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Maxwell’s Equations in vacuum provide the negative speed of light −c, which leads to the imaginary set of
base Planck units. However, the second, negative fine-structure constant α−1

2 ≈ −140.178, present in Fresnel
coefficients for the normal incidence of electromagnetic radiation on monolayer graphene, establishes the dif-
ferent negative speed of light in vacuum cn ≈ −3.06 × 108 [m/s], which introduces the imaginary set of base
Planck units different in magnitude from the ones parametrized with c. It follows that electric charges are the
same in real and imaginary dimensions. We model neutron stars and white dwarfs, emitting perfect black-body
radiation, as objects having energy exceeding their mass-energy equivalence ratios. We define complex energies
in terms of real and imaginary natural units. Their imaginary parts, inaccessible for direct observation, store the
excess of these energies. It follows that black holes are fundamentally uncharged, charged micro neutron stars
and white dwarfs with masses lower than 5.7275×10−10 [kg] are inaccessible for direct observation, and the radii
of white dwarfs’ cores are limited to RWD < 3.3967 RBH, where RBH is the Schwarzschild radius of a white dwarf
mass. It is conjectured that the maximum atomic number Z = 238. A black-body object is in the equilibrium
of complex mass, charge, and Compton energies if its radius Req ≈ 1.3833 RBH, which is close to the photon
sphere radius Rps = 1.5 RBH, and marginally greater than a locally negative energy density bound of 4/3 RBH.
Complex Newton’s law of universal gravitation, based on complex energies, leads to the black-body object’s
surface gravity and the generalized Hawking radiation temperature, which includes its charge. The proposed
model takes into account the value(s) of the fine-structure constant(s), which is/are otherwise neglected in gen-
eral relativity, and explains the registered (GWOSC) high masses of neutron stars’ mergers and the associated
fast radio bursts (CHIME) without resorting to any hypothetical types of exotic stellar objects.
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I. INTRODUCTION

The universe began with the Big Bang, which is a current
prevailing scientific opinion. But this Big Bang was not an
explosion of 4-dimensional spacetime, which also is a current
prevailing scientific opinion, but an explosion of dimensions.
More precisely, in the −1-dimensional void, a 0-dimensional
point appeared, inducing the appearance of countably in-
finitely other points indistinguishable from the first one. The
breach made by the first operation of the dimensional succes-
sor function of the Peano axioms inevitably continued leading
to the formation of 1-dimensional, real and imaginary lines al-
lowing for an ordering of points using multipliers of real units
(ones) or imaginary units (a ∈ R ⇔ a = 1b1, a ∈ I ⇔ a =
ib, b ∈ R). Then out of two lines of each kind, crossing each
other only at one initial point (0, 0), the dimensional succes-
sor function formed 2-dimensional R2, I2, and R× I Euclidean
planes, with I2 being a mirror reflection of R2. And so on,
forming n-dimensional Euclidean spaces Ra × Ib with a ∈ N
real and b ∈ N imaginary lines, n B a + b, and the scalar
product defined by

x · y =
(
x1, . . ., xa, ix′1, . . ., ix′b

) (
y1, . . ., ya, iy′1, . . ., iy′b

)
B

B
a∑

k=1

xkyk +

b∑
l=1

x′ly
′
l ,

(1)

∗ szymon@patent.pl
1 This is, of course, a circular definition. But it is given for clarity.

where x, y ∈ Ra × Ib. With the onset of the first 0-dimensional
point, information began to evolve [1–6].

However, dimensional properties are not uniform. Con-
cerning regular convex n-polytopes in natural dimensions, for
example, there are countably infinitely many regular convex
polygons, five regular convex polyhedra (Platonic solids), six
regular convex 4-polytopes, and only three regular convex n-
polytopes if n > 3 [7]. In particular, 4-dimensional Euclidean
space is endowed with a peculiar property known as exotic
R4 [8], absent in other dimensionalities. Thanks to this prop-
erty, R3 × I space provides a continuum of homeomorphic
but non-diffeomorphic differentiable structures. Each piece
of individually memorized information is homeomorphic to
the corresponding piece of individually perceived information
but remains non-diffeomorphic (non-smooth). This allowed
for variation of phenotypic traits within populations of indi-
viduals [9] and extended the evolution of information into
biological evolution. Exotic R4 solves the problem of extra
dimensions of nature and perceived space requires a natural
number of dimensions [10]. Each biological cell perceives
emergent space of three real and one imaginary (time) dimen-
sion observer-dependently [11] and at present, when i0 = 0
is real, through a spherical Planck triangle corresponding to
one bit of information in units of −c2, where c is the speed
of light in vacuum. This is the emergent dimensionality (ED)
[5, 9, 12–14].

Each dimension requires certain units of measure. In real
dimensions, the natural units of measure were derived by
Max Planck in 1899 as ”independent of special bodies or sub-
stances, thereby necessarily retaining their meaning for all
times and for all civilizations, including extraterrestrial and
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non-human ones” [15]. Planck units utilize the Planck con-
stant h that he introduced in his black-body radiation formula.
However, already in 1881, George Stoney derived a system of
natural units [16] based on the elementary charge e (Planck’s
constant was unknown at that time). The ratio of Stoney units
to Planck units is

√
α, where α is the fine-structure constant.

This study derives the complementary set of natural units ap-
plicable for imaginary dimensions, including the imaginary
units, based on the discovered negative fine-structure constant
α2 leading to the negative speed of light in vacuum cn greater
in modulus than the speed of light c. Thus, the imaginary
Planck energy EPi and temperature TPi are larger in moduli
than the Planck energy EP and temperature TP setting more fa-
vorable conditions for biological evolution to emerge in R3× I
Euclidean space than in I3 ×R Euclidean one due to the mini-
mum energy principle.

The study shows that the energies of neutron stars and white
dwarfs exceed their mass–energy equivalences and that excess
energy is stored in imaginary dimensions and is inaccessible
to direct observations. This corrects the value of the photon
sphere radius and results in the upper bound on the size-to-
mass ratio of their cores, where the Schwarzschild radius sets
the lower bound.

The paper is structured as follows. Section II shows that
Fresnel coefficients for the normal incidence of electromag-
netic radiation on monolayer graphene include the second,
negative fine-structure constant α2 as a fundamental constant
of nature. Section III shows that by this second fine-structure
constant nature endows us with the complementary set of α2-
natural units. Section IV introduces the concept of a black-
body object in thermodynamic equilibrium, emitting perfect
black-body radiation, and reviews its necessary properties.
Section V introduces complex mass, charge, and Compton en-
ergies expressed in terms of real and imaginary Planck units
introduced in Section III and discusses equilibria of their mod-
uli. Also, the equilibrium of all their moduli is applied to
black-body objects to derive the range of their size-to-mass
ratios and the equilibrium size-to-mass ratio. Section VI ap-
plies this range to the observed mergers of black-body ob-
jects to show that the observed data is explainable with no
need to introduce hypothetical exotic stellar objects. Section
VII discusses fluctuations of black-body objects. Section VIII
defines complex forces to derive a black-body object surface
gravity and the generalized Hawking radiation temperature.
Section IX summarizes the findings of this study. Certain
prospects for further research are given in the appendices.

II. THE SECOND FINE-STRUCTURE CONSTANT

Numerous publications provide Fresnel coefficients for the
normal incidence of electromagnetic radiation (EMR) on
monolayer graphene (MLG), which are remarkably defined
only by π and the fine-structure constant α

α−1 =

(qP

e

)2
=

4πϵ0ℏc
e2 ≈ 137.036, (2)

where qP is the Planck charge, ℏ is the reduced Planck con-
stant, ϵ0 ≈ 8.8542 × 10−12 [kg−1 · m−3 · s2 · C2] is vacuum
permittivity (the electric constant), and e is the elementary
charge. Transmittance (T) of MLG

T =
1(

1 + πα2
)2 ≈ 0.9775, (3)

for normal EMR incidence was derived from the Fresnel equa-
tion in the thin-film limit [17] (Eq. 3), whereas spectrally flat
absorptance (A) A ≈ πα ≈ 2.3% was reported [18, 19] for
photon energies between about 0.5 and 2.5 [eV]. T was re-
lated to reflectance (R) [20] (Eq. 53) as R = π2α2T/4, i.e,

R =
1
4π

2α2(
1 + πα2

)2 ≈ 1.2843 × 10−4, (4)

The above equations for T and R, as well as the equation for
the absorptance

A =
πα(

1 + πα2
)2 ≈ 0.0224, (5)

were also derived [21] (Eqs. 29-31) based on the thin film
model (setting ns = 1 for substrate). The sum of transmittance
(3) and the reflectance (4) at normal EMR incidence on MLG
was derived [22] (Eq. 4a) as

T + R = 1 −
4ση

4 + 4ση + σ2η2 + k2χ2 =

=
1 + 1

4π
2α2(

1 + πα2
)2 ≈ 0.9776,

(6)

where η ≈ 376.73 [Ω] is the vacuum impedance, σ =
e2/(4ℏ) = πα/η ≈ 6.0853 × 10−5 [Ω−1] is the MLG con-
ductivity [23], k is the wave vector of light in vacuum, and
χ = 0 is the electric susceptibility of vacuum. These coeffi-
cients are thus well-established theoretically and experimen-
tally confirmed [17–19, 22, 24, 25].

As a consequence of the conservation of energy

(T + A) + R = 1. (7)

In other words, the transmittance in the Fresnel equation de-
scribing the reflection and transmission of EMR at normal in-
cidence on a boundary between different optical media is, in
the case of the 2-dimensional (boundary) of MLG, modified
to include its absorption.

The reflectance R = 0.013% (4) of MLG can be expressed
as a quadratic equation with respect to α

R
(
1 +
πα

2

)2
−

1
4
π2α2 = 0⇔

⇔
1
4

(R − 1) π2α2 + Rπα + R = 0.
(8)

This quadratic equation (8) has two roots with reciprocals

α−1 =
π − π

√
R

2
√

R
≈ 137.036, and (9)
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α−1
2 =

−π − π
√

R

2
√

R
≈ −140.178. (10)

Therefore, the equation (8) includes the second, negative fine-
structure constant α2. It turns out that the sum of the recipro-
cals of these fine-structure constants (9) and (10)

α−1 + α−1
2 =

�π − π�
�
√

R − �π − π�
�
√

R

2��
√

R
=
−�2π

�2
= −π, (11)

is remarkably independent of the value of the reflectance R.
The same result can only be obtained for T+A (cf. Appendix
B). This result is intriguing in the context of a peculiar alge-
braic expression for the fine-structure constant [26]

α−1 = 4π3 + π2 + π ≈ 137.036303776 (12)

that contains a free π term and is very close to the physi-
cal definition (2) of α−1, which according to the CODATA
2018 value is 137.035999084. Notably, the value of the fine-
structure constant is not constant but increases with time [27–
31]. Thus, the algebraic value given by (12) can be interpreted
as the initial Big Bang geometric α−1.

Using relations (11) and (12), we can express the negative
reciprocal of the 2nd fine-structure constant α−1

2 that emerged
in the quadratic equation (8) also as a function of π only

α−1
2 = −π − α

−1
1 = −4π3 − π2 − 2π ≈ −140.177896429, (13)

and this value can also be interpreted as the initial α−1
2 , where

the current value would amount to α−1
2 ≈ −140.177591737,

assuming the rate of change is the same for α and α2.
The floor function of the inverse of the fine-structure con-

stant α represents the threshold on the atomic number (137) of
a hypothetical element feynmanium that, in the Bohr model of
the atom, still allows the 1s orbital electrons to travel slower
than the speed of light c. This raises the question of whether
the fine-structure constants’ inverses correspond to the num-
ber of bits. Furthermore, the fine-structure constant has been
reported as the quantum of rotation [32].

Using relations (12) and (13), T (3), R (4), and A (5) of
MLG for normal EMR incidence can be expressed just by π.
Moreover, equation (8) includes two π-like constants for two
surfaces with positive and negative Gaussian curvatures (cf.
Appendix C).

III. SET OF α2-PLANCK UNITS

In this section, we shall derive the complementary set of
α2-Planck units based on the second fine-structure constant
α2, which are mostly bivalued and imaginary. Real Planck
units are also bivalued with negative values provided by neg-
ative non-principal square roots. By choosing complex anal-
ysis, within the framework of ED, we enter into bivalence by
the very nature of this analysis (d = d2/2 =

√
d2 ?
= ±d) [14].

On the other hand, imaginary and negative physical quantities
are the subject of research. In particular, the subject of sci-
entific research is thermodynamics in the complex plane. For

example, Lee–Yang zeros [33, 34] and photon-photon thermo-
dynamic processes under negative optical temperature condi-
tions [35] have been experimentally observed. Nonetheless,
physical quantities accessible for direct, everyday observation
are mostly real and positive with the negativity of distances,
velocities, accelerations, etc., induced by the assumed orien-
tation of space.

Natural units can be derived from numerous starting points
[5, 36] (cf. Appendices D and E). The central assumption
in all systems of natural units is that the quotient of the unit
of length ℓ∗ and time t∗ is a unit of speed - let us call it c -
c = ℓ∗/t∗. It is the speed of light in vacuum c in all systems of
natural units, except for Hartree and Schrödinger units, where
it is cα, and Rydberg units, where it is cα/2. On the other
hand, c as the velocity of the electromagnetic wave is deriv-
able from Maxwell’s Equations in vacuum

∇2E = µ0ϵ0
∂2E
∂t2 ,

∂2E
∂x2 = µ0ϵ0

∂2E
∂t2 , (14)

where E is the electric field, ϵ0 is vacuum permittivity (the
electric constant) and µ0 is vacum permeability (the magnetic
constant). Without postulating any solution to this equation
but by simple substitution ∂x = ℓ∗ and ∂t = t∗, ∂2E = E∗
factors out, and we obtain well known

1 = µ0ϵ0c2, (15)

symmetric in its electric and magnetic parts [37] from which
the value of c2 can be obtained, knowing the values of µ0 and
ϵ0, yielding bivalued c = ±1/

√
µ0ϵ0. We note that it is c2,

not c, present in mass-energy equivalence, the Lorentz fac-
tor, the BH potential, etc. We further note that Maxwell’s
Equations in vacuum are not directly dependent on the fine-
structure constant(s). It is sewn into the magnetic constant µ0.

In the following, we assume the universality of the real el-
ementary electric charge e defining both matter and antimat-
ter, the Planck constant h, the uncertainty principle parameter,
and the gravitational constant G; i.e., we assume that there are
no counterparts to these physical constants in other physical
dimensions in our model. The last two assumptions are prob-
ably too far-reaching, given that we don’t need to know the
gravitational constant G, the Planck constant h, or the speed
of light c to find the product of the Planck length ℓP and the
speed of light c [38]. The fine-structure constant can be de-
fined as the quotient (2) of the squared (and thus positive) el-
ementary charge e and the squared (and thus also positive)
Planck charge, α = e2/q2

P. We chose Planck units over other
systems of natural units not only because they incorporate the
fine-structure constant α and the Planck constant h. Other sys-
tems of natural units (except for Stoney units) also incorporate
them. The reason is that only the Planck area defines one bit
of information on a patternless black hole surface given by the
Bekenstein bound (47) and the binary entropy variation [5].

To accommodate a negative fine-structure constant discov-
ered in the preceding section, we must introduce the imagi-
nary Planck charge qPi so that its square would yield a nega-
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tive value of α2.

q2
P =

e2

α
, q2

Pi =
e2

α2
⇒ qPi ∈ I,

e2 = q2
Pα = q2

Piα2.

(16)

Planck charge relation (16) and the charge conservation prin-
ciple imply that the elementary charge e is the same in real
and imaginary dimensions. Next, we note that an imaginary
qPi, that must have a physical definition analogous to qP, re-
quires either real and negative speed of light parameter or real
and negative electric constant. Let us call them cn and ϵ̃0

q2
P = 4πϵ0ℏc > 0 ⇎ q2

Pi = 4πϵ̃0ℏcn < 0. (17)

From this equation, we can find the value of the product
ϵ̃0cn < 0, as the values of the other constants are known.
Next, we assume that the solution (15) of Maxwell’s Equa-
tions in vacuum is valid also for other values of the constants
involved. Let us call the unknown magnetic constant µ2, so

µ0ϵ0c2 = µ2ϵ̃0c2
n = 1. (18)

From that and from ϵ̃0cn < 0, we conclude that also the prod-
uct µ2cn < 0. We note that the quotient of the squared Planck
charge and mass introduces the imaginary Planck mass mPi

q2
P

m2
P

=
q2

Pi

m2
Pi

= 4πϵ0G, (19)

the value of which can be calculated, knowing the value of
the imaginary Planck charge qPi from the relation (16). From
(19) we also conclude that ϵ̃0 = ϵ0 > 0 and then by (18) µ2 >
0. Finally, knowing mPi we can determine the value of the
negative, non-principal square root of cn = ±1/

√
µ2ϵ0 in (18)

as

cn =
q2

Pi

4πϵ0ℏ
≈ −3.066653 × 108 [m/s], (20)

which is greater than the speed of light in vacuum c in mod-
ulus2. Mass, length, time, and charge units can express all
electrical units. Therefore, along with temperature, they can
be considered base units. We further conclude that the mag-
netic constants are

µ0 =
4πℏα
ce2 ≈ 1.2569 × 10−6 [kg ·m · C−2],

µ2 =
4πℏα2

cne2 ≈ 1.2012 × 10−6 [kg ·m · C−2].
(21)

Contrary to the electric constant ϵ0, the magnetic constants µ
are time-independent. Furthermore, both α2 and cn lead to the
second, also time-dependent but negative vacuum impedance

η2 =
4πα2ℏ

e2 =
1
ϵ0cn

≈

≈ −368.29 [kg ·m2 · s−1 · C−2] (|η2| < |η|) .
(22)

2 Their average (c + cn)/2 ≈ −3.436417 × 106 [m/s] is in the range of the
Fermi velocity.

Finally, relations (16) and (17)

e2 = 4πϵ0ℏcα = 4πϵ0ℏcnα2, (23)

yield the following important relation between the speed of
light in vacuum c, negative parameter cn, and the fine-structure
constants α, α2

cα = cnα2. (24)

Notably, cα is the electron’s velocity at the first circular orbit
in the Bohr model of the hydrogen atom and the unit of speed
in Hatree and Schrodinger natural units. This is not the only
α to α2 relation. Along with the two π-like constants π1, π2
(relations (C8) and (C10), cf. Appendix C)

α2

α
=

c
cn
=
π1

π
=
π

π2
=

m2
P

m2
Pi

=
q2

P

q2
Pi

≈ −0.9776. (25)

The negative parameter cn (20) leads to the imaginary
Planck charge qPi, length ℓPi, mass mPi, time tPi, and tempera-
ture TPi that redefined by square roots containing cn raised to
odd (1, 3, 5) powers become imaginary and bivalued

qPi = ±
√

4πϵ0ℏcn = ±qP

√
α

α2
≈

≈ ±i1.8969 × 10−18 [C] (|qPi| > |qP|) ,
(26)

ℓPi = ±

√
ℏG
c3

n
= ±ℓP

√
α3

2

α3 ≈

≈ ±i1.5622 × 10−35 [m] (|ℓPi| < |ℓP|) ,

(27)

mPi = ±

√
ℏcn

G
= ±mP

√
α

α2
≈

≈ ±i2.2012 × 10−8 [kg] (|mPi| > |mP|) ,

(28)

tPi = ±

√
ℏG
c5

n
= ±tP

√
α5

2

α5 ≈

≈ ±i5.0942 × 10−44 [s] (|tPi| < |tP|) ,

(29)

TPi = ±

√
ℏc5

n

Gk2
B

= ±TP

√
α5

α5
2

≈

≈ ±i1.4994 × 1032 [K] (|TPi| > |TP|) ,

(30)

and furthermore can be expressed, using the relation (24), in
terms of base Planck units qP, ℓP, mP, tP, and TP.

Planck units derived from the imaginary base units (26)-
(30) are mostly also imaginary. The α2 Planck volume

ℓ3Pi = ±

(
ℏG
c3

n

)3/2

= ±ℓ3P

√
α9

2

α9 ≈

≈ ±i3.8127 × 10−105 [m3]
(
|ℓ3Pi| < |ℓ

3
P|
)
,

(31)
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the α2 Planck momentum

pPi = mPicn = ±

√
ℏc3

n

G
= ±mPc

√
α3

α3
2

≈

≈ ±i6.7504 [kg m/s] (|mPicn| > |mPc|) ,

(32)

the α2 Planck energy

EPi = mPic2
n = ±

√
ℏc5

n

G
= ±EP

√
α5

α5
2

≈

≈ ±i2.0701 × 109 [J] (|EPi| > |EP|) ,

(33)

and the α2 Planck acceleration

aPi =
cn

tPi
= ±

√
c7

n

ℏG
= ±aP

√
α7

α7
2

≈

≈ ±i6.0198 × 1051 [m/s2] (|aPi| > |aP|) ,

(34)

are imaginary and bivalued. The α2-Planck density

ρP2 =
c5

n

ℏG2 = ρP
α5

α5
2

≈

≈ −5.7735 × 1096 [kg/m3] (|ρP2| > |ρP|) ,

(35)

and the α2-Planck area

ℓ2Pi =
ℏG
c3

n
= ℓ2P
α3

2

α3 ≈

≈ −2.4406 × 10−70 [m2]
(
|ℓ2Pi| < |ℓ

2
P|
)
,

(36)

are strictly negative, while the Planck density ρP and area ℓ2P
are strictly positive. However, both Planck forces

FP2 =
c4

n

G
=

c4

G
α4

α4
2

= FP
α4

α4
2

≈

≈ 1.3251 × 1044 [N] (FP2 > FP) ,

(37)

are strictly positive. We note that Coulomb’s law for elemen-
tary charges and Newton’s law of gravity for Planck masses
define the fine-structure constants

1
4πR2

∗

e2

ϵ0
= αG

m2
P

R2
∗

= α2G
m2

Pi

R2
∗

, (38)

where R∗ is some real or imaginary distance. The area of a
disk in the denominator of the Coulomb force invites further
research.

Notably, the imaginary Planck Units are not imaginary due
to being multiplied by the imaginary unit i. They are imagi-
nary due to the negativity of odd powers of negative cn being
the square root argument; thus, they define imaginary physi-
cal quantities inaccessible to direct measurements3. They do

3 Quantum measurement outcomes are real eigenvalues of hermitian opera-
tors.

not apply only to the time dimension but to any imaginary di-
mension. However, in our four-dimensional Euclidean R3 × I
space-time, Planck units apply in general to the spatial dimen-
sions, while the imaginary ones in general to the imaginary
temporal dimension. All the α2-Planck units have physical
meanings. However, some are elusive, like the negative area
or imaginary volume, which require two or three orthogonal
imaginary dimensions. The speed of electromagnetic radia-
tion is the product of its wavelength and frequency, and these
quantities would be imaginary if factored by imaginary Planck
units; the negative speed of light is necessary to accommo-
date it as i2 = −1. Therefore, non-principal square root of
c = ±1/

√
µ0ϵ0 and principal square root of cn = ±1/

√
µ2ϵ0 in

(18) also introduce, respectively, imaginary −c-Planck units
and real −cn-Planck units. In particular, the imaginary −c-
Planck time parametrizes the real to imaginary time relations
[5, 12]. However, these symmetric systems of units seem
more appropriate for factoring physical quantities of I3 × R
Euclidean space rather than R3 × I Euclidean one, that we per-
ceive due to the minimum energy principle (|EPi| > |EP|). Fur-
thermore, the relation (24) introduces an interesting interplay
between α vs. α2 and c vs. cn that, as we conjecture, should
be able to explain ν = 5/2 state in the fractional quantum Hall
effect in 2D system of electrons, as well as other fractional
states with an even denominator [39] (cf. Appendix G).

The relations between time (29) and temperature (30) α2-
Planck units are inverted, α5t2

Pi = α
5
2t2

P, α5
2T 2

Pi = α
5T 2

P , and
saturate the energy-time version of Heisenberg’s uncertainty
principle (HUP) taking energy from the equipartition theorem
for one degree of freedom (or one bit of information [5, 40]4)

1
2

kBTPtP =
1
2

kBTPitPi =
ℏ

2
. (39)

Furthermore, eliminating α and α2 from the relations (27)-
(28), yields

ℓPm3
P = ℓPim3

Pi and ℓPq3
P = ℓPiq3

Pi. (40)

Contrary to the elementary charge e (16), there is no physi-
cally meaningful elementary mass Me = ±1.8592 × 10−9 [kg]
that would satisfy the relation (28)

M2
e = αm2

P = α2m2
Pi. (41)

Neither is there a physically meaningful elementary (and
imaginary) length Le ≈ ±i9.7382 × 10−39 [m] satisfying the
relation (36)

L2
e = α

3ℓ2Pi = α
3
2ℓ

2
P, (42)

4 The energy of one bit at the BH temperature given by the equipartition
theorem is E = 1

2 kBTBH =
EP

4πdBH
. On the other hand, the BH energy is

EBH = MBHc2 =
dBHEP

4 . Both energies are equal for 1-bit BH having
diameter dBH = ±1/

√
π. Thus one DOF equals one bit corresponding to

the Planck area ℓ2P. The equipartition theorem has been rigorously proven
only for one DOF.
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(which in modulus is almost 1660 times smaller than the
Planck length), or an elementary temperature Te ≈ ±6.4450×
1026 [K] abiding to (30)

T 2
e = α

5T 2
P = α

5
2T 2

Pi, (43)

and close to the Hagedorn temperature of grand unified string
models. Thus, as to the modulus, charges are the same in real
and imaginary dimensions, while masses, lengths, tempera-
tures, and other derived quantities that can vary with time,
may differ (the dimensional character of the charges is ad-
ditionally emphasized by the real

√
α multiplied by i in the

imaginary charge energy (70) and imaginary
√
α2 in the real

charge energy (71)). We note that the same form of the re-
lations (16) and (41) reflect the same form of Coulomb’s law
and Newton’s law of gravity, which are inverse-square laws.

In the following, where deemed appropriate, we shall ex-
press the physical quantities by Planck units

M B mmP, Mi B mimPi m,mi ∈ R,
Q B qe, Qi B iQ = iqe q ∈ Z,
E B f EP Ei B f EPi f = m, fi = mi,
λ B lℓP, λi B liℓPi l = 2π/m, li = 2π/mi,
{R,D} B {r, d}ℓP, {Ri,Di} B {ri, di}ℓPi r, ri, d, di ∈ R,
T B T̂TP Ti B T̂iTPi T̂ , T̂i ∈ R,

(44)
where uppercase letters M, Q, λ, R, D, E, and T denote re-
spectively masses, charges, Compton wavelengths, diameters,
radii (or lengths), Compton energies, and temperatures, low-
ercase letters (except temperatures, where ”hats” are used) de-
note multipliers of the positive (principal square roots) Planck
units, and the subscripts i refer to imaginary quantities. We
note that the discretization of charges by integer multipliers q
of the elementary charge e seems too far-reaching, consider-
ing the fractional charges of quasiparticles, in particular in the
open research problem of the fractional quantum Hall effect.

Coulomb’s force FC is positive or negative, depending on
the sign and type (real or imaginary) of charges, as summa-
rized below

q1q2 > 0 q1q2 < 0
Qk = qke FC > 0 FC < 0
Qk = iqke FC < 0 FC > 0

(45)

Newton’s law of universal gravitation is also positive or nega-
tive, depending on the sign and type of masses, as summarized
below

m∗1m∗2 > 0 m∗1m∗2 < 0
Mk = mkmP FG > 0 FG < 0
Mik = mikmPi F2G < 0 F2G > 0

(46)

However, it is larger in modulus in the case of imaginary
masses. Unlike charges, negative, real masses are generally
inaccessible for direct observation. We note that dissipative
coupling between excitons and photons in an optical micro-
cavity leads to the formation of exciton polaritons with nega-
tive mass [41]. Bose-Einstein exciton condensate is present in
photosynthetic light-harvesting complexes already in ambient
conditions [42]. In Section VI we will show that negative, real
masses also result from merging black-body objects.

IV. BLACK BODY OBJECTS

There are only three observable objects in nature that emit
perfect black-body radiation: unsupported black holes (BHs,
the densest), neutron stars (NSs), supported, as it is accepted,
by neutron degeneracy pressure, and white dwarfs (WDs),
supported, as it is accepted, by electron degeneracy pressure
(the least dense). We shall collectively call them black-body
objects (BBOs). It was also shown that the spectral density in
sonoluminescence, light emission by sound-induced collaps-
ing gas bubbles in fluids, has the same frequency dependence
as black-body radiation [43, 44]. Thus, the sonoluminescence,
and in particular shrimpoluminescence [45], is emitted by col-
lapsing micro-BBOs. A micro-BH induced in glycerin by
modulating acoustic waves was reported [46].

The term ”black-body object” is not used in standard cos-
mology, but standard cosmology scrunches under embarrass-
ingly significant failings, not just tensions as is sometimes de-
scribed, as if to somehow imply that a resolution will even-
tually be found [47]. Entropic gravity [40] explains galaxy
rotation curves without resorting to dark matter, has been ex-
perimentally confirmed [48], and is decoherence-free [49]. It
has been experimentally confirmed that the so-called accre-
tion instability is a fundamental physical process [50]. We
conjecture that this process, already recreated in laboratory
conditions [51], is common for all BBOs. Also, James Webb
Space Telescope data show multiple galaxies that grew too
massive too soon after the Big Bang, which is a strong dis-
crepancy with the Λ cold dark matter model (ΛCDM) expec-
tations on how galaxies formed at early times at both redshifts,
even when considering observational uncertainties [52]. This
is an important unresolved issue indicating that fundamen-
tal changes to the reigning ΛCDM model of cosmology are
needed [52]. Therefore, the term object as a collection of
matter is a misnomer, as it neglects (quantum) nonlocality
[53] that is independent of the entanglement among the par-
ticles [54], as well as of Kochen-Specker contextuality [55],
and increases as the number of particles grows [56]. Thus
we use emphasis for (perceivably indistinguishable) particle
and (perceivably distinguishable) object, as well as for mat-
ter and distance. The ugly duckling theorem [57, 58] as-
serts that every two objects we perceive are equally similar (or
equally dissimilar), however ridiculous and contrary to com-
mon sense5 that may sound. Therefore, these terms have no
absolute meaning in ED. In particular, given the observation
of quasiparticles in classical systems [59]. Within the frame-
work of ED no object is enclosed in space.

As black-body radiation is radiation of global thermody-
namic equilibrium, it is patternless [60] (thermal noise) radia-
tion that depends only on one parameter. In the case of BHs,
this is known as Hawking [61] radiation, and this parameter is
the BH temperature TBH = TP/(2πdBH) corresponding to the
BH diameter [5] DBH = dBHℓP, where dBH ∈ R. Furthermore,

5 Which inevitably enforces understanding the nature in a manner that is
common to nearly all people and hinders its research.
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BHs absorb patternless information [5, 62]. Therefore, since
Hawking radiation depends only on the diameter of a BH, it is
the same for a given BH, even though it is momentary as the
BH fluctuates (cf. Section VII).

As black-body radiation is patternless, the triangulated [5]
BBOs contain a balanced number of Planck area triangles,
each carrying binary potential δφk = −c2 · {0, 1}, as it has
been shown for BHs [5], based on Bekenstein-Hawking (BH)
entropy [63] S BH = kBNBH/4, where NBH = πd2

BH is the BH
information capacity.

BH entropy can be derived from the Bekenstein bound

S ≤
2πkBRE
ℏc

= πkB f d, (47)

which defines an upper limit on the thermodynamic entropy
S that can be contained within a sphere of radius R and en-
ergy E. After plugging the BH (Schwarzschild) radius RBH =

2GMBH/c2 and mass-energy equivalence EBH = MBHc2,
where MBH is the BH mass, into the bound (47), it reduces
to the BH entropy. In other words, the BH entropy saturates
the Bekenstein bound (47).

The patternless nature of the perfect black-body radiation
was derived [5] by comparing BH entropy with the binary en-
tropy variation δS = kBN1/2 ([5] Eq. (55)), valid for any en-
tropy variation sphere (EVS), where N1 ∈ N denotes the num-
ber of active Planck triangles with binary potential δφk = −c2.
Thus, the entropy of all BBOs is

S BBO =
1
4

kBNBBO, (48)

where NBBO B 4πR2
BBO/ℓ

2
P = πd

2
BBO is the information ca-

pacity of the BBO surface, i.e., the ⌊NBBO⌋ ∈ N Planck trian-
gles6 corresponding to bits of information [5, 12, 40, 63, 64],
and the fractional part triangle(s) having the area {NBBO}ℓ

2
P =

(NBBO − ⌊NBBO⌋)ℓ2P to small to carry a single bit of informa-
tion [sic!]. Furthermore, N1 = NBBO/2 confirms the pattern-
less thermodynamic equilibrium of the BBOs by maximizing
Shannon entropy [5].

We shall define the generalized radius of a BBO (this defi-
nition applies to all EVSs) having mass MBBO as a function of
GMBBO/c2 multiplier k ∈ R, k > 0

RBBO B k
GMBBO

c2 ,

dBBO = 2kmBBO, dBBOi = 2kmBBOi,
(49)

and the generalized BBO energy EBBO as a function of
MBBOc2 multiplier a ∈ R (this definition also applies to all
EVSs)

EBBO B aMBBOc2. (50)

Plugging MBBO from (49) into (50) and the latter into the
Bekenstein bound (47) it becomes

S ≤
1
2

kB
a
k

NBBO, (51)

6 ”⌊x⌋” is the floor function that yields the greatest integer less than or equal
to its argument x.

and equals the BBO entropy (48) if a
2k =

1
4 ⇒ a = k

2 . Thus,
the energy of all BBOs having a radius (49) is

EBBO =
k
2

MBBOc2, (52)

with k ≥ 2 and k = 2 in the case of BHs, setting the lower
bound for other BBOs. We shall further call the coefficient
k the size-to-mass ratio (STM). It is similar to the specific
volume (the reciprocal of density) of the BBO. We shall derive
the upper STM bound in Section V D.

According to the no-hair theorem, all BHs general relativ-
ity (GR) solutions are characterized only by three parameters:
mass, electric charge, and angular momentum. However, BHs
are fundamentally uncharged since the parameters of any con-
ceivable BH, in particular, charged (Reissner–Nordström) and
charged-rotating (Kerr–Newman) BH, can be altered arbitrar-
ily, provided that the BH area does not decrease [65] using
Penrose processes [66, 67] to extract BH electrostatic and/or
rotational energy [68]. Thus any BH is defined by only one
real parameter: its diameter (cf. [5] Fig. 2(b)), mass, temper-
ature, energy, etc., each corresponding to the other. We note
that in the complex Euclidean R3×I space, an n-ball (n ∈ C) is
spherical only for a vanishing imaginary dimension [14]. As
the interiors of the BBOs are inaccessible to an exterior ob-
server [63], BBOs do not have interiors7, which makes them
similar to interior-less mathematical points representing the
real numbers on a number line. Yet, a BH can embrace this
defining parameter. That means that three points forming a
Planck triangle corresponding to a bit of information on a BH
surface can store this parameter, and this is intuitively com-
prehensible: the area of a spherical triangle is larger than that
of a flat triangle defined by the same vertices, providing the
curvature is nonvanishing, and depends on this curvature, i.e.,
this additional parameter defines it. Thus, the only meaning-
ful spatial notion is the Planck area triangle, encoding one bit
of classical information and its curvature.

On the other hand, it is accepted that in the case of NSs,
electrons combine with protons to form neutrons so that NSs
are composed almost entirely of neutrons. But it is never the
case that all electrons and all protons of an NS become neu-
trons. WDs are charged by definition as they are accepted
to be composed mostly of electron-degenerate matter. But
how can a charged BBO store both the curvature and an ad-
ditional parameter corresponding to its charge? Fortunately,
the relation (16) ensures that charges are the same in real and
imaginary dimensions. Therefore each charged Planck trian-
gle of a BBO surface is associated with at least three R × I
Planck triangles, each sharing a vertex or two vertices with
this triangle in R2. And this configuration is capable of storing
both the curvature and the charge. The Planck area ℓ2P and the

R× I imaginary Planck area ℓPℓPi = ℓ
2
P

√
α3

2/α
3 ≈ ±0.9666iℓ2P,

which is smaller in modulus, can be considered in a polyspher-
ical coordinate system, in which gravitation/acceleration acts

7 Thus, the term object is a particularly staring misnomer if applied to BBOs.
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in a radial direction (with the entropic gravitation acting in-
wardly and acceleration acting in both radial directions) [5],
while electrostatics act in a tangential direction. We note,
however, that a triangle has a bivalued complex volume and
surface in purely imaginary and complex dimensions even if
its edge length is real [14]. Contrary to the no-hair theorem,
we characterize BBOs only by mass and charge, neglecting
the angular momentum since the latter introduces the notion
of time, which we find redundant in the BBO description of a
patternless thermodynamical equilibrium.

Not only BBOs are perfectly spherical. Also, their mergers,
to which we shall return in Section VI, are perfectly spheri-
cal, as it has been experimentally confirmed [69] based on the
registered gravitational event GW170817. One can hardly ex-
pect a collision of two perfectly spherical, patternless thermal
noises to produce some aspherical pattern instead of another
perfectly spherical patternless noise. Where would the infor-
mation about this pattern come from at the moment of the
collision? From the point of impact? No point of impact is
distinct on a patternless surface.

The hitherto considerations may be unsettling for the
reader, as the energy (52) of BBOs other than BHs (i.e.,
for k > 2) exceeds mass-energy equivalence E = Mc2,
which is the limit of the maximum real energy. We note that
mass-energy equivalence stems from Taylor expansion of the
Lorentz factor γ = 1/

√
1 − v2/c2 around the vanishing veloc-

ity v = 0

γ ≈ 1 +
1
2

v2

c2 +
3
8

v4

c4 +
5
16

v6

c6 +
35

128
v8

c8 +
63
256

v10

c10 + . . . , (53)

which if multiplied by Mc2 and truncated to the first two terms
yields the 1st timeless term corresponding to energy in a sys-
tem’s rest frame, and the 2nd corresponding to the kinetic en-
ergy of mass M moving at the speed v. Thus, the notion of
time is included in the 2nd and the remaining countably in-
finite fractions of Taylor expansion (53). But Mc2 is time-
independent. In the subsequent section, we shall model a part
of the energy of NSs and WDs, exceeding Mc2 as imaginary
and thus unmeasurable.

V. COMPLEX ENERGIES AND EQUILIBRIA

A complex energy formula

ER B EMR + iEQR = MRc2 +
iQR

2
√
πϵ0G

c2, (54)

where EMR and iEQR represent respectively real and imaginary
energy of an object having mass MR and charge QR

8 was pro-
posed in [70]. Equation (54) considers real (i.e., physically
measurable) masses MR and charges QR. We shall modify it

8 Charges in the cited study are defined in CGS units. Here we adopt SI.

to a form involving real and imaginary physical quantities us-
ing Planck units, relations (24), (28), (33), (44), and (23)

e
2
√
πϵ0
=
√
αcℏ =

√
α2cnℏ. (55)

To this end, we define the following six complex energies, the
complex energy of real mass and imaginary charge

EMQi B EM + EQi = Mc2 +
Qi

2
√
πϵ0G

c2 =

=
(
mmP + iq

√
αmP

)
c2 =

(
m + iq

√
α
)

EP,

(56)

of real charge and imaginary mass

EQMi B EQ + EMi =
Q

2
√
πϵ0G

c2
n + Mic2

n =

=
(
q
√
α2mPi + mimPi

)
c2

n =
α2

α2
2

(
q
√
α +

√
α

α2
mi

)
EP,

(57)

of real Compton energy and imaginary mass

EFMi B hν + Mic2
n =

 f +

√
α5

α5
2

mi

 EP, (58)

of real mass and imaginary Compton energy (frequency νi =
cn/λi)

EMFi B Mc2 +
h

cnλi
c2

n =

m +
√
α5

α5
2

fi

 EP, (59)

of real Compton energy and imaginary charge

EFQi B hν +
Qi

2
√
πϵ0G

c2 =
(

f + iq
√
α
)

EP, (60)

and of real charge and imaginary Compton energy

EQFi B
Q

2
√
πϵ0G

c2
n +

h
cnλi

c2
n =
α2

α2
2

(
q
√
α +

√
α

α2
fi

)
EP,

(61)

where hν = 2πℏ c
λ
= 2π

l EP B f EP, hνi B fiEPi, f , fi ∈ R.
We note that using different speeds of light c or cn in energies
(56), (57), (60), and (61) yields a contradiction (cf. Appendix
F). Therefore, the fundamental unit of energy is mass, not a
product of mass and squared velocity.

Complex energies (56)-(61) link mass, charge, and Comp-
ton energies within the framework of ED. Their squared mod-
uli are

|EMQi |
2 =

(
M2 + q2αm2

P

)
c4 =

(
m2 + q2α

)
E2

P, (62)

|EQMi |
2 =
α4

α4
2

(
q2αm2

P − M2
i

)
c4 =

α4

α4
2

(
q2α −

α

α2
m2

i

)
E2

P,

(63)
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|EFMi |
2 =

 f 2 −
α5

α5
2

m2
i

 E2
P, (64)

|EMFi |
2 =

m2 −
α5

α5
2

f 2
i

 E2
P, (65)

|EFQi |
2 =

(
f 2 + q2α

)
E2

P, (66)

|EQFi |
2 =
α4

α4
2

(
q2α −

α

α2
f 2
i

)
E2

P. (67)

Complex energies (56), (57), (60), and (61) are real-to-
imaginary equilibrium if their real and imaginary parts are
equal in modulus. This holds for

m2 = f 2 = q2α = −
α

α2
f 2
i = −

α

α2
m2

i . (68)

However, they cannot be simultaneously in equilibrium with
the energies (58) and (59), as

f 2 = −
α5

α5
2

m2
i and m2 = −

α5

α5
2

f 2
i . (69)

We note that real and imaginary mass and Compton energies
vanish in (68) for q = 0, i.e., for the equilibrium case of an
uncharged BH. This implies that BHs cannot be in real-to-
imaginary equilibrium and lead to their fluctuations.

Energies (56), (57), (60), and (61) yield two different charge
energies corresponding to the elementary charge, the imagi-
nary quantum

EQi (q = ±1) = ±i
√
αEP ≈ ±i1.6710 × 108 [J], (70)

and the - larger in modulus - real quantum

EQ(q = ±1) = ±
√
α2EPi ≈ ±1.7684 × 108 [J]. (71)

Furthermore, ∀q, α2EQi = iα2
2EQ.

A. Mass and charge energy equilibrium

Postulating that the squared moduli of complex energies
(62) and (63) are equal

|EMQi |
2 = |EQMi |

2,

α4
2

(
M2 + q2αm2

P

)
= α4

(
q2αm2

P − M2
i

)
,

(72)

we demand a mass-charge energy equilibrium condition from
which we can obtain the value of the imaginary mass Mi as a
function of mass M and charge Q in this equilibrium

Mi = ±

√
q2αm2

P

1 − α4
2

α4

 − α4
2

α4 M2. (73)

In particular for q = 0 the relation (73) yields

Miα
2 = ±iMα2

2 or Mi = ±i
α2

2

α2 M ≈ ±0.9557iM. (74)

Since mass Mi is imaginary by definition, the argument of the
square root in the relation (73) must be negative. Thus

M > |q|mP

√
α

α4

α4
2

− 1
 ≈ |q|5.7275 × 10−10 [kg]. (75)

This means that masses of uncharged micro BHs (q = 0) in
thermodynamic equilibrium can be arbitrary. However, micro
NSs and micro WDs, also in thermodynamic equilibrium, are
inaccessible for direct observation, as they cannot achieve a
net charge Q = 0. Even a single elementary charge of a white
dwarf renders its mass MWD = 5.7275×10−10 [kg] comparable
to the mass of a grain of sand.

We note here that only the masses satisfying M < 2πmP ≈

1.3675× 10−7 [kg] have Compton wavelengths larger than the
Planck length [5]. We note in passing that a classical descrip-
tion has been ruled out at the microgram (1 × 10−9 [kg]) mass
scale [71]. Comparing this bound with the bound (75) yields
the charge multiplier q corresponding to an atomic number

Z =


2π√
α
(
α4

α4
2
− 1

)
 = 238, (76)

of a hypothetical element, which - as we conjecture - sets the
limit on an extended periodic table and is a little higher than
the accepted limit of Z = 184 (unoctquadium). More mas-
sive elements would have Compton wavelengths smaller than
the Planck length, which is physically implausible because the
Planck area is the smallest area required to encode one bit of
information [5, 40, 63, 64].

B. Compton and charge energy equilibrium

Postulating similarly that the squared moduli of complex
energies (66) and (67) are equal

|EFQi |
2 = |EQFi |

2,

α4
2

(
f 2 + q2α

)
= α4

(
q2α −

α

α2
f 2
i

)
,

(77)

we demand a Compton-charge energy equilibrium condition
from which we can obtain the value of the imaginary Compton
energy hνi corresponding to the real Compton energy hν and
charge Q in this equilibrium

fi = ±

√
α5

2

α5

√
q2α

α4

α4
2

− 1
 − f 2. (78)

Since
√
α5

2/α
5 is imaginary, we demand q2α(α4/α4

2 − 1) < f 2

to ensure that fi ∈ R. Thus

hν = f EP > ±q

√
α

α4

α4
2

− 1
EP ≈ ±q5.1477 × 107 [J], (79)
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which, using mass-energy equivalence, corresponds to the
bound (75). We can also obtain the maximum wavelength in
this equilibrium corresponding to the charge. For q2 = 1 it is
λ < 3.8589 × 10−33 [m] with l < 238.7580 corresponding to
the bound (76).

No meaningful conclusions can be derived by postulating
the equilibrium of mass and Compton squared energies (64)
and (65). Such a mass-Compton energy equilibrium is an
equation with four unknowns. Neither physically meaning-
ful elementary mass (41) nor length (42) is common for real
and imaginary dimensions.

C. Mass, charge, and Compton energy equilibrium

Postulating the equality of all the squared moduli (62)-(67)
to some constant energy

|EMQi |
2 = |EQMi |

2 = |EFMi |
2 =

= |EFQi |
2 = |EMFi |

2 = |EQFi |
2 B AE2

P, A ∈ R, A > 0
(80)

we demand a mass-charge-Compton energy equilibrium con-
dition. Subtracting moduli (62) and (66) yields m2 = f 2, and
similarly subtracting moduli (63) and (67) yields m2

i = f 2
i .

This equates moduli (64) and (65). Substituting f 2
i = m2

i into
the modulus (67) and subtracting from the modulus (62) yields

m2 +
α

α2
m2

i = A
1 − α4

2

α4

 . (81)

Subtracting this from (64) or (65) yields

m2
i = f 2

i = −A
α9

2

α5(α4 + α4
2)
, (82)

which substituted into the relation (81) yields

m2 = f 2 = A
α4

α4 + α4
2

. (83)

Finally, substituting the relation (83) into the modulus (62)
yields

q2α = A
α4

2

α4 + α4
2

. (84)

D. BBO complex energy equilibria

We can interpret the modulus of the generalized energy of
BBOs (52) as the modulus of the complex energy of real mass
(62), taking the observable real energy EBBO = MBBOc2 of the
BBO as the real part of this energy. Thus(

k
2

MBBOc2
)2

=
(
M2

BBO + q2
BBOαm2

P

)
c4, (85)

leads to

qBBO = ±
MBBO

mP

√
1
α

(
k2

4
− 1

)
, (86)

representing a charge surplus energy exceeding MBBOc2. For
k = 2, qBBO vanishes, confirming the vanishing net charge of
BHs. Similarly, we can interpret the modulus of the gener-
alized energy of BBOs (52) as the modulus of the complex
energy of real charge (63). Thus

k2

4
M2

BBO =
α4

α4
2

(
q2

BBOαm2
P − M2

iBBO

)
,

M2
iBBO = q2

BBOαm2
P −
α4

2

α4

k2

4
M2

BBO.

(87)

Substituting q2
BBO from the relation (86) into the relation

(87) turns the equilibrium condition (73) into a function of the
STM k instead of the charge q

M2
iBBO =

k2

4

1 − α4
2

α4

 − 1
 M2

BBO,

MiBBO = ±MBBO

√
k2

4

1 − α4
2

α4

 − 1,

(88)

which yields the imaginary mass of a BH (for k = 2) and
corresponds to the relation (74) between uncharged masses M
and Mi, which is, notably, independent of the STM. Further-
more, using relation (24), from (88) we obtain the relation be-
tween real and imaginary BH energies EBHi = ±iEBH

9, which
are equal in modulus.

Furthermore, the argument of the square root in the relation
(88) must be negative, as mass Mi is imaginary by definition.
This leads to the maximum STM ratio

kmax =
2√

1 − α
4
2
α4

≈ 6.7933, (89)

where k < kmax satisfies the mass equilibrium (88). Relations
(86) and (88) are shown in Figure 1.

9 In general M2
iBBOc4

n +
k2

4 M2
BBOc4 = M2

BBOc4
n

(
k2

4 − 1
)
.
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Figure 1. Ratios of imaginary mass MiBBO to real mass MBBO (green)
and real charge qBBOmP

√
α to MBBO (red) of a BBO as a function of

the size-to-mass ratio k : 0 ≤ k ≤ 10. Mass MiBBO is imaginary for
k ⪅ 6.79. Charge qBBO is real for k ≥ 2.

The maximum STM ratio kmax (89) sets the bounds on the
BBO energy (52), mass, and radius (49)

RBH =
2GMBBO

c2 ≤ RBBO <
kmaxGMBBO

c2 . (90)

In particular, using relations (44), 2mBBO ≤ rBBO < kmaxmBBO
or rBBO/kmax < mBBO ≤ rBBO/2. WDs are the least dense
BBOs, so these bounds define a WD core’s maximum ra-
dius and mass. BBOs other than BHs do not have Compton
wavelengths as their energies exceed mass-energy equivalence
E = Mc2.

Furthermore, relations (75) and (89) set the bound on the
BBO minimum mass in the equilibrium (72)

mBBO > max

qBBO

√
α

α4

α4
2

− 1
, dBBO

4

√
1 −
α4

α4
2

 , (91)

where

qBBO =
1
4

√
α4

2

α5 dBBO (92)

defines a condition in which neither qBBO nor dBBO can be
further increased to reach its counterpart (defined respectively
by dBBO and qBBO) in the bound (91). Thus, for example, 1-
bit BBO (dBBO = 1/

√
π) corresponds to qBBO > 1.5780, π-bit

BBO (dBBO = 1) corresponds to qBBO > 2.7969, while the
conjectured heaviest element with atomic number qBBO (76)
corresponds to

dBBO = ±
8π√

1 − α
4
2
α4

≈ ±85.3666. (93)

In the case of a BBO, we obtain the equilibrium condition
(80) by comparing the squared moduli (62)-(67) of the ener-
gies (56)-(61) with the squared BBO energy (52) which this

time yields a solvable system of six nonlinear equations with
six unknowns k, q,m,mi, f , fi (A = m2k2/4 in (80))

|EMQi |
2 →m2 + q2α =

k2

4
m2 ⇔ q2α = m2

(
k2

4
− 1

)
,

|EQMi |
2 →
α4

α4
2

(
q2α −

α

α2
m2

i

)
=

k2

4
m2,

|EFMi |
2 → f 2 −

α5

α5
2

m2
i =

k2

4
m2,

|EMFi |
2 →m2 −

α5

α5
2

f 2
i =

k2

4
m2 ⇔

α5

α5
2

f 2
i = m2

(
1 −

k2

4

)
,

|EFQi |
2 → f 2 + q2α =

k2

4
m2,

|EQFi |
2 →
α4

α4
2

(
q2α −

α

α2
f 2
i

)
=

k2

4
m2.

(94)

Subtracting moduli |EMQi |
2 and |EFQi |

2 yields m2 = f 2, and
similarly subtracting moduli |EQMi |

2 and |EQFi |
2 yields m2

i =

f 2
i . Finally, by substituting q2α from |EMQi |

2 into |EQMi |
2, f 2

i =

m2
i into |EMFi |

2 and comparing the LHSs of |EQMi |
2 and |EMFi |

2

we obtain the BBO equilibrium STM ratio

keq = 2

√
1 +
α4

2

α4 ≈ 2.7665, (95)

where BBO gravity, charge, and Compton energies remain at
equilibrium. The equilibrium keq (95) and the maximum kmax
(89) STM ratios are related as k2

eq + 16/k2
max = 8. Also, the

following relations can be derived from the relations (94) for
the BBO in the equilibrium keq (95)

m2
i = −

α9
2

α9 m2, l2i = −
α9

α9
2

l2,

m2 = f 2 =
4π2

l2
, m2

i = f 2
i =

4π2

l2i
,

q2α =
α4

2

α4 m2 = −
α5

α5
2

m2
i .

(96)

We note the peculiar asymmetry of m and mi with charge q.
The BBO in the energy equilibrium keq bearing the elemen-

tary charge (q2 = 1) would have mass MBBOeq ≈ ±1.9455 ×
10−9 [kg], imaginary mass MiBBOeq ≈ ±i1.7768 × 10−9 [kg],
wavelength λBBOeq ≈ ±1.1361 × 10−33 [m], and imaginary
wavelength λiBBOeq ≈ ±i1.2160 × 10−33 [m]. On the other
hand, the relation (86) provides the charge of the BBO in equi-
librium (80) as qBBO(keq) ≈ 11.1874 mBBO and the limit of the
BBO charge qBBO(kmax) ≈ 37.9995 mBBO

We note that objects with STM 2 ≤ k ≤ 3 are referred to in
state of the art as ultracompact [72], where k = 3 is a photon
sphere radius10. Any object that undergoes complete gravi-
tational collapse passes through an ultracompact stage [73],

10 At which, according to an accepted photon sphere definition, the strength of
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where k < 3. Collapse can be approached by gradual accre-
tion, increasing the mass to the maximum stable value, or by
the loss of angular momentum [73]. During the loss of angular
momentum, the star passes through a sequence of increasingly
compact configurations until it finally collapses to become a
black hole. It was also pointed out [74] that for a neutron star
of constant density, the pressure at the center would become
infinite if k = 2.25, a radius of the maximal sustainable density
for gravitating spherical matter given by Buchdahl’s theorem.
It was shown [75] that this limit applies to any well-behaved
spherical star where density increases monotonically with ra-
dius. Furthermore, some observers would measure a locally
negative energy density if k < 2.6(6) thus breaking the domi-
nant energy condition, although this may be allowed [76]. As
the surface gravity grows, photons from further behind the NS
become visible. At k ≈ 3.52 the whole NS surface becomes
visible [77]. The relative increase in brightness between the
maximum and minimum of a light curve are greater in the case
of k < 3 than in the case of k > 3 [77]. Therefore the equi-
librium STM ratio keq ≈ 2.7665 (95) is well within the range
of radii of ultracompact objects researched in state-of-the-art
within the framework of GR.

However, aside from the Schwarzschild radius, derivable
from escape velocity v2

esc = 2GM/R of mass M by setting
v2

esc = c2, and discovered in 1783 by John Michell [78], all the
remaining significant radii of GR are only approximations11.
GR neglects the value of the fine-structure constants α and α2,
which, similarly to π or the base of the natural logarithm, are
the fundamental constants of nature.

VI. BBO MERGERS

As the entropy (Boltzmann, Gibbs, Shannon, von Neu-
mann) of independent systems is additive, a merger of BBO1
and BBO2 having entropies (48) S BBO1 =

1
4 kBNBBO1 and

S BBO2 =
1
4 kBπd2

BBO2
, produces a BBOC having entropy

S BBO1 + S BBO2 = S BBOC ⇒ d2
BBO1

+ d2
BBO1

= d2
BBOC
, (97)

which shows that the resultant information capacity is the sum
of the merging components. Thus, a merger of two primor-
dial BHs, each having the Planck length diameter, the reduced
Planck temperature TP

2π (the largest physically significant tem-
perature [12]), and no tangential acceleration aLL [5, 12], pro-
duces a BH having dBH = ±

√
2 which represents the mini-

mum BH diameter allowing for the notion of time [12]. In
comparison, a collision of the latter two BHs produces a BH
having dBH = ±2 having the triangulation defining only one
precise diameter between its poles (cf. [5] Fig. 3(b)), which
is also recovered from HUP (cf. Appendix D).

gravity forces photons to travel in orbits. The author wonders why photons
would not travel in orbits at radius R = GM/c2 corresponding to the orbital
velocity v2

orb = GM/R. (Obviously, photons do not travel.)
11 One may find constructive criticism of GR in [79–85].

Substituting the generalized diameter (49) into the entropy
relation (97) establishes a Pythagorean relation between the
generalized energies (52) of the merging components and the
merger

k2
BBOC

4
m2

BBOC
=

k2
BBO1

4
m2

BBO1
+

k2
BBO2

4
m2

BBO2
, (98)

valid both for mBBO ≥ 0 and mBBO ≤ 0.
It is accepted that gravitational events’ observations alone

allow measuring the masses of the merging components, set-
ting a lower limit on their compactness, but it does not ex-
clude mergers more compact than neutron stars, such as quark
stars, BHs, or more exotic objects [86]. We note in passing
that describing the registered gravitational events as waves is
misleading - normal modulation of the gravitational potential,
registered by LIGO and Virgo interferometers, and caused by
rotating (in the merger case - inspiral) bodies, is wrongly inter-
preted as a gravitational wave understood as a carrier of grav-
ity [87]. Furthermore, outside GR, merging BHs may differ
from their GR counterparts [88].

The accepted value of the Chandrasekhar WD mass limit,
preventing its collapse into a denser form, is MCh ≈

1.4 M⊙ [89] and the accepted value of the analogous Tol-
man–Oppenheimer–Volkoff NS mass limit is MTOV ≈ 2.9 M⊙
[90, 91]. There is no accepted value of the BH mass limit.
The conjectured value is 5 × 1010 M⊙ ≈ 9.95 × 1040 kg. We
note in passing that a BH with a surface gravity equal to the
Earth’s surface gravity (9.81 m/s2) would require a diameter
of DBH ≈ 9.16 × 1015 m (slightly less than one light year) [5]
and mass MBH ≈ 3.08 × 1042 kg exceeding the conjectured
limit. The masses of most of the registered merging compo-
nents are well beyond MTOV. Of those that are not, most of the
total or final masses exceed this limit. Therefore these mergers
are classified as BH mergers. Only a few are classified oth-
erwise, including GW170817, GW190425, GW200105, and
GW200115. They are listed in Table I.

Table I. Selected BBO mergers discovered with LIGO and Virgo.
Masses in M⊙.

Event MBBO1 MBBO2 MBBOC kBBO1 kBBO2 kBBOC

GW170817 1.46+0.12
−0.10 1.27+0.09

−0.09 2.8 4.39 4.39 3.03
GW190425 2.00+0.6

−0.2 1.4+0.3
−0.3 3.4+0.3

−0.1 4.39 4.39 3.15
GW200105 8.9+1.2

−1.5 1.9+0.3
−0.2 10.9+1.1

−1.2 2.76 4.39 2.38
GW200115 5.7+1.8

−2.1 1.5+0.7
−0.3 7.1+1.5

−1.4 3 4.39 2.64

The relation (98) explains the measurements of large
masses of the BBO mergers with at least one charged merg-
ing component without resorting to any hypothetical types
of exotic stellar objects such as quark stars. Interferometric
data, available online at the Gravitational Wave Open Science
Center (GWOSC) portal12, indicates that the total mass of a
merger is the sum of the masses of the merging components.

12 https://www.gw-openscience.org/eventapi/html/allevents
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Thus

mBBOC = mBBO1 + mBBO2 ⇒

m2
BBOC

= m2
BBO1

+ m2
BBO2

+ 2mBBO1 mBBO2 ⇒

m2
BBOC

{
≥ m2

BBO1
+ m2

BBO2
if mBBO1 mBBO2 ≥ 0

≤ m2
BBO1

+ m2
BBO2

if mBBO1 mBBO2 ≤ 0 .

(99)

We can use the BBO equilibrium relations (94) to derive
some information about the merger from the relation (98). We
initially assume mBBO ≥ 0⇒ mBBO1 mBBO2 ≥ 0, since negative
masses, similarly to negative lengths, and their products with
positive ones, are inaccessible for direct observation, unlike
charges. |EMQi |

2 with the first inequality (99) yields

m2
BBOC

+ αq2
BBOC

=

= m2
BBO1

+ αq2
BBO1

+ m2
BBO2

+ αq2
BBO2
,

m2
BBOC

=

=���m2
BBO1

+���m2
BBO2

+ �α(q2
BBO1

+ q2
BBO2

) − �αq2
BBOC

≥,

≥�
��m2

BBO1
+�

��m2
BBO2

⇒ q2
BBOC

≤ q2
BBO1

+ q2
BBO2
,

(100)

which, by the charge conservation principle, implies mixed
(positive and negative) charges of the merging components
satisfying qBBO1 qBBO2 ≤ 0. On the other hand, |EMFi |

2 with
the first inequality (99) lead to

m2
BBOC

≥ m2
BBO1

+ m2
BBO2

⇒ f 2
iBBOC

≥ f 2
iBBO1

+ f 2
iBBO2
. (101)

But |EQFi |
2 with the inequality (100) lead to an apparent con-

tradiction

q2
BBOC

≤ q2
BBO1

+ q2
BBO2

⇒ f 2
iBBOC

≤ f 2
iBBO1

+ f 2
iBBO2
, (102)

while |EMFi |
2 with the inequality (102) lead to

f 2
iBBOC

≤ f 2
iBBO1

+ f 2
iBBO2

⇒ m2
BBOC

≤ m2
BBO1

+ m2
BBO2
, (103)

introducing the product of positive and negative masses in the
second inequality (99). |EQFi |

2 with the inequality (101) yields

f 2
iBBOC

≥ f 2
iBBO1

+ f 2
iBBO2

⇒ q2
BBOC

≥ q2
BBO1

+ q2
BBO2
, (104)

and so on (|EQMi |
2, |EFMi |

2, |EFQi |
2)

q2
BBOC

≥ q2
BBO1

+ q2
BBO2

⇒ m2
iBBOC

≥ m2
iBBO1

+ m2
iBBO2

⇒ f 2
BBOC

≥ f 2
BBO1

+ f 2
BBO2

⇒ q2
BBOC

≤ q2
BBO1

+ q2
BBO2
.

(105)

The equilibrium relations |EMQi |
2 and |EFQi |

2 switch the in-
equalities between the relevant multipliers, while the remain-
ing equilibrium relations (94) leave them intact.

Additivity of entropy (97) of statistically independent
merging BBOs, both in global thermodynamic equilibrium,
defined by their generalized radii (49), introduces the energy
relation (98). This relation, equality of charges in real and
imaginary dimensions (16), and the BBO equilibrium rela-
tions (94) of the BBO complex energies (62)-(67) induce not
only mixed charges but also imaginary, negative, and mixed

wavelengths and masses during the merger. A BBO merger
spreads in all dimensions, not only the observable ones, as a
gravitational event associated with a fast radio burst (FRB)
event, as it has been reported [92] based on GW1904251
gravitational event and FRB 20190425A event13. Further-
more, IXPE14 observations show that the detected polarized
X-rays from 4U 0142+61 pulsar exhibit a 90◦ linear po-
larization swing from low to high Compton energies [93].
Also, direct evidence for a magnetic field strength reversal
based on the observed sign change and extreme variation
of FRB 20190520B’s rotation measure, which changed from
∼ 10000 [rad · m−2] to ∼ −16000 [rad · m−2] between June
2021 and January 2022 has been reported [94]; such extreme
rotation measure reversal has never been observed before in
any FRB nor in any astronomical object.

In the observable dimensions during the merger, the STM
ratio kBBOC decreases making the BBOC denser until it be-
comes a BH for kBBOC = 2 and no further charge reduction
is possible (cf. Fig 1). From the relation (98) and the first
inequality (99) we see that this holds for

k2
BBOC

(
M2

BBO1
+ M2

BBO2

)
≤ k2

BBO1
M2

BBO1
+ k2

BBO2
M2

BBO2
.

(106)
For two merging BHs kBBO1 = kBBO2 = 2 and the relation
(106) yields k2

BBOC
≤ 4⇒ kBBOC = 2 = kBHC .

Table I lists the mass-to-size ratios kBBOC calculated accord-
ing to the relation (98) that provide the measured mass MBBOC

of the merger and satisfy the inequality (106). Mass-to-size
ratios kBBO1 and kBBO2 of the merging components were arbi-
trarily selected based on their masses, taking into account the
MTOV NS mass limit.

The meaning of f and fi Compton energies in the relations
(101)-(105) requires further research. We conjecture that f
relates to the spectrum of measured FRBs of the mergers.

VII. BBO FLUCTUATIONS

A relation [95] (p.160) describing a BH information capac-
ity, having an initial information capacity15 N j = 4πR2

BH/ℓ
2
P,

after absorption of a particle having the Compton wavelength
equal to the BH radius RBH

NA
j+1 = 64π3 ℓ

2
P

R2
BH

+ 32π2 + 4π
R2

BH

ℓ2P
, (107)

was subsequently generalized [5] (Eq. (18)) to all Compton
wavelengths λ = lℓP = 2π

f ℓP (or frequencies ν = c/λ = 1/(ltP))
and thus to all Compton energies E = f EP (44)

NA/E
j+1 ( f ) = 16π f 2 ± 8

√
πN j f + N j, (108)

13 Data available online at the Canadian Hydrogen Intensity Mapping Exper-
iment (CHIME) portal (https://www.chime-frb.ca/catalog).

14 X-ray Polarimetry Explorer (https://ixpe.msfc.nasa.gov).
15 We drop the EVS, BBO, BH subscripts in this section for clarity.
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absorbed (+) or emitted (−) by a BH.
The relation (108) can be further generalized, using the gen-

eralized radius (49), to all EVSs, including BBOs as

NA/E
j+1 (k, f ) = 4πk2 f 2 ± 4k

√
πN j f + N j. (109)

Thus, in general, a BBO (having a corresponding mass m =
d/(2k) (49)) changes its information capacity by

∆N = N j+1 − N j = 4πk f

k f ±

√
N j

π

 = 4πk2 f ( f ± 2m) ,

∆NA


> 0 f ∈ (−∞,−2m) ∩ (0,∞)
= 0 f = {−2m, 0}
< 0 f ∈ (−2m, 0)

,

∆NE


> 0 f ∈ (−∞, 0) ∩ (2m,∞)
= 0 f = {0, 2m}
< 0 f ∈ (0, 2m)

,

(110)

absorbing or emitting energy f with min (∆N) = −4πk2m2.
The relation (110) shows that depending on its mass m, a BBO
can expand or contract by emitting or absorbing energy f [5].
However, expansion by emission (∆NE > 0), for example,
requires negative energy or energies f > 2m exceeding the
BBO mass-energy equivalence.

The relation (110) is a quadratic equation satisfied by at
most two energies

f1/2 =
∓
√

N ±
√

N + ∆N
2k
√
π

, (111)

allowing for such a change of information capacity, where
−
√

N stands for absorption and +
√

N for emission, ∆N >
0 corresponds to expansion and ∆N < 0, to contraction.
The BBO information capacity variation ∆N vanishes after
absorbing energy f = −

√
N/π/k or emitting energy f =√

N/π/k. That means that f exchanged between BBO1 and
BBO2 remains constant for

N1

N2
=

d2
1

d2
2

=
k2

1

k2
2

, (112)

which can be stated in the following theorem.

Theorem 1. A BBO cannot exchange arbitrary energy with
another BBO having the same size and size-to-mass ratio by
radiation.

Proof. Consider two BBOs having the same information ca-
pacities N and STM ratios k. Assume that the 1st BBO con-
tracts (or expands) by ∆N by emitting (or absorbing) an en-
ergy f while the 2nd BBO expands (or contracts) by absorbing
(or emitting) this energy f . Thus both energies (111) must
be equal to each other, taking into account the emission and

absorption effects

±
√

N ±
√

N − ∆N
2k
√
π

=
∓
√

N ±
√

N + ∆N
2k
√
π

,

± 2
√

N = ±
√

N + ∆N ∓
√

N − ∆N,

4N = (N + ∆N) ∓ 2
√

N + ∆N
√

N − ∆N + (N − ∆N),

2N = ∓2
√

N2 − ∆N2,

N2 = N2 − ∆N2 ⇒ ∆N = 0 ∀N,

(113)

which holds only if the emitted energy f =
√

N/π/k.
The case of the 1st BBO contracting and the 2nd BBO ex-

panding, both by emitting (or absorbing) energy f makes no
physical sense, as we assume the exchange of energy f be-
tween BBOs. Yet, the same result is obtained

±
√

N ±
√

N − ∆N = ±
√

N ±
√

N + ∆N,
N − ∆N = N + ∆N ⇒ ∆N = 0 ∀N.

(114)

□

In case, the BBOs have the same information capacities N
but different STM ratios k1, k2, the relation (113) yield two
solutions: ∆N = 0 (for k1 = k2 = k) and

∆N = ±
4Nk1k2

(k2
1 + k2

2)2

(
k2

1 − k2
2

)
, (115)

for k1 , k2. The partial derivative of (115) ∂∆N/∂k1/2 van-
ishes for k1/2 = ±k2/1

(√
2 ± 1

)
≈ {±0.4142,±2.4142}k2/1

16.

representing the optimal STM ratio k1/k2 =
√

2 + 1 maximiz-
ing the information capacity variation ∆N during an exchange
of energy f between two BBOs having the same information
capacities N. In particular, if one BBO is a BH, then ∂∆N/∂k
yields the optimal STM k = 2

(√
2 + 1

)
≈ 4.8284 of the other

non-BH BBO. We note that this optimal STM is below the
kmax (89) and within the range of ultracompact STMs dis-
cussed in Section V D, even though it was derived using only
the generalized radius (49), the Compton wavelength, and the
procedure proposed in [95].

We conjecture that a BBO cannot exchange energy with an-
other BBO of the same size by radiation if its information
capacity N > 4k2π3. Wavelengths smaller than the Planck
length are physically implausible because the Planck area is
the smallest area required to encode one bit of information.
Therefore l ≥ 1 implies f ≤ 2π. Since, by Theorem 1, BBOs
having the same size can only exchange energy f =

√
N/π/k,

then N ≤ 4k2π3.

VIII. BBO COMPLEX GRAVITY AND TEMPERATURE

Complex energies (56)-(61) define complex forces (simi-
larly to the complex energy of real masses and charges (54),

16 ±k
(√

2 + 1
)
∓ k

(√
2 − 1

)
= ±2k and ±k2(

√
2 + 1)(

√
2 − 1) = ±k2.
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[70] Eq. (7)) acting over real and imaginary distances R,Ri.
Using the relations (44), we obtain the following products

E1mqi E2mqi B E1MQi E2MQi/E
2
P =

= m1m2 − q1q2α + i
√
α(m1q2 + m2q1),

E1qmi E2qmi B E1QMi E2QMi/E
2
P =

=
α4

α4
2

(
αq1q2 +

α

α2
mi1mi2 +

√
α

α2

√
α (q1mi2 + q2mi1)

)
,

(116)

E1 f mi E2 f mi B E1FMi E2FMi/E
2
P

= f1 f2 +
α

α2
mi1mi2 +

√
α5

α5
2

( f1mi2 + f2mi1) ,

E1m fi E2m fi B E1MFi E2MFi/E
2
P =

= m1m2 +
α

α2
fi1 fi2 +

√
α5

α5
2

(m1 fi2 + m2 fi1) ,

(117)

E1q fi E2q fi B E1QFi E2QFi/E
2
P =

=
α4

α4
2

(
αq1q2 +

α

α2
fi1 fi2 +

√
α

α2

√
α ( fi2q1 + fi1q2)

)
,

E1 f qi E2 f qi B E1FQi E2FQi/E
2
P =

= f1 f2 − q1q2α + i
√
α ( f1q2 + f2q1) ,

(118)

defining six complex forces acting over a real distance R

FABi =
G

c4R2 E1ABi E2ABi =
FP

r2 E1abi E2abi , (119)

and six complex forces acting over an imaginary distance Ri

F̃ABi =
G

c4
nR2

i

E1ABi E2ABi =
α2

α

FP

r2
i

E1abi E2abi , (120)

where A, B ∈ {M,Q, F} and a, b ∈ {m, q, f }, and

α2r2FABi = αr2
i F̃ABi . (121)

We exclude mixed forces (based on real and imaginary
masses/charges/Compton energies) as real and imaginary di-
mensions are orthogonal.

With a further simplifying assumption of r2 = r2
i , the forces

acting over a real distance R are stronger and opposite to the
corresponding forces acting over an imaginary distance Ri
even though the Planck force is lower in modulus than the
(real) α2-Planck force (37). This is a strong assumption but
seemingly correct. General radius (49) and energy (52) are
the same in Planck units, and α2-Planck units; STM remains
the same.

In particular, we can use the complex force FMQi (119) with
(116) (i.e., complex Newton’s law of universal gravitation)

to calculate the BBO surface gravity gBBO, assuming an un-
charged (q2 = 0) test mass m2

FP

r2
BBO

(
mBBOm2 + i

√
αm2qBBO

)
=

= M2gBBO = m2mPĝBBOaP,

ĝBBO =
1

r2
BBO

(
mBBO + i

√
αqBBO

)
,

(122)

where gBBO = ĝBBOaP, ĝBBO ∈ R. Substituting the BBO
equilibrium relation (86) and the generalized BBO radius (49)
rBBO = kmBBO into the relation (122) yields

ĝBBO =
1

krBBO

1 ± i

√
k2

4
− 1

 , (123)

which reduces to BH surface gravity for k = 2 and in modulus

ĝ2
BBO =

1
k2r2

BBO

1 + i

√
k2

4
− 1

 1 − i

√
k2

4
− 1

 = 1
4r2

BBO

.

(124)
for all k. In particular,

gBBO(kmax) = ±
aP

dBBO
(0.2944 ± 0.9557i) , (125)

gBBO(keq) = ±
aP

dBBO
(0.7229 ± 0.6909i) . (126)

As the BBO potential is [5]

δφBBO = −
N1

NBBO
c2 = −

1
2

c2, (127)

we conjecture that its complex form is

δφBBO = ±
c2

k

1 ± i

√
k2

4
− 1

 (128)

and only its negative modulus equals −c2/2.
The BBO surface gravity (123) leads to the generalized

complex Hawking blackbody-radiation equation

TBBO =
ℏ

2πckB
gBBO =

TP

kπdBBO

1 ± i

√
k2

4
− 1

 , (129)

describing the BBO temperature17 by including its charge in
the imaginary part, which also in modulus equals squared BH
temperature ∀k , 0. In particular,

TBBO(kmax) = ±
TP

2πdBBO


√
α4 − α4

2

α2 ± i
α2

2

α2

 ,
= ±

TP

2π3dBBO

(√
π4 − π4

1 ± iπ2
1

)
,

= ±
TP

2ππ2
2dBBO

(√
π4

2 − π
4 ± iπ2

)
,

(130)

17 In a commonly used form it is TBBO =
ℏc3

2k2πGMBBOkB

(
1 ± i

√
k2

4 − 1
)
.
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TBBO(keq) = ±
TP

2πdBBO

α2 ± iα2
2√

α4 + α4
2

,

= ±
TP

2πdBBO

π2 ± iπ2
1√

π4 + π4
1

= ±
TP

2πdBBO

π2
2 ± iπ2√
π4

2 + π
4
,

(131)

reduce to the BH temperature for α2 = 0. We note that
for dBBO = 1, Re(TBBO(kmax)) ≈ 6.6387 × 1030 [K] has
the magnitude of the Hagedorn temperature of strings, while
TP/(2π) ≈ 2.2549 × 1031 [K]. It seems, therefore, that a uni-
verse without α2-imaginary dimensions (i.e., with α2 = 0)
would be a black hole. Hence, the evolution of information
[1–6] requires imaginary time. And we cannot zero α2 as we
would have to neglect graphene.

IX. DISCUSSION

The reflectance of graphene under the normal incidence
of electromagnetic radiation expressed as the quadratic equa-
tion for the fine-structure constant α includes the 2nd negative
fine-structure constant α2. The sum of the reciprocal of this
2nd fine-structure constant α2 with the reciprocal of the fine-
structure constant α (2) is independent of the reflectance value
R and remarkably equals simply −π. Particular algebraic def-
inition of the fine-structure constant α−1 = 4π3 + π2 + π, con-
taining the free π term, can be interpreted as the asymptote
of the CODATA value α−1, the value of which varies with
time. The negative fine-structure constant α2 leads to the set of
α2-Planck units applicable to imaginary dimensions, includ-
ing imaginary α2-Planck units (26)-(34). Real and imaginary
mass and charge units (19), length and mass units (40) units,
and temperature and time units (39) are directly related to each
other. Also, the elementary charge e is common for real and
imaginary dimensions (16).

Applying the α2-Planck units to a complex energy formula
[70] yields complex energies (56), (57) setting the atomic
number Z = 238 as the limit on an extended periodic table.
The generalized energy (52) of all perfect black-body objects
(black holes, neutron stars, and white dwarfs) having the gen-
eralized radius RBBO = kRBH/2 exceed mass-energy equiva-
lence if k > 2. Complex energies (56), (57) allow for storing
the excess of this energy in their imaginary parts, inaccessible
for direct observation. The results show that the perfect black-
body objects other than black holes cannot have masses lower
than 5.7275×10−10 [kg] and that the STM ratios of their cores
cannot exceed kmax ≈ 6.7933 defined by the relation (89). It
is further shown that a black-body object is in the equilib-
rium of complex energies if its radius Req ≈ 1.3833 RBH (95).
The proposed model explains the registered (GWOSC) high
masses of the neutron stars mergers without resorting to any
hypothetical types of exotic stellar objects.

In the context of the results of this study, monolayer
graphene, a truly 2-dimensional material with no thick-
ness18, is a keyhole to other, unperceivable, dimensionalities.

18 Thickness of MLG is reported [96] as 0.37 [nm] with other reported values

Graphene history is also instructive. Discovered in 1947 [97],
graphene was long considered an academic material until it
was eventually pulled from graphite in 2004 [98] by means
of ordinary Scotch tape19. These fifty-seven years, along
with twenty-nine years (1935-1964) between the condemna-
tion of quantum theory as incomplete [99] and Bell’s math-
ematical theorem [100] asserting that it is not true, and the
fifty-eight years (1964-2022) between the formulation of this
theorem and 2022 Nobel Prize in Physics for its experimen-
tal loophole-free confirmation, should remind us that Max
Planck, the genius who discovered Planck units, has also dis-
covered Planck’s principle.
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Appendix A: Abbreviations

The following abbreviations are used in this paper:
ED emergent dimensionality
EMR electromagnetic radiation
MLG monolayer graphene
T transmittance
R reflectance
A absorptance
HUP Heisenberg’s uncertainty principle
DOF degree of freedom
BH black hole
NS neutron star
WD white dwarf
BBO black-body object
EVS entropy variation sphere
STM size-to-mass ratio
GR general relativity

Appendix B: Other quadratic equations

The quadratic equation for the sum of transmittance (3) and
absorptance (5) of MLG under normal incidence of EMR,

up to 1.7 [nm]. However, considering that 0.335 [nm] is the established
inter-layer distance and consequently the thickness of bilayer graphene,
these results do not seem credible: the thickness of bilayer graphene is not
2 × 0.37 + 0.335 = 1.075 [nm].

19 Introduced into the market in 1932.
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putting CTA B T + A, is

1
4

CTAπ
2α2 + (CTA − 1) πα + (CTA − 1) = 0, (B1)

and has two roots with reciprocals

α−1 =
CTAπ

2
(
1 −CTA +

√
1 −CTA

) ≈ 137.036, (B2)

and

α−1
2 =

CTAπ

2
(
1 −CTA −

√
1 −CTA

) ≈ −140.178, (B3)

whereas their sum α−1 + α−1
2 = −π is, similarly as the relation

(11), also independent of T and A.
Other quadratic equations do not feature this property. For

example, the sum of T+R (6) expressed as the quadratic equa-
tion and putting CTR B T + R, is

1
4

(CTR − 1) π2α2 +CTRπα + (CTR − 1) = 0, (B4)

and has two roots with reciprocals

α−1 =
π(CTR − 1)

−2CTR + 2
√

2CTR − 1
≈ 137.036, (B5)

and

α−1
TR =

π(CTR − 1)
−2CTR − 2

√
2CTR − 1

≈ 0.0180, (B6)

whereas their sum

α−1
TR1
+ α−1

TR2
=
−πCTR

CTR − 1
≈ 137.054 (B7)

is dependent on T and R.

Appendix C: Two π-like constants

With algebraic definitions of α (12) and α2 (13), T (3), R
(4) and A (5) of MLG for normal EMR incidence can be ex-
pressed just by π. For α−1 = 4π3 + π2 + π (12) they become

T (α) =
4
(
4π2 + π + 1

)2(
8π2 + 2π + 3

)2 ≈ 0.9775, (C1)

A (α) =
4
(
4π2 + π + 1

)
(
8π2 + 2π + 3

)2 ≈ 0.0224, (C2)

while for α−1
2 = −4π3 − π2 − 2π (13) they become

T (α2) =
4
(
4π2 + π + 2

)2(
8π2 + 2π + 3

)2 ≈ 1.0228, (C3)

A (α2) = −
4
(
4π2 + π + 2

)
(
8π2 + 2π + 3

)2 ≈ −0.0229, (C4)

with

R (α) = R (α2) =
1(

8π2 + 2π + 3
)2 ≈ 1.2843 × 10−4. (C5)

(T(α)+A(α))+R(α) = (T(α2)+A(α2))+R(α2) = 1 as required
by the law of conservation of energy (7), whereas each conser-
vation law is associated with a certain symmetry, as asserted
by Noether’s theorem. A(α) > 0 and A(α2) < 0 imply a sink
and a source respectively, while the opposite holds true for T,
as illustrated schematically in Fig 2. Perhaps, the negative A
and T exceeding 100% for α2 (10) or (13) could be explained
in terms of spontaneous graphene emission.

The quadratic equation (8) describing the reflectance R of
MLG under the normal incidence of EMR (or alternatively
(B1)) can also be solved for π yielding two roots

π(R, α∗)1 =
2
√

R

α∗(1 −
√

R)
, and (C6)

π(R, α∗)2 =
−2
√

R

α∗(1 +
√

R)
, (C7)

dependent on R and α∗, where α∗ indicates α or α2. This can
be further evaluated using the MLG reflectance R (4) or (C5)
(which is the same for both α and α2), yielding four, yet only
three distinct possibilities

π1 = π(α)1 = −π
4π2 + π + 1
4π2 + π + 2

= π
α2

α
≈ −3.0712, (C8)

π(α)2 = π(α2)1 = π ≈ 3.1416, and (C9)

π2 = π(α2)2 = −π
4π2 + π + 2
4π2 + π + 1

= π
α

α2
≈ −3.2136. (C10)

The modulus of π1 (C8) corresponds to a convex surface hav-
ing a positive Gaussian curvature, whereas the modulus of
π2 (C10) - to a negative Gaussian curvature. Their product
π1π2 = π

2 is independent of α∗, their quotient π1/π2 = α
2
2/α

2

is not directly dependent of π, and |π1 − π| , |π − π2|. It re-
mains to be found whether each of these π-like constants de-
scribes the ratio of the circumference of a circle drawn on the
respective surface to its diameter (πc) or the ratio of the area
of this circle to the square of its radius (πa). These definitions
produce different results on curved surfaces, whereas πa > πc
on convex surfaces, while πa < πc on saddle surfaces [103].

Appendix D: Planck units and HUP

Perhaps the simplest derivation of the squared Planck
length is based on HUP

δPHUPδRHUP ≥
ℏ

2
or δEHUPδtHUP ≥

ℏ

2
, (D1)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202212.0045.v14

https://doi.org/10.20944/preprints202212.0045.v14


18

T( ) < 1α

A( ) > 0α

T( ) > 1α2

A( ) < 0α2

Figure 2. Illustration of the concepts of negative absorptance and
excessive transmittance of EMR under normal incidence on MLG.

where δPHUP, δRHUP, δEHUP, and δtHUP denote momentum,
position, energy, and time uncertainties, by replacing energy
uncertainty δEHUP = δMHUPc2 with mass uncertainty using
mass-energy equivalence, and time uncertainty with position
uncertainty using δtHUP = δRHUP/c [36], which yields

δMHUPδRHUP ≥
ℏ

2c
. (D2)

Interpreting δMHUP = δRHUPc2/(2G) as the BH mass in (D2)
we derive the Planck length as δR2

HUP = ℓ
2
P ⇒ δDHUP = ±2ℓP

and recover [5] the BH diameter dBH = ±2.
However, using the same procedure but inserting the BH

radius, instead of the BH mass, into the uncertainty principle
(D2) leads to δM2

HUP =
1
4ℏc/G =

1
4 m2

P. In general, using the
generalized radius (49) in both procedures, one obtains

δM2
HUP =

1
2k

m2
P and δR2

HUP =
k
2
ℓ2P. (D3)

Thus, if k increases mass δMHUP decreases, and δRHUP in-
creases and the factor is the same for k = 1 i.e., for or-
bital speed radius δR = GδM/c2 or the orbital speed mass
δM = δRc2/G.

Appendix E: The Stoney units derivation

We assume that the elementary charge is the unit of charge
qS = e and that the speed of light is the quotient of the unit
of length and time c = lS/tS. Next, we compare the Coulomb
force between two elementary charges and units of masses mS

with Newton’s law of gravity, acting over the same distance

1
4πϵ0

e2

��R2
= G

m2
S

��R2
⇒ mS = ±

√
e2

4πϵ0G
. (E1)

Finally, we compare the inertial force of the unit of mass with
Newton’s law of gravity

��mS
ℓS

t2
S

= G
m�2

S

ℓ2S
⇒ ℓS = ±

√
Ge2

4πϵ0c4 , (E2)

to derive the Stoney length ℓS and the remaining Stoney units.
Using the negative cn (20) we can determine the values of

cn-Stoney units (Sn). For mass, length, time, and energy they
are

mSn = mS =
√
αmP ≈ 0.0854mP,

ℓSn =
α2

2

α2 ℓS ≈ 0.9557lS ≈ 0.0816lP,

tSn =
α3

2

α3 tS ≈ −0.9343tS ≈ −0.0798tP,

ESn = mSc2
n =
α2

α2
2

ES ≈ 1.0464ES ≈ 0.0894EP.

(E3)

We note that the cn-Stoney energy induced by cn is larger than
the Stoney energy and the cn-Stoney time runs in the opposite
direction. We also note that the negative value of the gravita-
tional constant G would yield imaginary Stoney units regard-
less of the sign of c, as all Stoney units (except charge) contain
c raised to even (4, 6) powers.

Appendix F: A mixed speeds hypothesis

Let us define the mass/charge energies (56), (57) with dif-
ferent speeds of light, i.e., the charge part of the energy EMQi

with cn and the charge part of the energy EQMi with c

ẼMQi B Mc2 +
Qi

2
√
πϵ0G

c2
n = Mc2 ± iq

√
αmP
α2

α2
2

c2,

ẼQMi B
Q

2
√
πϵ0G

c2 + Mic2
n = ±q

√
αmPc2 + Mi

α2

α2
2

c2,

(F1)

Demanding equality of their moduli

M2 + q2αm2
P
α4

α4
2

= q2αm2
P − M2

i
α4

α4
2

,

Mi = ±

√
q2αm2

P

α4
2

α4 − 1
 − α4

2

α4 M2.

(F2)

For q = 0 this relation corresponds to the relation (74). How-
ever, since mass Mi is imaginary, the argument of the square
root in the relation (F2) must be negative, i.e.,

|M| ≯ |q|
√
αmP

√
1 −
α4

α4
2

. (F3)
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But α4 > α4
2, yielding imaginary M, while M is real by

definition. The same result would be obtained if EMQi was
parametrized with cn and EQMi with c, since√

α4
2

α4 − 1 ∈ I,

√
1 −
α4

2

α4 ∈ R,√
α4

α4
2

− 1 ∈ R,

√
1 −
α4

α4
2

∈ I.

(F4)

Therefore, complex energies EMQi (56) and EFQi (60) must
be parametrized by c, while complex energies EQMi (57) and
EQFi (61) - by cn.

Appendix G: Hall effect

The fractional quantum Hall (FQHE) effect shows a step-
wise dependence of the conductance on the magnetic field (as
compared to a linear dependence of the Hall effect) with steps
quantized as

R =
h
νe2 =

2�π�ℏ
να4�πϵ0�ℏc

=
1

2νϵ0αc
=

1
2νϵ0α2cn

, (G1)

where ν is an integer or fraction (For example for ν = 5/2, R =
1/(5ϵ0αc)). Relations (G1) and (24) suggest that 2D FQHE
links real and imaginary dimensions similarly to 2D graphene,
gifting us with the second, negative fine-structure constant α2.
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