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Abstract: Background. COVID-19 efforts were often ineffective in controlling the spread of the pan-

demic. Identifying ineffective controls during a pandemic is thus vital. Method. Utilizing publicly 

available data on COVID deaths in the counties of US states, we create an index to capture and 

interpret ineffectiveness in the efforts to reduce the spread of the pandemic in US counties. This 

index is based on the Intervened Poisson Distribution (IPD) introduced originally by Shanmugam. 

Motivation for the research idea occurred while we noticed the data dispersion of the COVID deaths 

is smaller than the average only in some counties. Under-dispersed data is common in statistical 

modeling. A novel approach we adapted in this article includes the estimation of an intervention 

parameter estimated through iterative non-linear optimization. Results. Twenty-five counties in Cal-

ifornia, Idaho, Minnesota, Mississippi, Montana, Nebraska, North Carolina, North Dakota, Texas, 

and Utah were found to be ineffective in controlling for fatalities based on the expected probability 

distribution. A review of the policies enacted in these areas would provide insight into ineffective 

prevention efforts, and some of these issues are documented in current literature. Conclusion. The 

IPD index an innovate way to document efficacy of interventions during pandemics.  

Keywords: Positive Poisson distribution, Under dispersion, Bayesian analysis, prediction, 

index of infectivity.  
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1. Introduction 

 As of September 2022, the pandemic SARS-COV2 (COVID-19) remains a public 

health concern for the United States of America as the world in general [1]. The number 

of COVID-19 cases worldwide as of September 2022 was over 611 million with an associ-

ated 6.5 million casualties [2]. About 16 percent of the worldwide cases and fatalities oc-

curred in the United States [2]. Public health professionals all over the world implemented 

measures intended to reduce death and suffering from COVID-19 [3-5]. The efficacy of 

those measures is something that is not well understood, as the efforts varied from county 

to county, but ongoing work in this area is identifying best practice [6]. Thus, an index 

that evaluates intervention efficacy can be used post-hoc or even during the middle of an 

epidemic to help facilitate best-practice identification and control the spread of disease. 

Developing appropriate models for evaluating efficacy of interventions by region is 

a necessary step to evaluate best practice. Previous studies have identified both state and 

county variations in response to the epidemic [7]; however, no local efficacy index exists 
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in the literature, rather only country-level assessments which may have limited regional 

importance [8]. This work addresses that issue directly.  

We propose a probability model as an abstraction of the reality for U.S. counties with 

respect to COVID deaths. Fatality rates themselves provide an indicator of the severity of 

the disease.  These rates do not, however, consider interventional controls employed that 

may have affected the severity and outcomes. Our models address intervention as an un-

observed (latent) variable. This research article constructs an appropriate probability 

model and applies statistical concepts to develop an index to portray the inefficacy level 

of public health policy to stop or at least reduce the COVID death in some US counties. A 

novelty in this article is the use of the intervention parameter, estimated using nonlinear 

optimization implemented in R Statistical Software [9]. We apply the index to categorize 

a qualifying subset of counties throughout the United States. Extensions of this research 

are also proffered.  

2. Methods 

2.1.  Model Specification   

 

In an outbreak of an epidemic (appearance of illness among a large number of peo-

ple), endemic (regularly occurring illness), or pandemic (contagious deadly illness), pub-

lic health professionals must collect and analyze data to disseminate information neces-

sary to control disease spread and severity. COVID-19 is such a pandemic. Once a SARS-

COV2-related death at a time epoch is reported, the data collection apparatus is activated 

and efforts to contain/reduce the pandemic are initiated. Let 𝒙𝒔𝒕𝒂𝒓𝒕 be a random number 

of COVID deaths at a time the data collection apparatus is activated. The domain for 𝒙𝒔𝒕𝒂𝒓𝒕 

is the set 𝑺𝒔𝒕𝒂𝒓𝒕 = {𝟏, 𝟐, . . . . . , ∞}. With an inclusion of zero, the underlying model for the 

data would have been Poisson with an unknown, finite mortality rate, 𝜽 > 𝟎. Because zero 

is not a possibility for 𝒙𝒔𝒕𝒂𝒓𝒕, it is reasonable to assume that the model for 𝒙𝒔𝒕𝒂𝒓𝒕 is a positive 

Poisson probability distribution (Equation 1).  

 
𝑷𝒓( 𝒙𝒔𝒕𝒂𝒓𝒕 = 𝒊) = (𝒆𝜽 − 𝟏)−𝟏𝜽𝒊/𝒊!; 𝒊 = 𝟏, 𝟐, . . . , ; 𝜽 > 𝟎 (1) 

 

More often than otherwise, public health professionals do not stay idle but impose pre-

ventive efforts to stop any escalation of the mortality.  

 

Let the inefficacy of their efforts to stop an escalation of COVID mortality is a non-

observable inefficacy parameter 𝜌 ≥ 0 such that the COVID’s mortality rate becomes 𝜌𝜃. 

Suppose the random number 𝑥𝑎𝑓𝑡𝑒𝑟refers the number of new COVID deaths since the im-

position of efforts. Note that the frequency pattern of 𝑥𝑎𝑓𝑡𝑒𝑟  could be a regular Poisson 

probability distribution (Equation 2).  

 

𝑷𝒓( 𝒙𝒂𝒇𝒕𝒆𝒓 = 𝒋) = 𝒆−𝝆𝜽(𝝆𝜽)𝒋/𝒋!; 𝒋 = 𝟎, 𝟏, 𝟐, . . . , ; 𝜽 > 𝟎; 𝝆 ≥ 𝟎 (2) 

 

When the inefficacy parameter is 𝜌 = 0 in this scenario, the preventive efforts ought to 

have been a greatest success. When the inefficacy parameter was 𝜌 ≤ 1 , the scenario 

would be thought to have reduced the COVID mortality. Beware that when 𝜌 ≥ 1 (which 

is an undesirable, adversarial), the COVID mortality rate might have worsened as the 

pandemic outpowered the efforts. However, the registry of COVID incidences records 
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only the sum 𝑌 = 𝑥𝑠𝑡𝑎𝑟𝑡 + 𝑥𝑎𝑓𝑡𝑒𝑟 . An analyst ought to consider a convoluted probability 

distribution of the random number 𝑌. Such a convoluted probability distribution is the 

intervened Poisson distribution (IPD, Equation 3).  

 

𝑷𝒓( 𝒀 = 𝒚) = [𝒆𝝆𝜽(𝒆𝜽 − 𝟏)]−𝟏[(𝟏 + 𝝆)𝒚 − 𝝆𝒚]𝜽𝒚/𝒚!; 𝒚 = 𝟏, 𝟐, . . . , ∞; 𝜽 > 𝟎; 𝝆 ≥ 𝟎  
 

(3) 

Equation 3 was introduced by Shanmugam [10] and studied in Shanmugam [11]. Joyce et 

al. [12] designed a mixed sampling plan to judge an IPD chance mechanism. Utilizing 

dispersion and mean, Shanmugam [13] revelated a shrunken quantity to portray the pub-

lic perception of situations which might spread AIDS or HIV. Earlier, Shanmugam [14] 

modeled the web changes data to recatch during a spread of internet virus using IPD. Also, 

Shanmugam [15] predicted a “successful” inefficacy of an epidemic, using IPD.  

The expected number of the IPD in (3) is Equation 4, and it is intrinsically related to its 

dispersion, Equation 5. 

 

𝜇 = 𝐸(𝑌) = 𝜃[1 + 𝜌 + (𝑒𝜃 − 1)−1] (4) 

𝜐 = 𝑉𝑎𝑟(𝑌) = 𝐸(𝑌) − 𝑒𝜃(
𝜃

𝑒𝜃 − 1
)2 

(5) 

 

The dispersion reflects the volatility in the COVID deaths. If the dispersion is lesser than 

the expected number, the efforts ought to have been effective, no matter what is the level 

of the expected number of the COVID deaths in a county? Before examining it in the data, 

realize that the second term 𝑒𝜃(
𝜃

𝑒𝜃−1
)2is nonnegative, and hence 𝑉𝑎𝑟(𝑌) ≤ 𝐸(𝑌) in the IPD 

model. This characteristic property is a litmus test to decide whether the IPD model (4) is 

indeed the underlying model for the chance mechanism which generated the data on 

COVID mortality and the existence of successful efforts. In other words, in those counties 

in which the mortality data-based estimate of the inefficacy parameter is less than one is 

indicative of successful efforts.  

2.2. Index of Inefficacy 

 

Consider two mutually exclusive dichotomous scenarios in an effort to stop escala-

tion of COVID mortality. One scenario encompasses an effective, 0 < 𝜌 < 1efforts. The 

other scenario is an adversarial ineffective, 𝜌 > 1 efforts. Only one of these two scenarios 

could have ever happened in a county with respect to efforts by the health professionals 

dealing with COVID mortality. Combining the data dispersion, 𝜐 > 0, expected number, 

𝜇 > 𝜐 of the COVID mortality, we introduce an index 𝛹 =
𝜐𝜌

𝜇(1+𝜌)
to portray the inefficacy 

of the efforts by the health professionals. Note that 0 < 𝜐 ≤ 𝜇  and the balancing fac-

tor,
𝜌

(1+𝜌)
< 1.  

When the efforts were ideal and the best (that is,𝜌 = 0), the target index is  𝛹𝑡 𝑎𝑟𝑔 𝑒𝑡 =

0 whose level is data dependent as the estimates of 𝜐 and 𝜇 vary from a county to another. 
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When the efforts were adversarial and worst (that is,𝜌 > 1), the index𝛹 =
𝜐𝜌

𝜇(1+𝜌)
 is nega-

tive and is indicative of how much trailing behind the target level, 𝛹𝑡 𝑎𝑟𝑔 𝑒𝑡 =
𝜐

𝜇
.  

 

Figure 1. The dynamics of the inefficacy confronting COVID pandemic in which 

(
1

1+𝜌
) in the 𝑥 − 𝑎𝑥𝑖𝑠, 

𝜐

𝜇
 in the 𝑦 − 𝑎𝑥𝑖𝑠, and (

1

1+𝜌
)(1 −

𝜐

𝜇
) + (

𝜌

1+𝜌
)(1 +

𝜐

𝜇
) in the 𝑧 − 𝑎𝑥𝑖𝑠 

 

 

Also, the factor 𝜏 = (1 −
𝜐

𝜇
)  is indicative of how much the chance mechanism of 

COVID mortality has tilted away from the regular Poisson chance mechanism at zero level 

because the mean 𝜇 and variance,𝜐 are equal in regular Poisson mechanism. The dynam-

ics of the tilt is visualized in the Figure 1 after denoting (
1

1+𝜌
) in the 𝑥 − 𝑎𝑥𝑖𝑠, 

𝜐

𝜇
 in the 𝑦 −

𝑎𝑥𝑖𝑠, and (
1

1+𝜌
)(1 −

𝜐

𝜇
) + (

𝜌

1+𝜌
)(1 +

𝜐

𝜇
) in the 𝑧 − 𝑎𝑥𝑖𝑠.  
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Figure 2. The nonlinear configuration of the pandemic index ℑ𝑝𝑎𝑛𝑑𝑒𝑚𝑖𝑐−𝑖𝑛𝑑𝑒𝑥 . The 

pandemic-index ℑ𝑝𝑎𝑛𝑑𝑒𝑚𝑖𝑐−𝑖𝑛𝑑𝑒𝑥 = (1 +
𝜐

𝜇
) is in vertical z-axis, μ and v are in the breath 

and x-axes respectively.   

 

We name the factor ℜ = (
𝜌

1+𝜌
)(1 +

𝜐

𝜇
) as a unique deflated risk level to die in COVID 

pandemic because of the efforts by the health professionals. In the deflated risk to die of 

COVID at a county during the pandemic, the co-proportion ℑ𝑒𝑓𝑓𝑜𝑟𝑡𝑠−𝑖𝑛𝑑𝑒𝑥 = (
𝜌

1+𝜌
) in in-

terval [0, 1] gets the name efforts index and the other co-factor could be named pandemic 

index ℑ𝑝𝑎𝑛𝑑𝑒𝑚𝑖𝑐−𝑖𝑛𝑑𝑒𝑥 = (1 +
𝜐

𝜇
). The nonlinear configuration of the pandemic index is seen 

in Figure 2.  

 

The genesis of IPD (intervened Poisson distribution) follows. With no intervention 

efforts, the expected number of deaths would have been just the incident rate (). The 

intervention efforts impact the expected deaths to change to . When the intervention 

parameter  is less than one, the efforts have been effective, as the expected number of 

deaths (after the intervention) reduced.  When the intervention parameter  is greater than 

one, the variance is still lesser than the mean but the scenario is indicative of inefficient 

efforts. Hence, we the analysis proceeds in two steps.   When variance is lesser than one, 

the IPD is the underlying model for the pattern of COVID-19 deaths. When the interven-

tion parameter is lesser than one, the efforts were effective. Otherwise (that is, when the 

intervention parameter is greater than one and the variance is lesser than the mean), the 

efforts were inefficient. 
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2.3. Estimating the Efficacy Parameter 

 

In this section, we provide an innovative approach to estimate the IPD’s parameters 

using R Statistical Software [16] and the nloptr non-linear optimization package [17]. First, 

we cite below the major expressions to be exercised to obtain the estimates of the mortality 

parameter 𝜃 and the efficacy parameter 𝜌 from the data mean 𝑦̄ and data variance 𝑠𝑦
2 of 

the COVID deaths in a county. The mean and the variance are 𝜇 = 𝐸(𝑌) = 𝜃[1 + 𝜌 + (𝑒𝜃 −

1)−1]  and 𝜐 = 𝑉𝑎𝑟(𝑌) = 𝐸(𝑌) − 𝑒𝜃(
𝜃

𝑒𝜃−1
)2 . The p-value of the data based estimate, 𝜌̂  is 

computed using the expression 𝑍𝜌̂ = {
1

𝜌̂
∑

𝑦𝑖𝜌̂𝑦𝑖

(1+𝜌̂𝑦𝑖)−𝜌̂𝑦𝑖
− 𝑛𝑛

𝑖=1 )}√{
1+𝜌̂𝑦̄

𝑛𝜌̂(𝑦̄−1)
} , which was de-

rived by Shanmugam [11] using the so called Neyman’s 𝐶(𝛼) procedure. The p-value is 

the left tail probability area, 𝑃𝑟( 𝑍 < 𝑧𝜌̂) under the standard Gaussian frequency curve.  

 

2.4. Data.  

Daily COVID-19 fatality data were obtained from USA Facts [18] where were compiled 

from the Centers for Disease Control and Prevention (CDC) [19] at the county level for 

all United States counties from March 28, 2020 through January 26, 2022. County-level 

data were selected to prevent smoothing due to aggregation, which would be associated 

with filtering out the ineffectiveness of the prevention efforts. This study specifically 

focuses on the United States, as disparate control efforts were implemented from state to 

state and county to county. In many more homogenous countries, controls were con-

stant. One-hundred and thirty-seven counties with the variance less than the mean were 

retained to develop the inefficiency index, as this is a characteristic of the IPD. A vari-

ance greater than the mean implies efficiency in interventions. Further, when the vari-

ance is less than the mean, there is evidence that a pure Poisson process is not appropri-

ate. In the pure Poisson process, the mean and variance should be equal, and this equal-

ity is the characteristic property. In the COVID-19 data for some counties in US, this 

characteristic property is not met and is thus indicative of the reality that the data devi-

ated from the Poisson process. 

3. Results   

3.1. Map of Counties with Potentially Ineffective Interventions 

The 137 counties retained in the study where the mean exceeds the variance are depicted 

in Figure 3 with shading associated with logarithm of the sum of their deaths. Many of 

the observations are located in the center of the country. The large majority of the coun-

ties are in the central United States. The interactive plots designed with leaflet [20] are 

available online [21]. 
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Figure 3. Counties where the mean is greater than the variance 

3.1. Map of Counties with Potentially Ineffective Interventions 

 

To estimate both θ and ρ for each county, a positive semi-definite non-linear objec-

tive was formed that minimized the squared difference (sum of squares) between 𝜇 =

𝐸(𝑌) = 𝜃[1 + 𝜌 + (𝑒𝜃 − 1)−1] as specified previously and the observed mean mortality (𝑋̅) 

for each of the counties: 𝑀𝑖𝑛𝜃,𝜌 (𝜃[1 + 𝜌 + (𝑒𝜃 − 1)−1] − 𝑋̅)2 . For each county, the objec-

tive function was solved using Constrained Optimization by Local Approximation 

(COBYLA), a derivative-free optimization algorithm developed by Powell [22] and imple-

mented in nloptr [17]. While we might have chosen one of a number of optimization algo-

rithms, we chose COBYLA, as it does not require gradient specification. The code is avail-

able for review online [21].  

3.2. Analysis of COVID Fatalities 

 

In the illustration, we considered COVID deaths in all counties of USA from 

01/22/2020 till 11/09/2022. There were approximately 3,142 counties in USA with COVID 

deaths in the above specified duration; however, there were another 50 observations, one 

per state, reflecting fatalities unallocated to a specific county. Descriptive statistics are 

shown in Table 1 

 

Table 1. Descriptive statistics 

 

Variable (n=3,192 Counties) Mean SD Median Sum / Rate 

County Population 102,905.20 331,222.69 25,177.50 328,473,403  

Sum of Fatalities 330.200 1301.39 102.00 1,054,320 

Fatalities per 100,000 residents 339.32 337.10 258.71 320.98 per 100K 

 

The population in this study was 328.5 million representing the United States popu-

lation. The ‘average’ county was about 103 thousand (median ~25 thousand) in population 

and experienced 330 deaths (median of 102). The rate of fatalities per 100,000 population 

was about 339 on average (median of 259), and the overall fatality rate per 100,000 was 321. 
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The fatality rates per 100,000 and logarithm of the sum of the total fatalities (+1) are de-

picted in Figures 4 and 5.  

 

  

 

Figure 4. COVID-19 Fatality Rate per 100,000 population (county level). NOTE:  counties 

in gray have in excess of 1,600 fatalities per 100,000. 

 

 

  
Figure 5. COVID-19 Logarithm of the Sum of Deaths (+1) 

 

Aggregated at the state level, fatality rates per 100,000 individuals (not adjusted for 

age) were highest in Mississippi (436.54), West Virginia (420.61), Alabama (419.28), and 

Arizona (414.97), while they were lowest in Hawaii (121.2), Vermont (122.28), Utah (157.99), 

and Alaska (184.68). Table 2 provides a complete enumeration of deaths, populations, and 

fatality rates per 100,000, while Figure 6 provides a map of the logarithm of the sum of 

COVID-19 Deaths (+1) for counties where the mean is greater than the variance (N=137). 
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Table 2. Deaths, population, and fatality rate per 100,000 persons (sorted by fatality rate) 

 

State Deaths Population Rate / 100 K State Deaths Population Rate / 100 K 

MS 12,992 2,976,149 436.54 MO 19,993 6,137,428 325.76 

WV 7,538 1,792,147 420.61 IA 10,229 3,155,070 324.21 

AL 20,558 4,903,185 419.28 DE 3,148 973,764 323.28 

AR 12,523 3,017,804 414.97 IL 39,381 12,671,821 310.78 

NM 8,675 2,096,829 413.72 CT 11,034 3,565,287 309.48 

TN 28,113 6,829,174 411.66 TX 89,662 28,995,881 309.22 

AZ 29,852 7,278,717 410.13 MA 21,035 6,892,503 305.19 

MI 39,574 9,986,857 396.26 ID 5,237 1,787,065 293.05 

NJ 34,940 8,882,190 393.37 ND 2,232 762,062 292.89 

LA 18,136 4,648,794 390.12 WI 15,516 5,822,434 266.49 

KY 17,363 4,467,673 388.64 VA 22,231 8,535,519 260.45 

FL 82,541 21,477,737 384.31 NC 27,264 10,488,084 259.95 

GA 40,449 10,617,423 380.97 MD 15,578 6,279,560 248.07 

OK 14,992 3,956,971 378.88 CA 95,990 39,512,223 242.94 

NV 11,580 3,080,156 375.96 NE 4,562 1,934,408 235.83 

NY 73,097 19,453,561 375.75 CO 13,409 5,758,736 232.85 

PA 47,994 12,801,989 374.89 MN 12,806 5,639,632 227.07 

IN 24,950 6,732,219 370.61 OR 8,726 4,217,737 206.89 

RI 3,698 1,059,361 349.08 NH 2,761 1,359,711 203.06 

SD 3,078 884,659 347.93 ME 2,711 1,344,212 201.68 

SC 17,869 5,148,714 347.06 DC 1,392 705,749 197.24 

OH 40,249 11,689,100 344.33 WA 14,653 7,614,893 192.43 

MT 3,577 1,068,778 334.68 AK 1,351 731,545 184.68 

WY 1,917 578,759 331.23 UT 5,065 3,205,958 157.99 

KS 9,620 2,913,314 330.21 VT 763 623,989 122.28 

    HI 1,716 1,415,872 121.2 

 

After finding the mean, 𝑦̄  and dispersion, 𝑠𝑦
2 , we eliminated all those counties in 

which the dispersion is more than the mean. In other words, we screened and selected the 

counties with under dispersion, which is a requirement for the IPD model. Exactly 137 

counties had under dispersion. These counties are depicted in Figure 6 and online. 
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Figure 6. Logarithm of the Sum of COVID-19 Deaths (+1) for counties where the mean is 

greater than the variance (N=137) 

 

The efficacy and the mortality parameters of these counties were estimated using non-

linear optimization as described previously. Of the 137 counties which were observed to 

have under dispersion, only 25 were statistically significant at the =.05 level. The estimates 

for the statistically significant counties are summarized in Table 3 and depicted in Figure 

7.  

 

Table 3. Summary of county, state, n, dispersion, mean, estimate of efficacy of efforts, p-value for 

COVID mortality.  

 

County State 𝒔𝒚
𝟐 𝒚̄ 𝜽̂ 𝝆̂ p-value 

Mono  CA 0.00681 0.00685 0.00183 0.03846 0.023 

Fremont  ID 0.02852 0.02935 0.00776 0.08412 0.032 

Mahnomen  MN 0.01732 0.01761 0.00468 0.06017 0.027 

Humphreys  MS 0.04588 0.04599 0.01244 0.01312 <0.001 

Meagher  MT 0.00970 0.00978 0.00261 0.03624 <0.001 

Brown  NE 0.00196 0.00196 0.00052 0.02345 0.037 

Hooker  NE 0.00196 0.00196 0.00052 0.02345 0.037 

Phelps  NE 0.00970 0.00978 0.00261 0.03624 <0.001 

Rock  NE 0.00196 0.00196 0.00052 0.02345 <0.001 

Sherman  NE 0.00390 0.00391 0.00104 0.04787 0.043 

Camden  NC 0.00970 0.00978 0.00261 0.03624 0.001 

Benson  ND 0.02202 0.02250 0.00606 0.01428 <0.001 

Cavalier  ND 0.00681 0.00685 0.00183 0.03846 0.004 

Griggs  ND 0.00196 0.00196 0.00052 0.02345 <0.001 

Steele  ND 0.00196 0.00196 0.00052 0.02345 <0.001 

Armstrong  TX 0.00970 0.00978 0.00261 0.03624 <0.001 

Cochran  TX 0.02202 0.02250 0.00606 0.01428 <0.001 

Kenedy  TX 0.00196 0.00196 0.00052 0.02345 <0.001 

Martin  TX 0.02482 0.02544 0.00688 0.00024 <0.001 

Roberts  TX 0.00196 0.00196 0.00052 0.02345 0.037 
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Stonewall  TX 0.00681 0.00685 0.00183 0.03846 0.023 

Throckmorton  TX 0.00970 0.00978 0.00261 0.03624 0.012 

Upton  TX 0.01732 0.01761 0.00468 0.06017 0.027 

Yoakum  TX 0.03945 0.04110 0.01092 0.07399 <0.001 

Garfield  UT 0.00970 0.00978 0.00261 0.03624 <0.001 

 

  

Figure 7. Logarithm of the Sum of COVID-19 Deaths (+1) for N=25 counties where the mean 

is greater than the variance and with p<.0.05.  

 

4. Discussion   

 

The IPD provides a probabilistic method for indexing inefficacious response efforts 

during pandemics. In our analysis we discovered that 25 of the 137 counties were likely 

inefficient. By identifying these counties during a pandemic, efforts to identify and ad-

dress the inefficiencies might be pursued. Since COVID-19 is likely not to be the last pan-

demic, the index generated by our analysis will be useful for future pandemics. 

Some of these counties may have reasonable explanations for under dispersion. For 

example, Mono County, California experienced extreme particulate matter due to the 

wildfires in 2020, and COVID-19 deaths on these ‘wildfire days’ were higher [23]. Thus, a 

sustained high level of COVID-19 fatalities might be associated with environmental con-

ditions. Kenedy, Texas was considered ‘high-risk’ for transmission of COVID-19 for vari-

ous reasons, and thus might have experienced under dispersion [24]. Garfield County, 

Utah experienced a decline in population due to death during the pandemic [25], which 

might be due to pandemic prevention efforts themselves. Hooker County, Nebraska was 

previously identified as a high-incident outlier [26]. Neighboring Brown County may be 

associated with the same problematic interventions. Many of the counties in Texas had 

populations with high-risk comorbidities [27]. Failure to implement effective prevention 

measures might have exacerbated death rates. Other counties would need additional in-

vestigation to determine explanations. 
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5. Conclusions 

 

COVID-19 is only a single pandemic; however, it resulted in the death of millions. 

The ability to identify efficacy of prevention measures using distributions such as the IPD 

is critical to policymakers, as a finite number of assets are available for intervention. The 

human suffering and mortality rate had shaken the trust and peace of mind in everyone. 

Government agencies did formulate and implement preventive and treatment policies; 

however, the assessment of these policies might have been assisted through the use of 

mathematical models such as the IPD. Policies that were assumed to be effective might 

have been rapidly assessed using reasonable probability distribution assumptions. 

The study is based on secondary analysis, which is common when experimental de-

signs are infeasible. Still, the classification of inefficacious versus efficacious is based on a 

reasonable probability model that might be affected by other factors not included in the 

study. Additional models would probe this limitation further. Finally, the study is limited 

by the validity of the data collected by the Centers for Disease Control & Prevention, alt-

hough the results are likely not influenced largely by accidental input errors.   

The findings in research article identified those United States counties in which the 

efforts to stop the escalation of COVID-19 mortality were inefficient. In this research pro-

cess, we have created an approach of indexing the inefficiency of the healthcare operations 

during a pandemic prior to formal modeling. This index might be used in future pandem-

ics to identify those entities which are implementing inefficacious policies. The index can 

provide decision makers areas that require interventional assistance. The techniques prof-

fered herein should prove useful for indexing efforts in future pandemics.  
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