
Article

Not peer-reviewed version

The Imaginary Universe

Szymon Łukaszyk 

*

Posted Date: 21 August 2023

doi: 10.20944/preprints202212.0045.v15

Keywords: emergent dimensionality; imaginary dimensions; natural units; fine-structure constant; black

holes; neutron stars; white dwarfs; patternless binary messages; complex energy; complex force; Hawking

radiation; extended periodic table; general relativity; entropic gravity; holographic principle; mathematical

physics

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/442327


The Imaginary Universe

Szymon Łukaszyk∗

Łukaszyk Patent Attorneys, ul. Głowackiego 8, 40-052 Katowice, Poland

Maxwell’s equations in vacuum provide the negative speed of light −c, which leads to imaginary Planck units.

However, the second, negative fine-structure constant α−1
2
≈ −140.178, present in the Fresnel coefficients for the

normal incidence of electromagnetic radiation on monolayer graphene, establishes the different, negative speed

of light in vacuum c2 ≈ −3.06 × 108 [m/s], which introduces imaginary Planck units different in magnitude

from those parametrized with c. It follows that electric charges are the same in real and imaginary dimensions.

We model neutron stars and white dwarfs, emitting perfect black-body radiation, as objects having energy

exceeding their mass-energy equivalence ratios. We define complex energies in terms of real and imaginary

natural units. Their imaginary parts, inaccessible for direct observation, store the excess of these energies. It

follows that black holes are fundamentally uncharged, masses of charged neutron stars and white dwarfs satisfy

M ≲ 5.7275 × 10−10 [kg], and the radii of white dwarfs’ cores are limited to RWD ≲ 3.3967 RBH, where RBH is

the Schwarzschild radius of a white dwarf mass. It is conjectured that the maximum atomic number Z = 238.

A black-body object is in the equilibrium of complex energies if its radius Req ≈ 1.3833 RBH, which is close

to the photon sphere radius Rps = 1.5 RBH, and marginally greater than a locally negative energy density bound

of 4/3 RBH. Complex Newton’s law of universal gravitation, based on complex energies, leads to the black-

body object’s surface gravity and the generalized Hawking radiation temperature, which includes its charge.

The proposed model takes into account the value(s) of the fine-structure constant(s), which is/are otherwise

neglected in general relativity, and explains the registered (GWOSC) high masses of neutron stars’ mergers and

the associated fast radio bursts (CHIME) without resorting to any hypothetical types of exotic stellar objects.

Keywords: emergent dimensionality; imaginary dimensions; natural units; fine-structure constant; black holes; neutron stars;

white dwarfs; patternless binary messages; complex energy; complex force; Hawking radiation; extended periodic table;

general relativity; photon sphere; entropic gravity; gravitational observations; holographic principle; mathematical physics

I. INTRODUCTION

The universe began with the Big Bang, which is a current

prevailing scientific opinion. But this Big Bang was not an

explosion of 4-dimensional spacetime, which also is a current

prevailing scientific opinion, but an explosion of dimensions.

More precisely, in the −1-dimensional void, a 0-dimensional

point appeared, inducing the appearance of countably in-

finitely other points indistinguishable from the first one. The

breach made by the first operation of the dimensional succes-

sor function of the Peano axioms inevitably continued leading

to the formation of 1-dimensional, real and imaginary lines

allowing for an ordering of points using multipliers of real

units (ones) or imaginary units (a ∈ R ⇔ a = 1b1, and

a ∈ I ⇔ a = ib, where b ∈ R). Then out of two lines of each

kind, crossing each other only at one initial point (0, 0), the

dimensional successor function formed 2-dimensional R2, I2,

and R × I Euclidean planes, with I2 being a mirror reflection

of R2. And so on, forming n-dimensional Euclidean spaces

R
a × Ib with a ∈ N real and b ∈ N imaginary lines, n ≔ a + b,

and the scalar product defined by

x · y =
(

x1, . . ., xa, ix
′
1, . . ., ix

′
b

) (

y1, . . ., ya, iy
′
1, . . ., iy

′
b

)

≔

≔

a
∑

k=1

xkyk +

b
∑

l=1

x′ly
′
l
,

(1)

where x, y ∈ Ra × Ib. With the appearance of the first 0-

dimensional point, information began to evolve [1–6].

∗ szymon@patent.pl
1 This is, of course, a circular definition. But for clarity, it is given.

However, the dimensional properties are not uniform. Con-

cerning regular convex n-polytopes in natural dimensions, for

example, there are countably infinitely many regular convex

polygons, five regular convex polyhedra (Platonic solids), six

regular convex 4-polytopes and only three regular convex n-

polytopes if n > 3 [7]. In particular, 4-dimensional Euclidean

space is endowed with a peculiar property known as exotic

R
4 [8], absent in other dimensionalities. Due to this prop-

erty, R3 × I space provides a continuum of homeomorphic

but non-diffeomorphic differentiable structures. Each piece

of individually memorized information is homeomorphic to

the corresponding piece of individually perceived information

but remains nondiffeomorphic (non-smooth). This allowed

the variation of phenotypic traits within individuals’ popula-

tions [9] and extended the evolution of information into bio-

logical evolution. Exotic R4 solves the problem of extra di-

mensions of nature, and perceived space requires a natural

number of dimensions [10]. Each biological cell perceives an

emergent space of three real dimensions and one imaginary

(time) observer-dependently [11] and at present, when i0 = 0

is real, through a spherical Planck triangle corresponding to

one bit of information in units of −c2, where c is the speed

of light in vacuum. This is the emergent dimensionality (ED)

[5, 9, 12–14]. Appendix D presents some arguments to sup-

port the claim that perceived dimensionality sets favourable

conditions for biological evolution to emerge.

Each dimension requires certain units of measure. In real

dimensions, Max Planck in 1899 derived the natural units

of measure as ”independent of special bodies or substances,

thereby necessarily retaining their meaning for all times and

for all civilizations, including extraterrestrial and nonhuman

ones” [15]. Planck units utilize the Planck constant h that he
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introduced in his black-body radiation formula. However, in

1881, George Stoney derived a system of natural units [16]

based on the elementary charge e (Planck’s constant was un-

known then). The ratio of Stoney units to Planck units is
√
α,

where α is the fine-structure constant. This study derives the

complementary set of natural units applicable to imaginary di-

mensions, including imaginary units, based on the discovered

negative fine-structure constant α2.

Imaginary and negative physical quantities are the sub-

ject of research. In particular, the subject of scientific re-

search is thermodynamics in the complex plane. For example,

Lee–Yang zeros [17, 18] and photon-photon thermodynamic

processes under negative optical temperature conditions [19]

have been experimentally observed. Furthermore, the render-

ing of synthetic dimensions through space modulations has

recently been suggested because it does not require any ac-

tive materials or other external mechanisms to break the time-

reversal symmetry [20]. However, physical quantities acces-

sible for direct everyday observation are mostly real and posi-

tive with the negativity of distances, velocities, accelerations,

etc., induced by the assumed orientation of space. Quan-

tum measurement results, for example, are real eigenvalues

of Hermitian operators. Unlike charges, negative, real masses

are generally inaccessible for direct observation. However,

dissipative coupling between excitons and photons in an op-

tical microcavity leads to the formation of exciton polaritons

with negative masses [21]. In Section VI we show that nega-

tive masses also result from merging black-body objects.

Furthermore, the study introduces a model for storing the

excess energy of neutron stars and white dwarfs that exceed

their mass–energy equivalences in imaginary dimensions. The

model results in the upper bound on the size-to-mass ratio

of their cores, where the Schwarzschild radius sets the lower

bound.

The paper is structured as follows. Section II shows that

Fresnel coefficients for the normal incidence of electromag-

netic radiation on monolayer graphene include the second

negative fine-structure constant α2 as a fundamental constant

of nature. Section III shows that, by this second fine-structure

constant nature endows us with the α2-natural units. Section

IV introduces the concept of a black-body object in thermody-

namic equilibrium, emitting perfect black-body radiation, and

reviews its necessary properties. Section V introduces com-

plex mass and charge energies expressed in terms of real and

imaginary α2-Planck units introduced in Section III and ap-

plies them to black-body objects. Section VI considers ob-

served mergers of black-body objects to show that the ob-

served data can be explained without the need to introduce

hypothetical exotic stellar objects. Section VII discusses fluc-

tuations of black-body objects. Section VIII defines the com-

plex forces to derive a black-body object surface gravity and

the generalized Hawking radiation temperature. Section IX

summarizes the findings of this study. Certain prospects for

further research are given in the Appendices.

II. THE SECOND FINE-STRUCTURE CONSTANT

Numerous publications provide Fresnel coefficients for the

normal incidence of electromagnetic radiation (EMR) on

monolayer graphene (MLG), which are remarkably defined

only by π and the fine-structure constant α

α−1 =

(

qP

e

)2

=
4πϵ0ℏc

e2
≈ 137.036, (2)

where qP is the Planck charge, ℏ is the reduced Planck con-

stant, ϵ0 ≈ 8.8542 × 10−12 [kg−1 · m−3 · s2 · C2] is vacuum

permittivity (the electric constant), and e is the elementary

charge. Transmittance (T) of MLG

T =
1

(

1 + πα
2

)2
≈ 0.9775, (3)

for normal EMR incidence was derived from the Fresnel equa-

tion in the thin-film limit [22] (Eq. 3), whereas spectrally flat

absorptance (A) A ≈ πα ≈ 2.3% was reported [23, 24] for

photon energies between about 0.5 and 2.5 [eV]. T was re-

lated to reflectance (R) [25] (Eq. 53) as R = π2α2T/4, i.e,

R =

1
4
π2α2

(

1 + πα
2

)2
≈ 1.2843 × 10−4, (4)

The above equations for T and R, as well as the equation for

the absorptance

A =
πα

(

1 + πα
2

)2
≈ 0.0224, (5)

were also derived [26] (Eqs. 29-31) based on the thin film

model (setting ns = 1 for substrate). The sum of transmittance

(3) and the reflectance (4) at normal EMR incidence on MLG

was derived [27] (Eq. 4a) as

T + R = 1 − 4ση

4 + 4ση + σ2η2 + k2χ2
=

=
1 + 1

4
π2α2

(

1 + πα
2

)2
≈ 0.9776,

(6)

where η ≈ 376.73 [Ω] is the vacuum impedance, σ =

e2/(4ℏ) = πα/η ≈ 6.0853 × 10−5 [Ω−1] is the MLG conduc-

tivity [28], k is the wave vector of light in vacuum, and χ = 0

is the electric susceptibility of vacuum. Therefore, these coef-

ficients are well established theoretically and experimentally

[22–24, 27, 29, 30].

As a consequence of the conservation of energy

(T + A) + R = 1. (7)

In other words, the transmittance in the Fresnel equation de-

scribing the reflection and transmission of EMR at normal in-

cidence on a boundary between different optical media is, in

the case of the 2-dimensional (boundary) of MLG, modified

to include its absorption.
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The reflectance R = 0.013% (4) of MLG can be expressed

as the quadratic equation of α

R

(

1 +
πα

2

)2

− 1

4
π2α2 = 0,

1

4
(R − 1) π2α2 + Rπα + R = 0.

(8)

This quadratic equation (8) has two roots with reciprocals

α−1 =
π − π

√
R

2
√

R
≈ 137.036, and (9)

α−1
2 =

−π − π
√

R

2
√

R
≈ −140.178. (10)

Therefore, the equation (8) includes the second negative fine-

structure constant α2. It turns out that the sum of the recipro-

cals of these fine-structure constants (9) and (10)

α−1 + α−1
2 =

✁π − π✚✚
√

R − ✁π − π✚✚
√

R

2✚
✚√R

=
−✁2π
✁2
= −π, (11)

is remarkably independent of the value of the reflectance R.

The same result can only be obtained for T+A (cf. Appendix

B). This result is intriguing in the context of a peculiar alge-

braic expression for the fine-structure constant [31]

α−1 = 4π3 + π2 + π ≈ 137.036303776 (12)

that contains a free π term and is very close to the physi-

cal definition (2) of α−1, which according to the CODATA

2018 value is 137.035999084. Notably, the value of the fine-

structure constant is not constant but increases with time [32–

36]. Thus, the algebraic value given by (12) can be interpreted

as the initial Big Bang geometric α−1.

Using relations (11) and (12), we can express the negative

reciprocal of the 2nd fine-structure constant α−1
2

that emerged

in the quadratic equation (8) also as a function of π only

α−1
2 = −π − α

−1
1 = −4π3 − π2 − 2π ≈ −140.177896429, (13)

and this value can also be interpreted as the initial α−1
2

, where

the current value would amount to α−1
2
≈ −140.177591737,

assuming the rate of change is the same for α and α2.

Using relations (12) and (13), T (3), R (4), and A (5) of

MLG for normal incidence of EMR can be expressed just by

π. Moreover, equation (8) includes two π-like constants for

two surfaces with positive and negative Gaussian curvatures

(cf. Appendix C).

III. SET OF α2-PLANCK UNITS

In this section, we shall derive complementary Planck units

based on the second fine-structure constant α2. We shall fur-

ther call them α2-Planck units. Natural units can be derived

from numerous starting points [5, 37] (cf. Appendices E and

F). The central assumption in all natural unit systems is that

the quotient of the unit of length ℓ∗ and time t∗ is a unit of

speed; we call it c = ℓ∗/t∗. It is the speed of light in vac-

uum c in all systems of natural units, except for Hartree and

Schrödinger units, where it is cα, and Rydberg units, where

it is cα/22. On the other hand, c as the velocity of the elec-

tromagnetic wave is derivable from Maxwell’s Equations in

vacuum

∇2E = µ0ϵ0
∂2E

∂t2
,
∂2E

∂x2
= µ0ϵ0

∂2E

∂t2
, (14)

where E is the electric field, and µ0 is vacuum permeability

(the magnetic constant). Without postulating any solution to

this equation but by simple substitution ∂x ≔ ℓ∗ and ∂t ≔ t∗,
∂2E ≔ E∗ factors out, and we obtain well known

1 = µ0ϵ0c2, (15)

symmetric in its electric and magnetic parts [38] from which

the bivalued c = ±1/
√
µ0ϵ0 can be obtained, knowing the val-

ues of µ0 and ϵ0. We note that it is c2, not c, present in mass-

energy equivalence, the Lorentz factor, the BH potential, etc.

We further note that Maxwell’s equations in vacuum are not

directly dependent on the fine-structure constant(s). It is in-

cluded in the magnetic constant µ0.

In the following, we assume the universality of the real ele-

mentary electric charge e defining both matter and antimatter,

the Planck constant h, the uncertainty principle parameter, and

the gravitational constant G (i.e. we assume that there are no

counterparts to these physical constants in other physical di-

mensions in our model and that these dimensional constants

are positive). The last two assumptions are probably too far-

reaching, given that we do not need to know the gravitational

constant G or the Planck constant h to find the product of the

Planck length ℓP and the speed of light in vacuum [39].

The fine-structure constant can be defined as the quotient

(2) of the squared (and thus positive) elementary charge e and

the squared Planck charge α = e2/q2
P
. We chose Planck units

over other natural unit systems not only because they incor-

porate the fine-structure constant α and the Planck constant h.

Other systems of natural units (except for Stoney units) also

incorporate them. The reason is that only the Planck area de-

fines one bit of information on a patternless black hole surface

given by the Bekenstein bound (45) and the binary entropy

variation [5, 12].

To accommodate the negativity of the fine-structure con-

stant discovered in the preceding section, we must introduce

the imaginary Planck charge qPi so that its square would yield

a negative value of α2.

q2
P =

e2

α
, q2

Pi =
e2

α2

⇒ qPi = ae, a ∈ I,

e2 = q2
Pα = q2

Piα2.

(16)

2 Since the square root is bivalued the unit of speed is also bivalued In

Planck, Stoney, and Schrödinger units.
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Next, we note that an imaginary qPi, which must have a phys-

ical definition analogous to qP, requires either a real and neg-

ative speed of light or some complementary real and negative

electric constant (we assume that h is positive). Let us call

them c2 and ϵ̃0

q2
P = 4πϵ0ℏc > 0 ⇎ q2

Pi = 4πϵ̃0ℏc2 < 0. (17)

From this equation, we find that ϵ̃0c2 < 0, as the values of

the other constants are known. Next, we assume that the so-

lution (15) of Maxwell’s equations in vacuum is also valid

for other values of the constants involved. Let us call the un-

known magnetic constant µ2, so

µ0ϵ0c2 = µ2ϵ̃0c2
2 = 1. (18)

From that and from ϵ̃0c2 < 0, we conclude that the product

µ2c2 < 0. We note that the quotient of the squared Planck

charge and mass introduces the imaginary Planck mass mPi

q2
P

m2
P

=
q2

Pi

m2
Pi

= 4πϵ0G, (19)

the value of which can be calculated, knowing the value of

the imaginary Planck charge qPi from the relation (16). From

(19) we also conclude that ϵ̃0 = ϵ0 > 0 and then by (18) that

µ2 > 0 and c2 < 0. Knowing mPi we can determine the value

of the negative nonprincipal square root of c2 = ±1/
√
µ2ϵ0 of

the relation (18) as

c2 =
q2

Pi

4πϵ0ℏ
≈ −3.066653 × 108 [m/s], (20)

which is greater than the speed of light in vacuum c in modu-

lus.

The mass, length, time, and charge units can express all

electrical units. Therefore, along with temperature, amount of

substance, and luminous intensity, they are base units of the

International System of Quantities (ISQ). We further conclude

that the magnetic constant µ2 is lower than µ0

µ0 =
4πℏα

ce2
≈ 1.2569 × 10−6 [kg ·m · C−2],

µ2 =
4πℏα2

c2e2
≈ 1.2012 × 10−6 [kg ·m · C−2].

(21)

Unlike the electric constant ϵ0, the magnetic constants µ are

independent of the unit of time. Furthermore, negative α2 and

c2 lead to the second, also time-dependent but negative vac-

uum impedance

η2 = −
4πα2ℏ

e2
= − 1

ϵ0c2

≈

≈ −368.29 [kg ·m2 · s−1 · C−2] (|η2| < |η|) .
(22)

Finally, combining relations (16) and (17) yields

e2 = 4πϵ0ℏcα = 4πϵ0ℏc2α2, (23)

which leads to the following important relation between the

speeds of light in vacuum c, c2, and the fine-structure con-

stants α, α2

cα = c2α2, (24)

valid for both principal and non-principal square roots of the

relation (18)3. Furthermore, the relation (24) introduces an

interesting interplay between α vs. α2 and c vs. c2 that, as

we conjecture, should be able to explain ν = 5/2 state in the

fractional quantum Hall effect in the 2D system of electrons,

as well as other fractional states with an even denominator

[40] (cf. Appendix G). The relation (24) is not the only α to α2

relation. Along with the two π-like constants π1, π2 (relations

(C8) and (C10), cf. Appendix C)

α2

α
=

c

c2

=
π1

π
=
π

π2

=
m2

P

m2
Pi

=
q2

P

q2
Pi

≈ −0.9776. (25)

Therefore, the non-principal square root of c = ±1/
√
µ0ϵ0

and principal square root of c2 = ±1/
√
µ2ϵ0 in (18) also in-

troduce, respectively, imaginary (−c)-Planck units and real

(−c2)-Planck units. In particular, the imaginary (−c)-Planck

time parameterizes the HSs time relations [5, 12]. We conjec-

ture that α2-Planck units is appropriate for espressing phys-

ical quantities of I3 × R Euclidean space rather than R3 × I
Euclidean space that we perceive due to the minimum energy

principle (cf. Appendix D). Furthermore, the speed of elec-

tromagnetic radiation is the product of its wavelength and fre-

quency, and these quantities would be imaginary in terms of

imaginary Planck units; the negative speed of light is neces-

sary to accommodate this.

The negative speed of light c2 (20) leads to the complemen-

tary Planck charge qPi, length ℓPi, mass mPi, time tPi, and tem-

perature TPi that redefined by square roots containing c2 raised

to odd powers (1, 3, 5) become bivalued and real-imaginary

since c and c2 are bivalued. In other words, both Planck and

α2-Planck units have four forms equal in modulus: real pos-

itive, real negative, imaginary positive, and imaginary neg-

ative. However, here we consider mostly real, positive α-

Planck units and imaginary, positive α2-Planck units (hence

the subscript i).

Principal square roots of the base α2-Planck units (for nega-

tive c2) that can be expressed, using the relation (24), in terms

of base Planck units qP, ℓP, mP, tP, and TP are

qPi =
√

4πϵ0ℏcn = qP

√

α

α2

≈

≈ i1.8969 × 10−18 [C] (|qPi| > |qP|) ,
(26)

ℓPi =

√

ℏG

c3
n

= ℓP

√

α3
2

α3
≈

≈ i1.5622 × 10−35 [m] (|ℓPi| < |ℓP|) ,

(27)

mPi =

√

ℏcn

G
= mP

√

α

α2

≈

≈ i2.2012 × 10−8 [kg] (|mPi| > |mP|) ,
(28)

3 Notably, cα is the electron’s velocity at the first circular orbit in the Bohr

hydrogen atom model and the speed unit in Hartree and Schrödinger’s nat-

ural units.
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tPi =

√

ℏG

c5
n

= tP

√

α5
2

α5
≈

≈ i5.0942 × 10−44 [s] (|tPi| < |tP|) ,

(29)

TPi =

√

ℏc5
n

Gk2
B

= TP

√

α5

α5
2

≈

≈ i1.4994 × 1032 [K] (|TPi| > |TP|) .

(30)

Most Planck units derived from the α2-Planck base units

(26)-(30) are also imaginary. They include the α2 Planck vol-

ume

ℓ3Pi =

(

ℏG

c3
n

)3/2

= ℓ3P

√

α9
2

α9
≈

≈ i3.8127 × 10−105 [m3]
(

|ℓ3Pi| < |ℓ
3
P|
)

,

(31)

the α2 Planck momentum

pPi = mPicn =

√

ℏc3
n

G
= mPc

√

α3

α3
2

≈

≈ i6.7504 [kg m/s] (|mPicn| > |mPc|) ,

(32)

the α2 Planck energy

EPi = mPic
2
n =

√

ℏc5
n

G
= EP

√

α5

α5
2

≈

≈ i2.0701 × 109 [J] (|EPi| > |EP|) ,

(33)

and the α2 Planck acceleration

aPi =
cn

tPi

=

√

c7
n

ℏG
= aP

√

α7

α7
2

≈

≈ ±i6.0198 × 1051 [m/s2] (|aPi| > |aP|) .

(34)

However, the α2-Planck density

ρP2 =
mPi

ℓ3
Pi

=
c5

n

ℏG2
= ρP

α5

α5
2

≈

≈ −5.7735 × 1096 [kg/m3] (|ρP2| > |ρP|) ,
(35)

and the α2-Planck area

ℓ2Pi =
ℏG

c3
n

= ℓ2P
α3

2

α3
≈

≈ −2.4406 × 10−70 [m2]
(

|ℓ2Pi| < |ℓ
2
P|
)

,

(36)

are real and bivalued similarly to the Planck density ρP and

area ℓ2
P
. Interestingly, both Planck forces FP and

FP2 =
c4

2

G
=

c4

G

α4

α4
2

= FP

α4

α4
2

≈

≈ 1.3251 × 1044 [N] (FP2 > FP) ,

(37)

are strictly positive.

We note that Coulomb’s law for elementary charges and

Newton’s law of gravity for Planck masses define the fine-

structure constants

1

4πR2
∗

e2

ϵ0
= αG

m2
P

R2
∗
= α2G

m2
Pi

R2
∗
, (38)

where R∗ is some real or imaginary distance and mPi is imag-

inary. The area of a disk in the denominator of the Coulomb

force invites further research.

The relations between time (29) and temperature (30) α2-

Planck units are inverted, α5t2
Pi
= α5

2
t2
P
, α5

2
T 2

Pi
= α5T 2

P
, and

saturate the energy-time version of Heisenberg’s uncertainty

principle (HUP) taking energy from the equipartition theorem

for one bit of information [5, 12, 41]

1

2
kBTPtP =

1

2
kBTPitPi =

ℏ

2
. (39)

Furthermore, eliminating α and α2 from the relations (26)-

(28), yields

ℓPm3
P = ℓPim

3
Pi and ℓPq3

P = ℓPiq
3
Pi. (40)

Contrary to the elementary charge e (16), there is no physi-

cally meaningful elementary mass Me = ±1.8592 × 10−9 [kg]

that would satisfy the relation (28)

M2
e = αm2

P = α2m2
Pi. (41)

Neither is there a physically meaningful elementary (and

imaginary) length Le ≈ ±i9.7382 × 10−39 [m] satisfying the

relation (36)

L2
e = α

3ℓ2Pi = α
3
2ℓ

2
P, (42)

(which in modulus is almost 1660 times smaller than the

Planck length), or an elementary temperature Te ≈ ±6.4450×
1026 [K] abiding to (30)

T 2
e = α

5T 2
P = α

5
2T 2

Pi, (43)

and close to the Hagedorn temperature of grand unified string

models.

Planck charge relation (16) and the charge conservation

principle imply that the elementary charge e is the quantum

of charge in real and imaginary dimensions, while masses,

lengths, temperatures, and other derived quantities that can

vary with time are not similarly quantized. The universal char-

acter of the charges is additionally emphasized by the real√
α multiplied by i in the imaginary charge energy (56) and

imaginary
√
α2 in the real charge energy (57). Furthermore,

the same forms of the relations (16) and (41) reflect the same

forms of Coulomb’s law and Newton’s law of gravity, which

are the inverse-square laws.

In the following, where deemed appropriate, we shall ex-

press the physical quantities by Planck units

M ≔ mmP, Mi ≔ mimPi, m,mi ∈ R
E ≔ mEP Ei ≔ miEPi,

Q ≔ qe, Qi ≔ iQ = iqe, q ∈ Z,
λ ≔ lℓP, λi ≔ liℓPi, l = 2π

m
, li =

2π
mi
,

{R,D} ≔ {r, d}ℓP, {Ri,Di} ≔ {ri, di}ℓPi, r, d, ri, di ∈ R,
(44)
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where uppercase letters M, E, Q, λ, R, and D denote respec-

tively masses, energies, charges, Compton wavelengths, radii,

and diameters (or lengths), lowercase letters denote multipli-

ers of the positive real Planck units and imaginary α2-Planck

units, and the subscripts i refer to the multiplication of imagi-

nary quantities. We note that the discretization of charges by

integer multipliers q of the elementary charge e seems too far-

reaching, considering the fractional charges of quasiparticles,

in particular in the open research problem of the fractional

quantum Hall effect (cf. Appendix G).

IV. BLACK BODY OBJECTS

There are only three observable objects in nature that emit

perfect black-body radiation: unsupported black holes (BHs,

the densest), neutron stars (NSs), supported, as accepted, by

neutron degeneracy pressure, and white dwarfs (WDs), sup-

ported, as accepted, by electron degeneracy pressure (the least

dense). We shall collectively call them black-body objects

(BBs). The spectral density in sonoluminescence, light emis-

sion by sound-induced collapsing gas bubbles in fluids, was

also shown to have the same frequency dependence as black-

body radiation [42, 43]. Thus, the sonoluminescence, and

in particular shrimpoluminescence [44], is probably emitted

by collapsing micro-BBs. Micro-BH induced in glycerin by

modulating acoustic waves was reported [45].

The term ”black-body object” is not used in general rela-

tivity (GR) and standard cosmology, but standard cosmology

scrunches under embarrassingly significant failings, not just

tensions as is sometimes described, as if to somehow imply

that a resolution will eventually be found [46]. Also, James

Webb Space Telescope data show multiple galaxies that grew

too massive too soon after the Big Bang, which is a strong dis-

crepancy with the Λ cold dark matter model (ΛCDM) expec-

tations on how galaxies formed at early times at both redshifts,

even when considering observational uncertainties [47]. This

is an important unresolved issue indicating that fundamen-

tal changes to the reigning ΛCDM model of cosmology are

needed [47]. The term object as a collection of matter is a mis-

nomer, since it neglects the (quantum) nonlocality [48] that is

independent of the entanglement among particles [49], as well

as the Kochen-Specker contextuality [50], and increases as the

number of particles grows [51, 52]. Thus, we use emphasis

for (perceivably indistinguishable) particle and (perceivably

distinguishable) object, as well as for matter and distance.

The ugly duckling theorem [53, 54] asserts that every two ob-

jects we perceive are equally similar (or equally dissimilar),

however ridiculous and contrary to common sense4 that may

sound. These terms do not have an absolute meaning in ED.

In particular, given the observation of quasiparticles in clas-

sical systems [55]. Within the framework of ED no object is

enclosed in space.

4 Which inevitably enforces understanding the nature in a manner that is

common to nearly all people and thus hinders its research.

Entropic gravity [41] explains the galaxy rotation curves

without resorting to dark matter (which is not required to ex-

plain the rotation curves of certain galaxies, such as the mas-

sive relic galaxy NGC 1277 [56]), has been experimentally

confirmed [57], and is decoherence-free [58]. It has been ex-

perimentally confirmed that the so-called accretion instability

is a fundamental physical process [59]. We conjecture that this

process, already recreated under laboratory conditions [60], is

common for all BBs. As black-body radiation is radiation of

global thermodynamic equilibrium, it is patternless [61] (ther-

mal noise) radiation that depends only on one parameter. In

the case of BHs, this is known as Hawking [62] radiation,

and this parameter is the BH temperature TBH = TP/(2πdBH)

corresponding to the BH diameter [5] DBH = dBHℓP, where

dBH ∈ R. Furthermore, BHs absorb patternless information

[5, 63]. Therefore, since Hawking radiation depends only on

the diameter of a BH, it is the same for a given BH, even

though it is momentary as the BH fluctuates (cf. Section VII).

As black-body radiation is patternless, triangulated [5] BBs

contain a balanced number of Planck area triangles, each hav-

ing binary potential δφk = −c2 · {0, 1}, as has been shown

for BHs [5], based on the Bekenstein-Hawking (BH) entropy

[64] S BH = kBNBH/4, where NBH ≔ 4πR2
BH
/ℓ2

P
= πd2

BH
is

the information capacity of the BH surface, i.e., the ⌊NBH⌋ ∈
N0 Planck triangles5 corresponding to bits of information

[5, 12, 41, 64, 65], and the fractional part triangle(s) having

the area {NBH}ℓ2P = (NBH − ⌊NBH⌋)ℓ2P too small to carry a sin-

gle bit of information [5, 12].

BH entropy can be derived from the Bekenstein bound

S ≤ 2πkBRE

ℏc
= πkBmd, (45)

which defines an upper limit on the thermodynamic entropy S

that can be contained within a sphere of radius R and energy

E. Substituting BH (Schwarzschild) radius RBH = 2GMBH/c
2

and mass-energy equivalence EBH = MBHc2, where MBH is

the BH mass, into the bound (45), it reduces to the BH en-

tropy. In other words, the BH entropy saturates the Bekenstein

bound (45)6.

The patternless nature of perfect black-body radiation was

derived [5] by comparing the BH entropy with the binary en-

tropy variation δS = kBN1/2 ([5] Eq. (55)), valid for any

holographic sphere (HS), where N1 ∈ N denotes the number

of active Planck triangles with binary potential δφk = −c2.

Thus, the entropy of all BBs is

S BB =
1

4
kBNBB. (46)

Furthermore, N1 = NBB/2 confirms the patternless thermo-

dynamic equilibrium of BBs by maximizing Shannon entropy

[5].

5 ”⌊x⌋” is the floor function that yields the greatest integer less than or equal

to its argument x.
6 Furthermore, the Bekenstein bound can be derived from the BH entropy:

S BH = kBπRR/ℓ2
P
≤ kBπR

2GE

c4
c3

ℏG
, where we used M ≤ Rc2

2G
and E = Mc2.
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We shall define the generalized radius of a BB (this defi-

nition applies to all HSs) having mass MBB as a function of

GMBB/c
2 multiplier k ∈ R, k ≥ 2

RBB ≔ k
GMBB

c2
, dBB = 2kmBB, (47)

and the generalized BB energy EBB as a function of MBBc2

multiplier a ∈ R (this definition also applies to all HSs)

EBB ≔ aMBBc2, EBB = amBBEP. (48)

Substituting MBB from definition (47) into definition (48) and

the latter into the Bekenstein bound (45), it becomes

S ≤ 1

2
kB

a

k
NBB, (49)

and equals the BB entropy (46) if a
2k
= 1

4
⇒ a = k

2
. Thus, the

energy of all BBs having a generalized radius (47) is

EBB =
k

2
MBBc2 =

k

2
mBBEP =

dBB

4
EP, (50)

with k = 2 in the case of BHs, setting the lower bound for

other BBs. We shall further call the coefficient k the size-

to-mass ratio (STM). It is similar to the specific volume (the

reciprocal of density) of the BB. We shall derive the upper

STM bound in Section V.

According to the no-hair theorem, all BHs general relativ-

ity (GR) solutions are characterized only by three parameters:

mass, electric charge, and angular momentum. However, BHs

are fundamentally uncharged, since the parameters of any

conceivable BH, in particular, charged (Reissner–Nordström)

and charged-rotating (Kerr–Newman) BH, can be arbitrarily

altered, provided that the BH area does not decrease [66] us-

ing Penrose processes [67, 68] to extract electrostatic and/or

rotational energy of BH [69]. Thus any BH is defined by only

one real parameter: its diameter, mass, temperature, energy,

etc., each corresponding to the other. We note that in the com-

plex Euclidean Ra × Ib space, an n-ball (n = a + bi ∈ C) is

spherical only for a vanishing imaginary dimension and for

the radius R = ℓP/
√
π [12, 14], yielding its information ca-

pacity N = 4, one unit of a BH entropy [64]. This confirms

the universality and applicability of the BH entropy (46) to all

BBs.

Interiors of the BBs are inaccessible to an exterior observer

[64], which makes them similar to interior-less mathematical

points representing real numbers on a number line7. Yet, a BH

can embrace this defining real number. Three points forming a

Planck triangle corresponding to a bit of information on a BH

surface can store this parameter, and this is intuitively com-

prehensible: the area of a spherical triangle is larger than that

of a flat triangle defined by the same vertices, provided the

curvature is nonvanishing and depends on this curvature, i.e.,

this additional parameter defines it. Thus, the only meaning-

ful spatial notion is the Planck area triangle, which encodes

one bit of classical information and its curvature.

7 Thus, the term object is a particularly staring misnomer if applied to BBs.

However, it is accepted that in the case of NSs, electrons

combine with protons to form neutrons, so that NSs are com-

posed almost entirely of neutrons. But it is never the case

that all electrons and all protons of an NS become neutrons.

WDs are charged by definition, as they are accepted to be

mostly composed of electron degenerate matter. But how can

a charged BB store both the curvature and an additional pa-

rameter corresponding to its charge? Fortunately, the relation

(16) ensures that the charges are the same in real and imagi-

nary dimensions. Therefore, each charged Planck triangle of

a BB surface is associated with at least three R × I Planck

triangles, each sharing a vertex or two vertices with this tri-

angle in R2. And this configuration is capable of storing both

the curvature and the charge. The Planck area ℓ2
P

(36) and the

R× I imaginary Planck area ℓPℓPi = ℓ
2
P

√

α3
2
/α3 ≈ ±0.9666iℓ2

P
,

which is smaller in modulus, can be considered in a polyspher-

ical coordinate system, in which gravitation/acceleration acts

in a radial direction (with the entropic gravitation acting in-

wardly and acceleration acting in both radial directions) [5],

while electrostatics act in a tangential direction.

Contrary to the no-hair theorem, we characterize BBs only

by mass and charge, neglecting the angular momentum since

the latter introduces the notion of time, which we find redun-

dant in the BB description of a patternless thermodynamical

equilibrium.

Not only BBs are perfectly spherical. Also, their mergers,

to which we shall return in Section VI, are perfectly spheri-

cal, as it has been experimentally confirmed [70] based on the

registered gravitational event GW170817. One can hardly ex-

pect a collision of two perfectly spherical, patternless thermal

noises to produce some aspherical pattern instead of another

perfectly spherical patternless noise. Where would the infor-

mation about this pattern come from at the moment of the

collision? From the point of impact? No point of impact is

distinct on a patternless surface.

The considerations previously discussed may be confusing

to the reader, as the energy (50) of BBs other than BHs (i.e. for

k > 2) exceeds the mass-energy equivalence E = Mc2, which

is the limit of the maximum real energy. In the following

section, we will model a part of the energy of NS and WD

that exceeds Mc2 as imaginary and thus unmeasurable.

V. BB COMPLEX ENERGIES

A complex energy formula

ER ≔ EMR
+ iEQR

= MRc2 +
iQR

2
√
πϵ0G

c2, (51)

where EMR
and iEQR

represent respectively real and imaginary

energy of an object having mass MR and charge QR
8 was pro-

posed in ref. [71]. Equation (51) considers real masses MR

and charges QR. To store the surplus energy we shall modify

8 Charges in the cited study are defined in CGS units. Here, we adopt SI.
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it to a form involving real physical quantities expressed terms

in Planck units and imaginary physical quantities expressed

terms of the imaginary α2-Planck units using relations (24),

(28), (33), (44), and (23)

e

2
√
πϵ0
=
√
αcℏ =

√

α2c2ℏ. (52)

To this end, we define the following three complex energies,

linking the mass, imaginary mass, and charge within the ED

framework, the complex energy of real mass and imaginary

charge

EMQi
≔ EM + EQi

= Mc2 +
Qi

2
√
πϵ0G

c2 =

=
(

mmP + iq
√
αmP

)

c2 =
(

m + iq
√
α
)

EP,

(53)

of real charge and imaginary mass

EQMi
≔ EQ + EMi

=
Q

2
√
πϵ0G

c2
2 + Mic

2
2 =

=
(

q
√
α2mPi + mimPi

)

c2
2 =
α2

α2
2

(

q
√
α +

√

α

α2

mi

)

EP,

(54)

and of real mass and imaginary mass

EMMi
≔ Mc2 + Mic

2
2 =

















m +

√

α5

α5
2

mi

















EP, (55)

as illustrated in Fig. 1. We neglect the energy of real and

m
2

mi

2

q
2
α2

(
+

)

m
q

E

2

2

2
α

P

m E +m E
2 2 2 2

P Pi i

(
!

)

q
m

E
2

2

α
2

P

i

i

q
2
α

Figure 1. Illustration of three complex energies linking mass m,

imaginary mass mi, and charge q.

imaginary charges EQQi
, since by the relation (16), the unit of

charge is the same in real and imaginary dimensions. The

mass-energy equivalence relates the mass M or Mi to the

speed of light c or c2.

Energies (53) and (54) yield two different charge energies

corresponding to the elementary charge, the imaginary quan-

tum

EQi
(q = ±1) = ±i

√
αEP ≈ ±i1.6710 × 108 [J], (56)

and the - larger in modulus - real quantum

EQ(q = ±1) = ±
√
α2EPi ≈ ±1.7684 × 108 [J]. (57)

Furthermore, ∀q, α2EQi = iα2
2
EQ.

The squared moduli of the complex energies (53)-(55), ex-

pressed in terms of the Planck energy, are

|EMQi
|2 =

(

M2 + q2αm2
P

)

c4 =
(

m2 + q2α
)

E2
P, (58)

|EQMi
|2 = α

4

α4
2

(

q2αm2
P − M2

i

)

c4 =
α4

α4
2

(

q2α − α
α2

m2
i

)

E2
P,

(59)

|EMMi
|2 =













M2 − α
4

α4
2

M2
i













c4 =













m2 − α
5

α5
2

m2
i













E2
P. (60)

Theorem 1. Complex energies (53)-(55) cannot simultane-

ously have their real and imaginary parts equal in modulus.

Proof. Complex energies EMQi
and EQMi

are real-to-

imaginary balanced if their real and imaginary parts are equal

in modulus. This holds for

q2α = m2 = − α
α2

m2
i . (61)

However, they cannot be simultaneously balanced with the en-

ergy EMMi
, which is balanced for

m2 = −α
5

α5
2

m2
i , −

α

α2

m2
i . (62)

□

Since by the relation (16) charges are the same in real and

imaginary dimensions, squared moduli of complex energies

EMQi
and EQMi

must be equal, allowing us to obtain the value

of the imaginary mass Mi as a function of mass M and charge

Q in this equilibrium

mi = ±

√

α2

α













q2α













1 −
α4

2

α4













−
α4

2

α4
m2













. (63)

In particular for q = 0 the relation (63) yields

m2
i = −

α5
2

α5
m2 or Mi = ±i

α2
2

α2
M ≈ ±0.9557iM, (64)

which corresponds to the relation (62). Since the mass mi ∈ R,

the square root argument must be nonnegative in relation (63)

m ≥ |q|

√

α













α4

α4
2

− 1













≈ |q|0.0263. (65)

This means that the masses of uncharged micro-BHs (q = 0)

in thermodynamic equilibrium can be arbitrary. However, mi-

cro NSs and micro WDs, also in thermodynamic equilibrium,

are charged. Thus, even a single elementary charge (q = 1)
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of a white dwarf renders its mass MWD = 5.7275 × 10−10 [kg]

comparable to the mass of a grain of sand.

We note here that only the masses satisfying M < 2πmP ≈
1.3675 × 10−7 [kg] have Compton wavelengths larger than

Planck length [5]. We note in passing that a classical descrip-

tion has been ruled out on the microgram (1×10−9 [kg]) mass

scale [72]. Comparing this bound with the bound (65) yields

the charge multiplier q corresponding to an atomic number

Z =







































2π
√

α

(

α4

α4
2

− 1

)







































= ⌊238.7580⌋ = 238, (66)

of a hypothetical element, which - as we conjecture - sets the

limit on an extended periodic table and is a little higher than

the accepted limit of Z = 184 (unoctquadium). More mas-

sive elements would have Compton wavelengths smaller than

the Planck length, which is physically implausible because the

Planck area is the smallest area required to encode one bit of

information [5, 41, 64, 65]. From the relation (65) we can also

obtain the maximum wavelength l = 2π/m corresponding to

the charge q. For q2 = 1 it is λ < 3.8589 × 10−33 [m] with

l < 238.7580 corresponding to the bound (66).

Theorem 2. Complex energies (53)-(55) are equal

|EMQi
|2 = |EQMi

|2 = |EMMi
|2 =

=













1 +
α4

2

α4













m2E2
P =













1 +
α4

2

α4













q2αE2
P =













1 +
α4

2

α4













α9

α9
2

m2
i E2

P

(67)

for

q2α = −α
5

α5
2

m2
i =
α4

2

α4
m2, m2

i = −
α9

2

α9
m2. (68)

Proof. Direct calculation proves the relation (68) and if the

squared moduli (58)-(60) are equal to some constant energy

|EMQi
|2 = |EQMi

|2 = |EMMi
|2 ≔ A2E2

P, (69)

then subtracting |EMQi
|2 − |EQMi

|2 yields

m2 +
α

α2

m2
i = A2













1 −
α4

2

α4













; (70)

subtracting this from |EMMi
|2 yields

m2
i = −A2

α9
2

α5(α4 + α4
2
)
, (71)

which substituted into the relation (70) yields

m2 = A2 α4

α4 + α4
2

, (72)

and finally, substituting the relation (72) into the modulus (58)

yields

q2α = A2
α4

2

α4 + α4
2

. (73)

□

We can interpret the squared generalized energy of BBs

(50) as the squared modulus of the complex energy of the real

mass EMQi
, taking the observable real energy EBB = MBBc2

of the BB as the real part of this energy. Thus

k4

4
m2

BB = m2
BB + q2

BBα, q2
BBα = m2

BB

(

k2

4
− 1

)

, (74)

where q2
BB
α represents a charge surplus energy exceeding

MBBc2. Similarly, we can interpret the squared generalized

energy of BBs (50) as the squared modulus of the complex

energy of the imaginary mass EQMi
. Thus

k2

4
m2

BB =
α4

α4
2

(

q2
BBα −

α

α2

m2
iBB

)

. (75)

Substituting q2
BB
α from the relation (74) into the relation (75)

turns the equilibrium condition (63) into a function of the

STM k instead of the charge q

miBB = ±mBB

√

α2

α













k2

4













1 −
α4

2

α4













− 1













, (76)

which yields the imaginary mass of a BH (for k = 2) and

corresponds to the relation (64) between uncharged masses

M and Mi, which is, notably, independent of the STM.

The square root argument in the relation (76) must be non-

negative, since mBB,miBB ∈ R. This leads to the maximum

STM bound

k ≤ 2
√

1 − α
4
2

α4

≈ 6.7933 = kmax. (77)

The relations (74) and (76) are shown in Figure 2.

0
1

2
3

4
5

6
7

8
9

10

0

0.5

1

0

2

4

6

kℑ

ℜ

Figure 2. Ratios of imaginary mass MiBB to real mass MBB (green)

and real charge qBBmP

√
α to MBB (red) of a BB as a function of the

size-to-mass ratio 0 ≤ k ≤ 10. The mass MiBB is imaginary for

k ⪅ 6.79. The charge qBB is real for k ≥ 2.

Furthermore, using the relation (24), from (76) we obtain

the relation between real and imaginary BH energies EBHi =
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±iEBH, which are equal in modulus. In general, the relation

(76) relates BBO energies as

E2
BBIi = E2

BB













α4

α4
2

(

k2

4
− 1

)

− k2

4













. (78)

The maximum STM bound kmax (77) sets the bounds on the

BB energy (50), mass, and radius (47)

RBH =
2GMBB

c2
≤ RBB ≤

kmaxGMBB

c2
. (79)

In particular, using the relations (44), 2mBB ≤ rBB ≤ kmaxmBB

or rBB/kmax ≤ mBB ≤ rBB/2.

Furthermore, the relations (65) and (77) expresed in terms

of the generalized radius (47) k = dBB/(2mBB) set the bound

on the BB minimum mass if |EMQi
|2 = |EQMi

|2

mBB > max



















qBB

√

α













α4

α4
2

− 1













,
dBB

4

√

1 −
α4

2

α4



















, (80)

where

q2
BBα =

d2
BB

16

α4
2

α4
(81)

defines a condition in which neither qBB nor dBB can be fur-

ther increased to reach its counterpart (defined, respectively,

by dBB and qBB) in the bound (80). Thus, for example, 1-bit

BB (dBB = 1/
√
π) corresponds to qBB > 1.5780, π-bit BB

(dBB = 1) corresponds to qBB > 2.7969, while the conjectured

heaviest element with atomic number qBB (66) corresponds to

dBB = ±
8π

√

1 − α
4
2

α4

≈ ±85.3666. (82)

In the case of a BB, we obtain the equality of all three com-

plex energies (53)-(55) substituting A = mBBk/2 from (47)

into the relation (69) and comparing this with (67). This yields

keq = 2

√

1 +
α4

2

α4
≈ 2.7665, (83)

at which all three energies are equal. The equilibrium keq (83)

and the maximum kmax (77) STMa satisfy k2
eq + 16/k2

max = 8.

The BB in the energy equilibrium keq bearing the elemen-

tary charge (q2 = 1) would have mass MBBeq
≈ ±1.9455 ×

10−9 [kg], imaginary mass MiBBeq
≈ ±i1.7768 × 10−9 [kg],

wavelength λBBeq
≈ ±1.1361×10−33 [m], and imaginary wave-

length λiBBeq
≈ ±i1.2160 × 10−33 [m]. On the other hand, the

relation (74) provides the charge of the BB in equilibrium (69)

as qBB(keq) ≈ 11.1874 mBB and the limit of the BB charge

qBB(kmax) ≈ 37.9995 mBB

We note that BBs with STMs 2 ≤ k ≤ 3 are referred to in

state of the art as ultracompact [73], where k = 3 is a photon

sphere radius9. Any object that undergoes complete gravi-

tational collapse passes through an ultracompact stage [74],

where k < 3. Collapse can be approached by gradual accre-

tion, increasing the mass to the maximum stable value, or by

loss of angular momentum [74]. During the loss of angular

momentum, the star passes through a sequence of increasingly

compact configurations until it finally collapses to become a

black hole. It was also pointed out [75] that for a neutron star

of constant density, the pressure at the center would become

infinite if k = 2.25, a radius of the maximal sustainable density

for gravitating spherical matter given by Buchdahl’s theorem.

It was shown [76] that this limit applies to any well-behaved

spherical star where density increases monotonically with ra-

dius. Furthermore, some observers would measure a locally

negative energy density if k < 2.6(6) thus breaking the domi-

nant energy condition, although this may be allowed [77]. As

the surface gravity grows, photons from further behind the NS

become visible. At k ≈ 3.52 the whole NS surface becomes

visible [78]. The relative increase in brightness between the

maximum and minimum of a light curve are greater in the case

of k < 3 than in the case of k > 3 [78]. Therefore the equi-

librium STM ratio keq ≈ 2.7665 (83) is well within the range

of radii of ultracompact objects researched in state-of-the-art

within the framework of GR.

However, aside from the Schwarzschild radius, derivable

from escape velocity v2
esc = 2GM/R of mass M by setting

v2
esc = c2, and discovered in 1783 by John Michell [79], all the

remaining significant radii of GR are only approximations10.

GR neglects the value of the fine-structure constants α and α2,

which, similarly to π or the base of the natural logarithm, are

the fundamental constants of nature.

VI. BB MERGERS

As the entropy (Boltzmann, Gibbs, Shannon, von Neu-

mann) of independent systems is additive, a merger of BB1

and BB2 having entropies11 (46) S 1 =
1
4
kBN1 and S 2 =

1
4
kBπd

2
2
, produces a BBC having entropy

S 1 + S 2 = S C ⇔ d2
1 + d2

2 = d2
C , (84)

which shows that the resultant information capacity is the

sum of the information capacities of the merging compo-

nents. Thus, a merger of two primordial BHs, each having

the Planck length diameter, the reduced Planck temperature
TP

2π
(the largest physically significant temperature [12]), and

no tangential acceleration aLL [5, 12], produces a BH having

dBH = ±
√

2 which represents the minimum BH diameter al-

lowing for the notion of time [12]. In comparison, a collision

9 At which, according to an accepted photon sphere definition, the strength

of gravity forces photons to travel in orbits. The author wonders why the

photons would not travel in orbits at a radius R = GM/c2 corresponding to

the orbital velocity v2
orb
= GM/R of mass M. Obviously, photons do not

travel.
10 One may find constructive criticism of GR in [80–86].
11 We drop the HS subscripts in this section for clarity.
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of the latter two BHs produces a BH having dBH = ±2 having

the triangulation defining only one precise diameter between

its poles (cf. [5] Fig. 3(b)), which is also recovered from HUP

(cf. Appendix E).

Substituting the generalized diameter (47) into the entropy

relation (84) establishes a Pythagorean relation between the

generalized energies (50) of the merging components and the

merger

k2
C

4
m2

C =
k2

1

4
m2

1 +
k2

2

4
m2

2, ∀mk ∈ {R, I}. (85)

It is accepted that gravitational events’ observations alone

allow measuring the masses of the merging components, set-

ting a lower limit on their compactness, but it does not ex-

clude mergers more compact than neutron stars, such as quark

stars, BHs, or more exotic objects [87]. We note in passing

that describing the registered gravitational events as waves is

misleading - normal modulation of the gravitational potential,

registered by LIGO and Virgo interferometers, and caused by

rotating (in the merger case, inspiral) objects, is wrongly in-

terpreted as a gravitational wave understood as a carrier of

gravity [88]. Furthermore, it has been hinted that outside GR,

merging BHs may differ from their GR counterparts [89].

The accepted value of the Chandrasekhar WD mass limit,

which prevents its collapse into a denser form, is MCh ≈
1.4 M⊙ [90] and the accepted value of the analogous Tol-

man–Oppenheimer–Volkoff NS mass limit is MTOV ≈ 2.9 M⊙
[91, 92]. There is no accepted value of the BH mass limit.

The conjectured value is 5 × 1010 M⊙ ≈ 9.95 × 1040 kg. We

note in passing that a BH with a surface gravity equal to the

Earth’s surface gravity (9.81 m/s2) would require a diameter

of DBH ≈ 9.16 × 1015 m (slightly less than one light year) [5]

and mass MBH ≈ 3.08 × 1042 kg exceeding the conjectured

limit. The masses of most registered merging components go

well beyond MTOV. Of those that do not, most of the total

or final masses exceed this limit. Therefore, these mergers

are classified as BH mergers. Only a few are classified oth-

erwise, including GW170817, GW190425, GW200105, and

GW200115, listed in Table I.

Table I. Selected BB mergers discovered with LIGO and Virgo.

Masses in M⊙.

Event M1 M2 MC k1 k2 kC

GW170817 1.46+0.12
−0.10

1.27+0.09
−0.09

2.8 4.39 4.39 3.03

GW190425 2.00+0.6
−0.2

1.4+0.3
−0.3

3.4+0.3
−0.1

4.39 4.39 3.15

GW200105 8.9+1.2
−1.5

1.9+0.3
−0.2

10.9+1.1
−1.2

2.76 4.39 2.38

GW200115 5.7+1.8
−2.1

1.5+0.7
−0.3

7.1+1.5
−1.4

3 4.39 2.64

The relation (85) explains the measurements of large

masses of the BB mergers with at least one charged merg-

ing component without resorting to any hypothetical types

of exotic stellar objects such as quark stars. Interferometric

data, available online at the Gravitational Wave Open Science

Center (GWOSC) portal12, indicates that the total mass of a

12 https://www.gw-openscience.org/eventapi/html/allevents

merger is the sum of the masses of the merging components.

Thus

mC = m1 + m2,

m2
C = m2

1 + m2
2 + 2m1m2,

m2
C

{

≥ m2
1
+ m2

2
if m1m2 ≥ 0

≤ m2
1
+ m2

2
if m1m2 ≤ 0

.

(86)

We can use the squared moduli |EMQi
|2, |EQMi

|2, and |EMMi
|2

to derive some information about the merger from the relation

(85). We shall initially assume mk ≥ 0 ⇒ m1m2 ≥ 0, since

negative masses, similar to negative lengths, and their prod-

ucts with positive ones, are (in general [21]) inaccessible for

direct observation, unlike charges. |EMQi
|2 with the first in-

equality (86) yields

|EMQi
|2C = |EMQi

|21 + |EMQi
|22,

m2
C = m2

1 + m2
2 + (q2

1 + q2
2)α − q2

Cα ≥ m2
1 + m2

2,

q2
C ≤ q2

1 + q2
2,

(87)

On the other hand, |EQMi
|2 with the inequality (87) lead to

(α2 < 0), so the direction of the inequality is reversed)

q2
C ≤ q2

1 + q2
2 ⇒ m2

iC ≥ m2
i1 + m2

i2. (88)

But |EMMi
|2 with the first inequality (86) lead to

m2
C ≥ m2

1 + m2
2 ⇒ m2

iC ≤ m2
i1 + m2

i2, (89)

contradicting the inequality (88) (α5
2
< 0), while |EMMi

|2 with

the inequality (88) lead to

m2
iC ≥ m2

i1 + m2
i2 ⇒ m2

C ≤ m2
1 + m2

2, (90)

contradicting the first inequality (86) and consistent with the

second inequality (86) introducing the product of positive and

negative masses. |EQMi
|2 with the inequality (89) yields

m2
iC ≤ m2

i1 + m2
i2 ⇒ q2

C ≥ q2
1 + q2

2, (91)

contradicting the inequality (88) and so on.

The additivity of the entropy (84) of statistically indepen-

dent merging BBs, both in global thermodynamic equilib-

rium, defined by their generalized radii (47), introduces the

energy relation (85). This relation, equality of charges in real

and imaginary dimensions (16), and the BB complex ener-

gies (58)-(60) induce imaginary, negative, and mixed masses

during the merger. Thus, the BB merger spreads in all di-

mensions, not only observable ones, as a gravitational event

associated with a fast radio burst (FRB) event, as reported

[93] based on the gravitational event GW1904251 and the

FRB 20190425A event13. Furthermore, IXPE14 observations

show that the detected polarized X-rays from 4U 0142+61

13 Data available online at the Canadian Hydrogen Intensity Mapping Exper-

iment (CHIME) portal (https://www.chime-frb.ca/catalog).
14 X-ray Polarimetry Explorer (https://ixpe.msfc.nasa.gov).
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pulsar exhibit a 90◦ linear polarization swing from low to

high photon energies [94]. In addition, direct evidence for a

magnetic field strength reversal based on the observed sign

change and extreme variation of FRB 20190520B’s rota-

tion measure, which changed from ∼ 10000 [rad · m−2] to

∼ −16000 [rad · m−2] between June 2021 and January 2022

has been reported [95]; such extreme rotation measure rever-

sal has never been observed before in any FRB or any astro-

nomical object.

In the observable dimensions during the merger, the STM

ratio kC decreases, making the BBC denser until it becomes a

BH for kC = 2 and no further charge reduction is possible (cf.

Fig 2). From the relation (85) and the first inequality (86) we

see that this holds for

k2
C

(

M2
1 + M2

2

)

≤ k2
1 M2

1 + k2
2 M2

2 . (92)

For two merging BHs k1 = k2 = 2 and the relation (92) yields

k2
C
≤ 4⇒ kC = 2 = kBHC

.

Table I lists the mass-to-size ratios kBBC
calculated accord-

ing to the relation (85) that provide the measured mass MBBC

of the merger and satisfy the inequality (92). The mass-to-size

ratios kBB1
and kBB2

of the merging components were arbitrar-

ily selected on the basis of their masses, taking into account

the limit of mass MTOV of the NS.

VII. BB FLUCTUATIONS

A relation [96] (p.160) describing a BH information capac-

ity, having an initial information capacity15 N j = 4πR2
j
/ℓ2

P
,

after absorption of a particle having the Compton wavelength

equal to the BH radius R j

NA
j+1 = 64π3

ℓ2
P

R2
j

+ 32π2 + 4π
R2

j

ℓ2
P

, (93)

was subsequently generalized [5] (Eq. (18)) to all Compton

wavelengths λ = lℓP =
2π
m
ℓP (or frequencies ν = c/λ = 1/(ltP))

and thus to all radiated Compton energies E = mEP, m ∈ R
absorbed (+) or emitted (−) by a BH as

N
A/E

j+1
(m) = 16πm2 ± 8πdm + πd2. (94)

The relation (94) can be further generalized, using the gen-

eralized diameter d = 2km̂ (47), to all BBs as

∆NA/E
≔ N

A/E

j+1
(k,m) − N j = 16πm (m ± km̂) , (95)

where m̂ represents the BB mass, and its roots are

mA/E = {0,∓km̂} =
{

0,∓d

2

}

= {0,∓r}, (96)

where it vanishes. Thus, in general, a BB changes its infor-

15 We drop the HS subscripts in this section for clarity.

−3 −2 −1 0 1 2 3
−60

−40

−20

0
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40
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m

∆
N

Figure 3. BB information capacity variations ∆N after absorption

(red) or emission (green) of energy m (k = 2, m̂ = 1).

mation capacity by

∆NA























> 0 m ∈ (−∞,−km̂) ∩ (0,∞)

= 0 m = {−km̂, 0}
< 0 m ∈ (−km̂, 0)

,

∆NE























> 0 m ∈ (−∞, 0) ∩ (km̂,∞)

= 0 m = {0, km̂}
< 0 m ∈ (0, km̂)

,

(97)

absorbing or emitting energy m with min (∆N) = −4πk2m̂2 at

m = ±km̂/2, as shown in Fig. 3. The relation (97) shows

that, depending on its mass m̂, a BB can expand or contract

by emitting or absorbing energy m [5]. However, expansion

by emission (∆NE > 0), for example, requires energy m >

km̂ exceeding the mass-energy equivalence of BB for k > 2,

which is consistent with the results presented in Section V.

Furthermore, kBπm
2 = kBπ

d
4
= 1

4
kBN = S (96) cor-

responds to the BB entropy (46). Thus, the entropic work

of BB, the product of entropy and temperature [12] Eavg =

kBπm
2 · TP/(2πd) = m̂EP/2, leads to m = ±

√
2km̂. We note,

that the entropic work of a BB satisfies km̂ ≥
√

2km̂ for k ≥ 2.

VIII. BB COMPLEX GRAVITY AND TEMPERATURE

Coulomb’s force FC between two charges is positive or neg-

ative, depending on the sign and type (real or imaginary) of

the charges, as summarized below in the case of some real

distance separating the charges

q1q2 > 0 q1q2 < 0

Qk = qke FC > 0 FC < 0

Qk = iqke FC < 0 FC > 0

(98)

Newton’s law of universal gravitation is also positive or nega-

tive, depending on the sign and type of masses, as summarized
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below

m∗1m∗2 > 0 m∗1m∗2 < 0

Mk = mkmP FG > 0 FG < 0

Mik = mikmPi F2G < 0 F2G > 0

(99)

In the case of an imaginary distance, the signs of the inequal-

ities are opposite. We do not consider mixed real or imag-

inary radii and mixed forces (based on real and imaginary

masses/charges) as the real and imaginary dimensions are or-

thogonal.

Complex energies (53)-(55) define complex forces (simi-

larly to the complex energy of real masses and charges (51),

[71] Eq. (7)) acting over real and imaginary distances R,Ri.

Using the relations (44), we obtain the following products

E1mqi
E2mqi

≔ E1MQi
E2MQi

/E2
P =

= m1m2 − q1q2α + i
√
α(m1q2 + m2q1),

(100)

E1qmi
E2qmi

≔ E1QMi
E2QMi

/E2
P =

=
α4

α4
2

(

αq1q2 +
α

α2

mi1mi2 +

√

α

α2

√
α (q1mi2 + q2mi1)

)

,

(101)

E1mmi
E2mmi

≔ E1MMi
E2MMi

/E2
P

= m1m2 +
α

α2

mi1mi2 +

√

α5

α5
2

(m1mi2 + m2mi1) ,
(102)

defining three complex forces acting over a real distance R

FABi
=

G

c4R2
E1ABi

E2ABi
=

FP

r2
E1abi

E2abi
, (103)

and three complex forces acting over an imaginary distance Ri

F̃ABi
=

G

c4
2
R2

i

E1ABi
E2ABi

=
α2

α

FP

r2
i

E1abi
E2abi
, (104)

where A, B ∈ {M,Q} and a, b ∈ {m, q}, and

α2r2FABi
= αr2

i F̃ABi
. (105)

With a further simplifying assumption of r2 = r2
i
, the forces

acting on a real distance R are stronger and opposite to the

corresponding forces acting on an imaginary distance Ri even

though the Planck force is lower than the α2-Planck force (37).

This is a strong assumption, but seemingly correct. The gen-

eral radius (47) and energy (50) are the same in Planck units

and in α2-Planck units; STM remains the same.

In particular, we can use the complex force FMQi
(103) with

(100) (i.e., complex Newton’s law of universal gravitation) to

calculate the BB surface gravity gBB, assuming an uncharged

(q2 = 0) test mass m2 and comparing this force with Newton’s

2nd law of motion

FP

r2
BB

(

mBBm2 + i
√
αm2qBB

)

=

= M2gBB = m2mPĝBBaP,

ĝBB =
1

r2
BB

(

mBB + i
√
αqBB

)

,

(106)

where gBB = ĝBBaP, ĝBB ∈ R. Substituting the BB equilibrium

relation (74) and mass taken from the generalized BB radius

(47) rBB = kmBB into the relation (106) yields

ĝBB =
1

krBB















1 ± i

√

k2

4
− 1















, (107)

which reduces to BH surface gravity for k = 2 and in modulus

ĝ2
BB =

1

k2r2
BB















1 + i

√

k2

4
− 1





























1 − i

√

k2

4
− 1















=
1

4r2
BB

.

(108)

for all k. In particular,

gBB(kmax) = ± aP

dBB

(0.2944 ± 0.9557i) , (109)

gBB(keq) = ± aP

dBB

(0.7229 ± 0.6909i) . (110)

The BB surface gravity (107) leads to the generalized com-

plex Hawking blackbody-radiation equation

TBB =
ℏ

2πckB

gBB =
TP

kπdBB















1 ± i

√

k2

4
− 1















, (111)

describing the BB temperature16 by including its charge in

the imaginary part, which also in modulus equals squared BH

temperature ∀k , 0.

In particular,

TBB(kmax) = ± TP

2πdBB

























√

α4 − α4
2

α2
± i
α2

2

α2

























,

= ± TP

2π3dBB

(√

π4 − π4
1
± iπ2

1

)

,

= ± TP

2ππ2
2
dBB

(√

π4
2
− π4 ± iπ2

)

,

(112)

TBB(keq) = ± TP

2πdBB

α2 ± iα2
2

√

α4 + α4
2

,

= ± TP

2πdBB

π2 ± iπ2
1

√

π4 + π4
1

= ± TP

2πdBB

π2
2
± iπ2

√

π4
2
+ π4

,

(113)

reduce to the BH temperature for α2 = 0. We note that for

dBB = 1, Re(TBB(kmax)) ≈ 6.6387 × 1030 [K] has the magni-

tude of the Hagedorn temperature of strings, while TP/(2π) ≈
2.2549 × 1031 [K]. It seems, therefore, that a universe with-

out α2-imaginary dimensions (i.e., with α2 = 0) would be a

black hole. Hence, the evolution of information [1–6] requires

imaginary time. And we cannot zero α2 as we would have to

neglect the existence of graphene.

16 In a commonly used form it is TBB =
ℏc3

2k2πGMBBkB

(

1 ± i

√

k2

4
− 1

)

.
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IX. DISCUSSION

The reflectance of graphene under the normal incidence

of electromagnetic radiation expressed as the quadratic equa-

tion for the fine-structure constant α includes the 2nd neg-

ative fine-structure constant α2. The sum of the reciprocal

of this 2nd fine-structure constant α2 with the reciprocal of

the fine-structure constant α (2) is independent of the re-

flectance value R and is remarkably equal to simply −π. The

particular algebraic definition of the fine-structure constant

α−1 = 4π3 + π2 + π, containing the free π term, can be inter-

preted as the asymptote of the CODATA value α−1, the value

of which varies with time. The negative fine-structure con-

stant α2 leads to the α2-Planck units applicable to imaginary

dimensions, including imaginary α2-Planck units (26)-(34).

Furthermore, the elementary charge e is common for real and

imaginary dimensions (16).

Applying α2 Planck units to a complex energy formula [71]

yields complex energies (53), (54) setting the atomic number

Z = 238 as the limit on an extended periodic table. The gen-

eralized energy (50) of all perfect black-body objects (black

holes, neutron stars and white dwarfs) having the general-

ized radius RBB = kRBH/2 exceeds the mass-energy equiva-

lence if k > 2. The complex energies (53)-(55) allow storing

the excess of this energy in their imaginary parts. The re-

sults show that the perfect black-body objects other than black

holes cannot have masses lower than 5.7275 × 10−10 [kg] and

that kmax ≈ 6.7933 k ≤ 6.7933 defined by the relation (77). In

addition, it is shown that a black-body object is in the equi-

librium of complex energies if its radius Req ≈ 1.3833 RBH

(83). The proposed model explains the registered (GWOSC)

high masses of the neutron star mergers without resorting to

any hypothetical types of exotic stellar objects.

In the context of the results of this study, monolayer

graphene, a truly 2-dimensional material with no thickness17,

is a keyhole to other, unperceivable dimensionalities. The

history of graphene is also instructive. Discovered in 1947

[98], graphene was long considered an academic material un-

til it was eventually pulled from graphite in 2004 [99] by

means of ordinary Scotch tape18. These fifty-seven years,

along with twenty-nine years (1935-1964) between the con-

demnation of quantum theory as incomplete [100] and Bell’s

mathematical theorem [101] asserting that it is not true, and

the fifty-eight years (1964-2022) between the formulation of

this theorem and 2022 Nobel Prize in Physics for its experi-

mental loophole-free confirmation, should remind us that Max

Planck, the genius who discovered Planck units, has also dis-

covered Planck’s principle.

17 Thickness of MLG is reported [97] as 0.37 [nm] with other reported values

up to 1.7 [nm]. However, considering that 0.335 [nm] is the established

inter-layer distance and consequently the thickness of bilayer graphene,

these results do not seem credible: the thickness of bilayer graphene is not

2 × 0.37 + 0.335 = 1.075 [nm].
18 Introduced into the market in 1932.
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Appendix A: Abbreviations

The following abbreviations are used in this paper:
ED emergent dimensionality

EMR electromagnetic radiation

MLG monolayer graphene

T transmittance

R reflectance

A absorptance

HUP Heisenberg’s uncertainty principle

DOF degree of freedom

BH black hole

NS neutron star

WD white dwarf

BB black-body object

HS holographic sphere

STM size-to-mass ratio

GR general relativity

Appendix B: Other quadratic equations

The quadratic equation for the sum of transmittance (3) and

absorptance (5) of MLG under normal incidence of EMR,

putting CTA ≔ T + A, is

1

4
CTAπ

2α2 + (CTA − 1) πα + (CTA − 1) = 0, (B1)

and has two roots with reciprocals

α−1 =
CTAπ

2
(

1 −CTA +
√

1 −CTA

) ≈ 137.036, (B2)

and

α−1
2 =

CTAπ

2
(

1 −CTA −
√

1 −CTA

) ≈ −140.178, (B3)

whereas their sum α−1 + α−1
2
= −π is, similarly as the relation

(11), also independent of T and A.

Other quadratic equations do not feature this property. For

example, the sum of T+R (6) expressed as the quadratic equa-

tion and putting CTR ≔ T + R, is

1

4
(CTR − 1) π2α2 +CTRπα + (CTR − 1) = 0, (B4)
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and has two roots with reciprocals

α−1 =
π(CTR − 1)

−2CTR + 2
√

2CTR − 1
≈ 137.036, (B5)

and

α−1
TR =

π(CTR − 1)

−2CTR − 2
√

2CTR − 1
≈ 0.0180, (B6)

whereas their sum

α−1
TR1
+ α−1

TR2
=
−πCTR

CTR − 1
≈ 137.054 (B7)

is dependent on T and R.

Appendix C: Two π-like constants

With algebraic definitions of α (12) and α2 (13), T (3), R

(4) and A (5) of MLG for normal EMR incidence can be ex-

pressed just by π. For α−1 = 4π3 + π2 + π (12) they become

T (α) =
4
(

4π2 + π + 1
)2

(

8π2 + 2π + 3
)2
≈ 0.9775, (C1)

A (α) =
4
(

4π2 + π + 1
)

(

8π2 + 2π + 3
)2
≈ 0.0224, (C2)

while for α−1
2
= −4π3 − π2 − 2π (13) they become

T (α2) =
4
(

4π2 + π + 2
)2

(

8π2 + 2π + 3
)2
≈ 1.0228, (C3)

A (α2) = −
4
(

4π2 + π + 2
)

(

8π2 + 2π + 3
)2
≈ −0.0229, (C4)

with

R (α) = R (α2) =
1

(

8π2 + 2π + 3
)2
≈ 1.2843 × 10−4. (C5)

(T(α)+A(α))+R(α) = (T(α2)+A(α2))+R(α2) = 1 as required

by the law of conservation of energy (7), whereas each conser-

vation law is associated with a certain symmetry, as asserted

by Noether’s theorem. A(α) > 0 and A(α2) < 0 imply a sink

and a source respectively, while the opposite holds true for T,

as illustrated schematically in Fig 4. Perhaps, the negative A

and T exceeding 100% for α2 (10) or (13) could be explained

in terms of spontaneous graphene emission.

The quadratic equation (8) describing the reflectance R of

MLG under the normal incidence of EMR (or alternatively

(B1)) can also be solved for π yielding two roots

π(R, α∗)1 =
2
√

R

α∗(1 −
√

R)
, and (C6)

π(R, α∗)2 =
−2
√

R

α∗(1 +
√

R)
, (C7)

dependent on R and α∗, where α∗ indicates α or α2. This can

be further evaluated using the MLG reflectance R (4) or (C5)

(which is the same for both α and α2), yielding four, yet only

three distinct possibilities

π1 = π(α)1 = −π
4π2 + π + 1

4π2 + π + 2
= π
α2

α
≈ −3.0712, (C8)

π(α)2 = π(α2)1 = π ≈ 3.1416, and (C9)

π2 = π(α2)2 = −π
4π2 + π + 2

4π2 + π + 1
= π
α

α2

≈ −3.2136. (C10)

The modulus of π1 (C8) corresponds to a convex surface

T( ) < 1α

A( ) > 0α

T( ) > 1α2

A( ) < 0α2

Figure 4. Illustration of the concepts of negative absorptance and

excessive transmittance of EMR under normal incidence on MLG.

having a positive Gaussian curvature, whereas the modulus

of π2 (C10) - to a negative Gaussian curvature. The product

π1π2 = π
2 is independent of α∗, their quotient π1/π2 = α

2
2
/α2

is not directly dependent of π, and |π1 − π| , |π − π2|. It re-

mains to be found whether each of these π-like constants de-

scribes the ratio of the circumference of a circle drawn on the

respective surface to its diameter (πc) or the ratio of the area

of this circle to the square of its radius (πa). These definitions

produce different results on curved surfaces, whereas πa > πc

on convex surfaces, while πa < πc on saddle surfaces [104].

Appendix D: Why α-space is better for biological evolution?

The probability of two nuclear particles a and b to undergo

nuclear fusion by overcoming their electrostatic barriers is
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given by Gamow–Sommerfeld factor

p(E) = e
−

√

EG
E , (D1)

where

EG ≔ 2
mamb

ma + mb

EP(παZaZb)2 (D2)

is the Gamow energy, ma, mb are masses of those particles

in terms of α- or α2-Planck units (44) and Za, Zb are their

respective atomic numbers.

Since (πα)2 ≈ 5.2557 × 10−4 is larger than (πα2)2 ≈
5.0227 × 10−4, the probability (D1) is higher for the same

dimensionless parameters m∗, Z∗. Therefore, perceivable α-

space yields more favorable conditions for the evolution of

information (by nuclear fusion) than nonperceivable α2-space.

Furthermore, the α2-Planck energy EPi and temperature TPi

are higher than the Planck energy EP and temperature TP.

Therefore, perceivable α-space yields more favorable condi-

tions for the evolution of information, also due to the mini-

mum energy principle.

The relations (93)-(95) are remarkably similar to the alge-

braic definitions of the inverses of α (12) and α2 (13) also

containing π3, π2, and π terms. Thus, two alphas between

α−1 ≈ 137.0363 and α−1
2
≈ −140.1779 hinted by the relations

(12), (13), and (93)-(95)

α̃−1 = 4π3 − π2 + π ≈ 117.2971,

α̃2
−1 = −4π3 + π2 − 2π ≈ −120.4387,

(D3)

seem intriguing, taking into account the reports that α−1 low-

ers in modulus to 128.5± 2.5 with energy (or distance) as one

probes close to the electron [38].

An open question is why we perceive the R3 × I Euclidean

space rather than the I3 × R Euclidean one.

Appendix E: Planck units and HUP

Perhaps the simplest derivation of the squared Planck

length is based on HUP

δPHUPδRHUP ≥
ℏ

2
or δEHUPδtHUP ≥

ℏ

2
, (E1)

where δPHUP, δRHUP, δEHUP, and δtHUP denote momentum,

position, energy, and time uncertainties, by replacing energy

uncertainty δEHUP = δMHUPc2 with mass uncertainty using

mass-energy equivalence, and time uncertainty with position

uncertainty using δtHUP = δRHUP/c [37], which yields

δMHUPδRHUP ≥
ℏ

2c
. (E2)

Interpreting δMHUP = δRHUPc2/(2G) as the BH mass in (E2)

we derive the Planck length as δR2
HUP
= ℓ2

P
⇒ δDHUP = ±2ℓP

and recover [5] the BH diameter dBH = ±2.

However, using the same procedure but inserting the BH

radius, instead of the BH mass, into the uncertainty principle

(E2) leads to δM2
HUP
= 1

4
ℏc/G = 1

4
m2

P
. In general, using the

generalized radius (47) in both procedures, one obtains

δM2
HUP =

1

2k
m2

P and δR2
HUP =

k

2
ℓ2P. (E3)

Thus, if k increases mass δMHUP decreases, and δRHUP in-

creases and the factor is the same for k = 1 i.e., for or-

bital speed radius δR = GδM/c2 or the orbital speed mass

δM = δRc2/G.

Appendix F: The Stoney units derivation

We assume that the elementary charge is the unit of charge

qS = e and that the speed of light is the quotient of the unit

of length and time c = lS/tS. Next, we compare the Coulomb

force between two elementary charges and units of masses mS

with Newton’s law of gravity, acting over the same distance

1

4πϵ0

e2

��R
2
= G

m2
S

��R
2
⇒ mS = ±

√

e2

4πϵ0G
. (F1)

Finally, we compare the inertial force of the unit of mass with

Newton’s law of gravity

✟✟mS

ℓS

t2
S

= G
m✄2

S

ℓ2
S

⇒ ℓS = ±

√

Ge2

4πϵ0c4
, (F2)

to derive the Stoney length ℓS and the remaining Stoney units.

Using the negative c2 (20) we can determine the values of

c2-Stoney units (Sn). For mass, length, time, and energy they

are

mSn = mS =
√
αmP ≈ 0.0854mP,

ℓSn =
α2

2

α2
ℓS ≈ 0.9557lS ≈ 0.0816lP,

tSn =
α3

2

α3
tS ≈ −0.9343tS ≈ −0.0798tP,

ESn = mSc2
2 =
α2

α2
2

ES ≈ 1.0464ES ≈ 0.0894EP.

(F3)

We note that the c2-Stoney energy induced by c2 is greater

than the Stoney energy and the c2-Stoney time runs in the op-

posite direction. We also note that the negative value of the

gravitational constant G would yield imaginary Stoney units

regardless of the sign of c, as all Stoney units (except charge)

contain c raised to even (4, 6) powers.

Appendix G: Hall effect

The fractional quantum Hall (FQHE) effect shows a step-

wise dependence of the conductance on the magnetic field (as

compared to a linear dependence of the Hall effect) with steps

quantized as

R =
h

νe2
=

2✁π✁ℏ

να4✁πϵ0✁ℏc
=

1

2νϵ0αc
=

1

2νϵ0α2c2

, (G1)
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where ν is an integer or fraction (for example, for ν = 5/2, R =

1/(5ϵ0αc)). Relations (G1) and (24) suggest that 2D FQHE

links real and imaginary dimensions similarly to 2D graphene,

giving us the second negative fine-structure constant α2.
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