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Imaginary dimensions in physics require an imaginary set of base Planck units and some negative parameter
cn corresponding to the speed of light in vacuum c. The second, negative fine-structure constant α−1

2 ≈ −140.178
is present in Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene,
leading to these imaginary Planck units, and it establishes cn ≈ −3.06 × 108 [m/s]. It follows that electric
charges are the same in real and imaginary dimensions. We model neutron stars and white dwarfs, emitting
perfect black-body radiation, as objects having energy exceeding their mass-energy equivalence ratios. We
define complex energies in terms of real and imaginary Planck units. Their imaginary parts, inaccessible for
direct observation, store the excess of these energies. It follows that black holes are fundamentally uncharged,
charged micro neutron stars and white dwarfs with masses lower than 5.7275 × 10−10 [kg] are inaccessible for
direct observation, and the radii of white dwarfs’ cores are limited to RWD < 6.7933 GMWD/c2. It is conjectured
that the maximum atomic number Z = 238. A black-body object is in the equilibrium of complex energies
of masses, charges, and photons if its radius Req ≈ 2.7665 GMBBO/c2, which corrects the value of the photon
sphere radius Rps = 3GM/c2, by taking into account the value(s) of the fine-structure constant(s), which is
otherwise neglected in general relativity. Complex Newton’s law of universal gravitation, based on complex
energies, leads to the black-body object’s surface gravity and the generalized Hawking radiation temperature,
which includes its charge. The proposed model explains the registered (GWOSC) high masses of neutron stars’
mergers without resorting to any hypothetical types of exotic stellar objects.

Keywords: emergent dimensionality; imaginary dimensions; Planck units; fine-structure constant; black holes; neutron stars;
white dwarfs; patternless binary messages; complex energy; complex force; Hawking radiation; extended periodic table;
photon sphere; general relativity; entropic gravity; gravitational observations; holographic principle; mathematical physics;

I. INTRODUCTION

The universe began with the Big Bang, which is a current
prevailing scientific opinion. But this Big Bang was not an
explosion of 4-dimensional spacetime, which also is a current
prevailing scientific opinion, but an explosion of dimensions.
More precisely, in the −1-dimensional void, a 0-dimensional
point appeared, inducing the appearance of countably in-
finitely other points indistinguishable from the first one. The
breach made by the first operation of the dimensional succes-
sor function of the Peano axioms inevitably continued leading
to the formation of 1-dimensional, real and imaginary lines al-
lowing for an ordering of points using multipliers of real units
(ones) or imaginary units (a ∈ R ⇔ a = 1b1, a ∈ I ⇔ a =
ib, b ∈ R). Then out of two lines of each kind, crossing each
other only at one initial point (0, 0), the dimensional succes-
sor function formed 2-dimensional R2, I2, and R× I Euclidean
planes, with I2 being a mirror reflection of R2. And so on,
forming n-dimensional Euclidean spaces Ra × Ib with a ∈ N
real and b ∈ N imaginary lines, n B a + b, and the scalar
product defined by

x · y =
(
x1, . . ., xa, ix′1, . . ., ix′b

) (
y1, . . ., ya, iy′1, . . ., iy′b

)
B

B
a∑

k=1

xkyk +

b∑
l=1

x′ly
′
l ,

(1)

where x, y ∈ Ra × Ib. With the onset of the first 0-dimensional
point, information began to evolve [1–6].

∗ szymon@patent.pl
1 This is, of course, a circular definition, but it is given for clarity.

However, dimensional properties are not uniform. Con-
cerning regular convex n-polytopes in natural dimensions, for
example, there are countably infinitely many regular convex
polygons, five regular convex polyhedra (Platonic solids), six
regular convex 4-polytopes, and only three regular convex n-
polytopes if n > 3 [7]. In particular, 4-dimensional euclidean
space is endowed with a peculiar property known as exotic R4

[8]. This property allowed for variation of phenotypic traits
within populations of individuals [9] and extended the evolu-
tion of information into biological evolution. Each biological
cell perceives emergent Euclidean R3 × I space of three real
and one imaginary (time) dimension observer-dependently
[10] and at present when i0 = 0 is real; perceived space re-
quires an integer dimensionality [11]. This is the emergent
dimensionality (ED) [5, 9, 12–14].

Each dimension requires certain units of measure. In real
dimensions, the natural units of measure were derived by
Max Planck in 1899 as ”independent of special bodies or sub-
stances, thereby necessarily retaining their meaning for all
times and for all civilizations, including extraterrestrial and
non-human ones” [15]. This study derives the complemen-
tary set of Planck units applicable for imaginary dimensions,
including the imaginary base units. As the speed of electro-
magnetic radiation is the product of its wavelength and fre-
quency and both these quantities are imaginary in imaginary
dimensions, some real but negative parameter cn = νiλi corre-
sponding to the speed of light in vacuum c (i.e., the Planck
speed) is also necessary as i2 = −1. It turns out that the
imaginary Planck energy EPi and temperature TPi are larger in
moduli than the Planck energy EP and temperature TP setting
more favorable conditions for biological evolution to emerge
in R3 × I Euclidean space than in I3 × R Euclidean one due to
the minimum energy principle.
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The study shows that the energies of neutron stars and white
dwarfs exceed their mass–energy equivalences and that excess
energy is stored in imaginary dimensions and is inaccessible
to direct observations. This corrects the value of the photon
sphere radius and results in the upper bound on the size-to-
mass ratio of their cores, where the Schwarzschild radius sets
the lower bound.

The paper is structured as follows. Section II shows that
Fresnel coefficients for the normal incidence of electromag-
netic radiation on monolayer graphene include the second,
negative fine-structure constant α2 as a fundamental constant
of nature. Section III shows that by this second fine-structure
constant nature endows us with the complementary set of α2-
Planck units. Section IV introduces the concept of a black-
body object in thermodynamic equilibrium, emitting perfect
black-body radiation, and reviews its necessary properties.
Section V introduces complex energies of masses, charges,
and photons expressed in terms of real and imaginary Planck
units introduced in Section III and discusses equilibria formed
by comparing their moduli. Section VI applies these equilib-
ria to black-body objects to derive the range of their size-to-
mass ratios and the equilibrium ratio. Section VII applies this
range to the observed mergers of black-body objects to show
that the observed data is explainable with no need to introduce
hypothetical exotic stellar objects. Section VIII define com-
plex forces to derive a black-body object surface gravity, and
the generalized Hawking radiation temperature. Section IX
summarizes the findings of this study. Certain prospects for
further research are given in the appendices.

II. THE SECOND FINE-STRUCTURE CONSTANT

Numerous publications provide Fresnel coefficients for the
normal incidence of electromagnetic radiation (EMR) on
monolayer graphene (MLG), which are remarkably defined
only by π and the fine-structure constant α

α−1 =

(qP

e

)2
=

4πϵ0ℏc
e2 ≈ 137.036, (2)

where qP is the Planck charge, ϵ0 is vacuum permittivity (the
electric constant), ℏ is the reduced Planck constant, and e is
the elementary charge. Transmittance (T ) of MLG

T =
1(

1 + πα2
)2 ≈ 0.9775, (3)

for normal EMR incidence was derived from the Fresnel equa-
tion in the thin-film limit [16] (Eq. 3), whereas spectrally flat
absorptance (A) A ≈ πα ≈ 2.3% was reported [17, 18] for
photon energies between about 0.5 and 2.5 [eV]. T was re-
lated to reflectance (R) [19] (Eq. 53) as R = π2α2T/4, i.e,

R =
1
4π

2α2(
1 + πα2

)2 ≈ 1.2843 × 10−4, (4)

The above equations for T and R, as well as the equation for
the absorptance

A =
πα(

1 + πα2
)2 ≈ 0.0224, (5)

were also derived [20] (Eqs. 29-31) based on the thin film
model (setting ns = 1 for substrate). The sum of transmittance
(3) and the reflectance (4) at normal EMR incidence on MLG
was derived [21] (Eq. 4a) as

T + R = 1 −
4ση

4 + 4ση + σ2η2 + k2χ2

=
1 + 1

4π
2α2(

1 + πα2
)2 ≈ 0.9776,

(6)

where η is the vacuum impedance

η =
4παℏ

e2 =
1
ϵ0c
≈ 376.73 [Ω], (7)

σ = e2/(4ℏ) = πα/η is the MLG conductivity [22], and
χ = 0 is the electric susceptibility of vacuum. These coef-
ficients are thus well-established theoretically and experimen-
tally confirmed [16–18, 21, 23, 24].

As a consequence of the conservation of energy

(T + A) + R = 1. (8)

In other words, the transmittance in the Fresnel equation de-
scribing the reflection and transmission of EMR at normal in-
cidence on a boundary between different optical media is, in
the case of the 2-dimensional (boundary) of MLG, modified
to include its absorption.

The reflectance R = 0.013% (4) of MLG can be expressed
as a quadratic equation with respect to α

1
4

(R − 1) π2α2 + Rπα + R = 0. (9)

This quadratic equation has two roots with reciprocals

α−1 =
π − π

√
R

2
√

R
≈ 137.036, and (10)

α−1
2 =

−π − π
√

R

2
√

R
≈ −140.178. (11)

Therefore, the equation (9) includes the second, negative fine-
structure constant α2. It happens that the sum of the recipro-
cals of these fine-structure constants (10) and (11)

α−1 + α−1
2 =

π − π
√

R − π − π
√

R

2
√

R
= −π, (12)

is remarkably independent of the value of the reflectance R.
The same result can only be obtained for T + A (cf. Appendix
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A). This result is intriguing in the context of a peculiar alge-
braic expression for the fine-structure constant [25]

α−1 = 4π3 + π2 + π ≈ 137.036303776 (13)

that contains a free π term and is very close to the physi-
cal definition (2) of α−1, which according to the CODATA
2018 value is 137.035999084. Notably, the value of the fine-
structure constant is not constant but increases with time [26–
30]. Thus, the algebraic value given by (13) can be interpreted
as the asymptote of the α increase.

Using relations (12) and (13), we can express the negative
reciprocal of the 2nd fine-structure constant α−1

2 that emerged
in the quadratic equation (9) also as a function of π only

α−1
2 = −π − α

−1
1 = −4π3 − π2 − 2π ≈ −140.177896429, (14)

and this value can also be interpreted as the asymptote of the
α2 decrease, where the current value would amount to α−1

2 ≈

−140.177591737, assuming the rate of change is the same for
α and α2.

Using relations (13) and (14), transmittance T (3), re-
flectance R (4), and absorptance A (5) of MLG for normal
EMR incidence can be expressed just by π. Moreover, equa-
tion (9) includes two π-like constants for two surfaces with
positive and negative Gaussian curvatures (cf. Appendix B).

III. SET OF α2-PLANCK UNITS

Planck units can be derived from numerous starting points
[5, 31] (cf. Appendix C). The definition of the Planck charge
qP =

√
4πϵ0ℏc can be solved for the speed of light yielding

c = q2
P/(4πϵ0ℏ). Furthermore, the ratio of charges in the defi-

nition of the fine-structure constant α = e2/q2
P (2) applied for

the negative α2, requires an introduction of some imaginary
Planck charge qPi so that its square would yield a negative
value of α2

q2
Pi

e2 = α
−1
2 ≈ −140.178, (15)

and since the elementary charge e is real

qPi = ±

√
e2

α2
= ±

√
4πϵ0ℏcn. (16)

Among the physical constants of the
√

4πϵ0ℏcn term, almost
all are positive2. Only the cn = νiλi parameter, corresponding
to the speed of light c, is negative as both frequency νi and
wavelength λi are imaginary in imaginary dimensions. There-
fore, the equation (16) can be solved for cn yielding

cn = q2
Pi/(4πϵ0ℏ) ≈ −3.066653 × 108 [m/s], (17)

2 Vacuum permittivity ϵ0 is the value of the absolute dielectric permittivity
of classical vacuum. Thus, ϵ0 cannot be negative. The Planck constant h is
the uncertainty principle parameter. Thus, it cannot be negative.

which is greater than the speed of light in vacuum c in modu-
lus3. We also note that c is defined by the electric constant ϵ0
and the magnetic constant µ0 as c = 1/

√
ϵ0µ0; a square root is

bivalued and the value of µ0 depends on α. Furthermore, c is
defined by α-dependent vacuum impedance (7).

The negative parameter cn (17) leads to the imaginary
Planck charge qPi, length ℓPi, mass mPi, time tPi, and tempera-
ture TPi that redefined by square roots containing cn raised to
an odd (1, 3, 5) power become imaginary and bivalued

qPi = ±
√

4πϵ0ℏcn = ±qP

√
α

α2
≈

≈ ±i1.8969 × 10−18 [C] (|qPi| > |qP|) ,
(18)

ℓPi = ±

√
ℏG
c3

n
= ±ℓP

√
α3

2

α3 ≈

≈ ±i1.5622 × 10−35 [m] (|ℓPi| < |ℓP|) ,

(19)

mPi = ±

√
ℏcn

G
= ±mP

√
α

α2
≈

≈ ±i2.2012 × 10−8 [kg] (|mPi| > |mP|) ,

(20)

tPi = ±

√
ℏG
c5

n
= ±tP

√
α5

2

α5 ≈

≈ ±i5.0942 × 10−44 [s] (|tPi| < |tP|) ,

(21)

TPi = ±

√
ℏc5

n

Gk2
B

= ±TP

√
α5

α5
2

≈

≈ ±i1.4994 × 1032 [K] (|TPi| > |TP|) ,

(22)

and furthermore can be expressed, using the relation (31), in
terms of base Planck units qP, ℓP, mP, tP, and TP.

Planck units derived from the imaginary base units (19)-
(21) are generally not imaginary. The α2 Planck volume

ℓ3Pi = ±

(
ℏG
c3

n

)3/2

= ±ℓ3P

√
α9

2

α9 ≈

≈ ±i3.8127 × 10−105 [m3]
(
|ℓ3Pi| < |ℓ

3
P|
)
,

(23)

the α2 Planck momentum

pPi = ±mPicn = ±

√
ℏc3

n

G
= ±mPc

√
α3

α3
2

≈

≈ ±i6.7504 [kg m/s] (|mPicn| > |mPc|) ,

(24)

3 Their average (c + cn)/2 ≈ −3.436417 × 106 [m/s] is in the range of the
Fermi velocity.
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the α2 Planck energy

EPi = ±mPic2
n = ±

√
ℏc5

n

G
= ±EP

√
α5

α5
2

≈

≈ ±i2.0701 × 109 [J] (|EPi| > |EP|) ,

(25)

and the α2 Planck acceleration

aPi = ±
cn

tPi
= ±

√
c7

n

ℏG
= ±aP

√
α7

α7
2

≈

≈ ±i6.0198 × 1051 [m/s2] (|aPi| > |aP|) ,

(26)

are imaginary and bivalued. However, the α2 Planck force

FP2 = ±
EPi

ℓPi
= ±

c4
n

G
= ±FP

α4

α4
2

≈

≈ ±1.3251 × 1044 [N] (|FP2| > |FP|) ,

(27)

and the α2 Planck density

ρP2 = ±
mPi

ℓ3Pi

= ±
c5

n

ℏG2 = ±ρP
α5

α5
2

≈

≈ ±5.7735 × 1096 [kg/m3] (|ρP2| > |ρP|) ,

(28)

are real and bivalued. On the other hand, the α2 Planck area

ℓ2Pi =
ℏG
c3

n
= ℓ2P
α3

2

α3 ≈

≈ −2.4406 × 10−70 [m2]
(
|ℓ2Pi| < |ℓ

2
P|
)
,

(29)

is strictly negative, while the Planck area ℓ2P is strictly positive.
In the following, we shall call the units (18)-(29) α2-Planck
units.

Both α2 and cn lead to the second, negative vacuum
impedance

η2 =
4πα2ℏ

e2 =
1
ϵ0cn

≈ −368.29 [Ω] (|η2| < |η|) . (30)

Solving both impedances (7) and (30) for 4πℏϵ0/e2 and com-
paring with each other yields the following important relation
between the speed of light in vacuum c, negative parameter
cn, and the fine-structure constants α, α2

cα = cnα2 (= ve) , (31)

where, notably, ve is the electron’s velocity at the first circular
orbit in the Bohr model of the hydrogen atom. This is not the
only α to α2 relation. Along with the two π-like constants π1,
π2 (relations (B8) and (B10), cf. Appendix B)

α2

α
=

c
cn
=
π1

π
=
π

π2
≈ −0.9776. (32)

The relations between time (21) and temperature (22) α2-
Planck units are inverted, α5t2

Pi = α
5
2t2

P, α5
2T 2

Pi = α
5T 2

P , and

saturate Heisenberg’s uncertainty principle (energy-time ver-
sion) taking energy from the equipartition theorem for one de-
gree of freedom (or one bit of information [5, 32])

1
2

kBTPtP =
1
2

kBTPitPi =
ℏ

2
. (33)

Furthermore, eliminating α and α2 from the relations (18)-
(20), yield

q2
P

m2
P

=
q2

Pi

m2
Pi

= 4πϵ0G, (34)

and

ℓPm3
P = ℓPim3

Pi and ℓPq3
P = ℓPiq3

Pi. (35)

Base Planck units themselves admit negative values as neg-
ative square roots. By choosing complex analysis, within the
framework of ED, we enter into bivalence by the very na-
ture of this analysis. All geometric objects have both posi-
tive and negative volumes and surfaces [14] equal in moduli.
On the other hand, imaginary and negative physical quanti-
ties are the subject of research. In particular, the subject of
scientific research is thermodynamics in the complex plane.
Lee–Yang zeros, for example, have been experimentally ob-
served [33, 34]. We note here that the imaginary Planck Units
are not imaginary due to being multiplied by the imaginary
unit i. They are imaginary due to the negativity of odd pow-
ers of cn being the square root argument; thus, they define
imaginary physical quantities inaccessible to direct measure-
ments4. They do not apply only to the time dimension but to
any imaginary dimension. However, in our four-dimensional
Euclidean R3 × I space-time, Planck units apply in general to
the spatial dimensions, while the imaginary ones in general
to the imaginary temporal dimension. All the α2-Planck units
have physical meanings. However, some are elusive, like the
negative area or imaginary volume, which require two or three
orthogonal imaginary dimensions.

Planck charge relations (2) and (16) imply that the elemen-
tary charge e is the same both in real and imaginary dimen-
sions since

e2 = αq2
P = α2q2

Pi. (36)

There is no physically meaningful elementary mass Me =

±1.8592 × 10−9 [kg] that would satisfy the relation (20)

M2
e = αm2

P = α2m2
Pi. (37)

Neither is there a physically meaningful elementary (and
imaginary) length Le ≈ ±i9.7382 × 10−39 [m] satisfying the
relation (29)

L2
e = α

3ℓ2Pi = α
3
2ℓ

2
P, (38)

4 Quantum measurement outcomes are real eigenvalues of hermitian opera-
tors.
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(which in modulus is almost 1660 times smaller than the
Planck length), or an elementary temperature Te ≈ ±6.4450×
1026 [K] abiding to (22)

T 2
e = α

5T 2
P = α

5
2T 2

Pi, (39)

and close to the Hagedorn temperature of grand unified string
models.

Thus, as to the modulus, charges are the same in real and
imaginary dimensions, while masses, lengths, temperatures,
and other derived quantities that can vary with time, may dif-
fer (the dimensional character of the charges is additionally
emphasized by the real

√
α multiplied by i in the imaginary

charge energy (54) and imaginary
√
α2 in the real charge en-

ergy (55)). We note that the same form of the relations (36)
and (37) reflect the same form of Coulomb’s law and New-
ton’s law of gravity, which are inverse-square laws.

IV. BLACK BODY OBJECTS

There are only three observable objects in nature that emit
perfect black-body radiation: unsupported black holes (BHs,
the densest), neutron stars (NSs), supported, as it is accepted,
by neutron degeneracy pressure, and white dwarfs (WDs),
supported by electron degeneracy pressure (the least dense).
We shall collectively call them black-body objects (BBOs).
This term is not used in standard cosmology, but standard cos-
mology scrunches under embarrassingly significant failings,
not just tensions as is sometimes described, as if to somehow
imply that a resolution will eventually be found [35]. It has
recently been experimentally confirmed that the so-called ac-
cretion instability is a fundamental physical process [36]. We
conjecture that this process is common for all BBOs. Fur-
thermore, the term object as a collection of matter is a mis-
nomer, as it neglects quantum nonlocality [37] that is inde-
pendent of the entanglement among the particles [38]. Thus
we use emphasis for (indistinguishable) particle and (distin-
guishable) object, as well as for matter and distance. These
terms have no absolute meaning in ED. In particular, given the
recent observation of quasiparticles in classical systems [39].

As black-body radiation is radiation of global thermody-
namic equilibrium, it is patternless (thermal noise) radiation
that depends only on one parameter. In the case of BHs, this
is known as Hawking radiation and this parameter is the BH
temperature TBH = TP/(2πdBH) corresponding to the BH di-
ameter [5] DBH = dBHℓP, where dBH ∈ R. As black-body
radiation is patternless, the triangulated [5] BBOs contain a
balanced number of Planck area triangles, each carrying bi-
nary potential δφk = −c2 · {0, 1}, as it has been shown for BHs,
based on Bekenstein-Hawking (BH) entropy. BH entropy can
be derived from the Bekenstein bound

S ≤
2πkBRE
ℏc

, (40)

which defines an upper limit on the thermodynamic entropy
S that can be contained within a sphere of radius R hav-
ing energy E. After plugging the BH (Schwarzschild) ra-
dius RBH = 2GMBH/c2 and mass-energy equivalence EBH =

MBHc2, where MBH is the BH mass, into the bound (40), it
reduces BH entropy. In other words, BH entropy saturates the
Bekenstein bound (40).

The patternless nature of the perfect black-body radiation
was derived [5] by comparing BH entropy with the binary en-
tropy variation δS = kBN1/2 ([5] Eq. (55)), valid for any
holographic sphere, where N1 ∈ N denotes the number of ac-
tive Planck triangles with binary potential δφk = −c2. Thus,
the entropy of all BBOs is

S BBO =
1
4

kBNBBO, (41)

where NBBO B 4πR2
BBO/ℓ

2
P = πd

2
BBO is the information capac-

ity of the BBO surface, i.e., the ⌊NBBO⌋ ∈ N Planck triangles
(where ”⌊x⌋” is the floor function that yields the greatest inte-
ger less than or equal to its argument x) corresponding to bits
of information [32, 40, 41], and the fractional part triangle(s)
having the area {NBBO}ℓ

2
P = (NBBO − ⌊NBBO⌋)ℓ2P to small to

carry a single bit of information. Furthermore, N1 = NBBO/2.
We shall define the generalized radius of a BBO having

mass MBBO as a function of GMBBO/c2 multiplier k ∈ R

RBBO B k
GMBBO

c2 , (42)

and the generalized BBO energy EBBO as a function of
MBBOc2 multiplier a ∈ R

EBBO B aMBBOc2. (43)

Plugging definitions (42) and (43) into the Bekenstein bound
(40) it becomes

S ≤
1
2

kB
a
k

NBBO, (44)

and equals the BBO entropy (41) if a
2k =

1
4 ⇒ a = k

2 . Thus,
the energy of all BBOs having a radius (42) is

EBBO =
k
2

MBBOc2, (45)

with k = 2 in the case of BHs and k > 2 for NSs and WDs.
We shall further call the coefficient k the size-to-mass ratio.

BHs are fundamentally uncharged since the parame-
ters of any conceivable BH, in particular charged (Reiss-
ner–Nordström) and charged-rotating (Kerr–Newman) BH,
can be altered arbitrarily, provided that the BH area does not
decrease [42] by means of Penrose processes [43, 44] to ex-
tract BH electrostatic and/or rotational energy [45]. Thus any
BH is defined by only one real parameter: its diameter (cf.
[5] Fig. 2(b)), mass, temperature, energy, etc., each corre-
sponding to the other. We note that in the complex Euclidean
R3×I space, an n-ball (n ∈ C) is spherical only for a vanishing
imaginary dimension [14]. As the interiors of the BBOs are
inaccessible to an exterior observer [40], BBOs do not have
interiors5, which makes them similar to interior-less mathe-
matical points. Yet, a BH can embrace this defining parameter.

5 Thus, the term object is a particularly staring misnomer if applied to BBOs.
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That means that three points forming a Planck triangle corre-
sponding to a bit of information on a BH surface can store this
parameter and this is intuitively comprehensible: the area of
a spherical triangle is larger than that of a flat triangle defined
by the same vertices, providing the curvature is nonvanishing,
and depends on this curvature, i.e., this additional parameter
defines it.

On the other hand, it is accepted that in the case of NSs,
electrons combine with protons to form neutrons so that NSs
are composed almost entirely of neutrons. But it is never the
case that all electrons and all protons of an NS become neu-
trons. WDs are charged by definition as they are accepted
to be composed mostly of electron-degenerate matter. But
how can a charged BBO store both the curvature and an ad-
ditional parameter corresponding to its charge? Fortunately,
the relation (36) ensures that charges are the same in real and
imaginary dimensions. Therefore each Planck triangle of a
BBO surface is associated with three R × I Planck triangles,
each sharing a vertex or two vertices with this triangle in R2.
And this configuration is capable of storing both the curvature
and the charge. The Planck triangle ℓ2P and the R× I imaginary

Planck triangle ℓPℓPi = ℓ
2
P

√
α3

2/α
3, which has a smaller area in

modulus, can be considered in a polyspherical coordinate sys-
tem, in which gravitation/acceleration acts in a radial direction
(with the entropic gravitation acting inwardly and acceleration
acting in both radial directions) [5], while electrostatics act in
a tangential direction.

Not only BBOs are perfectly spherical. Also, their merg-
ers, to which we shall return in Section VII, are perfectly
spherical, as it has been recently experimentally confirmed
[46] based on the registered gravitational event GW170817.
One can hardly expect a collision of two perfectly spherical,
patternless thermal noises to produce some aspherical pattern
instead of another perfectly spherical patternless noise. Where
would the information about this pattern come from at the mo-
ment of the collision? From the point of impact? No point of
impact is distinct on a patternless surface.

The hitherto considerations may be unsettling for the
reader, as the energy (45) of BBOs other than BHs (i.e., for
k > 2) exceeds mass-energy equivalence E = Mc2, which is
the limit of the maximum real energy. In the subsequent sec-
tion, we shall show that a part of the energy of NSs and WDs
is imaginary and thus unmeasurable.

V. COMPLEX ENERGIES AND EQUILIBRIA

A complex energy formula

ER B EMR + iEQR = MRc2 +
iQR

2
√
πϵ0G

c2, (46)

where EMR and iEQR represent respectively real and imaginary
energy of an object having mass MR and charge QR

6 was pro-
posed in [47]. Equation (46) considers real (i.e., physically

6 Charges in the cited study are defined in CGS units. Here we adopt SI.

measurable) masses MR and charges QR. We shall modify it
to a form involving real and imaginary physical quantities ex-
pressing them, where deemed appropriate, by Planck units

M B mmP, Mi B mimPi, m,mi ∈ R,

Q B qe, Qi B iQ = iqe, q ∈ Z
λ B lℓP, λi B liℓPi, l, li ∈ R,

(47)

where uppercase M, Q, and λ denote respectively masses,
charges, and wavelengths, while the subscripts i refer to imag-
inary quantities. We note that the discretization of charges by
integer multipliers q of the elementary charge e is far-fetched,
considering the fractional charges of quasiparticles.

We define the following two complex energies, the complex
energy of real mass and imaginary charge

EMQi B EM + EQi = Mc2 +
Qi

2
√
πϵ0G

c2 =

=
(
mmP + iq

√
αmP

)
c2 =

(
m + iq

√
α
)

EP,

(48)

of real charge and imaginary mass

EQMi B EQ + EMi =
Q

2
√
πϵ0G

c2
n + Mic2

n =

=
(
q
√
α2mPi + mimPi

)
c2

n =
α2

α2
2

(
q
√
α +

√
α

α2
mi

)
EP,

(49)

of real photon (energy or frequency ν) and imaginary mass

EFMi B hν + Mic2
n =

 f +

√
α5

α5
2

mi

 EP, (50)

of real photon and imaginary charge

EFQi B hν +
Qi

2
√
πϵ0G

c2 =
(

f + iq
√
α
)

EP, (51)

of real mass and imaginary photon (with frequency νi = cn/λi)

EMFi B Mc2 +
hcn

λi
=

m +
√
α5

α5
2

fi

 EP, (52)

and of real charge and imaginary photon

EQFi B
Q

2
√
πϵ0G

c2
n + hνi =

α2

α2
2

(
q
√
α +

√
α

α2
fi

)
EP, (53)

where hν = 2πℏ c
λ
= 2π

l EP B f EP, hνi B fiEPi, f ∈ R.
Complex energies (48)-(53) link mass, charge, and photon

energies within the framework of ED. We note in passing that
using the different speed of light parameters in energies (48)
and (??) yields a contradiction (cf. Appendix D).

Energies (48), (49), (51), and (53) yield two different
quanta of the charge energies corresponding to the elementary
charge, the imaginary quantum

EQi (q = ±1) = ±i
√
αEP ≈ ±i1.6710 × 108 [J], (54)
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and the - larger in modulus - real quantum

EQ(q = ±1) = ±
√
α2EPi ≈ ±1.7684 × 108 [J]. (55)

Furthermore, ∀q, α2EQi = iα2
2EQ. We note that photon energy

vanishes for the infinite wavelength.
The squared moduli of the energies (48)-(53) are

|EMQi |
2 =

(
M2 + q2αm2

P

)
c4 =

(
m2 + q2α

)
E2

P, (56)

|EQMi |
2 =
α4

α4
2

(
q2αm2

P − M2
i

)
c4 =

α4

α4
2

(
q2α −

α

α2
m2

i

)
E2

P,

(57)

|EFMi |
2 =

 f 2 −
α5

α5
2

m2
i

 E2
P, (58)

|EMFi |
2 =

m2 −
α5

α5
2

f 2
i

 E2
P. (59)

|EFQi |
2 =

(
f 2 + q2α

)
E2

P, (60)

|EQFi |
2 =

α4

α4
2

q2α −
α5

α5
2

f 2
i

 E2
P, (61)

where we used relations (20), (25), (31), and (47).
Postulating that the squared moduli (56) and (57) are equal

|EMQi |
2 = |EQMi |

2,

α4
2

(
M2 + q2αm2

P

)
= α4

(
q2αm2

P − M2
i

)
,

(62)

we demand a mass-charge energy equilibrium condition from
which we can obtain the value of the imaginary mass Mi as a
function of mass M and charge Q in this equilibrium

Mi = ±

√
q2αm2

P

1 − α4
2

α4

 − α4
2

α4 M2. (63)

In particular for q = 0 this yields

Miα
2 = ±iMα2

2 or Mi = ±i
α2

2

α2 M ≈ ±0.9557iM. (64)

Since mass Mi is imaginary by definition, the argument of the
square root in the relation (63) must be negative

M > |q|mP

√
α

α4

α4
2

− 1
 ≈ |q|5.7275 × 10−10 [kg]. (65)

This means that masses of uncharged micro BHs (q = 0) in
thermodynamic equilibrium can be arbitrary. However, micro
NSs and micro WDs, also in thermodynamic equilibrium, are
inaccessible for direct observation, as they cannot achieve a
net charge Q = 0. Even a single elementary charge of a white

dwarf renders its mass MWD = 5.7275×10−10 [kg] comparable
to the mass of a grain of sand.

We note here that only the masses satisfying M < 2πmP ≈

1.3675 × 10−7 [kg] have Compton wavelengths larger than
the Planck length [5]. Comparing this bound with the bound
(65) yields the charge multiplier q corresponding to an atomic
number

Z =


2π√
α
(
α4

α4
2
− 1

)
 = 238, (66)

of a hypothetical element, which - as we conjecture - sets the
limit on an extended periodic table and is a little higher than
the accepted limit of Z = 184 (unoctquadium). More massive
elements would have Compton wavelengths smaller than the
Planck length, which is physically implausible.

Postulating that the squared moduli (60) and (61) are equal

|EFQi |
2 = |EQFi |

2,

α4
2

(
f 2 + q2α

)
= α4

(
q2α −

α

α2
f 2
i

)
,

(67)

we demand a photon-charge energy equilibrium condition
from which we can obtain the value of the imaginary pho-
ton energy hνi corresponding to the real photon energy hν and
charge Q in this equilibrium

fi = ±

√
α5

2

α5

√
q2α

α4

α4
2

− 1
 − f 2. (68)

Since
√
α5

2/α
5 is imaginary, we demand q2α(α4/α4

2 − 1) < f 2

to ensure that fi ∈ R. Thus

hν = f EP > ±q

√
α

α4

α4
2

− 1
EP ≈ ±q5.1477 × 107 [J], (69)

which, using mass-energy equivalence, corresponds to the
bound (65). We can also obtain the maximum wavelength in
this equilibrium corresponding to the charge. For q2 = 1 it is
λ < 3.8589 × 10−33 [m] with l < 238.7580 corresponding to
the bound (66).

It seems that no meaningful conclusions can be derived by
postulating the equality of the squared moduli (58) and (59).
Such a mass-photon energy equilibrium is an equation with
four unknowns. Neither physically meaningful elementary
mass (37) nor length (38) is common for real and imaginary
dimensions.

Postulating the equality of all the squared moduli (56)-(61)
to some constant energy

|EMQi |
2 = |EQMi |

2 = |EFMi |
2 =

= |EFQi |
2 = |EMFi |

2 = |EQFi |
2 B AE2

P, A ∈ R,
(70)

we demand a mass-charge-photon equilibrium condition,
which can be solved for A. Subtracting moduli (56) and (60)
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yields m2 = f 2, and similarly subtracting moduli (57) and (61)
yields m2

i = f 2
i . This equates moduli (58) and (59). Substitut-

ing m2
i = f 2

i into the modulus (61) and subtracting from the
modulus (56) yields

m2 +
α

α2
m2

i = A
1 − α4

2

α4

 . (71)

Subtracting this from (58) or (59) yields

m2
i = f 2

i =
−Aα9

2

α5(α4 + α4
2)
, (72)

which substituted into the relation (71) yields

m2 = f 2 =
Aα4

α4 + α4
2

. (73)

Finally, substituting the relation (73) into the modulus (56)
yields

q2α =
Aα4

2

α4 + α4
2

. (74)

VI. BBO COMPLEX ENERGY EQUILIBRIA

We can interpret the modulus of the generalized energy of
BBOs (45) as the modulus of the complex energy of real mass
(56), taking the observable real energy EBBO = MBBOc2 of the
BBO as the real part of this energy. Thus(

k
2

MBBOc2
)2

=
(
M2

BBO + q2
BBOαm2

P

)
c4, (75)

leads to

qBBO = ±
MBBO

mP

√
1
α

(
k2

4
− 1

)
, (76)

representing a charge surplus energy exceeding MBBOc2. For
k = 2, qBBO vanishes, confirming the vanishing net charge of
BHs. Similarly, we can interpret the modulus of the gener-
alized energy of BBOs (45) as the modulus of the complex
energy of real charge (57). Thus

k2

4
M2

BBO =
α4

α4
2

(
q2

BBOαm2
P − M2

iBBO

)
,

M2
iBBO = q2

BBOαm2
P −
α4

2

α4

k2

4
M2

BBO.

(77)

Substituting q2
BBO from the relation (76) into the relation

(77) turns the equilibrium condition (63) into a function of the
size-to-mass ratio k instead of the charge q

M2
iBBO =

k2

4

1 − α4
2

α4

 − 1
 M2

BBO,

MiBBO = ±MBBO

√
k2

4

1 − α4
2

α4

 − 1,

(78)

which for BHs (k = 2) also corresponds to the relation (64)
between uncharged masses M and Mi, where no assumptions
concerning the BBO energy were made.

Furthermore, the argument of the square root in the relation
(78) must be negative, as mass Mi is imaginary by definition.
This leads to the maximum size-to-mass ratio

kmax = ±
2√

1 − α
4
2
α4

≈ 6.7933, (79)

where k < |kmax| satisfies the mass equilibrium (78). Relations
(76) and (78) are shown in Fig 1.

0
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Figure 1. Ratios of imaginary mass MiBBO to real mass MBBO (green)
and real charge qBBOmP

√
α to MBBO (red) of a BBO as a function of

the size-to-mass ratio k : 0 ≤ k ≤ 10. Mass MiBBO is imaginary for
k ⪅ 6.79. Charge qBBO is real for k ≥ 2.

The maximum size-to-mass ratio kmax (79) sets the bounds
on the BBO energy (45), mass, and radius (42)

RBH =
2GMBBO

c2 ≤ RBBO <
kmaxGMBBO

c2 . (80)

In particular, using relations (47), 2mBBO ≤ rBBO < kmaxmBBO
or rBBO/kmax < mBBO ≤ rBBO/2. As WDs are the least dense
BBOs, this bounds define the maximum radius and mass of a
WD core.

Furthermore, relations (65) and (79) set the bound on the
BBO minimum mass in the equilibrium (62)

mBBO > max

qBBO

√
α

α4

α4
2

− 1
, dBBO

4

√
1 −
α4

α4
2

 , (81)

where

qBBO =
1
4

√
α4

2

α5 dBBO (82)

defines a condition in which neither qBBO nor dBBO can be
further increased to reach its counterpart (defined respectively
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by dBBO and qBBO) in the bound (81). Thus, for example, 1-
bit BBO (dBBO = 1/

√
π) corresponds to qBBO > 1.5780, π-bit

BBO (dBBO = 1) corresponds to qBBO > 2.7969, while the
maximum atomic number qBBO (66) corresponds to

dBBO = ±
8π√

1 − α
4
2
α4

≈ 85.3666. (83)

In the case of a BBO, we obtain the equilibrium condi-
tion (70) by comparing the squared moduli (56)-(61) of the
energies (48)-(53) with the squared BBO energy (45) which
yields a solvable system of six nonlinear equations with six
unknowns k, q,m,mi, f , fi

|EMQi |
2 ⇒m2 + q2α =

k2

4
m2,

q2α = m2
(

k2

4
− 1

)
,

|EQMi |
2 ⇒
α4

α4
2

q2α −
α5

α5
2

m2
i =

k2

4
m2,

|EFMi |
2 ⇒ f 2 −

α5

α5
2

m2
i =

k2

4
m2,

|EFQi |
2 ⇒ f 2 + q2α =

k2

4
m2,

|EMFi |
2 ⇒m2

(
1 −

k2

4

)
=
α5

α5
2

f 2
i ,

|EQFi |
2 ⇒
α4

α4
2

q2α − f 2
i
α5

α5
2

=
k2

4
m2.

(84)

Substituting q2α = m2
(

k2

4 − 1
)

from |EMQi |
2 to |EFQi |

2 re-
covers the Compton wavelength of the BBO, λBBO =

h
MBBOc ,

in its Planck units form l2 = 4π2

m2 . Furthermore, by substituting
q2α and the Compton mass m2 = 4π2

l2 into |EQMi |
2, and com-

paring the LHSs of |EQMi |
2 and |EFMi |

2 we obtain the BBO
equilibrium size-to-mass ratio

k2
eq

4
=
α4

2

α4 + 1⇒ keq = ±2

√
1 +
α4

2

α4 ≈ 2.7665, (85)

where k = keq satisfies the equilibrium condition (70) for

A =
1
4

k2
eqm2

BBO =

1 + α4
2

α4

 m2
BBO ≈ 1.9133m2

BBO. (86)

The equilibrium keq (85) and the maximum kmax (79) size-
to-mass ratios are related as k2

eq + 16/k2
max = 8. Also, the

following relations can be derived from the relations (84) for
the BBO in the equilibrium keq (85)

m2
i = −

α9
2

α9 m2 ⇔ MiBBOeq = ±i
α4

2

α4 MBBOeq , (87)

l2i = −
α9

α9
2

l2 ⇔ λiBBOeq = ±i
α3

α3
2

λBBOeq , (88)

m2 = f 2 =
4π2

l2
⇔ λBBOeq =

h
MBBOeq c

, (89)

q2α =
α4

2

α4 m2. (90)

The BBO in the energy equilibrium keq bearing the elemen-
tary charge (q2 = 1) would have mass MBBOeq ≈ ±1.9455 ×
10−9 [kg], imaginary mass MiBBOeq ≈ ±i1.7768 × 10−9 [kg],
wavelength λBBOeq ≈ ±1.1361 × 10−33 [m], and imaginary
wavelength λiBBOeq ≈ ±i1.2160 × 10−33 [m].

These results show that the radius (42) of charged BBOs is
a continuous function of k ∈ R : 2 < k < kmax satisfying the
BBO entropy relation (41), a necessary condition of pattern-
less perfect black body radiation [5].

Notably, 2.25 < keq < 3, where 9/4 is the size-to-mass ratio
of a radius of the maximal sustainable density for gravitating
spherical matter given by Buchdahl’s theorem, and 3 is the
size-to-mass ratio of a BH photon sphere radius7. This hints
that keq ≈ 2.766 is a true photon sphere radius, where BBO
gravity, charge, and photon energies remain at equilibrium.
Aside from the Schwarzschild radius (derivable from escape
velocity v2

esc = 2GM/R of mass M by setting v2
esc = c2), all

the remaining thresholds of general relativity, such as Buch-
dahl’s threshold or a photon sphere radius, are only crude ap-
proximations. General relativity neglects the value of the fine-
structure constants α and α2, which, similarly as π or the base
of the natural logarithm, are the fundamental constants of na-
ture.

VII. BBO MERGERS

As the entropy of independent systems is additive, a merger
of BBO1 and BBO2 having entropies (41) S BBO1 =

1
4 kBNBBO1

and S BBO2 =
1
4 kBπd2

BBO2
, produces a BBOC having entropy

S BBO1 + S BBO2 = S BBOC ⇒ d2
BBO1

+ d2
BBO1

= d2
BBOC
, (91)

which shows that a merger of two primordial BHs, each hav-
ing the Planck length diameter, the reduced Planck temper-
ature TP

2π (the largest physically significant temperature [12]),
and no tangential acceleration aLL [5, 12], produces a BH hav-
ing dBH = ±

√
2 which represents the minimum BH diameter

allowing for the notion of time [12]. In comparison, a colli-
sion of the latter two BHs produces a BH having dBH = ±2
having the triangulation defining only one precise diameter
between its poles (cf. [5] Fig. 3(b)), which is also recovered
from Heisenberg’s Uncertainty Principle (cf. Appendix C).

Substituting the generalized radius (42) into the entropy re-
lation (91) yields

k2
BBOC

M2
BBOC

= k2
BBO1

M2
BBO1

+ k2
BBO2

M2
BBO2
, (92)

7 At which, according to an accepted photon sphere definition, the strength of
gravity forces photons to travel in orbits. The author wonders why photons
would not travel in orbits at radius R = GM/c2 corresponding to the orbital
velocity v2

orb = GM/R. Obviously, photons do not travel.
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which establishes a Pythagorean relation between the general-
ized energies (45) of the merging components and the merger

k2
BBOC

4
M2

BBOC
c4 =

k2
BBO1

4
M2

BBO1
c4 +

k2
BBO2

4
M2

BBO2
c4. (93)

The relation (93) explains the measurements of large
masses of the BBO mergers with at least one charged merg-
ing component without resorting to any hypothetical types of
exotic stellar objects such as quark stars. We note in passing
that describing the registered gravitational events as waves is
misleading. Normal modulation of the gravitational poten-
tial, caused by rotating (in the merger case - inspiral) bodies,
is wrongly interpreted as a gravitational wave understood as a
carrier of gravity [48]. Interferometric data, available online at
the Gravitational Wave Open Science Center (GWOSC) por-
tal8, indicate that the total mass of a merger is the sum of the
masses of the merging components. Thus9

MBBOC ≈ MBBO1 + MBBO2 ⇒

M2
BBOC

≈ M2
BBO1

+ M2
BBO2

+ 2MBBO1 MBBO2 ⇒

M2
BBOC

> M2
BBO1

+ M2
BBO2
.

(94)

The accepted value of the Chandrasekhar WD mass limit,
preventing its collapse into a denser form, is MCh ≈

1.4 M⊙ [49] and the accepted value of the analogous Tol-
man–Oppenheimer–Volkoff NS mass limit is MTOV ≈ 2.9 M⊙
[50, 51]. There is no accepted value of the BH mass limit.
The conjectured value is 5 × 1010 M⊙. The masses of most of
the registered merging components are well beyond MTOV. Of
those that are not, most of the total or final masses exceed this
limit. Therefore these mergers were classified as BH mergers.
Only a few were classified otherwise, including GW170817,
GW190425, GW200105, and GW200115. They are listed in
Table I.

Table I. Selected BBO mergers discovered with LIGO and Virgo.
Masses in M⊙.

Event MBBO1 MBBO2 MBBOC kBBO1 kBBO2 kBBOC

GW170817 1.46+0.12
−0.10 1.27+0.09

−0.09 2.8 4.39 4.39 3.03
GW190425 2.00+0.6

−0.2 1.4+0.3
−0.3 3.4+0.3

−0.1 4.39 4.39 3.15
GW200105 8.9+1.2

−1.5 1.9+0.3
−0.2 10.9+1.1

−1.2 2.76 4.39 2.38
GW200115 5.7+1.8

−2.1 1.5+0.7
−0.3 7.1+1.5

−1.4 3 4.39 2.64

We can use the BBO equilibrium relations (84) to derive
some information from the relation (93). For example, sub-
stituting the squared energy modulus |EMQi |

2 into the relation
(93) and using the inequality (94), based on GWOSC data,

8 https://www.gw-openscience.org/eventapi/html/allevents
9 We assume M > 0. Negative masses are inaccessible for direct observation,

unlike charges.

yields

m2
BBOC

+ q2
BBOC
α = m2

BBO1
+ m2

BBO2
+

(
q2

BBO1
+ q2

BBO2

)
α,

q2
BBOC
α = m2

BBO1
+ m2

BBO2
+

(
q2

BBO1
+ q2

BBO2

)
α − m2

BBOC
,

m2
BBOC

=�
��m2

BBO1
+�

��m2
BBO2

+
(
q2

BBO1
+ q2

BBO2

)
�α − q2

BBOC �α

>���m2
BBO1

+���m2
BBO2
,

q2
BBOC

< q2
BBO1

+ q2
BBO2
.

(95)

On the other hand, substituting the squared energy modulus
|EQMi |

2 from the relation (84) and q2
BBOC
α from the relation

(95) into the relation (93), and using the inequality (94) yields

q2
BBOC
α −
α

α2
m2

iBBOC
=

=
(
q2

BBO1
+ q2

BBO2

)
α −
α

α2

(
m2

iBBO1
+ m2

iBBO2

)
,

m2
BBO1

+ m2
BBO2

+
��������(
q2

BBO1
+ q2

BBO2

)
α − m2

BBOC
−
α

α2
m2

iBBOC
=

=
�������(
q2

BBO1
+ q2

BBO2

)
α −
α

α2

(
m2

iBBO1
+ m2

iBBO2

)
,

m2
BBOC

=

=�
��m2

BBO1 +�
��m2

BBO2 +
�
��
α

α2

(
m2

iBBO1
+ m2

iBBO2

)
−
�
��
α

α2
m2

iBBOC

>���m2
BBO1

+���m2
BBO2
,

m2
iBBOC

< m2
iBBO1

+ m2
iBBO2
.

(96)

Similarly, the squared energy modulus |EMFi |
2 (84) and the

relations (93), (94) yield

f 2
iBBOC

> f 2
iBBO1

+ f 2
iBBO2
. (97)

Therefore, the size-to-mass ratio kBBOC decreases making the
BBOC denser until it becomes a BH for kBBOC = 2 and no fur-
ther charge reduction is possible (cf. Fig 1). From the relation
(92) and the inequality (94) we see that this holds for

k2
BBOC

(
M2

BBO1
+ M2

BBO2

)
< k2

BBO1
M2

BBO1
+ k2

BBO2
M2

BBO2
. (98)

From inequalities (94)-(97) we also conjecture that |qBBOC | =

||qBBO1 | − |qBBO2 ||, miBBOC = |miBBO1 − miBBO2 |, and fiBBOC =

| fiBBO1 + fiBBO2 |. In other words, the merger’s real mass and
the imaginary photon energy are sums of the merging compo-
nents’ masses and imaginary photon energies. In contrast, the
charge and imaginary mass are absolute differences of their
charges and imaginary masses.

Table I lists the mass-to-size ratios kBBOC calculated accord-
ing to the relation (93) that provide the measured mass MBBOC

of the merger and satisfy the inequality (98). Mass-to-size
ratios kBBO1 and kBBO2 of the merging components were arbi-
trarily selected based on their masses, taking into account the
MTOV NS mass limit.
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VIII. BBO COMPLEX GRAVITY AND TEMPERATURE

Complex energies (48)-(53) define complex forces (simi-
larly to the complex energy of real masses and charges (46),
[47] Eq. (7)) acting over real and imaginary distances R,Ri.
Using the relations (47), we obtain the following products

E1mqi E2mqi B E1MQi E2MQi/E
2
P =

= m1m2 − q1q2α + i
√
α(m1q2 + m2q1),

E1qmi E2qmi B E1QMi E2QMi/E
2
P =

=
α5

α4
2

(
q1q2 +

1
α2

mi1mi2 +
1
√
α2

(q1mi2 + q2mi1)
)
,

(99)

E1 f mi E2 f mi B E1FMi E2FMi/E
2
P =

= f1 f2 +
α5

α5
2

mi1mi2 +

√
α5

α5
2

( f1mi2 + f2mi1) ,

E1m fi E2m fi B E1MFi E2MFi/E
2
P =

= m1m2 +
α5

α5
2

fi1 fi2 +

√
α5

α5
2

(m1 fi2 + m2 fi1) ,

(100)

E1q fi E2q fi B E1QFi E2QFi/E
2
P =

=
α4

α4
2

q1q2α +
α5

α5
2

fi1 fi2 +
α5√
α9

2

( fi2q1 + fi1q2) ,

E1 f qi E2 f qi B E1FQi E2FQi/E
2
P =

= f1 f2 − q1q2α + i
√
α ( f1q2 + f2q1) ,

(101)

defining six complex forces acting over a real distance R B
rℓP, r ∈ R

FABi =
G

c4R2 E1ABi E2ABi =
FP

r2 E1abi E2abi , (102)

and six complex forces acting over an imaginary distance
Ri B riℓPi, ri ∈ R

F̃ABi =
G

c4
nR2

i

E1ABi E2ABi =
α2

α

FP

r2
i

E1abi E2abi , (103)

where A, B ∈ {M,Q, F} and a, b ∈ {m, q, f }, and

α2r2FABi = αr2
i F̃ABi . (104)

With a simplifying assumption of r2 = r2
i , the forces acting

over a real distance R are stronger and opposite to the cor-
responding forces acting over an imaginary distance Ri even
though the Planck force is lower in modulus than the (real) α2-
Planck force (27). We excluded mixed forces (based on real
and imaginary masses/charges/photons) as real and imaginary
dimensions are orthogonal.

In particular, we can use the complex force FMQi (102)
with (99) (i.e., complex Newton’s law of universal gravita-
tion) to calculate the BBO surface gravity gBBO, assuming an

uncharged (q2 = 0) test mass m2

FP

r2
BBO

(
mBBOm2 + i

√
αm2qBBO

)
= M2gBBO =

= m2mPĝBBOaP,

ĝBBO =
1

r2
BBO

(
mBBO + i

√
αqBBO

)
,

(105)

where gBBO = ĝBBOaP, ĝBBO ∈ R. Substituting the BBO
equilibrium relation (76) and the generalized BBO radius (42)
rBBO = kmBBO into the relation (105) yields

gBBO =
aP

krBBO

1 ± i

√
k2

4
− 1

 , (106)

which reduces to BH surface gravity for k = 2, in modulus

ĝ2
BBO =

1
k2r2

BBO

1 + i

√
k2

4
− 1

 1 − i

√
k2

4
− 1

 = 1
4r2

BBO

,

(107)
equals to a squared BH surface gravity for all k, and in partic-
ular,

gBBO(kmax) = ±
aP

dBBO
(0.2944 ± 0.9557i) , (108)

gBBO(keq) = ±
aP

dBBO
(0.7229 ± 0.6909i) . (109)

The BBO surface gravity (106) leads to the generalized
complex Hawking blackbody-radiation equation

TBBO =
ℏ

2πckB
gBBO =

TP

kπdBBO

1 ± i

√
k2

4
− 1

 , (110)

describing the BBO temperature10 by including its charge in
the imaginary part, which also in modulus equals squared BH
temperature ∀k. In particular,

TBBO(kmax) = ±
TP

2πdBBO


√
α4 − α4

2

α2 ± i
α2

2

α2

 , (111)

TBBO(keq) = ±
TP

2πdBBO

α2 ± iα2
2√

α4 + α4
2

, (112)

reduce to a BH temperature for α2 = 0. We note that for
dBBO = 1, Re(TBBO(kmax)) ≈ 6.6387 × 1030 [K] (where
TP/(2π) ≈ 2.2549 × 1031 [K]) has the magnitude of the Hage-
dorn temperature of strings.

It seems, therefore, that a universe without imaginary di-
mensions (i.e., with α2 = 0) would be a black hole. Hence,
the evolution of information [1–6] requires imaginary time.

10 In a commonly used form it is TBBO =
ℏc3

2k2πGMBBOkB

(
1 ± i

√
k2

4 − 1
)
.
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IX. DISCUSSION

The reflectance of graphene under the normal incidence
of electromagnetic radiation expressed as the quadratic equa-
tion for the fine-structure constant α includes the 2nd negative
fine-structure constant α2. The sum of the reciprocal of this
2nd fine-structure constant α2 with the reciprocal of the fine-
structure constant α (2) is independent of the reflectance value
R and remarkably equals simply −π. Particular algebraic def-
inition of the fine-structure constant α−1 = 4π3 + π2 + π, con-
taining the free π term, can be interpreted as the asymptote
of the CODATA value α−1, the value of which varies with
time. The negative fine-structure constant α2 leads to the set of
α2-Planck units applicable to imaginary dimensions, includ-
ing imaginary α2-Planck units (18)-(26). Real and imaginary
mass and charge units (34), length and mass units (35) units,
and temperature and time units (33) are directly related to each
other. Also, the elementary charge e is common for real and
imaginary dimensions (36).

Applying the α2-Planck units to a complex energy formula
[47] yields complex energies (48), (49) setting the atomic
number Z = 238 as the limit on an extended periodic table.
The generalized energy (45) of all perfect black-body objects
(black holes, neutron stars, and white dwarfs) having the gen-
eralized radius RBBO = kGM/c2 exceed mass-energy equiva-
lence if k > 2. Complex energies (48), (49) allow for storing
the excess of this energy in their imaginary parts, inaccessi-
ble for direct observation. The results show that the perfect
black-body objects other than black holes cannot have masses
lower than 5.7275 × 10−10 [kg] and that the size-to-mass ra-
tios of their cores cannot exceed kmax ≈ 6.7933 defined by
the relation (79). It is further shown that a black-body ob-
ject is in the equilibrium of complex energies if its radius
Req ≈ 2.7665 GMBBO/c2 (85). It is conjectured that this is
the correct value of the photon sphere radius. BBO fluctu-
ations for keq and kmax are briefly discussed in Appendix E.
The proposed model explains the registered (GWOSC) high
masses of the neutron stars mergers without resorting to any
hypothetical types of exotic stellar objects.

In the context of the results of this study, monolayer
graphene, a truly 2-dimensional material with no thick-
ness11, is a keyhole to other, unperceivable, dimensionali-
ties. Graphene history is also instructive. Discovered in 1947
[53], graphene was long considered an academic material un-
til it was eventually pulled from graphite in 2004 [54] by
means of ordinary Scotch tape12. These fifty-seven years,
along with twenty-nine years (1935-1964) between the con-
demnation of quantum theory as incomplete [55] and Bell’s
mathematical theorem [56] asserting that it is not true, and
the fifty-eight years (1964-2022) between the formulation of

11 Thickness of MLG is reported [52] as 0.37 [nm] with other reported values
up to 1.7 [nm]. However, considering that 0.335 [nm] is the established
inter-layer distance and consequently the thickness of bilayer graphene,
these results do not seem credible: the thickness of bilayer graphene is not
2 × 0.37 + 0.335 = 1.075 [nm].

12 Introduced into the market in 1932.

this theorem and 2022 Nobel prize in physics for its experi-
mental loophole-free confirmation, should remind us that Max
Planck, the genius who discovered Planck units, has also dis-
covered Planck’s principle.
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Appendix A: Other quadratic equations

The quadratic equation for the sum of transmittance (3) and
absorptance (5), putting CT A B T + A, is

1
4

CT Aπ
2α2 + (CT A − 1) πα + (CT A − 1) = 0, (A1)

and has two roots with reciprocals

α−1 =
CT Aπ

2
(
1 −CT A +

√
1 −CT A

) ≈ 137.036, (A2)

and

α−1
2 =

CT Aπ

2
(
1 −CT A −

√
1 −CT A

) ≈ −140.178, (A3)

whereas their sum α−1 + α−1
2 = −π is, similarly as the relation

(12), also independent of T and A.
Other quadratic equations do not feature this property. For

example, the sum of T+R (6) expressed as the quadratic equa-
tion and putting CTR B T + R, is

1
4

(CTR − 1) π2α2 +CTRπα + (CTR − 1) = 0, (A4)

and has two roots with reciprocals

α−1 =
π(CTR − 1)

−2CTR + 2
√

2CTR − 1
≈ 137.036, (A5)

and

α−1
TR =

π(CTR − 1)
−2CTR − 2

√
2CTR − 1

≈ 0.0180, (A6)

whereas their sum

α−1
TR1
+ α−1

TR2
=
−πCTR

CTR − 1
≈ 137.054 (A7)

is dependent on T and R.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2023                   doi:10.20944/preprints202212.0045.v10

https://doi.org/10.20944/preprints202212.0045.v10


13

Appendix B: Two π-like constants

With algebraic definitions of α (13) and α2 (14), transmit-
tance T (3), reflectance R (4) and absorptance A (5) of MLG
for normal EMR incidence can be expressed just by π. For
α−1 = 4π3 + π2 + π (13) they become

T (α) =
4
(
4π2 + π + 1

)2(
8π2 + 2π + 3

)2 ≈ 0.9775, (B1)

A (α) =
4
(
4π2 + π + 1

)
(
8π2 + 2π + 3

)2 ≈ 0.0224, (B2)

while for α−1
2 = −4π3 − π2 − 2π (14) they become

T (α2) =
4
(
4π2 + π + 2

)2(
8π2 + 2π + 3

)2 ≈ 1.0228, (B3)

A (α2) = −
4
(
4π2 + π + 2

)
(
8π2 + 2π + 3

)2 ≈ −0.0229, (B4)

with

R (α) = R (α2) =
1(

8π2 + 2π + 3
)2 ≈ 1.2843 × 10−4. (B5)

(T (α) + A(α)) + R(α) = (T (α2) + A(α2)) + R(α2) = 1 as re-
quired by the law of conservation of energy (8), whereas each
conservation law is associated with a certain symmetry, as as-
serted by Noether’s theorem. A(α) > 0 and A(α2) < 0 imply
respectively a sink and a source, while the opposite holds true
for the transmittance T , as illustrated schematically in Fig 2.
Perhaps, the negative absorptance and transmittance exceed-
ing 100% for α2 (11) or (14) could be explained in terms of
graphene spontaneous emission.

The quadratic equation (9) describing the reflectance R of
MLG under normal incidence of EMR (or alternatively (A1))
can also be solved for π yielding two roots

π(R, α∗)1 =
2
√

R

α∗(1 −
√

R)
, and (B6)

π(R, α∗)2 =
−2
√

R

α∗(1 +
√

R)
, (B7)

dependent on R and α∗, where α∗ indicates α or α2. This can
be further evaluated using the MLG reflectance R (4) or (B5)
(which is the same for both α and α2), yielding four, yet only
three distinct, possibilities

π1 = π(α)1 = −π
4π2 + π + 1
4π2 + π + 2

= π
α2

α
≈ −3.0712, (B8)

π(α)2 = π(α2)1 = π ≈ 3.1416, and (B9)

T( ) < 1α

( ) > 0A α

T( ) > 1α2

( ) < 0A α2

Figure 2. Illustration of the concepts of negative absorptance and
excessive transmittance of EMR under normal incidence on MLG.

π2 = π(α2)2 = −π
4π2 + π + 2
4π2 + π + 1

= π
α

α2
≈ −3.2136. (B10)

The modulus of π1 (B8) corresponds to a convex surface
having a positive Gaussian curvature, whereas the modu-
lus of π2 (B10) - to a negative Gaussian curvature. Their
product π1π2 = π

2 is independent of α∗, and their quotient
π1/π2 = α

2
2/α

2 is not directly dependent of π. It remains to
be found whether each of these π-like constants describes the
ratio of the circumference of a circle drawn on the respective
surface to its diameter (πc) or the ratio of the area of this circle
to the square of its radius (πa). These definitions produce dif-
ferent results on curved surfaces, whereas πa > πc on convex
surfaces, while πa < πc on saddle surfaces [59].

Appendix C: Planck units and HUP

Perhaps the simplest derivation of the squared Planck
length is based on Heisenberg’s uncertainty principle

δPHUPδRHUP ≥
ℏ

2
or δEHUPδtHUP ≥

ℏ

2
, (C1)

where δPHUP, δRHUP, δEHUP, and δtHUP denote momentum,
position, energy, and time uncertainties, by replacing energy
uncertainty δEHUP = δMHUPc2 with mass uncertainty and
time uncertainty with position uncertainty, using mass-energy
equivalence and δtHUP = δR/cHUP [31], which yields

δMHUPδRHUP ≥
ℏ

2c
. (C2)
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Plugging δMHUP = δRHUPc2/(2G) for BH mass into (C2) we
arrive at δR2

HUP = ℓ
2
P ⇒ δDHUP = ±2ℓP and recover [5] BH

diameter dBH = ±2.
However, using the same procedure but inserting the BH

radius, instead of the BH mass, into the uncertainty principle
(C2) leads to δM2

HUP =
1
4ℏc/G =

1
4 m2

P. In general, using the
generalized radius (42) in both procedures, one obtains

δM2
HUP =

1
2k

m2
P and δR2

HUP =
k
2
ℓ2P. (C3)

Thus, if k increases mass δMHUP decreases, and δRHUP in-
creases and the factor is the same for k = 1 i.e., for or-
bital speed radius δR = GδM/c2 or the orbital speed mass
δM = δRc2/G.

Appendix D: A mixed speeds hypothesis

Let us define the mass/charge energies (48), (49) with dif-
ferent speeds of light, i.e., the charge part of the energy EMQi

with cn and the charge part of the energy EQMi with c

ÊMQi B Mc2 +
Qi

2
√
πϵ0G

c2
n = Mc2 ± iq

√
αmP
α2

α2
2

c2,

ÊQMi B
Q

2
√
πϵ0G

c2 + Mic2
n = ±q

√
αmPc2 + Mi

α2

α2
2

c2,

(D1)

Demanding equality of their moduli

M2 + q2αm2
P
α4

α4
2

= q2αm2
P − M2

i
α4

α4
2

,

Mi = ±

√
q2αm2

P

α4
2

α4 − 1
 − α4

2

α4 M2.

(D2)

For q = 0 this relation corresponds to the relation (64). How-
ever, since mass Mi is imaginary, the argument of the square
root in the relation (D2) must be negative, i.e.,

|M| ≯ |q|mP

√
α

1 − α4

α4
2

. (D3)

But α4 > α4
2, yielding imaginary M, while M is real by defini-

tion. The same result would be obtained if mass energy EQMi

was parametrized with cn and EQMi with c, since√
α

α4
2

α4 − 1
 ∈ I,

√
α

1 − α4
2

α4

 ∈ R,√
α

α4

α4
2

− 1
 ∈ R,

√
α

1 − α4

α4
2

 ∈ I.
(D4)

Therefore, complex energies EMQi (48) and EQMi (49) must
be parametrized respectively by c and cn.

Appendix E: Fluctuations of the BBOs

A relation describing a BH information capacity after ab-
sorption (+) or emission (−) of a particle having the wave-
length l can be generalized (cf. [5], Appendix 3), using the
generalized radius (42), to all holographic spheres, including
BBOs as

NA/E(d, l) = 16k2π3 1
l2
± 8kπ2 d

l
+ πd2. (E1)

The wavelength of a particle emitted from a BH that does
not change the BH diameter corresponds to half of the BH
Compton wavelength (lBH = 8π/dBH). Accordingly, the wave-
length of a particle absorbed by a BH that does not change its
diameter is lBHconst = −4π/dBH. We note in passing that three
spatial dimensions set the minimum for such conditions to oc-
cur (cf. [5], Table III). In general, lBBOconst = ∓2kπ/dBBO. In
particular, for keq the relation (E1) yields

4π
1 + α4

2

α4

 = ∓dlconst

√
1 +
α4

2

α4 , B B
α4

2

α4 ,

16π2B2 +
(
32π2 − d2l2const

)
B + 16π2 − d2l2const = 0,

√
∆ = ±d2l2const, B1,2 =

d2l2const − 32π2 ± d2l2const

32π2 .

(E2)

The second solution is contradicting, as α4
2 , −α

4. But the
first one

lconst = ∓
4π

√
1 + α

4
2
α4

d
≈ ∓1.3832

4π
d
, (E3)

(with ”−” for absorption and ”+” for emission) reduces to
lBHconst for α2 = 0. For kmax the relation (E1) yields

4π(
1 − α

4
2
α4

) = ∓ dlconst√
1 − α

4
2
α4

, B B
α4

2

α4 ,

d2l2constB
2 + (16π2 − 2d2l2const)B + d2l2const − 16π2 = 0,

√
∆ = ±16π2, B1,2 =

2d2l2const − 16π2 ± 16π2

2d2l2const
.

(E4)

The first solution is contradicting, but the second one

lconst = ∓
4π

d
√

1 − α
4
2
α4

≈ ∓3.3966
4π
d
, (E5)

also reduces to lBHconst for α2 = 0.
The relation (E1) is remarkably similar to the algebraic def-

initions of the inverses of α (13) and α2 (14) also containing
π3, π2, and π terms. This raises the question of whether the
fine-structure constants’ inverses correspond to the number
of bits13. Recently the fine-structure constant has been re-
ported as the quantum of rotation [60]. Two alphas between

13 The floor function of the inverse of the fine-structure constant α represents
the threshold on the atomic number (137) of a hypothetical element feyn-
manium that, in the Bohr model of the atom, still allows the 1s orbital
electrons to travel slower than the speed of light
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α−1 ≈ 137.0363 and α−1
2 ≈ −140.1779 hinted by the relations

(13), (14), and (E1)

α̃−1 = 4π3 − π2 + π ≈ 117.2971,

α̃2
−1 = −4π3 + π2 − 2π ≈ −120.4387,

(E6)

are thus intriguing.
It was shown that the spectral density in the phenomenon of

sonoluminescence, light emission by sound-induced collaps-

ing gas bubbles in fluids, has the same frequency dependence
as black-body radiation [61, 62]. Thus, the sonoluminescence,
and in particular shrimpoluminescence [63], is emitted by col-
lapsing micro-BBOs. For example, the relation (E1) yields
the wavelength l = 8π/(dBH ± 1) required for collapsing a
BH to the π-bit BH (i.e., to the reduced Planck temperature
limit [12], to dBH = ±1). Demanding |l| ≥ 1 we obtain
|dBH| ≤ 8π ± 1.
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