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The reflectance R of monolayer graphene for the normal incidence of electromagnetic radiation is known to
be remarkably defined only by π and the fine structure constant α. It is shown in this paper that the reflectance
(or the sum of transmittance and absorptance) of monolayer graphene, expressed as a quadratic equation with
respect to the fine structure constant α must unsurprisingly introduce the 2nd fine structure constant α2, as the
root of this equation. It turns out that this 2nd fine structure constant is negative and the sum of its reciprocal with
the reciprocal of the physical fine structure constant α is independent of the reflectance value R and remarkably
equals −π. Particular algebraic definition of the fine structure constant α−1 = 4π3 + π2 + π, containing the free π
term, when introduced to this sum, yields α−1

2 = −4π3−π2−2π < 0. Assuming universal validity of the physical
definition of α, α2 defines the negative speed of light in vacuum cn and introduces the imaginary set of base
Planck units. The average of this speed and the speed of light in vacuum is in the range of the Fermi velocity
(106 m/s).
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I. INTRODUCTION

Numerous publications provide Fresnel coefficients for the
normal incidence of electromagnetic radiation (EMR) on
monolayer graphene, which are remarkably defined only by
π and the fine structure constant α having the reciprocal

α−1 =

(qP

e

)2
=

4πϵ0ℏc
e2 ≈ 137.036, (1)

where e is the elementary charge, qP is the Planck charge, ϵ0
is vacuum permittivity, ℏ is the reduced Planck constant, and
c is the speed of light in vacuum.

Transmittance (T ) of monolayer graphene

T =
1(

1 + πα2
)2 ≈ 97.746% (2)

for normal EMR incidence was derived from the Fresnel equa-
tion in the thin-film limit [1] (Eq. 3), whereas spectrally flat
absorptance (A) A ≈ πα ≈ 2.3% was reported [2, 3] for pho-
ton energies between about 0.5 and 2.5 eV. T was related to
reflectance (R) [4] (Eq. 53) as R = π2α2T/4, i.e,

R =
1
4π

2α2(
1 + πα2

)2 ≈ 0.013%, (3)

The above formulas for T and R, as well as the formula for the
absorptance

A =
πα(

1 + πα2
)2 ≈ 2.241%, (4)

were also derived [5] (Eqs. 29-31) based on the thin film
model (setting ns = 1 for substrate).
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The sum of transmittance (2) and the reflectance (3) at nor-
mal EMR incidence was also derived [6] (Eq. 4a) as

T + R = 1 −
4ση

4 + 4ση + σ2η2 + k2χ2

=
1 + 1

4π
2α2(

1 + πα2
)2 ≈ 97.759%,

(5)

where η = 4παℏ/e2 = 1/(ϵ0c) is the impedance of vacuum,
σ = e2/4ℏ is the monolayer graphene conductivity [7], and
χ = 0 is the electric susceptibility of vacuum.

These coefficients are thus well-established theoretically
and experimentally confirmed [1–3, 6, 8, 9].

As a consequence of the conservation of energy

(T + A) + R = 100%. (6)

In other words, the transmittance in the Fresnel equation
describing the reflection and transmission of EMR at normal
incidence on a boundary between different optical media is,
in the case of the 2-dimensional monolayer (boundary) of
graphene, modified to include its absorption.

II. THE SECOND FINE STRUCTURE CONSTANT

The reflectance R (3) of monolayer graphene can be ex-
pressed as a quadratic equation with respect to α

1
4
π2 (R − 1)α2 + Rπα + R = 0, (7)

having two roots with reciprocals

α−1 =
π − π

√
R

2
√

R
≈ 137.036, (8)

α−1
2 =

−π − π
√

R

2
√

R
≈ −140.178. (9)
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Therefore, Equation (7) introduces the second, negative fine
structure constant α2.

The sum of the reciprocals of these fine structure constants
(8) and (9)

α−1 + α−1
2 =

π − π
√

R − π − π
√

R

2
√

R
= −π, (10)

is remarkably independent of the reflectance R. The same re-
sult can be obtained for the sum of T and A, as shown in Ap-
pendix .

Furthermore, this result is intriguing in the context of a pe-
culiar algebraic definition of the fine structure constant [10]

α−1 = 4π3 + π2 + π ≈ 137.036 (11)

that contains a free π term and agrees with the physical def-
inition (1) of α to the 5th significant digit. Therefore, using
Equations (10) and (11), we can express the negative recip-
rocal of the 2nd fine structure constant α−1

2 that emerged in
Equation (7) as

α−1
2 = −π − α

−1
1 = −4π3 − π2 − 2π ≈ −140.178. (12)

But how can this negative value be interpreted physically?

If α−1 = (qP/e)2 (1) is valid also for the negative α−1
2

(9) or (12) then it requires an introduction of the imaginary
Planck charge iqPi, so that its square would yield

i2q2
Pi = e2α−1

2 . (13)

Furthermore, almost all physical constants of (4πϵ0ℏc)/e2

in the physical definition of the fine structure constant (1) are
positive1, whereas the charge e is squared. Only the velocity
can be negative, as it is a directional quantity. Therefore, if

α−1 =
π − π

√
R

2
√

R
=

4πϵ0ℏc
e2 , (14)

then

α−1
2 =

−π − π
√

R

2
√

R
=

4πϵ0ℏcn

e2 , (15)

where cn is the negative speed of light in vacuum that, using
Equations (10) with (1) and (15), amounts

4πϵ0ℏc
e2 +

4πϵ0ℏcn

e2 = −π

cn = −
e2

4ϵ0ℏ
− c ≈ −3.066653 × 108 [m/s],

(16)

1 vacuum permittivity ϵ0 is a measure of how dense is an electric field; ob-
jects that do not change their measure with respect to orientation (as com-
pared to volumes, for example) are densities. Thus, ϵ0 cannot be negative.
The Planck constant h is the uncertainty principle parameter. Thus, it can-
not be negative; negative probabilities do not seem to withstand Occam’s
razor.

which is greater that the speed of light in vacuum c in modu-
lus, whereas their average

c + cn

2
≈ −3.436417 × 106 [m/s] (17)

is in the range of the Fermi velocity.
Therefore, using cn (16) (or the value of the elementary

charge e in (13)), the modulus of the imaginary Planck charge
(13) amounts

|qPi| =
√

4πϵ0ℏ |cn| ≈ 1.8969 × 10−18 [C] > qP. (18)

Furthermore, the negative speed of light in vacuum cn (16)
introduces all the remaining base Planck units defined by
square roots containing c raised to an odd (1, 3, 5) power,
that redefined with cn < 0 become imaginary

|ℓPi| =

√
ℏG

|cn|
3 ≈ 1.5622 × 10−35 [m] < ℓP, (19)

|mPi| =

√
ℏ |cn|

G
≈ 2.2012 × 10−8 [kg] > mP, (20)

|tPi| =

√
ℏG

|cn|
5 ≈ 5.0942 × 10−44 [s] < tP, (21)

|TPi| =

√
ℏ |cn|

5

Gk2
B

≈ 1.4994 × 1032 [K] > TP. (22)

With algebraic definitions of α (11) and α2 (12) transmit-
tance T (2), reflectance R (3) and absorptance A (4) of mono-
layer graphene for normal EMR incidence can be expressed
just by π.

For α−1 = 4π3 + π2 + π (11) they become

T (α) =
4
(
4π2 + π + 1

)2(
8π2 + 2π + 3

)2 ≈ 97.746%, (23)

A (α) =
4
(
4π2 + π + 1

)
(
8π2 + 2π + 3

)2 ≈ 2.241%, (24)

while for α−1
2 = −4π3 − π2 − 2π (12) they become

T (α2) =
4
(
4π2 + π + 2

)2(
8π2 + 2π + 3

)2 ≈ 102.279%, (25)

A (α2) =
4
(
4π2 + π + 2

)
(
8π2 + 2π + 3

)2 ≈ −2.292%, (26)

with

R (α) = R (α2) =
1(

8π2 + 2π + 3
)2 ≈ 0.013%. (27)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2022                   doi:10.20944/preprints202212.0045.v1

https://doi.org/10.20944/preprints202212.0045.v1


3

Obviously T (α) + A(α) + R(α) = T (α2) + A(α2) + R(α2) = 1
as required by the law of conservation of energy (6), whereas
each conservation law is associated with a certain symmetry,
as asserted by Noether’s theorem. Nonetheless, physical in-
terpretation of T (α2) > 1 and A(α2) < 0 requires further
research. We note in passing that A(α) > 0 implies a sink,
whereas A(α2) < 0 implies a source, whereas the opposite
holds true for the transmittance T .

Perhaps, the negative absorptance and transmittance ex-
ceeding 100% for α2 (9), (12) could be explained in terms of
graphene spontaneous emission but this issue requires further
research. Particularly in the context of emergent dimensional-
ity [11–13].

III. DISCUSSION

We have shown that the reflectance of graphene under the
normal incidence of electromagnetic radiation (EMR), ex-
pressed as the quadratic equation with respect to the fine struc-
ture constant α must introduce the 2nd negative fine structure
constant α2.

It is shown that the sum of the reciprocal of this 2nd fine
structure constant α2 with the reciprocal of the physical fine
structure constant α (1) is independent of the reflectance value
R and remarkably equals simply −π.

Particular algebraic definition of the physical fine structure
constant α−1 = 4π3 + π2 + π (11), containing the free π term,
when introduced to this sum, yields α−1

2 = −4π3−π2−2π < 0.

Assuming universal validity of the physical definition of the
fine structure constant α (1), the 2nd fine structure constant α2
(12) defines the negative speed of light cn (16) and introduces
the imaginary set of base Planck units (19)-(22). The average
of this speed and the speed of light is in the range of the Fermi
velocity (106 m/s).

This paper is a cleanup of the research presented in [14] and
[15].
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Appendix: Other Quadratic Equations

The quadratic equation for the sum of transmittance (2) and
absorptance (4), putting CT A � T + A, is

1
4

CT Aπ
2α2 + (CT A − 1) πα + (CT A − 1) = 0, (A.1)

and has two roots with reciprocals

α−1 =
CT Aπ

2
(
1 −CT A +

√
1 −CT A

) ≈ 137.036, (A.2)

and

α−1
2 =

CT Aπ

2
(
1 −CT A −

√
1 −CT A

) ≈ −140.178, (A.3)

whereas their sum α−1 + α−1
2 = −π is also independent of T

and A.
Other quadratic equations do not feature this property. For

example, the sum of T+R (5) expressed as the quadratic equa-
tion and putting CTR � T + R, is

1
4

(CTR − 1) π2α2 +CTRπα + (CTR − 1) = 0, (A.4)

and has two roots with reciprocals

α−1 =
π(CTR − 1)

−2CTR + 2
√

2CTR − 1
≈ 137.036, (A.5)

and

α−1
TR =

π(CTR − 1)
−2CTR − 2

√
2CTR − 1

≈ 0.0180, (A.6)

whereas their sum

α−1
TR1
+ α−1

TR2
=
−πCTR

CTR − 1
≈ 137.054 (A.7)

is dependent on T and R.
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