ≈ −1.5708, as shown in Figure 1.
Also, these values are independent of the reflectance (4) value, and the same results can (only) be
obtained for T + A (cf. Appendix B).
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Figure 1. MLG reflectance as a function of β := 1/α.

We further note that the relation (12) corresponds to the following identity

α + α2

αα2
= −π, (13)

between the roots (10) and (11), which is also present in the MLG Fresnel equations and the
corresponding Euclid formula (cf. Appendix D).

These dependences on π only between the fine-structure constants α and α2 suggest that they do
not vary over time.

These results are also intriguing in the context of a peculiar algebraic expression for the
fine-structure constant [31]

α−1 = 4π3 + π2 + π ≈ 137.036303776 (14)

that contains a free π term and is very close to the physical definition (2) of α−1, which according to
the CODATA 2018 value is 137.035999084. We note in passing that CODATA values are computed by
averaging the measurements.

Using relations (12) and (14), we can express the negative reciprocal of the 2nd fine-structure
constant α−1

2 that emerged in the quadratic equation (8) also as a function of π only

α−1
2 = −π − α−1

1 = −4π3 − π2 − 2π ≈ −140.177896429. (15)

Using relations (14) and (15), T (3), R (4), and A (5) of MLG for normal incidence of EMR can be
expressed just by π (cf. Appendix C). Moreover, equation (8) includes two π-like constants for two
surfaces with positive and negative Gaussian curvatures (cf. Appendix E).
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3. Set of α2-Planck Units

In this section, we shall derive complementary Planck units based on the second fine-structure
constant α2. We shall further call them α2-Planck units. Natural units can be derived from numerous
starting points [5,32] (cf. Appendices G and H). The central assumption in all natural unit systems
is that the quotient of the unit of length ℓ∗ and time t∗ is a unit of speed; we call it c = ℓ∗/t∗. It is
the speed of light in vacuum c in all systems of natural units, except for Hartree and Schrödinger
units, where it is cα, and Rydberg units, where it is cα/22. On the other hand, c as the velocity of the
electromagnetic wave is derivable from Maxwell’s Equations in vacuum

∇2E = µ0ǫ0
∂2E

∂t2 ,
∂2E

∂x2 = µ0ǫ0
∂2E

∂t2 , (16)

where E is the electric field, and µ0 is vacuum permeability (the magnetic constant). Without
postulating any solution to this equation but by simple substitution ∂x := ℓ∗ and ∂t := t∗, ∂2E := E∗
factors out, and we obtain well known

1 = µ0ǫ0c2, (17)

symmetric in its electric and magnetic parts [33] from which the bivalued c = ±1/
√

µ0ǫ0 can be
obtained, knowing the values of µ0 and ǫ0. We note that it is c2, not c, present in mass-energy
equivalence, the Lorentz factor, the BH potential, etc. We further note that Maxwell’s equations in
vacuum are not directly dependent on the fine-structure constant(s). It is included in the magnetic
constant µ0.

In the following, we assume the universality of the real elementary electric charge e defining both
matter and antimatter, the Planck constant h, the uncertainty principle parameter, and the gravitational
constant G (i.e., we assume that there are no counterparts to these physical constants in other physical
dimensions in our model and that these dimensional constants are positive). The last two assumptions
are probably too far-reaching, given that we do not need to know the gravitational constant G or the
Planck constant h to find the product of the Planck length ℓP and the speed of light in vacuum [34]. We
note in passing that antimatter obeys gravity [35], which is consistent with the findings of this study.

The fine-structure constant can be defined as the quotient (2) of the squared (and thus positive)
elementary charge e and the squared Planck charge α = e2/q2

P. We chose Planck units over other
natural unit systems not only because they incorporate the fine-structure constant α and the Planck
constant h. Other systems of natural units (except for Stoney units) also incorporate them. The reason
is that only the Planck area defines one bit of information on a patternless black hole surface given by
the Bekenstein bound (47) and the binary entropy variation [5,12].

To accommodate the negativity of the fine-structure constant discovered in the preceding section,
we must introduce the imaginary Planck charge qPi so that its square would yield a negative value of α2.

q2
P =

e2

α
6= q2

Pi =
e2

α2
⇒ qPi = ae, a ∈ I,

e2 = q2
Pα = q2

Piα2.
(18)

Next, we note that an imaginary qPi, which must have a physical definition analogous to qP, requires
either a real and negative speed of light or some complementary real and negative electric constant
(we assume that h is positive). Let us call them c2 and ǫ̃0

q2
P = 4πǫ0h̄c > 0 < q2

Pi = 4πǫ̃0h̄c2 < 0. (19)

2 Since the square root is bivalued the unit of speed is also bivalued In Planck, Stoney, and Schrödinger units.
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From this equation, we find that ǫ̃0c2 < 0, as the values of the other constants are known. Next, we
assume that the solution (17) of Maxwell’s equations in vacuum is also valid for other values of the
constants involved. Let us call the unknown magnetic constant µ2, so

µ0ǫ0c2 = µ2ǫ̃0c2
2 = 1. (20)

From that and from ǫ̃0c2 < 0, we conclude that the product µ2c2 < 0. We note that the quotient of the
squared Planck charge and mass introduces the imaginary Planck mass mPi

q2
P

m2
P

=
q2

Pi

m2
Pi

= 4πǫ0G, (21)

the value of which can be calculated, knowing the value of the imaginary Planck charge qPi from the
relation (18). From (21) we also conclude that ǫ̃0 = ǫ0 > 0 and then by (20) that µ2 > 0 and c2 < 0.
Knowing mPi we can determine the value of the negative nonprincipal square root of c2 = ±1/

√
µ2ǫ0

of the relation (20) as

c2 =
q2

Pi

4πǫ0h̄
≈ −3.066653 × 108 [m/s], (22)

which is greater than the speed of light in vacuum c in modulus.
The mass, length, time, and charge units can express all electrical units. Therefore, along with

temperature, amount of substance, and luminous intensity, they are base units of the International
System of Quantities (ISQ). We further conclude that the magnetic constant µ2 is lower than µ0

µ0 =
4πh̄α

ce2 ≈ 1.2569 × 10−6 [kg · m · C−2],

µ2 =
4πh̄α2

c2e2 ≈ 1.2012 × 10−6 [kg · m · C−2].
(23)

Unlike the electric constant ǫ0, the magnetic constants µ are independent of the unit of
time. Furthermore, negative α2 and c2 lead to the second, also time-dependent but negative
vacuum impedance

η2 = −4πα2h̄

e2 = − 1
ǫ0c2

≈

≈ −368.29 [kg · m2 · s−1 · C−2] (|η2| < |η|) .
(24)

Finally, combining relations (18) and (19) yields

e2 = 4πǫ0h̄cα = 4πǫ0h̄c2α2, (25)

which leads to the following important relation between the speeds of light in vacuum c, c2, and the
fine-structure constants α, α2

cα = c2α2, (26)

valid for both principal and non-principal square roots of the relation (20). cα is also the electron’s
velocity at the first circular orbit in the Bohr hydrogen atom model3 to which we shall return
in Section 10. Furthermore, the relation (26) introduces an interesting interplay between α vs. α2

and c vs. c2 that, as we conjecture, should be able to explain ν = 5/2 state in the fractional
quantum Hall effect in the 2D system of electrons, as well as other fractional states with an even

3 cα is also the speed unit in Hartree and Schrödinger’s natural units.
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denominator [36] (cf. Appendix I). The relation (26) is not the only α to α2 relation. Along with the
two π-like constants π1, π2 (relations (A21) and (A23), cf. Appendix E)

α2

α
=

c

c2
=

π1

π
=

π

π2
=

m2
P

m2
Pi

=
q2

P

q2
Pi

≈ −0.9776. (27)

Therefore, the non-principal square root of c = ±1/
√

µ0ǫ0 and principal square root of c2 =

±1/
√

µ2ǫ0 in (20) also introduce, respectively, imaginary (−c)-Planck units and real (−c2)-Planck
units. In particular, the imaginary (−c)-Planck time parameterizes the HSs time relations [5,12]. We
conjecture that α2-Planck units is appropriate for espressing physical quantities of I3 ×R Euclidean
space rather than R3 × I Euclidean space that we perceive due to the minimum energy principle (cf.
Appendix F). Furthermore, the speed of electromagnetic radiation is the product of its wavelength and
frequency, and these quantities would be imaginary in terms of imaginary Planck units; the negative
speed of light is necessary to accommodate this.

The negative speed of light c2 (22) leads to the complementary Planck charge qPi, length ℓPi, mass
mPi, time tPi, and temperature TPi that redefined by square roots containing c2 raised to odd powers (1,
3, 5) become bivalued and real-imaginary since c and c2 are bivalued. In other words, both Planck and
α2-Planck units have four forms equal in modulus: real positive, real negative, imaginary positive, and
imaginary negative. However, here we consider mostly real, positive α-Planck units and imaginary,
positive α2-Planck units (hence the subscript i).

Principal square roots of the base α2-Planck units (for negative c2) that can be expressed, using
the relation (26), in terms of base Planck units qP, ℓP, mP, tP, and TP are

qPi =
√

4πǫ0h̄cn = qP

√

α

α2
≈

≈ i1.8969 × 10−18 [C] (|qPi| > |qP|) ,

(28)

ℓPi =

√

h̄G

c3
n

= ℓP

√

α3
2

α3 ≈

≈ i1.5622 × 10−35 [m] (|ℓPi| < |ℓP|) ,

(29)

mPi =

√

h̄cn

G
= mP

√

α

α2
≈

≈ i2.2012 × 10−8 [kg] (|mPi| > |mP|) ,

(30)

tPi =

√

h̄G

c5
n

= tP

√

α5
2

α5 ≈

≈ i5.0942 × 10−44 [s] (|tPi| < |tP|) ,

(31)

TPi =

√

h̄c5
n

Gk2
B

= TP

√

α5

α5
2

≈

≈ i1.4994 × 1032 [K] (|TPi| > |TP|) .

(32)

Most Planck units derived from the α2-Planck base units (28)–(32) are also imaginary. They
include the α2 Planck volume

ℓ
3
Pi =

(

h̄G

c3
n

)3/2

= ℓ
3
P

√

α9
2

α9 ≈

≈ i3.8127 × 10−105 [m3]
(

|ℓ3
Pi| < |ℓ3

P|
)

,

(33)
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the α2 Planck momentum

pPi = mPicn =

√

h̄c3
n

G
= mPc

√

α3

α3
2

≈

≈ i6.7504 [kg m/s] (|mPicn| > |mPc|) ,

(34)

the α2 Planck energy

EPi = mPic
2
n =

√

h̄c5
n

G
= EP

√

α5

α5
2

≈

≈ i2.0701 × 109 [J] (|EPi| > |EP|) ,

(35)

and the α2 Planck acceleration

aPi =
cn

tPi
=

√

c7
n

h̄G
= aP

√

α7

α7
2
≈

≈ ±i6.0198 × 1051 [m/s2] (|aPi| > |aP|) .

(36)

However, the α2-Planck density

ρP2 =
mPi

ℓ3
Pi

=
c5

n

h̄G2 = ρP
α5

α5
2

≈

≈ −5.7735 × 1096 [kg/m3] (|ρP2| > |ρP|) ,

(37)

and the α2-Planck area

ℓ
2
Pi =

h̄G

c3
n

= ℓ
2
P

α3
2

α3 ≈

≈ −2.4406 × 10−70 [m2]
(

|ℓ2
Pi| < |ℓ2

P|
)

,

(38)

are real and bivalued similarly to the Planck density ρP and area ℓ2
P. Interestingly, both Planck forces

FP and

FP2 =
c4

2
G

=
c4

G

α4

α4
2

= FP
α4

α4
2

≈

≈ 1.3251 × 1044 [N] (FP2 > FP) ,

(39)

are strictly positive.
We note that Coulomb’s law for elementary charges and Newton’s law of gravity for Planck

masses define the fine-structure constants

1
4πR2∗

e2

ǫ0
= αG

m2
P

R2∗
= α2G

m2
Pi

R2∗
, (40)

where R∗ is some real or imaginary distance and mPi is imaginary. The area of a disk in the denominator
of the Coulomb force invites further research.
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The relations between time (31) and temperature (32) α2-Planck units are inverted, α5t2
Pi = α5

2t2
P,

α5
2T2

Pi = α5T2
P, and saturate the energy-time version of Heisenberg’s uncertainty principle (HUP) taking

energy from the equipartition theorem for one bit of information [5,12,37]

1
2

kBTPtP =
1
2

kBTPitPi =
h̄

2
. (41)

Furthermore, eliminating α and α2 from the relations (28)-(30), yields

ℓPm3
P = ℓPim

3
Pi and ℓPq3

P = ℓPiq
3
Pi. (42)

Contrary to the elementary charge e (18), there is no physically meaningful elementary mass

Me = ±1.8592 × 10−9 [kg] that would satisfy the relation (30)

M2
e = αm2

P = α2m2
Pi. (43)

Neither is there a physically meaningful elementary (and imaginary) length Le ≈ ±i9.7382 × 10−39 [m]

satisfying the relation (38)
L2

e = α3
ℓ

2
Pi = α3

2ℓ
2
P, (44)

(which in modulus is almost 1660 times smaller than the Planck length), or an elementary temperature

Te ≈ ±6.4450 × 1026 [K] abiding to (32)

T2
e = α5T2

P = α5
2T2

Pi, (45)

and close to the Hagedorn temperature of grand unified string models.
Planck charge relation (18) and the charge conservation principle imply that the elementary charge

e is the quantum of charge in real and imaginary dimensions, while masses, lengths, temperatures, and
other derived quantities that can vary with time are not similarly quantized. The universal character
of the charges is additionally emphasized by the real

√
α multiplied by i in the imaginary charge

energy (58) and imaginary
√

α2 in the real charge energy (59). Furthermore, the same forms of the
relations (18) and (43) reflect the same forms of Coulomb’s law and Newton’s law of gravity, which are
the inverse-square laws.

In the following, where deemed appropriate, we shall express the physical quantities
by Planck units

M := mmP, Mi := mimPi, m, mi ∈ R

E := mEP Ei := miEPi,
Q := qe, Qi := iQ = iqe, q ∈ Z,
λ := lℓP, λi := liℓPi, l = 2π

m , li =
2π
mi

,

{R, D} := {r, d}ℓP, {Ri, Di} := {ri, di}ℓPi, r, d, ri, di ∈ R,

(46)

where uppercase letters M, E, Q, λ, R, and D denote respectively masses, energies, charges, Compton
wavelengths, radii, and diameters (or lengths), lowercase letters denote multipliers of the positive
real Planck units and imaginary α2-Planck units, and the subscripts i refer to the multiplication
of imaginary quantities. We note that the discretization of charges by integer multipliers q of the
elementary charge e seems too far-reaching, considering the fractional charges of quasiparticles, in
particular in the open research problem of the fractional quantum Hall effect (cf. Appendix I), and
energy-dependent fractional charges in electron pairing [38].

4. Black Body Objects

There are only three observable objects in nature that emit perfect black-body radiation:
unsupported black holes (BHs, the densest), neutron stars (NSs), supported, as accepted, by neutron
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degeneracy pressure, and white dwarfs (WDs), supported, as accepted, by electron degeneracy
pressure (the least dense). We shall collectively call them black-body objects (BBs). The spectral density
in sonoluminescence, light emission by sound-induced collapsing gas bubbles in fluids, was also shown
to have the same frequency dependence as black-body radiation [39,40]. Thus, the sonoluminescence,
and in particular shrimpoluminescence [41], is probably emitted by collapsing micro-BBs. Micro-BH
induced in glycerin by modulating acoustic waves was reported [42].

The term “black-body object” is not used in general relativity (GR) and standard cosmology,
but standard cosmology scrunches under embarrassingly significant failings, not just tensions as is
sometimes described, as if to somehow imply that a resolution will eventually be found [43]. Also,
James Webb Space Telescope data show multiple galaxies that grew too massive too soon after the Big
Bang, which is a strong discrepancy with the Λ cold dark matter model (ΛCDM) expectations on how
galaxies formed at early times at both redshifts, even when considering observational uncertainties [44].
This is an important unresolved issue indicating that fundamental changes to the reigning ΛCDM
model of cosmology are needed [44]. The term object as a collection of matter is a misnomer as it
neglects the (quantum) nonlocality [45] that is independent of the entanglement among particles [46],
as well as the Kochen-Specker contextuality [47], and increases as the number of particles grows [48,49].
Thus, we use emphasis for (perceivably indistinguishable) particle and (perceivably distinguishable)
object, as well as for matter and distance. The ugly duckling theorem [50,51] asserts that every two
objects we perceive are equally similar (or equally dissimilar), however ridiculous and contrary to
common sense4 that may sound. These terms do not have an absolute meaning in ED. In particular,
given the observation of quasiparticles in classical systems [52]. Within the framework of ED no object is
enclosed in space.

Entropic gravity [37] explains the galaxy rotation curves without resorting to dark matter
(which is not required to explain the rotation curves of certain galaxies, such as the massive relic
galaxy NGC 1277 [53]), has been experimentally confirmed [54], and is decoherence-free [55]. It
has been experimentally confirmed that the so-called accretion instability is a fundamental physical
process [56]. We conjecture that this process, already recreated under laboratory conditions [57], is
common for all BBs. As black-body radiation is radiation of global thermodynamic equilibrium, it is
patternless [58] (thermal noise) radiation that depends only on one parameter. In the case of BHs, this
is known as Hawking [59] radiation, and this parameter is the BH temperature TBH = TP/(2πdBH)

corresponding to the BH diameter [5] DBH = dBHℓP, where dBH ∈ R. Furthermore, BHs absorb
patternless information [5,60]. Therefore, since Hawking radiation depends only on the diameter of a
BH, it is the same for a given BH, even though it is momentary as the BH fluctuates (cf. Section 7).

As black-body radiation is patternless, triangulated [5] BBs contain a balanced number of Planck
area triangles, each having binary potential δϕk = −c2 · {0, 1}, as has been shown for BHs [5], based
on the Bekenstein-Hawking (BH) entropy [61] SBH = kBNBH/4, where NBH := 4πR2

BH/ℓ2
P = πd2

BH
is the information capacity of the BH surface, i.e., the ⌊NBH⌋ ∈ N0 Planck triangles5 corresponding
to bits of information [5,12,37,61,62], and the fractional part triangle(s) having the area {NBH}ℓ2

P =

(NBH − ⌊NBH⌋)ℓ2
P too small to carry a single bit of information [5,12].

BH entropy can be derived from the Bekenstein bound

S ≤ 2πkBRE

h̄c
= πkBmd, (47)

which defines an upper limit on the thermodynamic entropy S that can be contained within a sphere of
radius R and energy E. Substituting BH (Schwarzschild) radius RBH = 2GMBH/c2 and mass-energy

4 Which inevitably enforces understanding the nature in a manner that is common to nearly all people and thus hinders its
research.

5 “⌊x⌋” is the floor function that yields the greatest integer less than or equal to its argument x.
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equivalence EBH = MBHc2, where MBH is the BH mass, into the bound (47), it reduces to the BH
entropy. In other words, the BH entropy saturates the Bekenstein bound (47)6.

The patternless nature of perfect black-body radiation was derived [5] by comparing the BH
entropy with the binary entropy variation δS = kBN1/2 ([5] Eq. (55)), valid for any holographic sphere
(HS), where N1 ∈ N denotes the number of active Planck triangles with binary potential δϕk = −c2.
Thus, the entropy of all BBs is

SBB =
1
4

kBNBB. (48)

Furthermore, N1 = NBB/2 confirms the patternless thermodynamic equilibrium of BBs by maximizing
Shannon entropy [5].

We shall define the generalized radius of a BB (this definition applies to all HSs) having mass
MBB as a function of GMBB/c2 multiplier k ∈ R, k ≥ 2

RBB := k
GMBB

c2 , dBB = 2kmBB, (49)

and the generalized BB energy EBB as a function of MBBc2 multiplier a ∈ R (this definition also applies
to all HSs)

EBB := aMBBc2, EBB = amBBEP. (50)

Substituting MBB from definition (49) into definition (50) and the latter into the Bekenstein bound (47),
it becomes

S ≤ 1
2

kB
a

k
NBB, (51)

and equals the BB entropy (48) if a
2k = 1

4 ⇒ a = k
2 . Thus, the energy of all BBs having a generalized

radius (49) is

EBB =
k

2
MBBc2 =

k

2
mBBEP =

dBB

4
EP, (52)

with k = 2 in the case of BHs, setting the lower bound for other BBs. We shall further call the coefficient
k the size-to-mass ratio (STM). It is similar to the specific volume (the reciprocal of density) of the BB.
We shall derive the upper STM bound in Section 5.

According to the no-hair theorem, all BHs general relativity (GR) solutions are characterized only
by three parameters: mass, electric charge, and angular momentum. However, BHs are fundamentally
uncharged, since the parameters of any conceivable BH, in particular, charged (Reissner–Nordström)
and charged-rotating (Kerr–Newman) BH, can be arbitrarily altered, provided that the BH area does
not decrease [63] using Penrose processes [64,65] to extract electrostatic and/or rotational energy of
BH [66]. Thus any BH is defined by only one real parameter: its diameter, mass, temperature, energy,
etc., each corresponding to the other. We note that in the complex Euclidean Ra × Ib space, an n-ball
(n = a + bi ∈ C) is spherical only for a vanishing imaginary dimension and for the radius r = 1/

√
π

(R = ℓP/
√

π) [12,14], resulting in its information capacity N = 4, one unit of BH entropy [61]. This
confirms the universality and applicability of the BH entropy (48) to all BBs.

Interiors of the BBs are inaccessible to an exterior observer [61], which makes them similar to
interior-less mathematical points representing real numbers on a number line7. Yet, a BH can embrace
this defining real number. Three points forming a Planck triangle corresponding to a bit of information
on a BH surface can store this parameter, and this is intuitively comprehensible: the area of a spherical
triangle is larger than that of a flat triangle defined by the same vertices, provided the curvature is
nonvanishing and depends on this curvature, i.e., this additional parameter defines it. Thus, the only

6 Furthermore, the Bekenstein bound can be derived from the BH entropy: SBH = kBπRR/ℓ2
P ≤ kBπR 2GE

c4
c3

h̄G , where we used

M ≤ Rc2

2G and E = Mc2.
7 Thus, the term object is a particularly staring misnomer if applied to BBs.
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meaningful spatial notion is the Planck area triangle, which encodes one bit of classical information
and its curvature.

However, it is accepted that in the case of NSs, electrons combine with protons to form neutrons,
so that NSs are composed almost entirely of neutrons. But it is never the case that all electrons and
all protons of an NS become neutrons. WDs are charged by definition, as they are accepted to be
mostly composed of electron degenerate matter. But how can a charged BB store both the curvature
and an additional parameter corresponding to its charge? Fortunately, the relation (18) ensures that
the charges are the same in real and imaginary dimensions. Therefore, each charged Planck triangle
of a BB surface is associated with at least three R× I Planck triangles, each sharing a vertex or two
vertices with this triangle in R2. And this configuration is capable of storing both the curvature and the

charge. The Planck area ℓ2
P (38) and the R× I imaginary Planck area ℓPℓPi = ℓ2

P

√

α3
2/α3 ≈ ±0.9666iℓ2

P,
which is smaller in modulus, can be considered in a polyspherical coordinate system, in which
gravitation/acceleration acts in a radial direction (with the entropic gravitation acting inwardly and
acceleration acting in both radial directions) [5], while electrostatics act in a tangential direction.

Contrary to the no-hair theorem, we characterize BBs only by mass and charge, neglecting the
angular momentum since the latter introduces the notion of time, which we find redundant in the BB
description of a patternless thermodynamical equilibrium.

Not only BBs are perfectly spherical. Also, their mergers, to which we shall return in Section 6, are
perfectly spherical, as it has been experimentally confirmed [67] based on the registered gravitational
event GW170817. One can hardly expect a collision of two perfectly spherical, patternless thermal
noises to produce some aspherical pattern instead of another perfectly spherical patternless noise.
Where would the information about this pattern come from at the moment of the collision? From the
point of impact? No point of impact is distinct on a patternless surface.

The considerations previously discussed may be confusing to the reader, as the energy (52) of BBs
other than BHs (i.e., for k > 2) exceeds the mass-energy equivalence E = Mc2, which is the limit of the
maximum real energy. In the following section, we will model a part of the energy of NS and WD that
exceeds Mc2 as imaginary and thus unmeasurable.

5. BB Complex Energies

A complex energy formula

ER := EMR
+ iEQR

= MRc2 +
iQR

2
√

πǫ0G
c2, (53)

where EMR
and iEQR

represent respectively real and imaginary energy of an object having mass MR

and charge QR
8 was proposed in ref. [68]. Equation (53) considers real masses MR and charges QR.

To store the surplus energy we shall modify it to a form involving real physical quantities expressed
terms in Planck units and imaginary physical quantities expressed terms of the imaginary α2-Planck
units using relations (25), (26), (30), (35) and (46)

e

2
√

πǫ0
=

√
αch̄ =

√

α2c2h̄. (54)

8 Charges in the cited study are defined in CGS units. Here, we adopt SI.
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To this end, we define the following three complex energies, linking the mass, imaginary mass,
and charge within the ED framework, the complex energy of real mass and imaginary charge

EMQi
:= EM + EQi

= Mc2 +
Qi

2
√

πǫ0G
c2 =

=
(

mmP + iq
√

αmP
)

c2 =
(

m + iq
√

α
)

EP,
(55)

of real charge and imaginary mass

EQMi
:= EQ + EMi

=
Q

2
√

πǫ0G
c2

2 + Mic
2
2 =

= (q
√

α2mPi + mimPi) c2
2 =

α2

α2
2

(

q
√

α +

√

α

α2
mi

)

EP,
(56)

and of real mass and imaginary mass

EMMi
:= Mc2 + Mic

2
2 =

(

m +

√

α5

α5
2

mi

)

EP, (57)

as illustrated in Figure 2.

m
2

mi

2

q
2
α2

(
+

)

m
q

E

2

2

2
α

P

m E +m E
2 2 2 2

P Pi i

(
!

)

q
m

E
2

2

α
2

P

i

i

q
2
α

Figure 2. Illustration of three complex energies linking mass m, imaginary mass mi, and charge q.

We neglect the energy of real and imaginary charges EQQi
, since by the relation (18), the unit of

charge is the same in real and imaginary dimensions. The mass-energy equivalence relates the mass M

or Mi to the speed of light c or c2.
Energies (55) and (56) yield two different charge energies corresponding to the elementary charge,

the imaginary quantum

EQi
(q = ±1) = ±i

√
αEP ≈ ±i1.6710 × 108 [J], (58)

and the - larger in modulus - real quantum

EQ(q = ±1) = ±√
α2EPi ≈ ±1.7684 × 108 [J]. (59)

Furthermore, ∀q, α2EQi = iα2
2EQ.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 October 2023                   doi:10.20944/preprints202212.0045.v16

https://doi.org/10.20944/preprints202212.0045.v16


15 of 37

The squared moduli of the complex energies (55)-(57), expressed in terms of the Planck energy,
are

|EMQi
|2 =

(

M2 + q2αm2
P

)

c4 =
(

m2 + q2α
)

E2
P, (60)

|EQMi
|2 =

α4

α4
2

(

q2αm2
P − M2

i

)

c4 =
α4

α4
2

(

q2α − α

α2
m2

i

)

E2
P, (61)

|EMMi
|2 =

(

M2 − α4

α4
2

M2
i

)

c4 =

(

m2 − α5

α5
2

m2
i

)

E2
P. (62)

Theorem 1. Complex energies (55)–(57) cannot simultaneously have their real and imaginary parts equal in

modulus.

Proof. Complex energies EMQi
and EQMi

are real-to-imaginary balanced if their real and imaginary
parts are equal in modulus. This holds for

q2α = m2 = − α

α2
m2

i . (63)

However, they cannot be simultaneously balanced with the energy EMMi
, which is balanced for

m2 = −α5

α5
2

m2
i 6= − α

α2
m2

i . (64)

Since by the relation (18) charges are the same in real and imaginary dimensions, squared moduli
of complex energies EMQi

and EQMi
must be equal, allowing us to obtain the value of the imaginary

mass Mi as a function of mass M and charge Q in this equilibrium

mi = ±

√

√

√

√

α2

α

[

q2α

(

1 − α4
2

α4

)

− α4
2

α4 m2

]

. (65)

In particular for q = 0 the relation (65) yields

m2
i = −α5

2
α5 m2 or Mi = ±i

α2
2

α2 M ≈ ±0.9557iM, (66)

which corresponds to the relation (64). Since the mass mi ∈ R, the square root argument must be
nonnegative in relation (65)

m ≥ |q|

√

√

√

√α

(

α4

α4
2

− 1

)

≈ |q|0.0263. (67)

This means that the masses of uncharged micro-BHs (q = 0) in thermodynamic equilibrium can be
arbitrary. However, micro NSs and micro WDs, also in thermodynamic equilibrium, are charged. Thus,
even a single elementary charge (q = 1) of a white dwarf renders its mass MWD = 5.7275 × 10−10 [kg]
comparable to the mass of a grain of sand.

We note here that only the masses satisfying M < 2πmP ≈ 1.3675 × 10−7 [kg] have Compton
wavelengths larger than Planck length [5]. We note in passing that a classical description has been
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ruled out on the microgram (1 × 10−9 [kg]) mass scale [69]. Comparing this bound with the bound (67)
yields the charge multiplier q corresponding to an atomic number

Z =

















2π
√

α

(

α4

α4
2
− 1
)

















= ⌊238.7580⌋ = 238, (68)

of a hypothetical element, which - as we conjecture - sets the limit on an extended periodic table and
is a little higher than the accepted limit of Z = 184 (unoctquadium). More massive elements would
have Compton wavelengths smaller than the Planck length, which is physically implausible because
the Planck area is the smallest area required to encode one bit of information [5,37,61,62]. From the
relation (67) we can also obtain the maximum wavelength l = 2π/m corresponding to the charge q.
For q2 = 1 it is λ < 3.8589 × 10−33 [m] with l < 238.7580 corresponding to the bound (68).

Theorem 2. Complex energies (55)–(57) are equal

|EMQi
|2 = |EQMi

|2 = |EMMi
|2 =

=

(

1 +
α4

2

α4

)

m2E2
P =

(

1 +
α4

2

α4

)

q2αE2
P =

(

1 +
α4

2

α4

)

α9

α9
2

m2
i E2

P

(69)

for

q2α = −α5

α5
2

m2
i =

α4
2

α4 m2, m2
i = −α9

2
α9 m2. (70)

Proof. Direct calculation proves the relation (70) and if the squared moduli (60)–(62) are equal to some
constant energy

|EMQi
|2 = |EQMi

|2 = |EMMi
|2 := A2E2

P, (71)

then subtracting |EMQi
|2 − |EQMi

|2 yields

m2 +
α

α2
m2

i = A2

(

1 − α4
2

α4

)

; (72)

subtracting this from |EMMi
|2 yields

m2
i = −A2 α9

2

α5(α4 + α4
2)

, (73)

which substituted into the relation (72) yields

m2 = A2 α4

α4 + α4
2

, (74)

and finally, substituting the relation (74) into the modulus (60) yields

q2α = A2 α4
2

α4 + α4
2

. (75)
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We can interpret the squared generalized energy of BBs (52) as the squared modulus of the
complex energy of the real mass EMQi

, taking the observable real energy EBB = MBBc2 of the BB as the
real part of this energy. Thus

k4

4
m2

BB = m2
BB + q2

BBα, q2
BBα = m2

BB

(

k2

4
− 1
)

, (76)

where q2
BBα represents a charge surplus energy exceeding MBBc2. Similarly, we can interpret the

squared generalized energy of BBs (52) as the squared modulus of the complex energy of the imaginary
mass EQMi

. Thus

k2

4
m2

BB =
α4

α4
2

(

q2
BBα − α

α2
m2

iBB

)

. (77)

Substituting q2
BBα from the relation (76) into the relation (77) turns the equilibrium condition (65) into

a function of the STM k instead of the charge q

miBB = ±mBB

√

√

√

√

α2

α

[

k2

4

(

1 − α4
2

α4

)

− 1

]

, (78)

which yields the imaginary mass of a BH (for k = 2) and corresponds to the relation (66) between
uncharged masses M and Mi, which is, notably, independent of the STM. The square root argument in
the relation (78) must be non-negative, since mBB, miBB ∈ R. This leads to the maximum STM bound

k ≤ 2
√

1 − α4
2

α4

≈ 6.7933 = kmax.
(79)

The relations (76) and (78) are shown in Figure 3.
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Figure 3. Ratios of imaginary mass MiBB to real mass MBB (green) and real charge qBBmP
√

α to MBB

(red) of a BB as a function of the size-to-mass ratio 0 ≤ k ≤ 10. The mass MiBB is imaginary for k / 6.79.
The charge qBB is real for k ≥ 2.

Furthermore, using the relation (26), from (78) we obtain the relation between real and imaginary
BH energies EBHi = ±iEBH, which are equal in modulus. In general, the relation (78) relates BBO
energies as

E2
BBIi = E2

BB

[

α4

α4
2

(

k2

4
− 1
)

− k2

4

]

. (80)

The maximum STM bound kmax (79) sets the bounds on the BB energy (52), mass, and radius (49)

RBH =
2GMBB

c2 ≤ RBB ≤ kmaxGMBB

c2 . (81)

In particular, using the relations (46), 2mBB ≤ rBB ≤ kmaxmBB or rBB/kmax ≤ mBB ≤ rBB/2.
Furthermore, the relations (67) and (79) expresed in terms of the generalized radius (49) k =

dBB/(2mBB) set the bound on the BB minimum mass if |EMQi
|2 = |EQMi

|2

mBB > max







qBB

√

√

√

√α

(

α4

α4
2

− 1

)

,
dBB

4

√

1 − α4
2

α4







, (82)

where

q2
BBα =

d2
BB

16
α4

2

α4 (83)

defines a condition in which neither qBB nor dBB can be further increased to reach its counterpart
(defined, respectively, by dBB and qBB) in the bound (82). Thus, for example, 1-bit BB (dBB = 1/

√
π)
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corresponds to qBB > 1.5780, π-bit BB (dBB = 1) corresponds to qBB > 2.7969, while the conjectured
heaviest element with atomic number qBB (68) corresponds to

dBB = ± 8π
√

1 − α4
2

α4

≈ ±85.3666. (84)

In the case of a BB, we obtain the equality of all three complex energies (55)-(57) substituting
A = mBBk/2 from (49) into the relation (71) and comparing this with (69). This yields

keq = 2

√

1 +
α4

2

α4 ≈ 2.7665, (85)

at which all three energies are equal. The equilibrium keq (85) and the maximum kmax (79) STMa satisfy
k2

eq + 16/k2
max = 8.

The BB in the energy equilibrium keq bearing the elementary charge (q2 = 1) would have
mass MBBeq ≈ ±1.9455 × 10−9 [kg], imaginary mass MiBBeq ≈ ±i1.7768 × 10−9 [kg], wavelength

λBBeq ≈ ±1.1361 × 10−33 [m], and imaginary wavelength λiBBeq ≈ ±i1.2160 × 10−33 [m]. On the other
hand, the relation (76) provides the charge of the BB in equilibrium (71) as qBB(keq) ≈ 11.1874 mBB and
the limit of the BB charge qBB(kmax) ≈ 37.9995 mBB

We note that BBs with STMs 2 ≤ k ≤ 3 are referred to in state of the art as ultracompact [70], where
k = 3 is a photon sphere radius9. Any object that undergoes complete gravitational collapse passes
through an ultracompact stage [71], where k < 3. Collapse can be approached by gradual accretion,
increasing the mass to the maximum stable value, or by loss of angular momentum [71]. During the
loss of angular momentum, the star passes through a sequence of increasingly compact configurations
until it finally collapses to become a black hole. It was also pointed out [72] that for a neutron star of
constant density, the pressure at the center would become infinite if k = 2.25, a radius of the maximal
sustainable density for gravitating spherical matter given by Buchdahl’s theorem. It was shown [73]
that this limit applies to any well-behaved spherical star where density increases monotonically with
radius. Furthermore, some observers would measure a locally negative energy density if k < 2.6(6)
thus breaking the dominant energy condition, although this may be allowed [74]. As the surface
gravity grows, photons from further behind the NS become visible. At k ≈ 3.52 the whole NS surface
becomes visible [75]. The relative increase in brightness between the maximum and minimum of a
light curve are greater in the case of k < 3 than in the case of k > 3 [75]. Therefore the equilibrium
STM ratio keq ≈ 2.7665 (85) is well within the range of radii of ultracompact objects researched in
state-of-the-art within the framework of GR.

However, aside from the Schwarzschild radius, derivable from escape velocity v2
esc = 2GM/R of

mass M by setting v2
esc = c2, and discovered in 1783 by John Michell [76], all the remaining significant

radii of GR are only approximations10. GR neglects the value of the fine-structure constants α and α2,
which, similarly to π or the base of the natural logarithm, are the fundamental constants of nature.

9 At which, according to an accepted photon sphere definition, the strength of gravity forces photons to travel in orbits. The
author wonders why the photons would not travel in orbits at a radius R = GM/c2 corresponding to the orbital velocity
v2

orb = GM/R of mass M. Obviously, photons do not travel.
10 One may find constructive criticism of GR in [77–83].
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6. BB Mergers

As the entropy (Boltzmann, Gibbs, Shannon, von Neumann) of independent systems is additive, a
merger of BB1 and BB2 having entropies11 (48) S1 = 1

4 kBN1 and S2 = 1
4 kBπd2

2, produces a BBC having
entropy

S1 + S2 = SC ⇔ d2
1 + d2

2 = d2
C, (86)

which shows that the resultant information capacity is the sum of the information capacities of
the merging components. Thus, a merger of two primordial BHs, each having the Planck length
diameter, the reduced Planck temperature TP

2π (the largest physically significant temperature [12]),
and no tangential acceleration aLL [5,12], produces a BH having dBH = ±

√
2 which represents the

minimum BH diameter allowing for the notion of time [12]. In comparison, a collision of the latter
two BHs produces a BH having dBH = ±2 having the triangulation defining only one precise diameter
between its poles (cf. [5] Figure 3(b)), which is also recovered from HUP (cf. Appendix G).

Substituting the generalized diameter (49) into the entropy relation (86) establishes a Pythagorean
relation between the generalized energies (52) of the merging components and the merger

k2
C

4
m2

C =
k2

1
4

m2
1 +

k2
2

4
m2

2, ∀mk ∈ {R, I}. (87)

It is accepted that gravitational events’ observations alone allow measuring the masses of the
merging components, setting a lower limit on their compactness, but it does not exclude mergers more
compact than neutron stars, such as quark stars, BHs, or more exotic objects [84]. We note in passing
that describing the registered gravitational events as waves is misleading - normal modulation of the
gravitational potential, registered by LIGO and Virgo interferometers, and caused by rotating (in the
merger case, inspiral) objects, is wrongly interpreted as a gravitational wave understood as a carrier of
gravity [85]. Furthermore, it has been hinted that outside GR, merging BHs may differ from their GR
counterparts [86].

The accepted value of the Chandrasekhar WD mass limit, which prevents its collapse into a denser
form, is MCh ≈ 1.4 M⊙ [87] and the accepted value of the analogous Tolman–Oppenheimer–Volkoff
NS mass limit is MTOV ≈ 2.9 M⊙ [88,89]. There is no accepted value of the BH mass limit. The
conjectured value is 5 × 1010 M⊙ ≈ 9.95 × 1040 kg. We note in passing that a BH with a surface gravity
equal to the Earth’s surface gravity (9.81 m/s2) would require a diameter of DBH ≈ 9.16 × 1015 m
(slightly less than one light year) [5] and mass MBH ≈ 3.08 × 1042 kg exceeding the conjectured limit.
The masses of most registered merging components go well beyond MTOV. Of those that do not, most
of the total or final masses exceed this limit. Therefore, these mergers are classified as BH mergers.
Only a few are classified otherwise, including GW170817, GW190425, GW200105, and GW200115,
listed in Table 1.

Table 1. Selected BB mergers discovered with LIGO and Virgo. Masses in M⊙.

Event M1 M2 MC k1 k2 kC

GW170817 1.46+0.12
−0.10 1.27+0.09

−0.09 2.8 4.39 4.39 3.03
GW190425 2.00+0.6

−0.2 1.4+0.3
−0.3 3.4+0.3

−0.1 4.39 4.39 3.15
GW200105 8.9+1.2

−1.5 1.9+0.3
−0.2 10.9+1.1

−1.2 2.76 4.39 2.38
GW200115 5.7+1.8

−2.1 1.5+0.7
−0.3 7.1+1.5

−1.4 3 4.39 2.64

The relation (87) explains the measurements of large masses of the BB mergers with at least one
charged merging component without resorting to any hypothetical types of exotic stellar objects such
as quark stars. Interferometric data, available online at the Gravitational Wave Open Science Center

11 We drop the HS subscripts in this section for clarity.
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(GWOSC) portal12, indicates that the total mass of a merger is the sum of the masses of the merging
components. Thus

mC = m1 + m2,

m2
C = m2

1 + m2
2 + 2m1m2,

m2
C

{

≥ m2
1 + m2

2 if m1m2 ≥ 0
≤ m2

1 + m2
2 if m1m2 ≤ 0

.

(88)

We can use the squared moduli |EMQi
|2, |EQMi

|2, and |EMMi
|2 to derive some information about

the merger from the relation (87). We shall initially assume mk ≥ 0 ⇒ m1m2 ≥ 0, since negative masses,
similar to negative lengths, and their products with positive ones, are (in general [21]) inaccessible for
direct observation, unlike charges. |EMQi

|2 with the first inequality (88) yields

|EMQi
|2C = |EMQi

|21 + |EMQi
|22,

m2
C = m2

1 + m2
2 + (q2

1 + q2
2)α − q2

Cα ≥ m2
1 + m2

2,

q2
C ≤ q2

1 + q2
2,

(89)

On the other hand, |EQMi
|2 with the inequality (89) lead to (α2 < 0), so the direction of the inequality

is reversed)
q2

C ≤ q2
1 + q2

2 ⇒ m2
iC ≥ m2

i1 + m2
i2. (90)

But |EMMi
|2 with the first inequality (88) lead to

m2
C ≥ m2

1 + m2
2 ⇒ m2

iC ≤ m2
i1 + m2

i2, (91)

contradicting the inequality (90) (α5
2 < 0), while |EMMi

|2 with the inequality (90) lead to

m2
iC ≥ m2

i1 + m2
i2 ⇒ m2

C ≤ m2
1 + m2

2, (92)

contradicting the first inequality (88) and consistent with the second inequality (88) introducing the
product of positive and negative masses. |EQMi

|2 with the inequality (91) yields

m2
iC ≤ m2

i1 + m2
i2 ⇒ q2

C ≥ q2
1 + q2

2, (93)

contradicting the inequality (90) and so on.
The additivity of the entropy (86) of statistically independent merging BBs, both in global

thermodynamic equilibrium, defined by their generalized radii (49), introduces the energy
relation (87). This relation, equality of charges in real and imaginary dimensions (18), and the BB
complex energies (60)–(62) induce imaginary, negative, and mixed masses during the merger. Thus,
the BB merger spreads in all dimensions, not only observable ones, as a gravitational event associated
with a fast radio burst (FRB) event, as reported [90] based on the gravitational event GW1904251 and
the FRB 20190425A event13. Furthermore, IXPE14 observations show that the detected polarized X-rays
from 4U 0142+61 pulsar exhibit a 90◦ linear polarization swing from low to high photon energies [91].
In addition, direct evidence for a magnetic field strength reversal based on the observed sign change
and extreme variation of FRB 20190520B’s rotation measure, which changed from ∼ 10000 [rad · m−2]

12 https://www.gw-openscience.org/eventapi/html/allevents
13 Data available online at the Canadian Hydrogen Intensity Mapping Experiment (CHIME) portal (https://www.chime-frb.

ca/catalog).
14 X-ray Polarimetry Explorer (https://ixpe.msfc.nasa.gov).
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to ∼ −16000 [rad · m−2] between June 2021 and January 2022 has been reported [92]; such extreme
rotation measure reversal has never been observed before in any FRB or any astronomical object.

In the observable dimensions during the merger, the STM ratio kC decreases, making the BBC

denser until it becomes a BH for kC = 2 and no further charge reduction is possible (cf. Fig 3). From
the relation (87) and the first inequality (88) we see that this holds for

k2
C

(

M2
1 + M2

2

)

≤ k2
1M2

1 + k2
2M2

2. (94)

For two merging BHs k1 = k2 = 2 and the relation (94) yields k2
C ≤ 4 ⇒ kC = 2 = kBHC

.
Table 1 lists the mass-to-size ratios kBBC

calculated according to the relation (87) that provide the
measured mass MBBC

of the merger and satisfy the inequality (94). The mass-to-size ratios kBB1 and
kBB2 of the merging components were arbitrarily selected on the basis of their masses, taking into
account the limit of mass MTOV of the NS.

7. BB Fluctuations

A relation [93] (p.160) describing a BH information capacity, having an initial information
capacity15 Nj = 4πR2

j /ℓ2
P, after absorption of a particle having the Compton wavelength equal to

the BH radius Rj

NA
j+1 = 64π3 ℓ

2
P

R2
j

+ 32π2 + 4π
R2

j

ℓ2
P

, (95)

was subsequently generalized [5] (Equation (18)) to all Compton wavelengths λ = lℓP = 2π
m ℓP (or

frequencies ν = c/λ = 1/(ltP)) and thus to all radiated Compton energies E = mEP, m ∈ R absorbed
(+) or emitted (−) by a BH as

NA/E
j+1 (m) = 16πm2 ± 8πdm + πd2. (96)

The relation (96) can be further generalized, using the generalized diameter d = 2km̂ (49), to all
BBs as

∆NA/E := NA/E
j+1 (k, m)− Nj = 16πm (m ± km̂) , (97)

where m̂ represents the BB mass, and its roots are

mA/E = {0,∓km̂} =

{

0,∓d

2

}

= {0,∓r}, (98)

where it vanishes.

15 We drop the HS subscripts in this section for clarity.
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Figure 4. BB information capacity variations ∆N after absorption (red) or emission (green) of energy
m (k = 2, m̂ = 1).

Thus, in general, a BB changes its information capacity by

∆NA















> 0 m ∈ (−∞,−km̂) ∩ (0, ∞)

= 0 m = {−km̂, 0}
< 0 m ∈ (−km̂, 0)

,

∆NE















> 0 m ∈ (−∞, 0) ∩ (km̂, ∞)

= 0 m = {0, km̂}
< 0 m ∈ (0, km̂)

,

(99)

absorbing or emitting energy m with min (∆N) = −4πk2m̂2 at m = ±km̂/2, as shown in Figure 4.
The relation (99) shows that, depending on its mass m̂, a BB can expand or contract by emitting or
absorbing energy m [5]. However, expansion by emission (∆NE > 0), for example, requires energy
m > km̂ exceeding the mass-energy equivalence of BB for k > 2, which is consistent with the results
presented in Section 5.
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8. Complex Forces

Coulomb’s force FC between two charges is positive or negative, depending on the sign and type
(real or imaginary) of the charges, as summarized below in the case of some real distance separating
the charges

q1q2 > 0 q1q2 < 0
Qk = qke FC > 0 FC < 0
Qk = iqke FC < 0 FC > 0

(100)

Newton’s law of universal gravitation is also positive or negative, depending on the sign and type of
masses, as summarized below

m∗1m∗2 > 0 m∗1m∗2 < 0
Mk = mkmP FG > 0 FG < 0
Mik = mikmPi F2G < 0 F2G > 0

(101)

In the case of an imaginary distance, the signs of the inequalities are opposite. We do not consider
mixed real or imaginary radii and mixed forces (based on real and imaginary masses/charges) as the
real and imaginary dimensions are orthogonal.

Complex energies (55)–(57) define complex forces (similarly to the complex energy of real masses
and charges (53), [68] Equation (7)) acting over real and imaginary distances R, Ri. Using the relations
(46), we obtain the following products

E1mqi
E2mqi

:= E1MQi
E2MQi

/E2
P =

= m1m2 − q1q2α + i
√

α(m1q2 + m2q1),
(102)

E1qmi
E2qmi

:= E1QMi
E2QMi

/E2
P =

=
α4

α4
2

(

αq1q2 +
α

α2
mi1mi2 +

√

α

α2

√
α (q1mi2 + q2mi1)

)

,
(103)

E1mmi
E2mmi

:= E1MMi
E2MMi

/E2
P

= m1m2 +
α

α2
mi1mi2 +

√

α5

α5
2
(m1mi2 + m2mi1) ,

(104)

defining three complex forces acting over a real distance R

FABi
=

G

c4R2 E1ABi
E2ABi

=
FP

r2 E1abi
E2abi

, (105)

and three complex forces acting over an imaginary distance Ri

F̃ABi
=

G

c4
2R2

i

E1ABi
E2ABi

=
α2

α

FP

r2
i

E1abi
E2abi

, (106)

where A, B ∈ {M, Q} and a, b ∈ {m, q}, and

α2r2FABi
= αr2

i F̃ABi
. (107)

With a further simplifying assumption of r2 = r2
i , the forces acting on a real distance R are stronger

and opposite to the corresponding forces acting on an imaginary distance Ri even though the Planck
force is lower than the α2-Planck force (39). This is a strong assumption, but seemingly correct. The
general radius (49) and energy (52) are the same in Planck units and in α2-Planck units; STM remains
the same.
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9. BB Complex Gravity and Temperature

We can use the complex force FMQi
(105) with the product (102) (i.e., complex Newton’s law of

universal gravitation) to calculate the BB surface gravity gBB, assuming an uncharged (q2 = 0) test
mass m2 and comparing this force with Newton’s 2nd law of motion

FP

r2
BB

(

mBBm2 + i
√

αm2qBB
)

=

= M2gBB = m2mP ĝBBaP,

ĝBB =
1

r2
BB

(

mBB + i
√

αqBB
)

,

(108)

where gBB = ĝBBaP, ĝBB ∈ R. Substituting qBB
√

α from the BB equilibrium relation (76) and mass taken
from the generalized BB radius (49) rBB = kmBB into the relation (108) yields

ĝBB =
1

krBB

(

1 ± i

√

k2

4
− 1

)

, (109)

which reduces to BH surface gravity for k = 2 and in modulus

ĝ2
BB =

1
k2r2

BB

(

1 + i

√

k2

4
− 1

)(

1 − i

√

k2

4
− 1

)

=
1

4r2
BB

. (110)

for all k. In particular,

gBB(kmax) = ± aP

dBB
(0.2944 ± 0.9557i) , (111)

gBB(keq) = ± aP

dBB
(0.7229 ± 0.6909i) . (112)

The BB surface gravity (109) leads to the generalized complex Hawking blackbody-radiation
equation

TBB =
h̄

2πckB
gBB =

TP

kπdBB

(

1 ± i

√

k2

4
− 1

)

, (113)

describing the BB temperature16 by including its charge in the imaginary part, which also for k = 2
and in modulus reduces to BH temperature for all k.

In particular,

TBB(kmax) = ± TP

2πdBB





√

α4 − α4
2

α2 ± i
α2

2
α2



 ,

= ± TP

2π3dBB

(

√

π4 − π4
1 ± iπ2

1

)

,

= ± TP

2ππ2
2dBB

(

√

π4
2 − π4 ± iπ2

)

,

(114)

16 In a commonly used form it is TBB = h̄c3

2k2πGMBBkB

(

1 ± i
√

k2

4 − 1
)

.
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TBB(keq) = ± TP

2πdBB

α2 ± iα2
2

√

α4 + α4
2

,

= ± TP

2πdBB

π2 ± iπ2
1

√

π4 + π4
1

= ± TP

2πdBB

π2
2 ± iπ2

√

π4
2 + π4

,

(115)

reduce to the BH temperature for α2 = 0. We note that for dBB = 1, Re(TBB(kmax)) ≈ 6.6387 × 1030 [K]

has the magnitude of the Hagedorn temperature of strings, while TP/(2π) ≈ 2.2549 × 1031 [K]. It
seems, therefore, that a universe without α2-imaginary dimensions (i.e., with α2 = 0) would be a black
hole. Hence, the evolution of information [1–6] requires imaginary time. And we cannot zero α2 as we
would have to neglect the existence of graphene.

10. Hydrogen Atom

The Bohr model of the hydrogen atom is based on three assumptions that can be conveniently
expressed in terms of Planck units, using the relations (46). The assumption of a natural number of
electron wavelengths λe that fits along the circumference of the electron’s orbit of radius R becomes

nλe = 2πR ⇔ nle = 2πr, n ∈ N. (116)

De Broglie’s relation between electron mass Me, velocity Ve and wavelength becomes

λe =
h

MeVe
=

2πh̄

MeVe
⇔ le =

2π

meve
, Ve = vec, ve ∈ R. (117)

Finally, the postulated equality between the centripetal force exerted on the electron orbiting around the
proton (assuming an infinite mass of the latter) and the Coulomb force between the electron and the
proton17 becomes

MeV
2
e

R
=

1
4πǫ0

e2

R2 ⇔ mev2
e r =

e2

4πǫ0h̄c
= α. (118)

It is remarkable that such a simple postulate expressed in terms of Planck units introduces the
fine-structure constant α. Joining the relations (116) and (117) yields

mever = n, (119)

which combined with (118) and using the relation (26) yields

Ve = vec =
1
n

αc =
1
n

α2cn ⇔ ve =
1
n

α, (120)

Thus, at the first circular orbit (n = 1) in this model ve = α.

17 In the Bohr model of atoms other than hydrogen this equality of forces is extended to a point-like set of Z electrons orbiting
around a nucleus, where Z is the atomic number. Furthermore, since the proton and the electron have different signs of the
elementary charge e, the Coulomb force should be considered negative in this model.
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We shall now assume that the centripetal force acting on the electron is equal to the complex force
FMQi

(105) with the product of real mass and imaginary charge energies (102) and use the reduced
mass of the proton-electron system

memp

me + mp

v2
e

r
=

memp + α + i
√

α(me − mp)

r2 ,

v2
e =

me + mp

r

(

1 +
α

memp

)

+ i

√
α

r

m2
e − m2

p

memp
,

r =
me + mp

v2
e

(

1 +
α

memp

)

+ i

√
α

v2
e

m2
e − m2

p

memp
,

(121)

where qe = −1 and qp = 1 are the electron and proton charges, and Mp = mpmP, mp ∈ R is the proton
mass.

For the electron mass Me = 9.1094 × 10−31 [kg] and the proton mass Mp = 1.6726 × 10−27 [kg]
the equation (121) yields ve ≈ 7.2993 × 10−3 − i3.2816 × 10−21 ≈ α assuming that R is equal to the
Bohr radius a0 = 5.2918 × 10−11 [m] or the radius R ≈ (5.2946 × 10−11 − i4.7607 × 10−29) [m] ≈ a0

assuming that the Bohr model gives the velocity of the electron, that is, ve = α.
We note that these values correspond to the values given by the Bohr model. We further note

that neglecting the opposite signs of the charges (qe = qp = −1 or qe = qp = 1) in the relation (121)
yields, respectively, an imaginary electron velocity ve ≈ 3.2852 × 10−21 ± i7.2993 × 10−3 ≈ ±iα and a
negative radius R ≈ (−5.2947 × 10−11 ± i4.7660 × 10−29) [m] ≈ −a0. We further note that switching
the signs of charges (qe = 1, qp = −1) provides complex conjugates of the relation (121), which in
this case describes the antihydrogen. Therefore, we conjecture that the energy generated during a
hydrogen-antihydrogen collision is

EH−H̄ = 2(memp + α)EP ≈ 2.8549 × 107[J]. (122)

Finally, we note that the relation (121) based, as the Bohr model, on the mass of the electron provides a
better agreement to the Bohr radius and the fine-structure constant since

mev2
e r = memp + α + i

√
α(me − mp),

r =
mp

α2 +
1

meα
+ iα−3/2

(

1 − mp

me

)

≈ 1
meα

=
a0

ℓP
,

v2
e = αmemp + α2 + iα3/2(me − mp) ≈ α2.

(123)

11. Discussion

The reflectance of graphene under the normal incidence of electromagnetic radiation expressed
as the quadratic equation for the fine-structure constant α includes the 2nd negative fine-structure
constant α2. The sum of the reciprocal of this 2nd fine-structure constant α2 with the reciprocal of
the fine-structure constant α (2) is independent of the reflectance value R and is remarkably equal
to simply −π. The particular algebraic definition of the fine-structure constant α−1 = 4π3 + π2 + π,
containing the free π term, can be interpreted as the asymptote of the CODATA value α−1, the value of
which varies with time. The negative fine-structure constant α2 leads to the α2-Planck units applicable
to imaginary dimensions, including imaginary α2-Planck units (28)–(36). Furthermore, the elementary
charge e is common for real and imaginary dimensions (18).

Applying α2 Planck units to a complex energy formula [68] yields complex energies (55), (56)
setting the atomic number Z = 238 as the limit on an extended periodic table. The generalized
energy (52) of all perfect black-body objects (black holes, neutron stars and white dwarfs) having
the generalized radius RBB = kRBH/2 exceeds the mass-energy equivalence if k > 2. The complex
energies (55)–(57) allow storing the excess of this energy in their imaginary parts. The results show that
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the perfect black-body objects other than black holes cannot have masses lower than 5.7275× 10−10 [kg]
and that kmax ≈ 6.7933 k ≤ 6.7933 defined by the relation (79). In addition, it is shown that a black-body
object is in the equilibrium of complex energies if its radius Req ≈ 1.3833 RBH (85). The proposed
model explains the registered (GWOSC) high masses of the neutron star mergers without resorting to
any hypothetical types of exotic stellar objects.

In the context of the results of this study, monolayer graphene, a truly 2-dimensional material
with no thickness18, is a keyhole to other, unperceivable dimensionalities. The history of graphene is
also instructive. Discovered in 1947 [95], graphene was long considered an academic material until it
was eventually pulled from graphite in 2004 [96] by means of ordinary Scotch tape19. These fifty-seven
years, along with twenty-nine years (1935-1964) between the condemnation of quantum theory as
incomplete [97] and Bell’s mathematical theorem [98] asserting that it is not true, and the fifty-eight
years (1964-2022) between the formulation of this theorem and 2022 Nobel Prize in Physics for its
experimental loophole-free confirmation, should remind us that Max Planck, the genius who discovered
Planck units, has also discovered Planck’s principle.

Acknowledgments: I truly thank my wife Magdalena Bartocha for her support ever since this research [99,100]
began. I thank Wawrzyniec Bieniawski for inspiring discussions and constructive ideas concerning the layout
of this paper and his feedback while working on the BB mergers and BB fluctuations sections. I thank Andrzej
Tomski for the definition of the scalar product for Euclidean spaces Ra × Ib (1).

Appendix A Abbreviations

The following abbreviations are used in this paper:
ED emergent dimensionality
EMR electromagnetic radiation
MLG monolayer graphene
T transmittance
R reflectance
A absorptance
HUP Heisenberg’s uncertainty principle
DOF degree of freedom
BH black hole
NS neutron star
WD white dwarf
BB black-body object
HS holographic sphere
STM size-to-mass ratio
GR general relativity

Appendix B Other MLG Quadratic Equations

The quadratic equation for the sum of transmittance (3) and absorptance (5) of MLG under normal
incidence of EMR corresponds to Equation (8), substituting R = 1 − T − A. However, the sums of the
roots of other quadratic equations are not independent on T, A, or R. For example, the sum of T + R (6)
expressed as the quadratic equation (substituting CTR := T + R) is

1
4
(CTR − 1)π2α2 + CTRπα + (CTR − 1) = 0, (A1)

18 Thickness of MLG is reported [94] as 0.37 [nm] with other reported values up to 1.7 [nm]. However, considering that 0.335
[nm] is the established inter-layer distance and consequently the thickness of bilayer graphene, these results do not seem
credible: the thickness of bilayer graphene is not 2 × 0.37 + 0.335 = 1.075 [nm].

19 Introduced into the market in 1932.
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and has two roots with reciprocals

α−1 =
π(CTR − 1)

−2CTR + 2
√

2CTR − 1
≈ 137.036, (A2)

and

α−1
TR =

π(CTR − 1)
−2CTR − 2

√
2CTR − 1

≈ 0.0180, (A3)

whereas their sum

α−1
TR1

+ α−1
TR2

=
−πCTR

CTR − 1
≈ 137.054 (A4)

is dependent on T and R, which hints that in the case of MLG, transmittance (3) and absorptance (5)
should be considered together as their sum.

Appendix C Mlg Transmittance, Absorptance, and Reflectance as Functions of π Only

With algebraic definitions of α (14) and α2 (15), T (3), R (4) and A (5) of MLG for normal EMR
incidence can be expressed just by π. For α−1 = 4π3 + π2 + π (14) they become

T (α) =
4
(

4π2 + π + 1
)2

(8π2 + 2π + 3)2 ≈ 0.9775, (A5)

A (α) =
4
(

4π2 + π + 1
)

(8π2 + 2π + 3)2 ≈ 0.0224, (A6)

while for α−1
2 = −4π3 − π2 − 2π (15) they become

T (α2) =
4
(

4π2 + π + 2
)2

(8π2 + 2π + 3)2 ≈ 1.0228, (A7)

A (α2) = − 4
(

4π2 + π + 2
)

(8π2 + 2π + 3)2 ≈ −0.0229, (A8)

with

R (α) = R (α2) =
1

(8π2 + 2π + 3)2 ≈ 1.2843 × 10−4. (A9)

(T(α) + A(α)) + R(α) = (T(α2) + A(α2)) + R(α2) = 1 as required by the law of energy
conservation (7), whereas each conservation law is associated with a certain symmetry, as asserted by
Noether’s Theorem. A(α) > 0 and A(α2) < 0 imply a sink and a source respectively, while the opposite
holds for T, as illustrated schematically in Figure A1.
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T( ) < 1α

A( ) > 0α

T( ) > 1α2

A( ) < 0α2

Figure A1. Illustration of the concepts of negative absorptance and excessive transmittance of EMR
under normal incidence on MLG.

Perhaps the negative A and T exceeding 100% for α2 (11) or (15) could be explained in terms of
spontaneous graphene emission.

Appendix D MLG Fresnel Equation and Euclid’s Formula

The Fresnel equation for the normal incidence of EMR at the boundary of two media with
refractive indices n1 and n2

R + T =
(n1 − n2)

2

(n1 + n2)
2 +

(2
√

n1n2)
2

(n1 + n2)
2 = 1, (A10)

has the same form as the Euclid’s formula for generating Pythagorean triples a = k2 − l2, b = 2kl,
c = k2 + l2

(

k2 − l2
)2

(k2 + l2)
2 +

(2kl)2

(k2 + l2)
2 = 1, (A11)

with k2 = n1 and l2 = n2.
Substituting MLG reflectance (4) and the sum of transmittance (3) and absorptance (5) into the

Fresnel equation (A10) yields

(n1 − n2)
2

(n1 + n2)
2 =

1
4 π2α2

(

1 + πα
2

)2 ,
4n1n2

(n1 + n2)
2 =

1 + πα
(

1 + πα
2

)2 , (A12)

which resolves to n1 independent on α and two forms of n2

n1 = 1,

n2(α∗) =
1

1 + πα∗
=

{

−α2

α
,− α

α2

}

≈ {0.9776, 1.0229} ,
(A13)

where α∗ indicates α or α2, satisfying 1 + πα = 1/(1 + πα2), which corresponds to the identity (13).
The refractive index n2 ≈ 1.0229 is close to the refractive index of liquid helium n ≈ 1.025 at 3 K. The
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refractive index n2 ≈ 0.9776 is close to the refractive index of water n = 0.99999974 = 1 − 2.6 × 10−7

for X-ray radiation at a photon wavelength of 0.04 nm. We note that the refractive index is related to
the phase velocity of light, which does not carry information and can be faster than the speed of light
in vacuum c.

Refractive indices (A13) correspond to the phase velocities

V
(

−α2

α

)

= −c
α

α2
= −c2,

V

(

− α

α2

)

= −c
α2

α
= − c2

c2
≈ 2.9307 × 10+8 [m/s]

(A14)

assuming the refractive indices (A13) are absolute (n = c/V) and using the relation (26) .
On the other hand, substituting MLG R, T+A into the Euclid formula (A11) yields

k =

{

√
πα + 1,−

√
πα + 1,

√

1
πα + 1

,−
√

1
πα + 1

,

}

≈

≈ {±1.0114,±0.9887} ,

l = {1, 1, 1, 1} ,

(A15)

generating four right triangles with edges

a(α) =

{

πα, πα,
−πα

πα + 1
,
−πα

πα + 1

}

≈

≈ {0.0229x2,−0.0224x2},

b(α) =

{

2
√

πα + 1,−2
√

πα + 1,
2√

πα + 1
,

−2√
πα + 1

}

≈

≈ {±2.0228,±1.9775},

c(α) =

{

πα + 2, πα + 2,
πα + 2
πα + 1

,
πα + 2
πα + 1

}

≈

≈ {2.0229x2, 1.9776x2},

(A16)

and

a(α2) ≈ {−0.0224x2, 0.0229x2},

b(α2) ≈ {±1.9775,±2.0228},

c(α2) ≈ {1.9776x2, 2.0229x2},

(A17)

satisfying πα = −πα2/(πα2 + 1), which also corresponds to the identity (13), and

c(α∗)− a(α∗) = 2, b(α∗)2 = 4
√

a(α∗) + 1. (A18)

We further note that a(α∗) ≈ −A(α∗), (A6), (A8) and |b(α∗)| ≈ T(α∗) + 1, (A5), (A7).

Appendix E Two π-Like Constants

The quadratic equation (8) that describes the reflectance R of MLG under the normal incidence of
EMR can also be solved for π, which yields two roots.

π(R, α∗)1 =
2
√

R

α∗(1 −
√

R)
, and (A19)
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π(R, α∗)2 =
−2

√
R

α∗(1 +
√

R)
, (A20)

dependent on R and α∗, where α∗ indicates α or α2. This can be further evaluated using the MLG
reflectance R (4) or (A9) (which is the same for both α and α2), yielding four, yet only three distinct
possibilities

π1 = π(α)1 = −π
4π2 + π + 1
4π2 + π + 2

= π
α2

α
≈ −3.0712, (A21)

π(α)2 = π(α2)1 = π ≈ 3.1416, and (A22)

π2 = π(α2)2 = −π
4π2 + π + 2
4π2 + π + 1

= π
α

α2
≈ −3.2136. (A23)

The modulus of π1 (A21) corresponds to a convex surface having a positive Gaussian curvature,
whereas the modulus of π2 (A23) - to a negative Gaussian curvature. The product π1π2 = π2 is
independent of α∗, their quotient π1/π2 = α2

2/α2 is not directly dependent of π, and |π1 − π| 6=
|π − π2|. It remains to be found whether each of these π-like constants describes the ratio of the
circumference of a circle drawn on the respective surface to its diameter (πc) or the ratio of the area
of this circle to the square of its radius (πa). These definitions produce different results on curved
surfaces, whereas πa > πc on convex surfaces, while πa < πc on saddle surfaces [101].

Appendix F Why α-Space Is Better For Biological Evolution?

The probability of two nuclear particles a and b to undergo nuclear fusion by overcoming their
electrostatic barriers is given by Gamow–Sommerfeld factor

p(E) = e−
√

EG
E , (A24)

where
EG := 2

mamb

ma + mb
EP(παZaZb)

2 (A25)

is the Gamow energy, ma, mb are masses of those particles in terms of α- or α2-Planck units (46) and Za,
Zb are their respective atomic numbers.

Since (πα)2 ≈ 5.2557× 10−4 is larger than (πα2)
2 ≈ 5.0227× 10−4, the probability (A24) is higher

for the same dimensionless parameters m∗, Z∗. Therefore, perceivable α-space yields more favorable
conditions for the evolution of information (by nuclear fusion) than nonperceivable α2-space.

Furthermore, the α2-Planck energy EPi and temperature TPi are higher than the Planck energy EP

and temperature TP. Therefore, perceivable α-space yields more favorable conditions for the evolution
of information, also due to the minimum energy principle.

Appendix G Planck Units and HUP

Perhaps the simplest derivation of the squared Planck length is based on HUP

δPHUPδRHUP ≥ h̄

2
or δEHUPδtHUP ≥ h̄

2
, (A26)

where δPHUP, δRHUP, δEHUP, and δtHUP denote momentum, position, energy, and time uncertainties,
by replacing energy uncertainty δEHUP = δMHUPc2 with mass uncertainty using mass-energy
equivalence, and time uncertainty with position uncertainty using δtHUP = δRHUP/c [32], which
yields

δMHUPδRHUP ≥ h̄

2c
. (A27)

Interpreting δMHUP = δRHUPc2/(2G) as the BH mass in (A27) we derive the Planck length as δR2
HUP =

ℓ2
P ⇒ δDHUP = ±2ℓP and recover [5] the BH diameter dBH = ±2.
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However, using the same procedure but inserting the BH radius, instead of the BH mass, into
the uncertainty principle (A27) leads to δM2

HUP = 1
4 h̄c/G = 1

4 m2
P. In general, using the generalized

radius (49) in both procedures, one obtains

δM2
HUP =

1
2k

m2
P and δR2

HUP =
k

2
ℓ

2
P. (A28)

Thus, if k increases mass δMHUP decreases, and δRHUP increases and the factor is the same for k = 1
i.e., for orbital speed radius δR = GδM/c2 or the orbital speed mass δM = δRc2/G.

Appendix H The Stoney Units Derivation

We assume that the elementary charge is the unit of charge qS = e and that the speed of light is
the quotient of the unit of length and time c = lS/tS. Next, we compare the Coulomb force between
two elementary charges and units of masses mS with Newton’s law of gravity, acting over the same
distance

1
4πǫ0

e2

✚✚R2
= G

m2
S

✚✚R2
⇒ mS = ±

√

e2

4πǫ0G
. (A29)

Finally, we compare the inertial force of the unit of mass with Newton’s law of gravity

✟✟mS
ℓS

t2
S

= G
m ✄2

S

ℓ2
S

⇒ ℓS = ±
√

Ge2

4πǫ0c4 , (A30)

to derive the Stoney length ℓS and the remaining Stoney units.
Using the negative c2 (22) we can determine the values of c2-Stoney units (Sn). For mass, length,

time, and energy they are

mSn = mS =
√

αmP ≈ 0.0854mP,

ℓSn =
α2

2
α2 ℓS ≈ 0.9557lS ≈ 0.0816lP,

tSn =
α3

2
α3 tS ≈ −0.9343tS ≈ −0.0798tP,

ESn = mSc2
2 =

α2

α2
2

ES ≈ 1.0464ES ≈ 0.0894EP.

(A31)

We note that the c2-Stoney energy induced by c2 is greater than the Stoney energy and the c2-Stoney
time runs in the opposite direction. We also note that the negative value of the gravitational constant
G would yield imaginary Stoney units regardless of the sign of c, as all Stoney units (except charge)
contain c raised to even (4, 6) powers.

Appendix I Hall Effect

The fractional quantum Hall (FQHE) effect shows a stepwise dependence of the conductance on
the magnetic field (as compared to a linear dependence of the Hall effect) with steps quantized as

R =
h

νe2 =
2✚π✁̄h

να4✚πǫ0✁̄hc
=

1
2νǫ0αc

=
1

2νǫ0α2c2
, (A32)

where ν is an integer or fraction (for example, for ν = 5/2, R = 1/(5ǫ0αc)). Relations (A32) and (26)
suggest that 2D FQHE links real and imaginary dimensions similarly to 2D graphene, giving us the
second negative fine-structure constant α2.
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