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Imaginary dimensions in physics require an imaginary set of base Planck units and some negative parameter
¢, corresponding to the speed of light in vacuum c. The second, negative fine-structure constant ;' ~ —140.178
is present in Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene,
leading to these imaginary Planck units, and it establishes ¢, = —3.06 X 10% [m/s]. It follows that electric
charges are the same in real and imaginary dimensions. We model neutron stars and white dwarfs, emitting
perfect black-body radiation, as objects having energy exceeding their mass-energy equivalence ratios. We
define complex energies in terms of real and imaginary Planck units. Their imaginary parts, inaccessible for
direct observation, store the excess of these energies. It follows that black holes are fundamentally uncharged,
charged micro neutron stars and white dwarfs with masses lower than 5.7275 x 10710 [kg] are inaccessible for
direct observation, and the radii of white dwarfs’ cores are limited to Ryp < 6.7933 GMwp/c. It is conjectured
that the maximum atomic number Z = 238. A black-body object is in the equilibrium of complex energies
of masses, charges, and photons if its radius R.q ~ 2.7665 GMgpo/ 2, which corrects the value of the photon
sphere radius R, = 3GM/c?, by taking into account the value(s) of the fine-structure constant(s), which is
otherwise neglected in general relativity. Complex Newton’s law of universal gravitation, based on complex
energies, leads to the black-body object’s surface gravity and the generalized Hawking radiation temperature,
which includes its charge. The proposed model explains the registered (GWOSC) high masses of neutron stars’
mergers without resorting to any hypothetical types of exotic stellar objects.
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I. INTRODUCTION However, dimensional properties are not uniform. Con-
cerning regular convex n-polytopes in natural dimensions, for

The universe began with the Big Bang, which is a current ~ €xample, there are countably infinitely many regular convex

prevailing scientific opinion. But this Big Bang was not an
explosion of 4-dimensional spacetime, which also is a current
prevailing scientific opinion, but an explosion of dimensions.
More precisely, in the —1-dimensional void, a 0-dimensional
point appeared, inducing the appearance of countably in-
finitely other points indistinguishable from the first one. The
breach made by the first operation of the dimensional succes-
sor function of the Peano axioms inevitably continued leading
to the formation of 1-dimensional, real and imaginary lines al-
lowing for an ordering of points using multipliers of real units
(ones) or imaginary units (@ € R @ a = 1b',ael & a =
ib,b € R). Then out of two lines of each kind, crossing each
other only at one initial point (0, 0), the dimensional succes-
sor function formed 2-dimensional RZ, I2, and R x I Euclidean
planes, with I? being a mirror reflection of R?. And so on,
forming n-dimensional Euclidean spaces R¢ x I’ with a € N
real and b € N imaginary lines, n := a + b, and the scalar
product defined by

. . . .7\ .
X-y=(xl,...,xa,lxl,...,th)(yl,...,ya,lyl,...,zyb) =

a b
— v
= Z XYk + Z at
I=1

k=1

D

where X,y € R* X I”. With the onset of the first 0-dimensional
point, information began to evolve [1-6].

* szymon @patent.pl
! This is, of course, a circular definition, but it is given for clarity.

polygons, five regular convex polyhedra (Platonic solids), six
regular convex 4-polytopes, and only three regular convex n-
polytopes if n > 3 [7]. In particular, 4-dimensional euclidean
space is endowed with a peculiar property known as exotic R*
[8]. This property allowed for variation of phenotypic traits
within populations of individuals [9] and extended the evolu-
tion of information into biological evolution. Each biological
cell perceives emergent Euclidean R? x I space of three real
and one imaginary (time) dimension observer-dependently
[10] and at present when i0 = 0 is real; perceived space re-
quires an integer dimensionality [11]. This is the emergent
dimensionality (ED) [5, 9, 12-14].

Each dimension requires certain units of measure. In real
dimensions, the natural units of measure were derived by
Max Planck in 1899 as “independent of special bodies or sub-
stances, thereby necessarily retaining their meaning for all
times and for all civilizations, including extraterrestrial and
non-human ones” [15]. This study derives the complemen-
tary set of Planck units applicable for imaginary dimensions,
including the imaginary base units. As the speed of electro-
magnetic radiation is the product of its wavelength and fre-
quency and both these quantities are imaginary in imaginary
dimensions, some real but negative parameter ¢, = v;A; corre-
sponding to the speed of light in vacuum c (i.e., the Planck
speed) is also necessary as i> = —1. It turns out that the
imaginary Planck energy Ep; and temperature Tp; are larger in
moduli than the Planck energy Ep and temperature Tp setting
more favorable conditions for biological evolution to emerge
in R x I Euclidean space than in I* x R Euclidean one due to
the minimum energy principle.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


mailto:szymon@patent.pl
https://doi.org/10.20944/preprints202212.0045.v10
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023

The study shows that the energies of neutron stars and white
dwarfs exceed their mass—energy equivalences and that excess
energy is stored in imaginary dimensions and is inaccessible
to direct observations. This corrects the value of the photon
sphere radius and results in the upper bound on the size-to-
mass ratio of their cores, where the Schwarzschild radius sets
the lower bound.

The paper is structured as follows. Section II shows that
Fresnel coefficients for the normal incidence of electromag-
netic radiation on monolayer graphene include the second,
negative fine-structure constant @, as a fundamental constant
of nature. Section III shows that by this second fine-structure
constant nature endows us with the complementary set of a;-
Planck units. Section IV introduces the concept of a black-
body object in thermodynamic equilibrium, emitting perfect
black-body radiation, and reviews its necessary properties.
Section V introduces complex energies of masses, charges,
and photons expressed in terms of real and imaginary Planck
units introduced in Section III and discusses equilibria formed
by comparing their moduli. Section VI applies these equilib-
ria to black-body objects to derive the range of their size-to-
mass ratios and the equilibrium ratio. Section VII applies this
range to the observed mergers of black-body objects to show
that the observed data is explainable with no need to introduce
hypothetical exotic stellar objects. Section VIII define com-
plex forces to derive a black-body object surface gravity, and
the generalized Hawking radiation temperature. Section IX
summarizes the findings of this study. Certain prospects for
further research are given in the appendices.

II. THE SECOND FINE-STRUCTURE CONSTANT

Numerous publications provide Fresnel coefficients for the
normal incidence of electromagnetic radiation (EMR) on
monolayer graphene (MLG), which are remarkably defined
only by m and the fine-structure constant a

2 Aneh
aflz(q?l’) = O 137.036, )

2

where gp is the Planck charge, € is vacuum permittivity (the
electric constant), 7 is the reduced Planck constant, and e is
the elementary charge. Transmittance (7") of MLG

1
T=——— ~09775, 3)

(%)

for normal EMR incidence was derived from the Fresnel equa-
tion in the thin-film limit [16] (Eq. 3), whereas spectrally flat
absorptance (A) A = ma ~ 2.3% was reported [17, 18] for
photon energies between about 0.5 and 2.5 [eV]. T was re-
lated to reflectance (R) [19] (Eq. 53) as R = n%a’T /4, i.e,

171_20,2
———— ~ 1.2843x 107", 4)
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The above equations for 7' and R, as well as the equation for
the absorptance
A= "2 ~00224, (5)
(1 + %)
were also derived [20] (Eqgs. 29-31) based on the thin film
model (setting n; = 1 for substrate). The sum of transmittance
(3) and the reflectance (4) at normal EMR incidence on MLG
was derived [21] (Eq. 4a) as

4on
4+40n+ 0202 + kK2x?
1+ }177202 (6)
= ~ 0.9776,

7 R

T+R=1-

@
(1 + 7)
where 7 is the vacuum impedance

dnah 1
= - — ~37673 [Ql, %)
e €cC

o = &/(@4h) = na/ n is the MLG conductivity [22], and
x = 0 is the electric susceptibility of vacuum. These coef-
ficients are thus well-established theoretically and experimen-
tally confirmed [16—18, 21, 23, 24].

As a consequence of the conservation of energy

(T+A)+R=1. (8)

In other words, the transmittance in the Fresnel equation de-
scribing the reflection and transmission of EMR at normal in-
cidence on a boundary between different optical media is, in
the case of the 2-dimensional (boundary) of MLG, modified
to include its absorption.

The reflectance R = 0.013% (4) of MLG can be expressed
as a quadratic equation with respect to «

1
Z(R— ) 7*a® + Rnae + R = 0. 9)

This quadratic equation has two roots with reciprocals

— VR
ot = TZTVR 137.036, and (10)
2VR
—n—nVR
o' = =7 VR 40,178, (11)
2VR

Therefore, the equation (9) includes the second, negative fine-
structure constant a,. It happens that the sum of the recipro-
cals of these fine-structure constants (10) and (11)

PO S N Sk R-n-nVR _
? 2VR

is remarkably independent of the value of the reflectance R.
The same result can only be obtained for 7' + A (cf. Appendix

-7, (12)
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A). This result is intriguing in the context of a peculiar alge-
braic expression for the fine-structure constant [25]

o' =47° + 1 + 7 ~ 137.036303776 (13)

that contains a free m term and is very close to the physi-
cal definition (2) of @', which according to the CODATA
2018 value is 137.035999084. Notably, the value of the fine-
structure constant is not constant but increases with time [26—
30]. Thus, the algebraic value given by (13) can be interpreted
as the asymptote of the « increase.

Using relations (12) and (13), we can express the negative
reciprocal of the 2" fine-structure constant a; ! that emerged
in the quadratic equation (9) also as a functlon of 7 only

@' = —n—a;' = -4r’ — 1% — 21 ~ —140.177896429, (14)

and this value can also be interpreted as the asymptote of the
a; decrease, where the current value would amount to a; Iy
—140.177591737, assuming the rate of change is the same for
a and a,.

Using relations (13) and (14), transmittance 7 (3), re-
flectance R (4), and absorptance A (5) of MLG for normal
EMR incidence can be expressed just by 7. Moreover, equa-
tion (9) includes two m-like constants for two surfaces with

positive and negative Gaussian curvatures (cf. Appendix B).

III. SET OF a,-PLANCK UNITS

Planck units can be derived from numerous starting points
[5, 31] (cf. Appendix C). The definition of the Planck charge
gp = V4nehic can be solved for the speed of light yielding
c= ‘112) /(4rnegh). Furthermore, the ratio of charges in the defi-
nition of the fine-structure constant @ = ¢*/q3 (2) applied for
the negative a,, requires an introduction of some imaginary
Planck charge gp; so that its square would yield a negative
value of @y

= =@~ -140.178, (15)

and since the elementary charge e is real

e2

o = ++/dneyhcy,. (16)
2

qri = £

Among the physical constants of the v4neyfic, term, almost
all are positivez. Only the ¢, = v;4; parameter, corresponding
to the speed of light ¢, is negative as both frequency v; and
wavelength A; are imaginary in imaginary dimensions. There-
fore, the equation (16) can be solved for ¢, yielding

cn = qb;/(dnegh) = =3.066653 x 10° [m/s],  (17)

2 Vacuum permittivity e is the value of the absolute dielectric permittivity
of classical vacuum. Thus, € cannot be negative. The Planck constant /£ is
the uncertainty principle parameter. Thus, it cannot be negative.
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which is greater than the speed of light in vacuum ¢ in modu-
lus®. We also note that c is defined by the electric constant &
and the magnetic constant pg as ¢ = 1/ y/éoflo; a square root is
bivalued and the value of yy depends on @. Furthermore, c is
defined by a-dependent vacuum impedance (7).

The negative parameter ¢, (17) leads to the imaginary
Planck charge gp;, length {p;, mass mp;, time fp;, and tempera-
ture Tp; that redefined by square roots containing c, raised to
an odd (1, 3, 5) power become imaginary and bivalued

a
qpi = £ VAmEhc, = £qp [~ ~
2

~ +i1.8969 x 1073 [C]

(18)
(Igpil > lgel) ,

hG a
A el (19)

~ +i1.5622 x 1073 [m]  (|€pil < I6p),

I LTI K
"N T T "W a (20)

~ +i2.2012 x 1078 [kg]  (mp;] > [mp]),

"G _ \/072
a o @)

~ +i5.0942 x 107 [s]  (Itei] < Itp])

N LS AP N
NGk a2 (22)

~ +i1.4994 x 102 [K]  (ITp:i > |Tp)),

and furthermore can be expressed, using the relation (31), in
terms of base Planck units gp, {p, mp, tp, and Tp.

Planck units derived from the imaginary base units (19)-
(21) are generally not imaginary. The @, Planck volume

3/2 9
6 =(M9) Cipy 2~
n=E T TEe\ G (23)
~ £i3.8127x 107" m*] (1631 <163]).

the @, Planck momentum

. . hey . a
ppi = xmp;C, = * G = xmpC a[; ~ (24)

~ +i6.7504 [kg m/s]  (Imp;c,| > |mpc]),

3 Their average (c + ¢,)/2 ~ —=3.436417 x 10° [m/s] is in the range of the
Fermi velocity.
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the @, Planck energy

hed ad
Ep; = +mp; 2 = + ~ = +F —< =
pi = PG G "o (25)
~ +i2.0701 x 10° [J]  (|Epi| > |Epl),
and the a, Planck acceleration
Lo, cl . o’
api = +t— ==+ — = +a — X
A Z Vol (26)
~ +i6.0198 x 10°' [m/s*]  (lapi| > lap|),

are imaginary and bivalued. However, the «; Planck force

~

Ep; ¢
Fpp=t—=+—
P2 Cor G

~ +1.3251 x 10* [N]

=+Fp

~
~

I\)Q-bl ]

27
(IFp2| > |Fp]),

and the a, Planck density

5 5
c a

pr2 = i@ = iﬁ =+pp—= ~
i a, (28)

~ £5.7735 x 10° [kg/m*]  (lppa] > loel) .
are real and bivalued. On the other hand, the a, Planck area

2 = E — g2a_§ ~
Pi Cgl Pa,3 (29)

~ —2.4406 x 1070 (m?] (1631 < 1631).

is strictly negative, while the Planck area {’]2, is strictly positive.
In the following, we shall call the units (18)-(29) @,-Planck
units.

Both a; and ¢, lead to the second, negative vacuum
impedance

_ 47m/2h _ 1
= 5 =

m ~ =368.29 [Q]  (fm| <nl).  (30)

e €NCy

Solving both impedances (7) and (30) for 4nfiey/ ¢? and com-
paring with each other yields the following important relation
between the speed of light in vacuum c, negative parameter
¢,, and the fine-structure constants «, a,

(=ve), €2y

ca = c,an

where, notably, v, is the electron’s velocity at the first circular
orbit in the Bohr model of the hydrogen atom. This is not the
only a to @, relation. Along with the two n-like constants 7,
my (relations (B8) and (B10), cf. Appendix B)

Lo T L 09776 (32)

a Cn T M

The relations between time (21) and temperature (22) a;-

Planck units are inverted, a7, = o212, @2T2 = o T2, and
pi 2l 1y, P
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saturate Heisenberg’s uncertainty principle (energy-time ver-
sion) taking energy from the equipartition theorem for one de-
gree of freedom (or one bit of information [5, 32])

1 1 hi
—kpgTptp = —kgTpitp; = —. 33
2BPP 2BPP 2 ( )

Furthermore, eliminating @ and a, from the relations (18)-
(20), yield

2 2
q—‘; = "_1; = 476G, (34)
mp My,
and
tpmy, =ty and  pqi = Lpigy,. (35)

Base Planck units themselves admit negative values as neg-
ative square roots. By choosing complex analysis, within the
framework of ED, we enter into bivalence by the very na-
ture of this analysis. All geometric objects have both posi-
tive and negative volumes and surfaces [14] equal in moduli.
On the other hand, imaginary and negative physical quanti-
ties are the subject of research. In particular, the subject of
scientific research is thermodynamics in the complex plane.
Lee—Yang zeros, for example, have been experimentally ob-
served [33, 34]. We note here that the imaginary Planck Units
are not imaginary due to being multiplied by the imaginary
unit i. They are imaginary due to the negativity of odd pow-
ers of ¢, being the square root argument; thus, they define
imaginary physical quantities inaccessible to direct measure-
ments*. They do not apply only to the time dimension but to
any imaginary dimension. However, in our four-dimensional
Euclidean R? x I space-time, Planck units apply in general to
the spatial dimensions, while the imaginary ones in general
to the imaginary temporal dimension. All the a,-Planck units
have physical meanings. However, some are elusive, like the
negative area or imaginary volume, which require two or three
orthogonal imaginary dimensions.

Planck charge relations (2) and (16) imply that the elemen-
tary charge e is the same both in real and imaginary dimen-
sions since

& = agh = g, (36)

There is no physically meaningful elementary mass M, =
+1.8592 x 1077 [kg] that would satisfy the relation (20)

M? = am} = a/zmlz,i. (37)
Neither is there a physically meaningful elementary (and
imaginary) length L, ~ +i9.7382 x 107 [m] satisfying the
relation (29)

L2 =a’t; = axty, (38)

4 Quantum measurement outcomes are real eigenvalues of hermitian opera-
tors.
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(which in modulus is almost 1660 times smaller than the
Planck length), or an elementary temperature T, ~ +6.4450 X
10%® [K] abiding to (22)

T? = °T} = 3T}, (39)

and close to the Hagedorn temperature of grand unified string
models.

Thus, as to the modulus, charges are the same in real and
imaginary dimensions, while masses, lengths, temperatures,
and other derived quantities that can vary with time, may dif-
fer (the dimensional character of the charges is additionally
emphasized by the real v/ multiplied by i in the imaginary
charge energy (54) and imaginary +/a; in the real charge en-
ergy (55)). We note that the same form of the relations (36)
and (37) reflect the same form of Coulomb’s law and New-
ton’s law of gravity, which are inverse-square laws.

IV. BLACK BODY OBJECTS

There are only three observable objects in nature that emit
perfect black-body radiation: unsupported black holes (BHs,
the densest), neutron stars (NSs), supported, as it is accepted,
by neutron degeneracy pressure, and white dwarfs (WDs),
supported by electron degeneracy pressure (the least dense).
We shall collectively call them black-body objects (BBOs).
This term is not used in standard cosmology, but standard cos-
mology scrunches under embarrassingly significant failings,
not just fensions as is sometimes described, as if to somehow
imply that a resolution will eventually be found [35]. It has
recently been experimentally confirmed that the so-called ac-
cretion instability is a fundamental physical process [36]. We
conjecture that this process is common for all BBOs. Fur-
thermore, the term object as a collection of matter is a mis-
nomer, as it neglects quantum nonlocality [37] that is inde-
pendent of the entanglement among the particles [38]. Thus
we use emphasis for (indistinguishable) particle and (distin-
guishable) object, as well as for matter and distance. These
terms have no absolute meaning in ED. In particular, given the
recent observation of quasiparticles in classical systems [39].

As black-body radiation is radiation of global thermody-
namic equilibrium, it is patternless (thermal noise) radiation
that depends only on one parameter. In the case of BHs, this
is known as Hawking radiation and this parameter is the BH
temperature Tgy = Tp/(2ndpy) corresponding to the BH di-
ameter [5] Dpy = dpufp, where dgy € R. As black-body
radiation is patternless, the triangulated [5] BBOs contain a
balanced number of Planck area triangles, each carrying bi-
nary potential 5¢; = —c?-{0, 1}, as it has been shown for BHs,
based on Bekenstein-Hawking (BH) entropy. BH entropy can
be derived from the Bekenstein bound

S < ZHkBRE’

fic
which defines an upper limit on the thermodynamic entropy
S that can be contained within a sphere of radius R hav-

ing energy E. After plugging the BH (Schwarzschild) ra-
dius Rgy = 2GMpy/c? and mass-energy equivalence Egy =

(40)
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Mgyc?, where Mgy is the BH mass, into the bound (40), it
reduces BH entropy. In other words, BH entropy saturates the
Bekenstein bound (40).

The patternless nature of the perfect black-body radiation
was derived [5] by comparing BH entropy with the binary en-
tropy variation 6S = kgN;/2 ([5] Eq. (55)), valid for any
holographic sphere, where N; € N denotes the number of ac-
tive Planck triangles with binary potential 6¢; = —c>. Thus,
the entropy of all BBOs is

1
SBBO = ZkBNBBO’ (41)

where Nppo = 47rR2BBO /512, = ﬂdlngO is the information capac-
ity of the BBO surface, i.e., the | Nggo] € N Planck triangles
(where | x]” is the floor function that yields the greatest inte-
ger less than or equal to its argument x) corresponding to bits
of information [32, 40, 41], and the fractional part triangle(s)
having the area {NBBO}K% = (Nggo — I_NBBOJ)K]Z, to small to
carry a single bit of information. Furthermore, N| = Ngpo/2.
We shall define the generalized radius of a BBO having
mass Mggo as a function of GMggo/c? multiplier k € R

GMzgo

Rgpo = k——F5—,
c

(42)

and the generalized BBO energy Eppo as a function of
Mppoc? multiplier a € R

Eggo = aMppoc’. (43)

Plugging definitions (42) and (43) into the Bekenstein bound
(40) it becomes

1 a
S < —kg—Nggo, 44
< 5kB 7 NBBO (44)

and equals the BBO entropy (41) if 57 = JT =a= %‘ Thus,

the energy of all BBOs having a radius (42) is

Egpo = gMBBOCZs (45)
with k = 2 in the case of BHs and k > 2 for NSs and WDs.
We shall further call the coefficient k the size-to-mass ratio.

BHs are fundamentally uncharged since the parame-
ters of any conceivable BH, in particular charged (Reiss-
ner—Nordstrdom) and charged-rotating (Kerr—Newman) BH,
can be altered arbitrarily, provided that the BH area does not
decrease [42] by means of Penrose processes [43, 44] to ex-
tract BH electrostatic and/or rotational energy [45]. Thus any
BH is defined by only one real parameter: its diameter (cf.
[5] Fig. 2(b)), mass, temperature, energy, etc., each corre-
sponding to the other. We note that in the complex Euclidean
R3 X1 space, an n-ball (n € C) is spherical only for a vanishing
imaginary dimension [14]. As the interiors of the BBOs are
inaccessible to an exterior observer [40], BBOs do not have
interiors®, which makes them similar to interior-less mathe-
matical points. Yet, a BH can embrace this defining parameter.

5 Thus, the term object is a particularly staring misnomer if applied to BBOs.
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That means that three points forming a Planck triangle corre-
sponding to a bit of information on a BH surface can store this
parameter and this is intuitively comprehensible: the area of
a spherical triangle is larger than that of a flat triangle defined
by the same vertices, providing the curvature is nonvanishing,
and depends on this curvature, i.e., this additional parameter
defines it.

On the other hand, it is accepted that in the case of NSs,
electrons combine with protons to form neutrons so that NSs
are composed almost entirely of neutrons. But it is never the
case that all electrons and all protons of an NS become neu-
trons. WDs are charged by definition as they are accepted
to be composed mostly of electron-degenerate matter. But
how can a charged BBO store both the curvature and an ad-
ditional parameter corresponding to its charge? Fortunately,
the relation (36) ensures that charges are the same in real and
imaginary dimensions. Therefore each Planck triangle of a
BBO surface is associated with three R x I Planck triangles,
each sharing a vertex or two vertices with this triangle in R.
And this configuration is capable of storing both the curvature
and the charge. The Planck triangle 512, and the R xI imaginary

Planck triangle {plp; = 512, A /cy% /a3, which has a smaller area in

modulus, can be considered in a polyspherical coordinate sys-
tem, in which gravitation/acceleration acts in a radial direction
(with the entropic gravitation acting inwardly and acceleration
acting in both radial directions) [5], while electrostatics act in
a tangential direction.

Not only BBOs are perfectly spherical. Also, their merg-
ers, to which we shall return in Section VII, are perfectly
spherical, as it has been recently experimentally confirmed
[46] based on the registered gravitational event GW170817.
One can hardly expect a collision of two perfectly spherical,
patternless thermal noises to produce some aspherical pattern
instead of another perfectly spherical patternless noise. Where
would the information about this pattern come from at the mo-
ment of the collision? From the point of impact? No point of
impact is distinct on a patternless surface.

The hitherto considerations may be unsettling for the
reader, as the energy (45) of BBOs other than BHs (i.e., for
k > 2) exceeds mass-energy equivalence E = Mc?, which is
the limit of the maximum real energy. In the subsequent sec-
tion, we shall show that a part of the energy of NSs and WDs
is imaginary and thus unmeasurable.

V. COMPLEX ENERGIES AND EQUILIBRIA

A complex energy formula
Eg = EMR + iEQR = c, (46)
where Ey, and iE, represent respectively real and imaginary

energy of an object having mass My and charge Qz° was pro-
posed in [47]. Equation (46) considers real (i.e., physically

6 Charges in the cited study are defined in CGS units. Here we adopt SI.
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measurable) masses Mg and charges QOg. We shall modify it
to a form involving real and imaginary physical quantities ex-
pressing them, where deemed appropriate, by Planck units

M = mmp, M;:=mmp;, m,m; € R,
0 = ge, Q;=iQ=ige, q€Z @7
A= lfp, /1,' = l,'fp,‘, l, l,' € R,

where uppercase M, Q, and A denote respectively masses,
charges, and wavelengths, while the subscripts i refer to imag-
inary quantities. We note that the discretization of charges by
integer multipliers g of the elementary charge e is far-fetched,
considering the fractional charges of quasiparticles.

We define the following two complex energies, the complex
energy of real mass and imaginary charge

0;
2\neG (48)
= (mmp +iq \/c_ymp> ¢ = (m +iq \/C_Z) Ep,

of real charge and imaginary mass

0

71'60G
= (g Vazmp; + mmp;) c; = (q\/_+1/aml)Ep,

of real photon (energy or frequency v) and imaginary mass

5
EFM,- =hv+ M,‘Cﬁ [f + m,] Ep, (50)
\ @

of real photon and imaginary charge

EMQ,' = EM+EQ’ MC + ——

EQM‘. = EQ + EM[ = C121 + MiCi =

(49)

0,
2\/7? (f"‘lq\/_)EP, (€29)

of real mass and imaginary photon (with frequency v; = ¢,/4;)

hc, 3
Eyr, = Mc* + =2 = [m e ﬁ] Ep. (52
/ll' oz2

and of real charge and imaginary photon

E 2 iy “2( Va + /“f)E (53)
= ——0C Vi = —& 07 —Ji .
o ) \eG " a? 7 o)

where hv = 2hs = ZEp == fEp, hv; == fiEp;, f € R.

Complex energies (48) (53) link mass, charge, and photon
energies within the framework of ED. We note in passing that
using the different speed of light parameters in energies (48)
and (??) yields a contradiction (cf. Appendix D).

Energies (48), (49), (51), and (53) yield two different
quanta of the charge energies corresponding to the elementary
charge, the imaginary quantum

EFQi =hv+

Ep(q = +1) = i VaEp ~ +i1.6710 x 10°® [J], (54)
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and the - larger in modulus - real quantum
Eo(q = +1) = + VasEp; ~ £1.7684 x 10 [J]. (55)

Furthermore, Vg, @*Eg; = ia3Eg. We note that photon energy
vanishes for the infinite wavelength.
The squared moduli of the energies (48)-(53) are

IEMQ,.I2 = (M2 + qzamf)) = (m2 + q2cy) Elz,, (56)
E |2 “4(2 2M2)4 a42 Olez
"= —(goam; — M;|c" = —|g°aa — —m; s
oM; ag q P i ag q @ i P
(57)
2 2 @ 2| 2
|E | =(f ——Smi)EP, (58)
@,
&
\Eyr > = (mz - —f7|Es. (59)
@,
Erol’ = (f*+ qa) E3, (60)
4 5
1% a
Egrl” = | 5d°a — = f7 | E;, (61)
4 5
a, @

where we used relations (20), (25), (31), and (47).
Postulating that the squared moduli (56) and (57) are equal

2 2
|Epol” = |Eoumls

a (M2 + qzaml%) =a* (qza/mlz) - M-Z) ,

l

(62)

we demand a mass-charge energy equilibrium condition from
which we can obtain the value of the imaginary mass M; as a
function of mass M and charge Q in this equilibrium

at o
M; =+ \/qzam%(l - —i) - —iMz. (63)
« o

In particular for g = O this yields

2
(0%

Mio® = xiMoj or  M; = xi—>M ~ £0.9557iM.  (64)
04

Since mass M; is imaginary by definition, the argument of the
square root in the relation (63) must be negative

4
M > |glmp 4 /0(0—4 - 1] ~ |g|5.7275 x 10719 [kg].  (65)
@,

This means that masses of uncharged micro BHs (¢ = 0) in
thermodynamic equilibrium can be arbitrary. However, micro
NSs and micro WDs, also in thermodynamic equilibrium, are
inaccessible for direct observation, as they cannot achieve a
net charge Q = 0. Even a single elementary charge of a white
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dwarf renders its mass Myp = 5.7275x107'° [kg] comparable
to the mass of a grain of sand.

We note here that only the masses satisfying M < 2amp =~
1.3675 x 1077 [kg] have Compton wavelengths larger than
the Planck length [5]. Comparing this bound with the bound
(65) yields the charge multiplier g corresponding to an atomic
number

2
z=|—  |-233 (66)

a (Z—: - 1)
2
of a hypothetical element, which - as we conjecture - sets the
limit on an extended periodic table and is a little higher than
the accepted limit of Z = 184 (unoctquadium). More massive
elements would have Compton wavelengths smaller than the

Planck length, which is physically implausible.
Postulating that the squared moduli (60) and (61) are equal

|Ero,”* = |Eor,P,

07
o3 (f* + ¢’e) = o* (qza - a—2ff),

(67)

we demand a photon-charge energy equilibrium condition
from which we can obtain the value of the imaginary pho-
ton energy hv; corresponding to the real photon energy v and
charge Q in this equilibrium

5
fi:i\/%\/qza(z—i—l)—fz- (68)
2

Since /ag /a5 is imaginary, we demand ¢*a(a* /a/‘z‘ -<f?
to ensure that f; € R. Thus

4
hv = fEp > +q a(“—4 - 1)EP ~ +¢5.1477 x 107 [I], (69)

a

2

which, using mass-energy equivalence, corresponds to the
bound (65). We can also obtain the maximum wavelength in
this equilibrium corresponding to the charge. For ¢* = 1 it is
A < 3.8589 x 10733 [m] with [ < 238.7580 corresponding to
the bound (66).

It seems that no meaningful conclusions can be derived by
postulating the equality of the squared moduli (58) and (59).
Such a mass-photon energy equilibrium is an equation with
four unknowns. Neither physically meaningful elementary
mass (37) nor length (38) is common for real and imaginary
dimensions.

Postulating the equality of all the squared moduli (56)-(61)
to some constant energy

\Emo,* = |Eom,* = |[Epm|* =

(70
=|Erg,* = |[Eur,* = |Eor,I* = AE},

A€ER,

we demand a mass-charge-photon equilibrium condition,
which can be solved for A. Subtracting moduli (56) and (60)
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yields m? = f?, and similarly subtracting moduli (57) and (61)
yields m? = f?. This equates moduli (58) and (59). Substitut-
ing m? = f? into the modulus (61) and subtracting from the
modulus (56) yields

2, @ 5 0‘2‘
m+ —m; =A|l-—1. (71)
(0%) 07
Subtracting this from (58) or (59) yields
—Add
mr=fl= —— (72)

9
a’(a* + a3)

which substituted into the relation (71) yields

A4
m? = f? = @

= . 73
a4+a‘2‘ (73)

Finally, substituting the relation (73) into the modulus (56)
yields
Aa§

4, A
at+aj

g a = (74)

VI. BBO COMPLEX ENERGY EQUILIBRIA

We can interpret the modulus of the generalized energy of
BBOs (45) as the modulus of the complex energy of real mass
(56), taking the observable real energy Eggo = Mpgpoc? of the
BBO as the real part of this energy. Thus

X 2
(EMBBOCZ) = (M]23BO + 9123300”’”1%) e, (75)
leads to
M, 1 (k2
gsBOo = £ LLL (— - 1), (76)
mp al\d

representing a charge surplus energy exceeding Mppoc?. For
k = 2, ggpo vanishes, confirming the vanishing net charge of
BHs. Similarly, we can interpret the modulus of the gener-
alized energy of BBOs (45) as the modulus of the complex
energy of real charge (57). Thus

K, a?
_MBBO -

1 (quBOa'mlz’ - MiZBBO)’

i

1%

2 . (77
a; k2

2 _ 2 2 2 2

Migpo = qppoamp — o4 4 'BBO®

Substituting ‘1123130 from the relation (76) into the relation

(77) turns the equilibrium condition (63) into a function of the
size-to-mass ratio k instead of the charge g

(78)

d0i:10.20944/preprints202212.0045.v10

which for BHs (k = 2) also corresponds to the relation (64)
between uncharged masses M and M;, where no assumptions
concerning the BBO energy were made.

Furthermore, the argument of the square root in the relation
(78) must be negative, as mass M; is imaginary by definition.
This leads to the maximum size-to-mass ratio

2
kmax = £———= = 6.7933, (79)

where k < |kyax| satisfies the mass equilibrium (78). Relations
(76) and (78) are shown in Fig 1.

Figure 1. Ratios of imaginary mass M;gpo to real mass Mppo (green)
and real charge gppomp Va to Mppo (red) of a BBO as a function of
the size-to-mass ratio k : 0 < k < 10. Mass Mppo is imaginary for
k < 6.79. Charge ggpo is real for k > 2.

The maximum size-to-mass ratio kp.x (79) sets the bounds
on the BBO energy (45), mass, and radius (42)

kmaxGMBBO

< Rppo < 2 (80)

Reit = 2GJZBBO
In particular, using relations (47), 2mppo < rBo < Kkmax™BBO
or rgo/kmax < Mo < rgro/2. As WDs are the least dense
BBOs, this bounds define the maximum radius and mass of a
WD core.

Furthermore, relations (65) and (79) set the bound on the
BBO minimum mass in the equilibrium (62)

4 d 4
mpgo > Max {QBBO \,a(a—él - 1), % ‘/1 - a_4}, (81)
@, @,
where
1 o]
dBBO = 4_1 a_SdBBO (82)

defines a condition in which neither gggo nor dggp can be
further increased to reach its counterpart (defined respectively
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by dgpo and gppo) in the bound (81). Thus, for example, 1-
bit BBO (dgpo = 1/ +/xr) corresponds to ggpo > 1.5780, n-bit
BBO (dggo = 1) corresponds to gggo > 2.7969, while the
maximum atomic number gggo (66) corresponds to

8w

4
_%

ot

dgpo = £ ~ 85.36606. (83)

In the case of a BBO, we obtain the equilibrium condi-
tion (70) by comparing the squared moduli (56)-(61) of the
energies (48)-(53) with the squared BBO energy (45) which
yields a solvable system of six nonlinear equations with six
unknowns k, g, m, m;, f, f;

k2

IEMQ,.I2 =m* + qza = Zmz,
k2
2 2
a=m|—-1],
4 5 2
a a k
|EQM,.|2 :—4q2a - _5’":2 = —m?,
a, @, 4
5 2
a k
\Erm,? =% - a—Sm,? = Zmz, (84)

2

2
|EpQ‘.|2 =>f2 + qza' = Zmz,

k2 @
|Enir, =>m2(1 - Z) = —f%
@
4 5 2
a a k
|EQF,'|2 :—4q2a — ft2_5 = —mz.
@, a 4

Substituting ¢*a = m? (g - 1) from |Epg,* to |Epg,|* re-
covers the Compton wavelength of the BBO, Aggo =

h
Mggoc’
R . 2 . .
in its Planck units form 2 = ‘:niz. Furthermore, by substituting

¢*a and the Compton mass m?> = 41—’52 into |Eg,*, and com-

paring the LHSs of |Egy,|> and |Ery,|> we obtain the BBO
equilibrium size-to-mass ratio

k2 ot / a
eq _ 4 _ 2 85
T_;+1:}l{eq—i2 1+_a/4~27665’ ( )

where k = kg satisfies the equilibrium condition (70) for

1 a
A= ZkgqmgBo = (1 + a—ﬁ)mZBBo ~ 19133mp,.  (86)

The equilibrium keq (85) and the maximum Ky, (79) size-
to-mass ratios are related as kg, + 16/ky,, = 8. Also, the
following relations can be derived from the relations (84) for

the BBO in the equilibrium keq (85)

a9 4
2 2.2 )
m; = ——m (=4 MiBBOeq = il—4MBBOeq, (87)
04 07
2 @ 5 ’
ll = — 9l (=1 /liBBOeq = #+1 3/l]:g,Boeq, (88)
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472
2 2
=f"=— A , 8

m- = f 2 < BBO, Mpso.c (39)

4

a
q2a = —i m?. 90)

1%

The BBO in the energy equilibrium k.4 bearing the elemen-
tary charge (¢* = 1) would have mass Mggo,, ~ +1.9455 x
1077 [kg], imaginary mass Migpo,, ~ +il1.7768 x 107 [kg],
wavelength Aggo,, ~ +1.1361 x 107* [m], and imaginary
wavelength A4;ppo,, ~ +i1.2160 x 10733 [m].

These results show that the radius (42) of charged BBOs is
a continuous function of k € R : 2 < k < kpax satisfying the
BBO entropy relation (41), a necessary condition of pattern-
less perfect black body radiation [5].

Notably, 2.25 < keq < 3, where 9/4 is the size-to-mass ratio
of a radius of the maximal sustainable density for gravitating
spherical matter given by Buchdahl’s theorem, and 3 is the
size-to-mass ratio of a BH photon sphere radius’. This hints
that keq = 2.766 is a true photon sphere radius, where BBO
gravity, charge, and photon energies remain at equilibrium.
Aside from the Schwarzschild radius (derivable from escape
velocity V2, = 2GM/R of mass M by setting V2. = ¢?), all
the remaining thresholds of general relativity, such as Buch-
dahl’s threshold or a photon sphere radius, are only crude ap-
proximations. General relativity neglects the value of the fine-
structure constants a and «@,, which, similarly as 7 or the base
of the natural logarithm, are the fundamental constants of na-
ture.

VII. BBO MERGERS

As the entropy of independent systems is additive, a merger
of BBO; and BBO; having entropies (41) SBBOI = %kBNBBOI
and Sgpo, = %kBﬂd}ZSBOZ’ produces a BBO¢ having entropy

_ 2 2 _ p
SBBO, + SBBO, = SBBO. = dBRO, + dBBO, = dBBO.>» (O1)

which shows that a merger of two primordial BHs, each hav-
ing the Planck length diameter, the reduced Planck temper-
ature % (the largest physically significant temperature [12]),
and no tangential acceleration ay [5, 12], produces a BH hav-
ing dgy = + V2 which represents the minimum BH diameter
allowing for the notion of time [12]. In comparison, a colli-
sion of the latter two BHs produces a BH having dgy = +2
having the triangulation defining only one precise diameter
between its poles (cf. [5] Fig. 3(b)), which is also recovered
from Heisenberg’s Uncertainty Principle (cf. Appendix C).

Substituting the generalized radius (42) into the entropy re-
lation (91) yields

2 2 _ 2 2 2 2
kBBOCMBBOC = kBBO. Mggo, + kBBOZ Mggo, 92)

7 At which, according to an accepted photon sphere definition, the strength of
gravity forces photons to travel in orbits. The author wonders why photons
would not travel in orbits at radius R = GM/c? corresponding to the orbital
velocity vgrb = GM/R. Obviously, photons do not travel.
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which establishes a Pythagorean relation between the general-
ized energies (45) of the merging components and the merger

2 2 2
kBBOC M2 4 kBBOI M2 4 i kBBOZ
4 BBOC - 4 BB01 4

—= Mggo,c*.  (93)

The relation (93) explains the measurements of large
masses of the BBO mergers with at least one charged merg-
ing component without resorting to any hypothetical types of
exotic stellar objects such as quark stars. We note in passing
that describing the registered gravitational events as waves is
misleading. Normal modulation of the gravitational poten-
tial, caused by rotating (in the merger case - inspiral) bodies,
is wrongly interpreted as a gravitational wave understood as a
carrier of gravity [48]. Interferometric data, available online at
the Gravitational Wave Open Science Center (GWOSC) por-
tal®, indicate that the total mass of a merger is the sum of the
masses of the merging components. Thus’

Mggo. = Mggo, + Mggo, =
2 _ap 2
MBBOC x MBBO] + MBB02 + 2Mggo, Mego, = 94)

2 2 2
Mgpo. > Mggo, + Migo,-

The accepted value of the Chandrasekhar WD mass limit,
preventing its collapse into a denser form, is Mc, =
1.4 My [49] and the accepted value of the analogous Tol-
man—Oppenheimer—Volkoff NS mass limit is Moy = 2.9 M,
[50, 51]. There is no accepted value of the BH mass limit.
The conjectured value is 5 x 10'° M. The masses of most of
the registered merging components are well beyond M1gy. Of
those that are not, most of the total or final masses exceed this
limit. Therefore these mergers were classified as BH mergers.
Only a few were classified otherwise, including GW170817,
GW190425, GW200105, and GW200115. They are listed in
Table I.

Table I. Selected BBO mergers discovered with LIGO and Virgo.
Masses in M.

| Mo, | Msso, | Msso. | ksso, | ksso,| ksso. |

| Event
1.46*012[ 1 2740091 5§ 439 | 439 | 3.03

GW170817 o i
GW190425| 2.00°05 | 1.4%02 | 3.4*03 | 439 | 439 | 3.15
10.9°11] 2.76 | 4.39 | 2.38

GW200105 89+12 19+°*
7.0t 3 439 | 2.64

-0.2
GW200115| 57703 | 1.5°07 +a

-0.3

We can use the BBO equilibrium relations (84) to derive
some information from the relation (93). For example, sub-
stituting the squared energy modulus |Ej,|* into the relation
(93) and using the inequality (94), based on GWOSC data,

8 https://www.gw-openscience.org/eventapi/html/allevents
9 We assume M > 0. Negative masses are inaccessible for direct observation,
unlike charges.
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yields

mIZSBOC + quBOCa' = m]23B01 + ’"2131302 + (‘12131301 + qlszoz) o
‘IZBBOC“ = ’”%130l + ’”2131302 + (‘12131301 + q]23BOz) a - m]23BOC’
mlszoc z%“L%Jf (%23301 + quBoz) @ - 61123130c¢
> Mo, + Mso,

2 2 2
98Bo. < 49BBO, T 4BBO,
95)

On the other hand, substituting the squared energy modulus
|Eu,I* from the relation (84) and quBOCa from the relation
(95) into the relation (93), and using the inequality (94) yields

2 2 _
d8BO ¥ Mo, =

(2. + g _ @ o +m2
= \9BBo, T 9BBO, ) ¥ @ Miggo, T MigBo, )

Mo, + Mane. + (g5 S S S
BBO,; BBO, T \4B BBO, ) ¥ BBOC ~ , "MiBBOC =

= (g> a — e m> +m?
= \4BBoq BBO, a, \iBBO, iBBO, ) »

2 _
Mppo. =

_ .2 2 ) 2 )
= % + % + Zf (miBBo, + miBBOZ) - meiBBOC
>M+%

mlBBOC < ’"113130l + mlBBOo
(96)

Similarly, the squared energy modulus |Eypr,|* (84) and the
relations (93), (94) yield

2 2 2
fisBoe > fisBo, * fibBO,- 7

Therefore, the size-to-mass ratio kgpo, decreases making the
BBOc denser until it becomes a BH for kggo,. = 2 and no fur-
ther charge reduction is possible (cf. Fig 1). From the relation
(92) and the inequality (94) we see that this holds for

klszoc (M]23B01 + M123B02) < 16123‘13011‘/[123130l + k]23B02M]23B02' 98)

From inequalities (94)-(97) we also conjecture that |gggo.| =
llgeBo, | — lgBBO, I, MiBBO. = |MiBBO, — MiBBO,|, and fppo. =
|fisBo, + fiBBO,|- In other words, the merger’s real mass and
the imaginary photon energy are sums of the merging compo-
nents’ masses and imaginary photon energies. In contrast, the
charge and imaginary mass are absolute differences of their
charges and imaginary masses.

Table I lists the mass-to-size ratios kggo,. calculated accord-
ing to the relation (93) that provide the measured mass Mggo,.
of the merger and satisfy the inequality (98). Mass-to-size
ratios kggo, and kggo, of the merging components were arbi-
trarily selected based on their masses, taking into account the
Mrtoyv NS mass limit.
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VIII. BBO COMPLEX GRAVITY AND TEMPERATURE

Complex energies (48)-(53) define complex forces (simi-
larly to the complex energy of real masses and charges (46),
[47] Eq. (7)) acting over real and imaginary distances R, R;.
Using the relations (47), we obtain the following products

Eimg,Eamg, = Etmo,Eamg, | Ep =
= mm; — qiqa + i Va(miqa + maqy),

Ergn Exqn, = Eiom, Exom,/ Ep = 99)
@ 1 1

= =\ 0q + —mamp + — (q1mip + g2my) |,
a @3 2

> Vaz

EvpmEopm, = Evrm,Earm, | Ep =

@ a’
=fifa+ 3 + = (fimp + fomy),
2

2

) (100)
EvnpEomyf = Evmr,Eomr, [ Ep =
@ @’
=mimy + — fufo + (| — (mfio + mafin),
R R
EygEagp; = Ergr,Eagr,/Ef =
4 5 5
a 07 04
= 1@+ — fiufo + —= (foq1 + faq2),
* * NCH (101)

EifgExpg = EvroEarg,/Ep =
= fifr - e +iva (figa + frq1),

defining six complex forces acting over a real distance R =
rlp, r € R

G Fp
Fap, = 55 E1a.E2ap, = 7E1abiE2abi, (102)

c*R?

and six complex forces acting over an imaginary distance
Ri = rifpi, ri € R

~ G (0%) F
Fap, = ——5 E1ap,E2ap, = __ZPElab,-EZab,-’ (103)
CaR; ar;
where A, B € {M,Q, F}and a,b € {m, q, f}, and
a'zrzFABi = QF%FAB’.. (104)

With a simplifying assumption of r*> = riz, the forces acting
over a real distance R are stronger and opposite to the cor-
responding forces acting over an imaginary distance R; even
though the Planck force is lower in modulus than the (real) a»-
Planck force (27). We excluded mixed forces (based on real
and imaginary masses/charges/photons) as real and imaginary
dimensions are orthogonal.

In particular, we can use the complex force Fyg, (102)
with (99) (i.e., complex Newton’s law of universal gravita-
tion) to calculate the BBO surface gravity ggpo, assuming an
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uncharged (g, = 0) test mass m,

Fp .
- (mBBOm2 +i \/amZCIBBO) = M>gpBo =
"sBO
= mymp&EBOUP,
1
8BBO = &5 — (mBBO +1 ‘/aCIBBO),
T8RO

(105)

where ggpo = &ZsBodp, &80 € R. Substituting the BBO
equilibrium relation (76) and the generalized BBO radius (42)
rgeo = kmggo into the relation (105) yields

k2
T |1xiq=> 1],
krBBo 4
which reduces to BH surface gravity for k = 2, in modulus
1 k2 k2 1
A2 . .
I PO N o N
Krise 4 4 4r]23Bl%

equals to a squared BH surface gravity for all k, and in partic-
ular,

&BBO = (106)

gBBO(Kkmax) = = e (0.2944 + 0.9557i), (108)
dgBo

gn0(keq) = £~ (0.7229 = 0.6909) . (109)
dpBo

The BBO surface gravity (106) leads to the generalized
complex Hawking blackbody-radiation equation

/] Tp C K2
— = 1+ \/— -1], 110
27TCkB £BBO kﬂ'dBBo [ ! 4 ( )

describing the BBO temperature'® by including its charge in
the imaginary part, which also in modulus equals squared BH
temperature Yk. In particular,

Tspo =

4 4
T a’ —a, .a,Z
Tao(kma) = £ d:BO S— =izl (1D
T, a? +ia?
Teo(keq) = £ — 2 (112)

*2rd :
pis
BBO a4 +a‘2‘

reduce to a BH temperature for @, = 0. We note that for
dgpo = 1, Re(TBBO(kmax)) ~ 6.6387 x 10% K] (where
Tp/(27) ~ 2.2549 x 103! [K]) has the magnitude of the Hage-
dorn temperature of strings.

It seems, therefore, that a universe without imaginary di-
mensions (i.e., with @, = 0) would be a black hole. Hence,
the evolution of information [1-6] requires imaginary time.

01na commonly used form it is Tggo =

he3 L K2
I SR PR
227G Mppoks (1 iy -1}
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IX. DISCUSSION

The reflectance of graphene under the normal incidence
of electromagnetic radiation expressed as the quadratic equa-
tion for the fine-structure constant @ includes the 2" negative
fine-structure constant @;. The sum of the reciprocal of this
2™ fine-structure constant e, with the reciprocal of the fine-
structure constant  (2) is independent of the reflectance value
R and remarkably equals simply —n. Particular algebraic def-
inition of the fine-structure constant &~! = 47° + 7% + 7, con-
taining the free 7 term, can be interpreted as the asymptote
of the CODATA value o', the value of which varies with
time. The negative fine-structure constant a;, leads to the set of
a,-Planck units applicable to imaginary dimensions, includ-
ing imaginary a;-Planck units (18)-(26). Real and imaginary
mass and charge units (34), length and mass units (35) units,
and temperature and time units (33) are directly related to each
other. Also, the elementary charge e is common for real and
imaginary dimensions (36).

Applying the a,-Planck units to a complex energy formula
[47] yields complex energies (48), (49) setting the atomic
number Z = 238 as the limit on an extended periodic table.
The generalized energy (45) of all perfect black-body objects
(black holes, neutron stars, and white dwarfs) having the gen-
eralized radius Rggo = kGM/c? exceed mass-energy equiva-
lence if k > 2. Complex energies (48), (49) allow for storing
the excess of this energy in their imaginary parts, inaccessi-
ble for direct observation. The results show that the perfect
black-body objects other than black holes cannot have masses
lower than 5.7275 x 10719 [kg] and that the size-to-mass ra-
tios of their cores cannot exceed kmax ~ 6.7933 defined by
the relation (79). It is further shown that a black-body ob-
ject is in the equilibrium of complex energies if its radius
Req = 2.7665 GMggo/c* (85). It is conjectured that this is
the correct value of the photon sphere radius. BBO fluctu-
ations for keq and kpy,y are briefly discussed in Appendix E.
The proposed model explains the registered (GWOSC) high
masses of the neutron stars mergers without resorting to any
hypothetical types of exotic stellar objects.

In the context of the results of this study, monolayer
graphene, a truly 2-dimensional material with no thick-
ness!!', is a keyhole to other, unperceivable, dimensionali-
ties. Graphene history is also instructive. Discovered in 1947
[53], graphene was long considered an academic material un-
til it was eventually pulled from graphite in 2004 [54] by
means of ordinary Scotch tape'?. These fifty-seven years,
along with twenty-nine years (1935-1964) between the con-
demnation of quantum theory as incomplete [55] and Bell’s
mathematical theorem [56] asserting that it is not true, and
the fifty-eight years (1964-2022) between the formulation of

' Thickness of MLG is reported [52] as 0.37 [nm] with other reported values
up to 1.7 [nm]. However, considering that 0.335 [nm] is the established
inter-layer distance and consequently the thickness of bilayer graphene,
these results do not seem credible: the thickness of bilayer graphene is not
2x%0.37 +0.335 = 1.075 [nm].

12 Introduced into the market in 1932.
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this theorem and 2022 Nobel prize in physics for its experi-
mental loophole-free confirmation, should remind us that Max
Planck, the genius who discovered Planck units, has also dis-
covered Planck’s principle.
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Appendix A: Other quadratic equations

The quadratic equation for the sum of transmittance (3) and
absorptance (5), putting Cy4 =T + A, is

1
—Crar*d® + (Crp — Dra + (Cya— 1) =0,

Al
Z (AD)
and has two roots with reciprocals
C
ol = ra% ~ 137.036, (A2)
2(1=Cra+ NVT=Cra)
and
C
o' = ra% ~—140.178,  (A3)
2(1=Cra— VI=Cra)
whereas their sum o~ + a/gl = —n is, similarly as the relation

(12), also independent of T and A.

Other quadratic equations do not feature this property. For
example, the sum of 7+ R (6) expressed as the quadratic equa-
tion and putting Cyg =T +R, is

1
7 Cre = D r?a? + Crgma + (Crg — 1) = 0, (A4)
and has two roots with reciprocals
1 a(Crg—1)
a = ~ 137.036, AS)
—2Crr +2V2Crg — 1 (
and
,1 a(Crg — 1)
App = ~ 0.0180, (A6)
TR _2Crr —2V2Cg — 1
whereas their sum
_ _ —JTCTR
a7, + g, = v 137.054 (A7)

is dependent on 7 and R.
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Appendix B: Two n-like constants

With algebraic definitions of « (13) and @, (14), transmit-
tance T (3), reflectance R (4) and absorptance A (5) of MLG
for normal EMR incidence can be expressed just by n. For
! = 4n® + 1% + 7 (13) they become

4(4r? +x 1)

T (a) = ~ 0.9775, (B1)
(872 + 27 + 3)*
44> + 7+ 1)
Al@) = ———— ~0.0224, (B2)
(872 + 27 + 3)
while for a;' = —47* — 7% — 27 (14) they become
4(4n? +m+2)
T (@) = —————> ~ 1.0228, (B3)
(872 + 27 + 3)
4(4n2 + 71+ 2)
Alay) = —————— ~ =0.0229, (B4)
(872 + 27 + 3)
with
1
R(a) = R(a) = ~ 1.2843 x 107*.  (B5)

(872 + 27 + 3)?

(T(a) + A(@) + R(@) = (T(p) + A(ap)) + R(ap) =1 as re-
quired by the law of conservation of energy (8), whereas each
conservation law is associated with a certain symmetry, as as-
serted by Noether’s theorem. A(@) > 0 and A(a;) < 0 imply
respectively a sink and a source, while the opposite holds true
for the transmittance T, as illustrated schematically in Fig 2.
Perhaps, the negative absorptance and transmittance exceed-
ing 100% for a; (11) or (14) could be explained in terms of
graphene spontaneous emission.

The quadratic equation (9) describing the reflectance R of
MLG under normal incidence of EMR (or alternatively (Al))
can also be solved for 7 yielding two roots

2VR
R ) = ——, d B6
(R, @) - VD an (B6)
-2VR
R ), = ————, B7
(R, @)y als VB (B7)

dependent on R and «., where «, indicates @ or @;. This can
be further evaluated using the MLG reflectance R (4) or (BS)
(which is the same for both @ and a»), yielding four, yet only
three distinct, possibilities

472 1
T = 71'(@/)1 = _ﬂﬂ = ﬂ'a_z ~ _3'0712’ (BS)
42+ +2 a
n(@), = (@), = ~3.1416, and (B9)
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Figure 2. Illustration of the concepts of negative absorptance and
excessive transmittance of EMR under normal incidence on MLG.

4n® + 7w+ 2
TS 22 L 32136,

-~ = B10
7T47T2+7T+ 1 s (B10)

m =m(az), = —

The modulus of m; (B8) corresponds to a convex surface
having a positive Gaussian curvature, whereas the modu-
lus of m, (B10) - to a negative Gaussian curvature. Their
product mm, = #? is independent of ., and their quotient
m/my = a}/a? is not directly dependent of 7. It remains to
be found whether each of these n-like constants describes the
ratio of the circumference of a circle drawn on the respective
surface to its diameter (r.) or the ratio of the area of this circle
to the square of its radius (;r,). These definitions produce dif-
ferent results on curved surfaces, whereas 7, > 7. on convex
surfaces, while 7, < 7. on saddle surfaces [59].

Appendix C: Planck units and HUP

Perhaps the simplest derivation of the squared Planck
length is based on Heisenberg’s uncertainty principle

i fi
O0PyypdRyyup 2 5 or O Enqupotaup > ok (CDh

where §Pyup, ORuup, 0EnHup, and Styup denote momentum,
position, energy, and time uncertainties, by replacing energy
uncertainty 0Egup = SMpupc?® with mass uncertainty and

time uncertainty with position uncertainty, using mass-energy
equivalence and otyyp = OR/cyyp [31], which yields

fi
6MyupSRyup = .

e (C2)
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Plugging sMyyp = SRuupc?/(2G) for BH mass into (C2) we
arrive at 6R%p = (3 = 6Dyup = +2{p and recover [5] BH
diameter dgy = +2.

However, using the same procedure but inserting the BH
radius, instead of the BH mass, into the uncertainty principle
(C2) leads to 6 M, HUP = %hc/G = %mlz,. In general, using the
generalized radius (42) in both procedures, one obtains

1
2 2
SMiup = 57mp

k
S and SR up = 5512" (C3)

Thus, if k increases mass dMyyp decreases, and SRyyp in-
creases and the factor is the same for £k = 1 i.e., for or-
bital speed radius 6R = GSM/c* or the orbital speed mass
SM = 6Rc?/G.

Appendix D: A mixed speeds hypothesis

Let us define the mass/charge energies (48), (49) with dif-
ferent speeds of light, i.e., the charge part of the energy Ey,
with ¢, and the charge part of the energy Egy, with ¢

2
N i a
Eyo, = Mc* + Lci =Mc* +ig \/Emp—zcz,
neG a;
0 . OD
Eom = — = P+ M=z \/Empc2 +M;—c?
oM G T e
Demanding equality of their moduli
2, 2 2 o 2.2 2 &
M™ + q amp—; = q-amp — M; —,
a, 16%
(D2)

For g = 0 this relation corresponds to the relation (64). How-
ever, since mass M; is imaginary, the argument of the square
root in the relation (D2) must be negative, i.e.,

|M| # |glmp ,f 1-— (D3)

But o* > a‘z‘, yielding imaginary M, while M is real by defini-
tion. The same result would be obtained if mass energy Egu,
was parametrized with ¢, and Egy, with ¢, since

a’

0—4—1 GI[ l—g
a(——l 1——
@ ’12

Therefore, complex energies Eyg, (48) and Egy;, (49) must
be parametrized respectively by c and c,.

(D4)
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Appendix E: Fluctuations of the BBOs

A relation describing a BH information capacity after ab-
sorption (+) or emission (—) of a particle having the wave-
length / can be generalized (cf. [5], Appendix 3), using the
generalized radius (42), to all holographic spheres, including
BBOs as

NYEW, 1) = 16k*n 3 = + 8km Lli+7rd2. (E1)

The wavelength of a particle emitted from a BH that does
not change the BH diameter corresponds to half of the BH
Compton wavelength (Igg = 87/dgn). Accordingly, the wave-
length of a particle absorbed by a BH that does not change its
diameter is Igpconst = —47/dgy. We note in passing that three
spatial dimensions set the minimum for such conditions to oc-
cur (cf. [5], Table III). In general, Iggoconst = F2k7/dpgo- In

particular, for kq the relation (E1) yields

(Y4 a4 (}'4
4n(1 + —j) = Fdleong \|1 + =, Bi=—,
(07 o (07
160°B% + (327 = L2y ) B+ 167° — L, =0, (B2
B2, - 321 + 1
\/K _ +dzlconst’ Bl,2 — const 32:2 const

The second solution is contradicting, as @; # —a*. But the

first one
4 4/1 +2 A7
loonst = F———— ~ F1.3832—, E3
const = + d + d (E3)
(with "= for absorption and ~’+” for emission) reduces to
IsHconst for @z = 0. For k.« the relation (E1) yields
4 =3 dlconst . B= é,
@ o a
(1-%) o
PR, B+ (167% - 282R,, OB + &L, — 162* = 0, ED
242 — 1677 + 1672
\/K = il67T2, Bl,2 = const 5 al ﬂ
ZdZZCOHSI
The first solution is contradicting, but the second one
4 4
leonst = “_“—ﬂ4 ~ 13.39667”, (ES)
d s

also reduces to IgHeonst for @ = 0.

The relation (E1) is remarkably similar to the algebraic def-
initions of the inverses of @ (13) and a, (14) also containing
73, 7%, and & terms. This raises the question of whether the
fine-structure constants’ inverses correspond to the number
of bits'>. Recently the fine-structure constant has been re-

ported as the quantum of rotation [60]. Two alphas between

13 The floor function of the inverse of the fine-structure constant @ represents
the threshold on the atomic number (137) of a hypothetical element feyn-
manium that, in the Bohr model of the atom, still allows the 1s orbital
electrons to travel slower than the speed of light
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a™' ~ 137.0363 and @, ~ —140.1779 hinted by the relations
(13), (14), and (E1)

a ' =47 —n® + 1~ 117.2971,

(E6)
d ' = -4’ + 7t - 21 ~ —120.4387,
are thus intriguing.

It was shown that the spectral density in the phenomenon of
sonoluminescence, light emission by sound-induced collaps-
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ing gas bubbles in fluids, has the same frequency dependence
as black-body radiation [61, 62]. Thus, the sonoluminescence,
and in particular shrimpoluminescence [63], is emitted by col-
lapsing micro-BBOs. For example, the relation (E1) yields
the wavelength /| = 87/(dpy + 1) required for collapsing a
BH to the m-bit BH (i.e., to the reduced Planck temperature
limit [12], to dgg = +1). Demanding || > 1 we obtain
|dgu| < 871+ 1.
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