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Abstract: Coagulation is the most sensitive step in drinking water treatment. Underdosing may not 

yield the required water quality, whereas overdosing may result in higher costs and excess sludge. 

Traditionally, the coagulant dosage is set based on bath experiments performed manually. There-

fore, this test does not allow real-time dosing control, and its accuracy is subject to operator experi-

ence. Alternatively, solutions based on machine-learning (ML) have been evaluated as a computer-

aided alternative. Despite these advances, there is open debate on the most suitable ML method 

applied to the coagulation process, capable of the most highly accurate prediction. This study ad-

dresses this gap, where a comparative analysis between ML methods was performed. As a research 

hypothesis, a novel data-driven fuzzy inference system (FIS) should provide the best performance 

due to its ability to deal with uncertainties inherent to complex processes. Although ML methods 

have been widely investigated, only a few studies report hybrid neuro-fuzzy systems applied to 

coagulation. Thus, to the best of our knowledge, this is the first study thus far to address the accu-

racy of this novel data-driven FIS for such application. The novel FIS provided the smallest error 

(0.86), indicating a promising alternative tool for real-time and highly accurate coagulant dosing in 

drinking water treatment. 
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Introduction 

To remove contaminants such as suspended solids, colloidal material, and microor-

ganisms, coagulation is among the primary processes for physical-chemical treatment of 

drinking water (Zhang and Luo, 2020; Wang et al., 2021). Jar tests are commonly used to 

determine the best dose of coagulant in drinking water treatment plants (WTPs) (Menezes 

et al., 2017; Jayaweera and Aziz, 2018). Considering the quality of raw water, the test sim-

ulates the coagulation step under laboratory conditions. Although this test has been used 

for many years, improving both its accuracy and response speed with respect to water 

quality changes remains very challenging (Narges et al., 2021). 

Jar test experiments are manually performed and, hence, were not conceived for real-

time decision-making. Additionally, coagulant dosing can become complex when raw 

water quality changes rapidly and substantially (Pandilov and Stojkov, 2019), particularly 

due to the critical influence of pH, turbidity, and color, among other properties of con-

taminants and hydraulic conditions, on coagulation performance (Oliveira et al., 2018; 

Zhang and Luo, 2020; Zhu et al., 2021). Therefore, the jar test is not feasible for real-time 

adjustment (Zangooei et al., 2016; Jayaweera and Aziz, 2018). On the other hand, reducing 

operating costs and improving efficacy in water treatment are some of the main challenges 
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in the water sector, which also faces natural water degradation and strict standards and 

regulations. Therefore, the study and application of data-driven and real-time technolo-

gies, such as machine learning (ML), are essential to reduce costs and enhance water safety 

for the water industry (Kim and Parnichkun, 2017; Pandilov and Stojkov, 2019). However, 

the use of alternatives based upon mechanistic models for the coagulation process is a 

difficult task, as it is a complex system in which there are uncertainties since interactions 

between the mechanisms of transfer and kinetics are not yet deeply understood (Zhang et 

al., 2019; Zhu et al., 2021). 

In several areas of knowledge, empirical models using ML methods have been eval-

uated with a good ability to model complex nonlinear problems (Kennedy et al., 2015). 

Among the advantages of this computer-aided alternative, the prevention of errors asso-

ciated with the human operator and the reduction of response time can be highlighted 

(Zangooei et al., 2016). Another favorable factor is that the development of solutions based 

on ML only requires the availability of historical databases, which, in the case of drinking 

WTP, are usually stored in sufficient quantities for this alternative (Newhart et al., 2019). 

Thus, applications based on methods such as artificial neural networks (ANNs) have be-

come increasingly popular (Zhang et al., 2019). However, even with continual progress in 

research, highlighted among the most recent studies by Pandilov and Stojkov (2019), 

Najafzadeh and Zeinolabedini (2019), Ju et al. (2019), Zhang et al. (2019), Zhang and Luo 

(2020), Wang et al. (2021), Narges et al. (2021) and Zhu et al. (2021), the results achieved 

on computer-aided coagulant dosing have not yet led to the replacement of the jar test, 

which is still widely performed in drinking WTP (Zhang and Luo, 2020). Therefore, addi-

tional studies are still needed to strengthen the evidence that makes it possible to reduce 

the dependence on bath experiments, enabling more accurate prediction in real time 

(Wang et al., 2021). 

Several ML methods have been evaluated for coagulant dosing, with emphasis on 

different ANN architectures, such as the Levenberg‒Marquardt neural network (Wu and 

Lo, 2008); inverse neural network (Robenson, 2009); generalized regression neural net-

work (Heddam et al., 2011), adaptive neuro-fuzzy inference system (Pandilov and 

Stojkov, 2019; Narges et al., 2021), dynamic evolving neural-fuzzy system (Heddam and 

Dechemi, 2015), radial basis function (Zangooei et al., 2016; Kim and Parnichkun, 2017; 

Wang et al., 2021), multilayer perceptron (Zangooei et al., 2016; Menezes et al., 2018; Jay-

aweera and Aziz, 2018), genetic algorithm enhanced artificial neural network (Zhang et 

al., 2019), variable-structure neural network (Zhang and Luo, 2020), and backpropagation 

neural network (Zhu et al., 2021). Other tested ML methods include the linear regression 

model (Hernandez and Le Lann, 2006), k-nearest neighbors (Zhang et al., 2013), fuzzy 

linear and nonlinear regression models (Zangooei et al., 2016), k-means clustering (Kim 

and Parnichkun, 2017), and random forest (Wang et al., 2021). 

Despite advances in recent years, there are still gaps in terms of the best method of 

ML applied to coagulation control. We hypothesize that a novel data-driven fuzzy infer-

ence system (FIS), introduced in 2022, should provide the highest accuracy due to its abil-

ity to deal with intrinsic coagulation uncertainties that are not fully controlled during the 

WTP operation. To the best of our knowledge, this is the first study to date to assess the 

performance of this novel data-driven FIS in predicting coagulant dosage. 

The theory of fuzzy sets was introduced by Lotfi Zadeh to address the uncertainties 

that arise in complex systems (Zadeh, 2012). To this end, inference systems based on fuzzy 

artificial intelligence with nonlinear functions and soft boundaries allow a gradual transi-

tion between intervals and degrees of truth, admitting partial membership in more than 

one set of linguistic values (Barros et al., 2017). Development of FISs that use data-oriented 

methods for regression tasks occurred relatively recently, but they have already become 

one of the most popular approaches in several areas (Zhang et al., 2018). Among the en-

vironmental applications reported in the literature, FIS has been developed to support 

participatory planning (Mehryar et al., 2017; Bressane et al., 2017), impact assessment (Ca-

niani et al., 2016; Bressane et al., 2020), pattern recognition (Bressane et al., 2018, Bressane, 

2017), and land reclamation (Zhang et al., 2016). 
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Methods 

The dataset used in this study was derived from the drinking water treatment plant 

Dr. Armando Pannunzio (WTP Cerrado) at Sorocaba, a city with a territorial area of 

449.872 km² and 695,000 inhabitants (1,304.18 inhab/km²), one of the most important eco-

nomic and technological hubs of São Paulo State (IBGE, 2022), in southwest Brazil (Figure 

1). 

 

Figure 1. Drinking Water Treatment Plant - WTP Cerrado at Sorocaba city, São Paulo State, south-

west, Brazil. Source: Modified from Santinon (2022). 

The WTP Cerrado treats 2.2 m³/s of water via conventional treatment (coagulation - 

flocculation - sedimentation - filtration) using coagulant polyaluminum chloride (PAC) 

within the dose range of 30 to 40 mg/L (Figure 2). 
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Figure 2. WTP via conventional treatment (coagulation - flocculation - sedimentation - filtration) 

with manual or computer-aided coagulant dosing. 

A database equivalent to one year (January to December) of quasi-daily tests (n = 291) 

was used, with the dosage of coagulant polyaluminum chloride (PAC) and measurements 

of quality indicator parameters of raw water (pH, color, turbidity, fluoride, and chlorine) 

(Table 1 and Figure 3). 

 

Table 1. Database with quality indicator parameters of raw water and PAC. 

  pH 
color 
(HU)  

turbidit
y (NTU) 

fluoride 
(mg/L) 

chlorin
e 

(mg/L) 

PAC 
(mg/L) 

Average 6.77 2.01 0.248 0.688 1.840 32.0 

Median 6.80 2.00 0.200 0.069 1.900 32.0 

St. Deviation 0.109 1.18 0.155 0.029 0.237 1.84 

Minimum 6.40 0.00 0.030 0.600 0.900 30.0 

Maximum 7.00 7.00 0.780 0.760 2.700 40.0 

Asymmetry -0.247 1.14 1.29 -0.314 -0.628 1.40 
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Kurtosis 0.264 2.09 1.32 -0.026 1.680 2.39 

Normality (p)* <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

* Shapiro-Wilk test. 

 

 

Figure 3. Exploratory analysis of quality indicator parameters of raw water and polyaluminum chlo-

ride (PAC). 

As an artificial intelligence method specifically developed for data-driven fuzzy in-

ference systems (FISs), the Wang & Mendel algorithm (‘wm’) was adopted in the present 

study. A novel ML method based on this algorithm was made available by Guillaume et 

al. (2022) in the package ‘FisPro’ in the R programming language, which was used in our 

research. 

To test the research hypothesis, the accuracy of this novel FIS was compared to that 

obtained by some of the primary methods applicable to prediction tasks: cascade-correla-

tion network (CCN), gene expression programming (GEP), polynomial neural network 

(GMDH), multilayer perceptron network (MLP), probabilistic neural network (PNN), ra-

dial basis function network (RBFN), stochastic gradient boosting (TreeBoost), and support 

vector machine (SVM). 

As a standard way to measure the performance of a model in predicting quantitative 

data, the root mean square error (𝑅𝑀𝑆𝐸) was calculated to analyze the coagulant dosing 

accuracy: 
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where 𝑂𝑖  are the observations, 𝑠𝑖 are the predicted values of the dose of the coagu-

lant, and 𝑛 is the number of observations. Considered the most common accuracy metric, 

𝑅𝑀𝑆𝐸 is widely considered a good measure for comparing different models or model 

settings (Hodson, 2022). 

To avoid overfitting the model to the training data, the parameterization of the algo-

rithms of each artificial intelligence method followed a grid search procedure (Yu and 

Zhu, 2022). Considering different combinations of parameters, the setting that minimized 

the RMSE was determined based on 5-fold cross-validation, using 70% of the dataset for the 

learning process and 30% for validation testing, as shown in Figure 4. 

 

Figure 4. Determining parameterization settings based on 5-fold cross-validation. Source: Modified 

from Scikit-learn developers (2022). 

Results and discussion 

The performance of the ML methods is presented in Table 2, where the accuracy 

(RMSE) based on the testing data varies significantly between 1.28 (RBFN) and 0.86 (FIS). 

In general, although some ML algorithms stand out for their high performance in specific 

applications, it is essential to note that task accuracy is also highly associated with data 

behavior (Negri, 2021). Therefore, comparing several ML methods is important to verify 

the best alternative applicable to each case (Bressane et al., 2022). Analyzing Table 2, the 

results can be organized into three groups based on the performance of the ML methods 

during the tests. In the first group, with low performance (RMSE equal to or greater than 

1.20), are the GMDH, TreeBoost and RBFN methods. 

Wang et al. (2021) proposed a method for optimizing the coagulation process during 

drinking water treatment using distinct ML approaches, including the RBFN method. Alt-

hough it delivers better performance compared to multiple linear regression models, the 

RBFN was outperformed by the random forest algorithm. In the present study, TreeBoost 

achieved the second-worst accuracy, with 1.25 RMSE. This algorithm develops a sequen-

tial training through which the decision trees grow in series. In this way, a tree is built to 

correct the errors of the previous one (boosting), which generally provides superior per-

formance unless there is influence from noisy data (Wei et al., 2021; Bressane et al., 2018). 

Table 2. Overall accuracy of each ML method based on the RMSE. 
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CCN 

kernel: gaussian; minimum and maximum neurons range: [0, 

103]; candidates: 102; epochs: 103; overfitting control: cross-

validation 

1.10 1.18 

FIS 

model: ‘wm’; functions: 6; grid: hierarchy partition fuzzy of 

150; conjunction: Lukasiewicz; out: crisp; defuzzification: 

maximum crisp; disjunction: sum 

0.44 0.86 

GEP 

population: 50; maximum tries: 104; genes: 4; gene head 

length: 10; maximum: 2000; generations without 

improvement: 10³ 

1.10 1.15 

GMDH 

maximum network layers: 20; maximum polynomial order: 

16; neurons per layer: 20; function: linear; connections: to 

previous layer 

1.17 1.20 

MLP 
number of layers: 03; hidden layer function: smooth; output 

layer function: linear; train: scaled conjugate gradient 
1.11 1.17 

PNN 
type of kernel function: gaussian; steps: 20; sigma: each var. 

[10-4, 10]; prior probability: frequency distribution 
0.71 1.17 

RBFN 
max. neurons: 103; radius: [10-2, 103]; population size: 200; 

maximum generations: 20; maximum generation flat: 5 
0.96 1.28 

TreeBoost 

maximum trees: 300; minimum trees: 10; depth: 10; minimum 

size node: 5; shrink factor: auto; prune: minimum absolute 

error, smooth: 5 

0.56 1.25 

SVM 
type: epsilon-SVR; kernel function: RBF; optimize: minimize 

total error; stopping criteria: 10-3 
1.12 1.17 

 

In the second group, with intermediate performance (RMSE from 1.15 to 1.20), were 

GEP, MLP, PNN, SVM, and CCN. A CCN is a type of self-organizing neural network 

whose size and topology are determined by adding neurons to its architecture to guaran-

tee improved learning over the training process (Mohamed et al., 2021). Consequently, 

this algorithm may overfit the training data and lose generalization ability. In this situa-

tion, we used an overfitting control pruning strategy to minimize the cross-validation er-

ror. Despite this, CCN's performance dropped from 1.10 in training to 1.18 RMSE during 

testing. Wadkar et al. (2021) also evaluated the CCN method to predict coagulant dose. 

The authors indicated that beyond large amounts of training data, as required by most 

ANN-based approaches, the CCN method showed a sensitive/fragile relationship be-

tween the network's architecture and the prediction error rates. Consequently, this 

method may demand great attention concerning its parametrization. 

In turn, the MLP enables nonlinear mappings using activation functions based on the 

backward propagation of errors to adjust the ANN weight connections. Moreover, the 

network architecture of minimum training error during the ML process was considered 

to prevent model overfitting, delivering a 1.17 RMSE. Additionally, according to Jaya-

weera et al. (2018), although the MLP method has been useful for predicting the optimum 

coagulant dosage for water treatment, the high computational cost and requirement of 

sufficient training data are the primary drawbacks. 

Almost all analyzed artificial neural networks (ANNs) achieved similar performance, 

approximately 1.17 RMSE. To minimize misclassification, PNN uses probability density 

functions to define complex decision boundaries, which generally improves its accuracy 

(Bressane et al., 2018a). Zhang et al. (2013) analyzed the performance of the SVM method 

applied to predict coagulant dosage in water treatment plants of distinct sizes and con-

cluded that such a method performs better for large- and medium-sized water systems 

compared to small ones. Although it shares similarities with ANNs, SVM has better ability 

to deal with high dimensional data and is less prone to overfitting (Kalantar et al., 2018). 

Despite this, the SVM also achieved only 1.17 RMSE. 
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Finally, with higher accuracy, the FIS reached 0.86 RMSE over the test data. Of note, 

this error is relatively low given that the PAC variation ranges from 30 to 40 mg/L, that is, 

less than ±0.9 in a variation range more than 10 times greater [30 40]. The occurrence of 

outliers makes the ability of FIS to handle data behaviors that are critical to other ML 

methods even more evident (Figure 5). 

 

Figure 5. Data behaviors and occurrence of outliers related to coagulant dose throughout the year 

(January to December). 

Using the ‘wm’ rule induction technique, fuzzification of the linguistic values of each 

variable was performed using triangular functions (Figure 6), which is one of the most 

widely accepted and used fuzzy membership functions (Barros et al., 2017). The input 

space of the predictor variables shown in Figure 6 was partitioned into linguistic values 

(SS, S, M, L, LL, and XL) based on fuzzy soft boundaries. Khameneh et al. (2014) define a 

fuzzy soft boundary as a parameterization extension of the concept of a boundary in the 

classical sense. The properties associated with this extension allow a fuzzy model to make 

inferences based on partial degrees of certainty, which cannot be properly handled using 

traditional tools (Hussain, 2020). Considering these linguistic values and ranges, some ex-

amples of rules (𝑅𝑖) generated by FIS during machine-learning are as follows: 

𝑅1:  if 𝑝𝐻  is 𝑆  and 𝑐𝑜𝑙𝑜𝑟  is 𝐿𝐿  and 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦  is 𝑋𝐿  and 𝑓𝑙𝑢𝑜𝑟𝑖𝑑𝑒  is 𝑀  and 

chlorine is 𝑆𝑆 , then the dosage of coagulant (PAC) = 37 mg/L; 

𝑅7:  if 𝑝𝐻  is 𝐿  and 𝑐𝑜𝑙𝑜𝑟  is 𝑀  and 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦  is 𝑋𝐿  and 𝑓𝑙𝑢𝑜𝑟𝑖𝑑𝑒  is 𝑆𝑆  and 

chlorine is 𝐿𝐿 , then the dosage of coagulant (PAC) = 30 mg/L. 
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Figure 6. Fuzzification of the predictor variables in the input space using triangular membership 

functions and 6 linguistic values (SS, S, M, L, LL, and XL): a) pH, b) color (HU), c) turbidity (NTU), 

d) fluoride (mg/L), and e) chlorine (mg/L). 

During parameterization in the ML process, the ‘hfp’ partitioning procedure pro-

vided the best fit of the data to the model. For the Lukasiewicz conjunction operator, 6 

antecedent terms (linguistic values) were sufficient for the FIS to decrease the RMSE close 

to 0.44 during training. While some operators consider only the lowest membership in the 

disjunction step, the sum t-norm considers all membership values, which provides im-

proved performance in the regression task (Ghodousian et al., 2018; Bressane et al., 2018). 

From these results, computer-aided coagulant dosage can be highly accurately deter-

mined using the FIS approach proposed in this study. As a practical implication, this al-

ternative avoids errors associated with the WTP operator's experience; it can predict dos-

ages accurately and in real time, saving operational resources, the acquisition and mainte-

nance of equipment, and the consumption of raw material required by jar tests. 

Conclusions 

In this study, experiments were conducted to test and compare the accuracy of sev-

eral different ML algorithms, namely, a data-driven fuzzy inference system, cascade-cor-

relation network, gene expression programming, polynomial neural network, multilayer 

perceptron network, probabilistic neural network, radial basis function network, stochas-

tic gradient boosting, and support vector machine, for coagulant dosing of a drinking wa-

ter treatment plant. As the main contributions from this comparative analysis, it is worth 

highlighting (i) filling the gap with the more suitable ML method applied to the coagula-

tion process; (ii) identifying a promising alternative for computer-aided coagulant dosing; 

and (iii) stimulating further studies to assess the potential of data-driven FIS for the con-

trol and optimization of other unit operations in drinking water treatment. 

From these findings, it was possible to confirm the research hypothesis that the fuzzy 

inference system (FIS) presented the highest accuracy due to its ability to deal with uncer-

tainties inherent to complex processes. By constituting a solution based on nonlinear func-

tions with soft boundaries, which allows the measurement of partial memberships (un-

certainties), the FIS affords the best generalization ability and provides a highly accurate 

prediction. In conclusion, the accuracy of the FIS-based alternative (0.86 error) outper-

formed the other assessed ML algorithms, including ensemble models (1.25), ANNs (1.20), 
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and kernel-based methods (1.17), widely used in regression tasks. Therefore, FIS can be 

considered a promising alternative tool for real-time and highly accurate coagulant dos-

ing in drinking water treatment. 
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