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1 Abstract: In this paper we present AWEbox, a Python toolbox for modeling and optimal control of 
2 multi-aircraft systems for airborne wind energy (AWE). AWEbox provides an implementation of 
3 optimization-friendly multi-aircraft AWE dynamics for a wide range of system architectures and 
4 modeling options. It automatically formulates typical AWE optimal control problems based on 
5 these models, and finds a numerical solution in a reliable and efficient fashion. To obtain a high 
6 level of reliability and efficiency, the toolbox implements different homotopy methods for initial 
7 guess refinement. The first type of methods produces a feasible initial guess from an analytic initial 
8 guess based on user-provided parameters. The second type implements a warmstart procedure for 
9 parametric sweeps. We investigate the software performance in two different case studies. In the 

10 first case study we solve a single-aircraft reference problem for a large number of different initial 
11 guesses. The homotopy methods reduce the expected computation time by a factor of 1.7 and and 
12 the peak computation time by a factor of 8, compared to when no homotopy is applied. Overall, 
13 the CPU timings are competitive to timings reported in the literature. When the user initialization 
14 draws on expert a priori knowledge, homotopies do not increase expected performance, but the 
15 peak CPU time is still reduced by a factor of 5.5. In the second case study, a power curve for 
16 a dual-aircraft lift-mode AWE system is computed using the two different homotopy types for 
17 initial guess refinement. On average, the second homotopy type, which is tailored for parametric 
18 sweeps, outperforms the first type in terms of CPU time by a factor of 3. In conclusion, AWEbox 
19 provides an open-source implementation of efficient and reliable optimal control methods that 
20 both control experts and non-expert AWE developers can benefit from.

21 Keywords: airborne wind energy; optimal control; open-source software

1. Introduction22

Airborne wind energy (AWE) is a renewable energy technology that aims at har-23

vesting strong and steady high altitudes winds that cannot be reached by conventional24

wind technology, at a fraction of the material resources [1]. It is based on the principle25

of one or more tethered autonomous aircraft flying fast crosswind maneuvres. In the26

majority of AWE concepts, electricity is either produced by on-board turbines on the27

aircraft and conducted to a ground station through the tether (drag-mode), or in a periodic28

fashion by reeling-out the tether at high tension to drive a winch at the ground station,29

and reeling back in at low tension, so as to achieve a net positive energy output over one30

period (lift-mode). Although there exist many other interesting AWE concepts, e.g. those31

based on tethered rotorcrafts [2,3], we will limit the scope of this paper to rigid-wing lift-32
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and drag-mode systems. The reader is referred to [4,5] for a recent and comprehensive33

overview of the different technologies.34

The principle of AWE was first investigated in 1980 by Miles Loyd, who derived an35

upper limit for the power that could be produced by a crosswind AWE system [6]. Since36

then, and in particular in the past two decades, AWE has gained an increasing interest37

from both academia and industry, leading to significant technological progress and many38

small- to medium-scale prototypes, the largest of which was based on a 26 m wing span39

aircraft [7]. While AWE developers are considering a multitude of different designs,40

most systems are based on a single-aircraft setup. At this moment, AWE technology is41

still in a pre-commercial stage, with some companies taking first steps towards market-42

entry [8]. One of the central unresolved challenges for AWE developers is achieving43

techno-economic performance at utility-scale, i.e. designing systems that produce large44

amounts of electricity at low cost.45

Multi-aircraft systems have been proposed and investigated in the literature as a46

more efficient and cheap way of producing utility-scale electricity [9–12]. In a multi-47

aircraft AWE system, two or more tethered aircraft fly tight crosswind maneuvres around48

a shared main tether, thereby minimizing the latter’s crosswind motion and hence also49

the associated dissipation losses due to aerodynamic drag. These systems can be up50

to twice as efficient as their single-aircraft counterparts [10], while having superior,51

modular, upscaling properties [12], intrinsically smooth power output profiles [13] and52

higher potential power densities in farm configurations [14]. As a consequence of the53

increased system complexity, this system class has thus far only been investigated in54

simulation studies.55

A crucial condition for the performance of both single- and multi-aircraft systems is56

finding power-efficient flight paths that satisfy flight envelope constraints and airframe57

load limits. This is not only necessary for path planning purposes but also for, e.g., offline58

performance prediction, design optimization and control strategy design. Optimal59

control is an evidently suitable path planning technique for AWE, given its natural60

ability to handle unstable, nonlinear, constrained systems with multiple in- and outputs.61

In the past decade, it has become an established method in the field, leading to various62

applications ranging from performance assessment studies [15], over model predictive63

control [16] and system identification [17], to flight path planning for a real-world64

soft-kite system [18]. We refer the reader to [19] for a complete overview of applications.65

Despite its obvious advantages, optimal control comes with its own challenges: the66

dependence on an accurate model; the computational burden associated with finding a67

numerical solution; and a rather complex implementation that heavily relies on expert68

knowledge. In case an accurate model is unavailable, it is possible to resort to model-free,69

adaptive techniques such as extremum seeking (ES) [20] or iterative learning control70

(ILC) [21]. However, in [22], a validated reference model was proposed for a lift-mode,71

rigid-wing single-aircraft system. While identifying the parameters of such a model is a72

complicated and time-consuming task [17,23], this shows that deriving a physical model73

that fits the measurements very well is in principle possible. In the following, we will74

focus on the two other challenges mentioned above.75

In order to increase computational efficiency, a general model structure based on76

non-minimal coordinates was proposed in [24], resulting in smooth dynamic equations77

of low symbolic complexity. Also, since the system nonlinearity gives rise to highly78

non-convex optimization problems, a feasible initial guess is typically needed for fast79

and reliable convergence of Newton-type optimization solvers. Such an initial guess is80

in many cases not available a priori. Therefore, a homotopy procedure was proposed81

that produces a close-to-optimal, feasible initial guess based on a generic, naive one [25].82

Combined with a direct-collocation based transcription method, this led to reported83

computation times of below one minute for a representative power cycle of a lift-mode84

AWE system with a six-degree-of-freedom aircraft model [26]. Another homotopy85

variant was investigated in [27] to efficiently compute drag-mode power cycles for86
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large-scale wind data. Note that while in this paper, we only consider optimal control87

problems (OCP) in the time domain, they can also be formulated in the frequency domain88

as proposed in [28]. Such a formulation could in some cases lead to a more efficient89

discretization and more easily interpretable solutions.90

While many open-source AWE control and simulation frameworks exist for single-91

aircraft models [29,30], and even for multi-aircraft models [31], there are only few92

available open-source implementations of optimization methods tailored for AWE. The93

MATLAB library MegAWES [20] provides an implementation of a megawatt-class system94

model and of a power optimization algorithm based on ES. The Optimal Control Library95

OpenOCL [32] provides a user-friendly MATLAB interface for formulating and solving96

OCPs, which can be linked to the optimization-friendly lift-mode model implemented in97

the framework OpenAWE [33]. However, this framework does not offer homotopy-based98

initial guess refinement or multi-aircraft models.99

In this paper, we present AWEbox, an open-source Python framework for modeling100

and optimal control of single- and multi-aircraft AWE systems. The contributions of the101

software package can be summarized as follows:102

• Usability: the user specifies only high-level modeling and optimization parame-103

ters. AWEbox implements optimization-friendly system dynamics for single- and104

multi-aircraft systems, for various system architectures and combinations of model105

options. It automatically formulates typical AWE optimization problems and im-106

plements and interfaces the algorithms needed to compute a numerical solution107

efficiently.108

• Reliability: AWEbox increases reliability by efficiently computing a feasible OCP109

initial guess via homotopy methods, based on an analytic initial guess defined110

by a small number of user input parameters. The framework also implements an111

algorithm to efficiently and reliably perform parameter sweeps.112

• Extensibility: within the baseline non-minimal-coordinates structure, users can add113

new or alternative modeling components (e.g. wind model, aerodynamics, etc.) in114

straightforward fashion. The homotopy procedure for initial guess refinement can115

be extended in a modular fashion, so that new model components can be introduced116

without affecting reliability.117

AWEbox is freely available [34] and open-source under the GNU LGPLv3, which allows118

use in proprietary software. The toolbox heavily builds on lower level open-source119

software packages such as CasADi [35], a framework for algorithmic differentiation and120

optimization, and the nonlinear program (NLP) solver IPOPT [36].121

The remainder of this paper is structured as follows. Section 2 discusses the multi-122

aircraft modeling procedure, while Section 3 gives an overview of the optimization123

ingredients used to formulate and numerically solve periodic AWE optimal control124

problems. Section 4 then outlines the software implementation details. Section 5 presents125

two case studies that highlight the efficiency and reliability of the implementation, as126

well as its multi-aircraft capability. Section 6 draws conclusions based on these results127

and makes suggestions for further research.128

2. AWE modeling for optimal control129

In this section, we define the multi-aircraft topologies considered in AWEbox. We out-130

line the optimization-friendly AWE model structure for six-degrees-of-freedom (6DOF)131

aircraft dynamics as described in [22] and the extensions made for the multi-aircraft case132

[12,37].133

2.1. Topology134

We consider any tree-structured multi-aircraft topology as previously introduced in135

[12]. Each tree is described by a set of nodes N , where each node n ∈ N represents the136

end-point of a tether. All tethers in the tree are assumed to be rigid and straight, which137

is a reasonable assumption if tether tension is high compared to gravity and tether drag138
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Figure 1. Illustration of the topology of a single-drone (left), triple-drone (middle) and two-layer-
dual-drone (right) AWE system.

[22]. Some of the nodes k ∈ K correspond to aircraft nodes, while other nodes l ∈ L139

are layer nodes, with L := N\K if |N | > 1 and L := N in the single-aircraft case. The140

parent map P(n) uniquely defines the interlinkage between nodes, and the children map141

C(n) := { n̄ ∈ N |P(n̄) = n} returns the set of nodes with parent n. Fig. 1 illustrates the142

proposed notation for some typical examples.143

2.2. System dynamics and variables144

The considered topologies require a multi-body modeling approach which should145

exhibit certain optimization-friendly properties. For one, the dynamics should have a146

low symbolic complexity to allow for fast repeated numerical evaluation, in particular147

of its sensitivities. Second, model nonlinearity should be kept low in order to enable fast148

and reliable use of Newton-type optimization techniques. Third, the model should avoid149

singularities that might be visited by and that might crash the optimization algorithm.150

In [24], the efficacy of a non-minimal coordinates modeling approach to describe the151

translational and rotational dynamics of multiple interlinked aircraft is demonstrated. In152

this approach, each node is considered as a separate rigid body and linked by algebraic153

constraints. The aircraft orientation is parametrized in a non-singular fashion by the154

direction cosine matrix (DCM).155

The resulting multi-body models are of reasonable complexity and nonlinearity but
result in model equations in the form of index-3 DAEs. This representation does not
allow for the deployment of classical integration methods within the optimal control
problem [38]. Therefore an index-reduction technique is applied, which involves time-
differentiation of the algebraic constraints. The resulting model equations for both lift-
and drag-mode AWE systems are summarized by the following index-1 DAE:

F(ẋ(t), x(t), u(t), z(t), θ, p) = 0 , (1)

with associated consistency conditions C(x(t)) = 0, ∀t ∈ R.156

To define the differential state vector x for both lift- and drag-mode systems, we
first define the basic multi-aircraft state

xbase := (q, q̇, R, ω, δ) . (2)

This state vector firstly contains q and q̇ that are concatenations of the node posi-
tions qn ∈ R3 and velocities q̇n ∈ R3 respectively, ∀n ∈ N . These are followed by
the states specific to aircraft nodes, namely R, ω, δ, which are concatenations of all
Rk, ωk, δk, ∀k ∈ K. The DCMs Rk := [ê1,k, ê2,k, ê3,k] ∈ R3×3 contain the chord-wise,
span-wise and upwards unit vectors of the aircraft body frames, expressed in the inertial
frame {ex, ey, ez}. All DCMs should be orthonormal, i.e. they are constrained to evolve
on the 3D manifold defined by

cR,k := Put(R>k Rk − I) = 0 , (3)
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where the operator Put is used to select the six upper triangular elements of a matrix. The157

aircraft angular velocities ωk ∈ R3 are given in the body frame. The surface deflections158

δk = [δa,k, δe,k, δr,k] ∈ R3 of aileron, elevator and rudder respectively, give control over159

the aircraft aerodynamics.160

The lift- and drag-mode state vector can now be defined as

xlift := (xbase, lt, l̇t) and xdrag := (xbase, κ) , (4)

where the tether length lt ∈ R and speed l̇t ∈ R describe the main tether reel-in and -out161

evolution. The variable κ is the concatenation of all κk ∈ R, ∀k ∈ K, which represent the162

on-board turbine drag coefficients.163

The controls

ulift := (δ̇, l̈t) and udrag := (δ̇, κ̇) (5)

are given by the concatenation of all aircraft surface deflection rates δ̇k ∈ R3 and by164

either the tether acceleration l̈t ∈ R or the concatenation of the turbine drag coefficient165

derivatives κ̇k ∈ R.166

The algebraic variables z := λ describe the concatenation of all Lagrange multipliers
λn ∈ R related to the tether constraints that restrict the position of each node n ∈ N to
evolve on a 2D manifold defined by

cn :=
1
2

(
∆q(n)>∆q(n)− l2

n

)
= 0 , (6)

where

∆q(n) :=

{
qn − qP(n), if n /∈ K,
qn + Rnrt − qP(n), if n ∈ K.

(7)

In these constraints, rt is the tether attachment point described in the aircraft frame. The
variable ln describes the tether length associated with node n, and is defined together
with the tether diameter dn as

(ln, dn) :=


(lt, dt), if n = 1,
(ls, ds), if n ∈ K\{1},
(li, di), if n ∈ L\{1},

(8)

with ls and ds the length and diameter of the secondary tethers and li and di those of167

the layer-linking tethers in stacked multi-aircraft configurations. The ground station is168

located at the origin of the inertial frame, such that q0 := 0.169

The variables θ represent variable system parameters that can be optimized over.
In the general stacked multi-aircraft case, they are defined as

θlift := (ls, d) and θdrag := (lt, ls, d) (9)

where d := (dt, ds, di).170

The constant parameters p allow the dynamics to be evaluated for varying model171

parameters, such as aircraft wing span, wind model parameters, etc. The system param-172

eters values used in the numerical experiments in this paper are listed in Appendix A,173

Table A1.174

2.3. Lagrangian dynamics175

The system dynamics (1) can be derived in accordance with the Lagrangian ap-
proach proposed in [24]. The system Lagrangian is defined as

L := T −V − λ>c , (10)
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with c the concatenation of all tether constraints cn for all n ∈ N and with the kinetic
energy T and potential energy V defined as

T := ∑
k∈K

TK,k + ∑
n∈N

Tt,n (11)

V := ∑
k∈K

mKgq>k ez + ∑
n∈N

1
2

mt,ng(qn − qP(n))
>ez . (12)

Here, mK is the aircraft mass, and the tether mass mt,n := ρtln
πd2

n
4 , with ρt the tether

material density, and g is the gravitational acceleration. The kinetic energy related to the
aircraft TK,k and to the tethers Tt,n [39] are given by

TK,k :=
1
2

mKq̇>k q̇k +
1
2

ω>k JKωk , (13)

Tt,n :=
1
6

mt,n(q̇>n q̇n + q̇>P(n)q̇P(n) + q̇>n q̇P(n)) , (14)

with JK the aircraft moment of inertia and with the tether velocity at the ground station
given by

q̇0 := q̇>1 et with et :=
q1

lt
. (15)

Note that for a drag-mode system with constant tether length, this implies that q̇0 = 0.176

With the system Lagrangian defined, the translational dynamics read:

d
dt

∂L
∂q̇
− ∂L

∂q
= F + Fcorr (16)

with F the concatenation of the external forces Fn exerted on each of the nodes. The term
Fcorr is a Lagrangian momentum correction term for open systems:

Fcorr := ∑
n∈N

dmn

dt
q̇>n

∂q̇n

∂q̇
. (17)

This term is non-zero for lift-mode systems, since tether mass and energy are entering177

and leaving the system due to the reeling motion.178

The rotational dynamics are projected on a 3D manifold in the aircraft body frame
[24] so as to read:

JK
dωk
dt

+ ωk × JKωk + 2U(R>k ∇Rk λ>c) = Mk , ∀k ∈ K , (18)

with Mk the aerodynamic moment exerted on the aircraft and with U the “unskew"179

operator, i.e. U(skew(a)) = a, as defined in [24].180

Next to the dynamic equations, also the holonomic constraints c = 0 need to be181

enforced. Since these constraints do not explicitly depend on the generalized acceler-182

ations q̈ or on the algebraic variables λ, it is not possible to numerically integrate the183

resulting dynamic equations with standard algorithms. Therefore an index reduction is184

performed by differentiating c twice with respect to time. Note that c̈ depends on q̈.185

Because of the index reduction, as well as the overparametrization of the rotational
degrees-of-freedom, the consistency conditions C(x) := (c, ċ, cR) = 0 must be enforced
at an arbitrary time point in the trajectory. These quantities are called invariants, since
their value is preserved by the dynamics. System invariants, when not dealt with
carefully, can lead to failure of the Linear Independence Constraint Qualification (LICQ)
in the context of periodic optimal control. Performing Baumgarte stabilization on the
invariants is an effective way to avoid this issue, while simultaneously ensuring that
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C(x) = 0 is satisfied over the entire time period [40]. Therefore the tether constraint
dynamics are augmented with the following Baumgarte stabilization scheme:

c̈ + 2κtċ + κ2
t c = 0 , (19)

with κt a Baumgarte tuning parameter [41].186

2.4. System Kinematics187

The system dynamics also describe the following trivial kinematics. First, as
explained in the previous section, the rotational kinematics are augmented with a
Baumgarte-type stabilization on the orthogonality conditions [42]:

dRk
dt

= Rk

(κR

2
(I −R>k Rk) + skew(ωk)

)
, (20)

with κR another tuning parameter. The remaining kinematics

d
dt

(q, δ) = (q̇, δ̇) ,
d
dt

(lt, l̇t) = (l̇t, l̈t) (lift-mode),
d
dt

κ = κ̇ (drag-mode), (21)

together with (16) - (20) then complete the system dynamics summarized by (1). The188

remaining modeling effort now focuses on the generalized forces F and moments M.189

2.5. Wind and atmosphere model190

AWE systems typically operate at altitudes of several hundreds of meters, and the191

altitude variation within a typical power cycle is of the same order of magnitude [15]. In192

particular the multi-aircraft variant, unhindered by the drag losses caused by main tether193

cross-wind motion, can theoretically operate at arbitrarily high altitudes, wherever the194

wind power density is highest [10,12]. Therefore a wind model is needed that accounts195

for the varying wind power availability with altitude. Within the community, it is196

common to use one of the following approximations:197

a) Logarithmic profile: A logarithmic model [43] is typically used as a very simple
wind shear approximation. Assuming steady, laminar flow, the logarithmic model
provides us with the following expression for the freestream wind velocity u∞(z):

u∞(z) := uref
log z

z0

log zref
z0

ex , (22)

which in this model is assumed to be aligned with the x-axis in the inertial frame. Here,198

uref is the reference wind speed that is measured at an altitude zref, whereas z0 is the199

surface roughness length, which depends on local terrain characteristics.200

b) Power-law profile: Another frequent approximation is given by the power law:

u∞(z) := uref

(
z

zref

)cf

ex , (23)

where cf is a ground surface friction coefficient. We will use this model in the numerical201

experiments in this paper, in accordance with case studies in [15,22].202

(c) 3D wind data interpolation: The disadvantage of the logarithmic and power-law203

models is that they are only useful to represent long-term average wind conditions.204

Realistic wind profiles come in a wide variety of shapes and they are subject to strong205

short-term (hourly, diurnal, seasonal) changes. Furthermore, the approximation accuracy206

typically breaks down at altitudes relevant to AWE systems [44]. Hence, for accurate207

optimal-control based power curve and capacity factor estimation, it is often necessary208

to generate a more detailed but still differentiable wind model based on highly spatially209

resolved wind speed measurements.210
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To achieve this, we adopt the approach presented in [27,45]. We assume a wind pro-
file that is represented by discrete 2D wind measurements um,1, . . . , um,nlag ∈ R2. These
measurements correspond to a set of altitudes z1, . . . , znlag . We can then create a smooth
wind model to approximate the measured wind profile, by creating an interpolating
function based on Lagrange polynomials:

W(z, ζ) :=
nlag

∑
i=1

ζ i ·
nlag

∏
k=1
k 6=i

z− zk
zi − zk

 , (24)

with ζ the concatenation of the polynomial coefficients ζ i ∈ R2 obtained by solving the
following optimization problem

ζ∗ := arg min
ζ

1
2

nlag

∑
i=1
‖W(zi, ζ)− um,i‖2 + k

∥∥∥d2W
dz2 (zi, ζ)

∥∥∥2
. (25)

The cost function is tuned with weight k so that ζ∗i ≈ um,i, ∀i = 1 . . . nlag, while prevent-211

ing overfitting via the penalization of the second derivative of the interpolating polynomi-212

als. The smooth and differentiable wind model is then given by u∞(z) := (W(z, ζ∗), 0).213

Wind power availability is linear in the air density, and the atmospheric density
drop is non-negligible in the altitudes relevant to AWE. Therefore the density variation
with altitude ρ(z) is modeled according to the international standard atmosphere model
[43]:

ρ(z) := ρ0

(
T0 − TLz

T0

) g
TLR−1

, (26)

where R is the universal gas constant. The parameters T0 and ρ0 are the temperature and214

air density at sea level, and TL is the temperature lapse rate.215

2.6. Aerodynamic model216

The apparent wind at each aircraft node k ∈ K is defined as

ua,k := u∞(q>k ez)− q̇k . (27)

We then define the dynamic pressure as qk := 1
2 ρ(q>k ez)‖ua,k‖2. The aerodynamic forces

(in the inertial frame) and moments (in the body frame) on the aircraft wings are then
given by

FA,k := qkSRkCF,k and MA,k := qkS

 b 0 0
0 c 0
0 0 b

CM,k . (28)

with S the aircraft aerodynamic surface and with the aerodynamic coefficients CF,k :=
(CX,k, CY,k, CZ,k) and CM,k := (Cl,k, Cm,k, Cn,k), which are a function of the angles of attack
αk and side-slip angles βk, given by the small-angle approximations

αk :=
ê>3,kua,k

ê>1,kua,k
and β :=

ê>2,kua,k

ê>1,kua,k
. (29)

The force and moment coefficients C�,k (with � ∈ {F,M}) read as

C�,k := C�,0(αk) + C�,β(αk)βk + C�,ω(αk)

 b 0 0
0 c 0
0 0 b

 ωk
2‖ua,k‖

+ C�,δ(αk)δk (30)
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The dependence of these coefficients on αk is approximated by second-order polynomials
of the form:

C�,◦(α) :=
[

c�,◦,2 c�,◦,1 c�,◦,0
] α2

α
1

 (31)

with the values of the coefficients c�,◦,i used in this study given in Table 2 in [22].217

The tether drag is modeled as follows. Consider the infinitesimal tether drag force
dFtd,n(s) := Ftd,n(s)ds on an infinitesimal segment lnds, for s ∈ [0, 1], with:

Ftd,n(s) :=
1
2

ρ(qt,n(s)>ez)CD,tdnln‖ut,n(s)‖ut,n(s) , (32)

with CD,t the tether drag coefficient, and where the segment position and apparent wind
speed are given by

qt,n(s) := sqP(n) + (1− s)qn (33)

ut,n(s) := u∞(qt,n(s)>ez)− q̇t,n(s) . (34)

It is shown in [39,46] that the total drag force can be exactly distributed into contributions
on node n and on its parent node P(n), so as to read

F1
td,n :=

∫ 1

0
sFtd,n(s)ds and F0

td,n :=
∫ 1

0
(1− s)Ftd,n(s)ds (35)

respectively. In order to be able to numerically evaluate the tether drag, the integrals in218

(35) are discretized using the midpoint rule. Typically, a number of Mtd = 5 integration219

intervals is sufficiently accurate.220

The generalized forces can now be defined for each node as

F?
n :=


FA,n + F1

td,n if n ∈ K ∧ (? = lift)
FA,n + F1

td,n + Fturb,k if n ∈ K ∧ (? = drag)
F1

td,n + ∑
c∈C(n)

F0
t,c if n ∈ N\K

(36)

and the generalized moments are given by the aerodynamic moments, i.e. Mk := MA,k,
∀k ∈ K. In the drag-mode case, also the braking force of the on-board turbines is acting
on the aircraft:

Fturb,k := κk‖ua,k‖ua,k . (37)

Note that the tether pulling force and moment exerted on the aircraft are implicitly221

modeled in the constraint-based dynamics (16) and (18) and should not be considered222

as part of the generalized forces.223

2.7. Power output224

For lift-mode systems, the generated power is the product of the main tether force225

with the tether speed. The pulling force by tether n experienced at node n is given by226

the expression Ft,n := −λn∇qn cn. Note that a positive multiplier corresponds a positive227

pulling force. The power transferred through tether n is then given by Pt,n := F>t,nq̇n.228

For the main tether, this expression can be simplified to Pt,1 := −λ1lt l̇t. The mechanical229

power that arrives at the ground station is given by Plift := −Pt,1.230

In drag-mode systems, electrical power is generated by the on-board turbines and231

transferred to the ground station through the tethers. Each aircraft k ∈ K generates232

an amount of electrical power Pturb,k := ηturbκk‖ua,k‖3, with ηturb the on-board turbine233

efficiency. Note that for the case of power consumption, i.e. κ < 0, the efficiency needs234

to be inverted. This can be implemented using the logistic function, as proposed in235
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[28]. The total power output generated by the drag-mode system is then given by236

Pdrag := ∑
k∈K

Pturb,k.237

3. Optimization ingredients238

In this section, we discuss all the necessary ingredients to formulate, discretize239

and reliably solve power optimization problems for the system model described in240

the previous section. We state the periodic optimal control problem formulation in241

continuous-time, and we discuss common system constraints. We explain the transcrip-242

tion method to convert the problem into an NLP and we summarize the interior-point243

solution strategy used by IPOPT to solve it. Then we describe how the initial guess is244

constructed, and how it can be refined using two different homotopy methods that are245

tailored for interior-point NLP solvers. Finally we discuss a third homotopy method246

that is tailored for performing parameter sweeps with interior-point NLP solvers.247

3.1. Problem formulation for periodic orbits248

The main goal of the toolbox is to facilitate automated computation of dynamically249

feasible, power-optimal periodic orbits for both lift- and drag-mode systems, while250

satisfying a set of relevant system contraints. In order to achieve this, we formulate251

a periodic optimal control problem of a free time period T, which has the distinctive252

property that the system state at the initial and final time of the OCP time horizon can be253

chosen freely by the solver, but must be equal. Given that some key system parameters254

θ, such as the tether diameters and lengths, have a huge impact on the system power255

output and the optimal flight trajectories, they are included as optimization variables as256

well.257

Let the optimization variables be defined as w := (x(t), u(t), z(t), θ, T). Then we
can compute power-optimal state and control trajectories and a corresponding system
design θ for given parameters p by solving the following continuous-time optimization
problem:

min
w

1
T

T∫
0

l(x(t), u(t), z(t))dt (38a)

s.t. F(ẋ(t), x(t), u(t), z(t), θ, p) = 0, ∀t ∈ [0, T], (38b)

h(ẋ(t), x(t), u(t), z(t), θ, p) ≤ 0, ∀t ∈ [0, T], (38c)

x(0)− x(T) = 0, (38d)

ψ(x(0)) = 0. (38e)

The Lagrange cost term is given by the sum of the negative power output and a penalty
on the controls in order to mitigate actuator fatigue, as well as on the side slip angle
and the angular accelerations in order to avoid aerodynamic side forces and aggressive
maneuvers:

l(x(t), u(t), z(t)) := −P(t) + ŵ(t)>Wŵ(t) , (39)

with ŵ(t) := (u(t), β(t), ω̇(t)) and W a constant diagonal weighting matrix. The vari-258

ables β and ω̇ are the vertical concatenations of the side slip angles βk and angular259

accelerations ω̇k, ∀k ∈ K. Proper tuning of the weighting matrix W is necessary to260

achieve fast convergence of the optimization algorithm as well as to obtain a locally261

unique solution. We refer the reader to the open-source code for the weighting factors262

used in the numerical experiments in this study.263

The function ψ : Rnx → R is used to impose a technical constraint that removes
the phase invariance inherent to periodic OCPs. For lift- and drag-mode systems, this
function is different and reads as either

ψlift(xlift(0)) := l̇t(0)
!
= 0 or ψdrag(xdrag(0)) := q̇1(0)>ey

!
= 0 . (40)
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The inequality constraints h are discussed in the following section.264

Note that the consistency conditions C(x(t)) = 0 are not enforced at any given265

time within the time horizon of the OCP. In combination with the periodicity constraint266

(38d), this would lead to LICQ deficiency for all feasible trajectories. There exist several267

technical solutions for this issue [40]. In the dynamic correction approach chosen here,268

Baumgarte stabilization is applied to the consistency conditions in the system dynamics,269

as previously mentioned in section 2.3. Therefore the dynamics of C are exponentially270

stable and since by value of periodicity it holds that C(x(0)) = C(x(T)), the only feasible271

periodic state trajectories are those where C(x(t)) = 0, ∀t ∈ [0, T].272

3.2. System constraints273

A particular feature of OCP (38) is that it has an economic cost function, which is274

not lower bounded, as opposed to tracking cost functions [47]. OCPs with an economic275

cost function tend to having extreme solutions in the absence of constraints. In the276

context of AWE power optimization, it is therefore crucial to impose constraints that277

avoid a violation of the flight envelope and that preserve the structural integrity of the278

airframe and the tether.279

The flight envelope consists of upper and lower bounds on the angle-of-attack α
(to avoid stall) and the side-slip angle β (to avoid additional drag and preserve model
validity) for all aircraft in the system. Additionally the stress in the tethers should not
exceed the yield strength with a certain safety factor fs:

σn := fs
4‖Ft,n‖

πd2
n
≤ σmax , ∀n ∈ N . (41)

Here, the tether force magnitude can be simplified to ‖Ft,n‖ = λnln, following the
definition in Section 2.7. The aircraft orientation is also constrained in order to avoid
collision of the airframe with the tether, which might occur during sharp turns in
transition maneuvers:

(qk − qP(k))
>ê3,k ≥ cos(γmax)lk , ∀k ∈ K , (42)

where γmax is the maximum angle between the tether vector and the upwards unit
vector of the aircraft body frame, which should be set lower than at most π/2. In the
multi-aircraft case, following anti-collision constraints might be included:

‖qk − qm‖2 ≥ fbb , ∀k, m ∈ K , k 6= m , (43)

where fb is safety factor in multiples of the wing span b.280

Along these nonlinear constraints, variable bounds are typically imposed on vari-281

ables such as flight altitude, tether length, speed and acceleration, aircraft angular282

velocity, control surface deflections and their rates, etc. One pair of variable bounds that283

is crucial in the context of periodic optimal control, are the bounds on the time period T.284

Since the OCP will be discretized in a discrete number of numerical integration intervals,285

the integration accuracy is variable along with T. Therefore T should be bounded from286

above to guarantee an acceptable simulation accuracy. Also, by translating a priori287

knowledge on the optimal value of T into variable bounds, we narrow the search space288

and exclude many possible local solutions, which typically increases reliability and289

speeds up convergence of the NLP solver.290

3.3. Problem transcription291

The continuous-time OCP (38) has an infinite number of variables and constraints.292

Hence, we apply direct optimal control to transcribe the OCP to an NLP. We choose293

transcription by direct collocation, which is a fully simultaneous approach, where the294
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numerical simulation variables are treated as variables in the optimization problem [26].295

We chose this approach for the following reasons.296

First, fully simultaneous optimal control is characterized by faster contraction297

rates of the Newton-type iterations compared to simultaneous and sequential optimal298

control, in particular for highly nonlinear and unstable systems [48]. Second, in the299

fully simultaneous case, the simulation problem is solved directly by the NLP solver,300

which is typically more robust than the rootfinder used in standard available numerical301

integrators. Finally, since OCP (38) is highly non-convex, the NLP solver benefits from302

computing the Newton step using exact Hessian information. The NLP Hessian becomes303

considerably cheaper to evaluate in the fully simultaneous approach.304

Although the resulting direct collocation NLP is comparably large, it is also sparse.305

In combination with a sparsity-exploiting NLP solver, direct collocation is a highly306

efficient transcription method for the models presented in this paper.307

In direct collocation, the time horizon is divided into N (usually equidistant) inter-
vals described by [ti, ti+1], where 0 < t0 < t1 < · · · < tN = T. The control trajectory
is parameterized as a piecewise constant function ũ(t) := ui if t ∈ [ti, ti+1). The state
trajectory is parametrized by piecewise polynomials of order M + 1, i.e. x̃(t) := x̃i(t)
if t ∈ [ti, ti+1), with

x̃i(t) :=
M

∑
j=0

ξ j(τ)x′i,j , (44)

with the normalized time τ := t−ti
∆ti

, τ ∈ [0, 1], with ∆ti := ti+1− ti and with the variables
x′i,j placed at the time points (τ0, τ), with τ := (τ1, . . . , τM) and with τ0 := 0. The
Lagrange polynomials ξ j are uniquely defined by the choice of collocation grid points τ:

ξ j(τ) :=
M

∏
k=0
k 6=j

τk − τ

τk − τj
. (45)

Note that it holds that x̃i(ti + ∆tiτj) = x′i,j. The state derivative is given by the derivative
of the polynomials, i.e.

˙̃xi(t) :=
M

∑
j=0

1
∆ti

dξ j

dτ
(τ)x′i,j . (46)

The algebraic variables are also discretized in each i’th time interval as z′i,j, and allocated308

to the collocation points τ1, . . . , τM.309

Let us now define xi := x′i,0, Xi := [x′i,1, . . . , x′i,M] and Zi := [z′i,1, . . . , z′i,M]. Then, for
given state vector xi at the start of each interval, the collocation variables Xi and Zi are
uniquely determined by enforcing the system dynamics (1) at the grid points τ1, . . . , τM:

Gi(xi, ui, Xi, Zi, θ, p, T) :=


F
(

˙̃xi(ti + ∆tiτ1), x′i,1, ui, z′i,1, θ, p
)

F
(

˙̃xi(ti + ∆tiτ2), x′i,2, ui, z′i,2, θ, p
)

...
F
(

˙̃xi(ti + ∆tiτM), x′i,M, ui, z′i,M, θ, p
)

 = 0 . (47)

The state transition from one interval node to the next is given by the equation

xi+1 = φ(xi, Xi) with φ(xi, Xi) := x̃i(ti+1) =
M

∑
j=0

ξ j(1)x′i,j . (48)

The system of equations (47) corresponds to that of an implicit Runge-Kutta integration310

scheme, where the choice of collocation grid points τ uniquely defines the Butcher-311

Tableau of the specific integration method. Here, we choose as collocation grid points312
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the roots of Gauss-Radau polynomials, more specifically those corresponding to the313

Radau IIa integration scheme because of its high order accuracy and its excellent stability314

properties (A- and L-stability), which is particularly relevant for stiff DAE systems [49].315

Further, the inequality constraints are imposed on the interval nodes and the
Lagrange term in the cost function can be computed via a quadrature rule [26]:

ti+1∫
ti

l(x(t), u(t), z(t)dt ≈ ∆ti

M

∑
j=1

b′j · l(x′i,j, ui, z′i,j) , (49)

where the quadrature weights are given by

[
b′1 · · · b′M

]
:=
[

ξ1(1) · · · ξM(1)
]

dξ1
dτ (τ1) · · · dξM

dτ (τ1)
...

. . .
...

dξ1
dτ (τM) · · · dξM

dτ (τM)


−1

. (50)

The NLP resulting from discretizing the OCP (38) using direct collocation is then
formulated as

min
w

1
T

N−1

∑
i=0

∆ti

M

∑
j=1

b′j · l(x′i,j, ui, z′i,j) (51a)

s.t. xi+1 −φ(xi, Xi) = 0, ∀i = 0, . . . , N − 1, (51b)

Gi(xi, ui, Xi, Zi, θ, p, T) = 0, ∀i = 0, . . . , N − 1, (51c)

h( ˙̃xi(ti + ∆iτM), Xi,M, ui, Zi,M, θ, p) ≤ 0, ∀i = 0, . . . , N − 1, (51d)

x0 − xN = 0, (51e)

ψ(x0) = 0. (51f)

with the decision variables summarized by w := (x0, X0, Z0, u0, x1, . . . , uN−1, xN , θ, T).
For the remainder of this text, we will write NLP (51) in more compact form as the
parametric NLP

Pf(p) := min
w

Φ(w, p) (52a)

s.t. G(w, p) = 0, (52b)

H(w, p) ≤ 0. (52c)

3.4. Solution strategy316

There are two common solution approaches for inequality-constrained nonlinear
programs such as (52): sequential quadratic programming (SQP) methods and interior-
point (IP) methods [50]. SQP methods are based on iteratively solving a series of convex
quadratic programs (QP) that are local approximations of the NLP. IP methods on the
other hand perform iterations directly on a relaxed version of the Karush-Kuhn-Tucker
(KKT) system corresponding to NLP (52), which read as

∇wΦ(w, p) + λ>∇wG(w, p) + µ>∇wH(w, p) = 0

G(w, p) = 0

H(w, p) + s = 0

diag(s)µ = τ1 ,

(53)

where 1 denotes a vector of ones. Together with the conditions µ ≥ 0, s ≥ 0, the KKT317

system (53) for barrier parameter τ = 0 gives the first-order necessary conditions of opti-318

mality. However, in this case, the KKT system is non-smooth due to the complementarity319

condition diag(s)µ = 0, and therefore difficult to solve with Newton-type methods.320
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Therefore, in IP methods, the iterations generally start on a smooth KKT system related321

to a barrier parameter τ0 > 0, which is then gradually reduced to a smaller value τf > 0,322

so that the final solution approximates the exact solution of (53) up to sufficient accuracy.323

It holds that ‖w∗τ −w∗‖2 = O(τ), where w∗τ and w∗ are the solutions to the KKT system324

for τ > 0 and for τ = 0, respectively.325

The advantage of IP methods is that the iterations are computationally cheaper326

compared those of SQP methods: per iteration only one linear system has to be solved, as327

opposed to one QP of equal size. Also, because IP methods start iterating on a problem328

with relaxed inequality constraints, and only gradually tighten these constraints, they329

are particularly robust in case little or no a priori knowledge on the active set of the330

optimal solution is available, as is typically the case for AWE systems.331

In this work, we use the interior-point NLP solver IPOPT [36] in combination with332

the linear solver MA57 [51]. IPOPT implements a particularly reliable algorithm that333

implements a filter line search method for globalization [52]. The algorithm also exploits334

the sparsity of the direct collocation NLP which makes it particularly efficient for this335

application.336

3.5. Circular initial guess construction337

In order to efficiently converge to a solution of a highly nonlinear, non-convex NLP,
even a robust NLP solver such as IPOPT typically requires a good initial guess. Therefore
we propose here a circular flight trajectory initialization based on a limited number of
user-defined parameters π0:

π0 := (q̇0, N0
l , l0

t , θ0
e , θ0

c , ϕ0, θ0) , (54)

where q̇0 is the aircraft flight speed, N0
l the number of loops, l0

t the initial tether length,338

θ0
e the (average) elevation angle of the main tether and θ0

c the trajectory cone angle with339

respect to the average main tether vector. The angle ϕ0 denotes the phase angle with340

which the periodic initial guess can be shifted in time. The parameter θ0 is a direct guess341

for the system parameters θ.342

Building on the parameters π0, we then define a stationary tether frame as

e′1 := cos(θ0
e) · ex + sin(θ0

e) · ez , e′2 :=
e′1 × ex

‖e′1 × ex‖
, e′3 := e′1 × e′2 , (55)

after which we can define for each aircraft k a frame that is rotating about the main
tether: [

e′′1,k(t) e′′2,k(t) e′′3,k(t)
]

:= Rx(φk(t))
[
e′1 e′2 e′3

]
(56)

with the rotation angle ϕk(t) for each aircraft defined as

ϕk(t) := ϕ0 + ω0t + 2π(k− P(k)− 1)/|C(P(k))\L| , (57)

and with the rotation radius and speed, and the time period of one loop defined as

R0 := l0
k sin(θ0

c ) , ω0 :=
q̇0

R0 and T0
l :=

2π

ω0 , (58)

respectively.343
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In the general multi-aircraft case, the node positions and (angular) velocities are
then initialized at each time point on the collocation grid ti by

q0
l,i ← q0

P(l),i + l0
l · e

′′
1,k(ti) , ∀l ∈ L , (59)

q0
k,i ← q0

P(k),i +

√
l0
k

2 − R02 · e′′1,k(ti) + R0 · e′′2,k(ti) , ∀k ∈ K , (60)

q̇0
k,i ← q̇0 · e′′3,k(ti) , ∀k ∈ K , (61)

ω0
k,i ← ω0 · e′′1,k(ti) , ∀k ∈ K . (62)

In the single-aircraft case (K = L = {1}), the aircraft position is initialized using (60).344

The layer node velocities are set to zero.345

The aircraft DCMs are initialized so that the initial guess meets the flight envelope
constraints rather than that it exactly satisfies the kinematic relation (20). The apparent
wind speed for each drone at time ti is given by

u0
a,k,i := u∞(q0>

k,i ez)− q̇0
k,i , ∀k ∈ K , (63)

with u∞(·) the user-defined wind profile. The DCM is then initialized to have zero angle
of attack and zero side-slip angle:

ê0
1,k,i ←

u0
a,k,i

‖u0
a,k,i‖

, ∀k ∈ K , (64)

ê0
2,k,i ←

e′′1,k(ti)× ê1,k,i

‖e′′1,k(ti)× ê1,k,i‖
, ∀k ∈ K , (65)

ê0
3,k,i ← ê1,k,i × ê2,k,i , ∀k ∈ K . (66)

The tether multipliers are trivially initialized as λ0
n ← 1 Nm−1, ∀n ∈ N , to ensure346

a strictly positive tether force. All remaining states and controls are initialized as zero.347

Finally, the initial overall cycle period is set to T0 ← T0
l N0

l .348

The initial guess is summarized by the vector w̄0. In the following, we will refer to349

the method which uses w̄0 as an initial guess for Pf as “NH” (no homotopy).350

3.6. Homotopy-based initial guess refinement351

Even the educated initial guess defined in the previous section often leads to352

very slow convergence or even solver failure when solving Pf(p). In order to increase353

computation speed and improve reliability, we propose a refinement procedure based354

on homotopy methods, which reliably produces a close-to-optimal, feasible initial guess355

based on the analytic user-defined initialization.356

The basic idea is to first solve a trivial version of the intended NLP, and then to357

repeatedly compute the solution while updating the NLP in a controlled and smooth358

way to the full nonlinear final problem. Homotopy methods (also known as contin-359

uation methods) are widely used in the field of non-convex optimization when little360

or no a priori knowledge on the location of the optimal solution is available [53,54].361

Homotopy methods were originally introduced in the field of AWE optimization in [25].362

In this paper, we generalize this approach for multiple homotopy stages and discuss363

particularities when using interior-point methods.364

First we construct a homotopy problem Hc(p, φ), with homotopy parameters
φ ∈ Rnφ and φi ∈ [0, 1], ∀i ∈ {1, . . . , nφ}. Note that φ can be multidimensional to allow
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for step-wise introduction of distinct model nonlinearities or couplings. The homotopy
problem is defined as

Hc(p, φ) := min
w

ΦH(w, p, φ) (67a)

s.t. GH(w, p, φ) = 0, (67b)

HH(w, p, φ) ≤ 0 (67c)

with the NLP functions ΦH, GH and HH defined such that Hc(p, 1) = P0(p) and365

Hc(p, 0) = Pf(p). Here, P0(p) is a simplified problem which is trivial to optimize366

for a large set of initial guesses, and Pf(p) is the target optimization problem defined367

in (52). It can be shown that, ifHc(p, φ) satisfies the LICQ and second-order sufficient368

conditions (SOSC) for all p and φ, there exists a unique and piecewise smooth homotopy369

path w∗(p, φ) between the optimal solutions w∗(p, 0) and w∗(p, 1) [54].370

Algorithm 1 (CIPH) describes a classic procedure to follow the homotopy path371

w∗(p, φ). First we provide an initial guess w̄0 which is the approximate solution of the372

initial problem P0(p). Then, for each step i in the multi-step homotopy, we reduce the373

homotopy parameter φi from one to zero with an increment 1
γ in a total of γ iterations. At374

every iteration the homotopy problemHc(p, φ) is solved up to a certain (low) accuracy375

level, while the NLP solver is warmstarted with the solution of the previous iteration.376

To improve performance, that maximum number of NLP iterations can be limited in this377

stage.378

The output of the homotopy then is an approximate solution w̄f to the intermediate379

problem Hc(p, 0), which can be used as an initial guess for solving Pf(p) up to high380

accuracy. If the LICQ and SOSC conditions are fulfilled, there exists a high enough value381

of γ to guarantee convergence of this algorithm [54, Theorem 5.2].382

Algorithm 1 Classic Interior-Point-based Homotopy (CIPH)

Require: w̄0, p, γ > 0
Output: w̄f

φ← 1nφ×1

w(0) ← NLPSOLVER(P0(p), w̄0)
for i = 1, . . . , nφ do

w(i) ← w(i−1)

for j = 1, . . . , γ do
φi ← φi − 1

γ

w(i) ← NLPSOLVER(Hc(p, φ), w(i))
end for

end for
w̄f ← w(nφ)

3.7. Penalty-based homotopy383

The fixed-step continuation approach described in the previous section is simple384

to implement and works well in practice [27,45,55]. Nevertheless it has two drawbacks.385

First, the choice of fixed homotopy parameter step renders the algorithm less robust than386

if an adaptive-step strategy would be used. Second, in terms of computational efficiency,387

γ · nφ NLPs need to be solved by default even when larger steps would be feasible.388

Of course, adaptive step size strategies for homotopy path following exist and are389

well-established [53,54]. However, they increase the complexity of the algorithm as well390

as the amount of hyperparameters to tune. Therefore we propose a simple but effective391

variation of Algorithm (1), which can be used in particular when the chosen NLP solver392

is a well-globalised solver. The idea is to use the underlying globalization routines (e.g.393

line-search) of the NLP solver to choose a suitable homotopy parameter step size.394
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The resulting homotopy strategy is penalty-based and builds on the reformulation
Hp of NLP (67) to read:

Hp(p, φ̂) := min
w, φ

ΦH(w, p, φ) + S>φ (68a)

s.t. GH(w, p, φ) = 0, (68b)

HH(w, p, φ) ≤ 0, (68c)

φ ≥ φ ≥ φ. (68d)

In this formulation, the parameters φ are treated as a decision variables with a high395

linear penalty S ∈ Rnφ

+ . The homotopy path is now parametrized by the bounds on φ,396

i.e. φ̂ := (φ, φ) ∈ [0, 1].397

Algorithm 2 (PIPH) describes the alternative homotopy procedure. The lower398

bounds φ are successively set to 0 for each homotopy stage, allowing the NLP solver399

to find a path for the homotopy parameter φi in stage i, while simultaneously applying400

correction steps to the decision variables w. Afterwards, the problem is solved again401

with φi = 0 to ensure completion of the homotopy stage.402

Because of the high linear penalty on φ, the NLP solver will take the largest possible403

parameter step that is acceptable to the line-search filter, hence providing both robustness404

and speed. Additionally, only 2 · nφ NLPs need to be solved instead of the γ · nφ NLPs405

in the classic continuation homotopy. This can allow for a significant speed-up even if406

the number of iterations per NLP solve is naturally higher.

Algorithm 2 Penalty-based Interior-Point-based Homotopy (PIPH)

Require: w̄0, p
Output: w̄f

φ, φ, φ(0) ← 1nφ×1

w(0) ← NLPSOLVER(P0(p), w̄0)
for i = 1, . . . , nφ do

w(i) ← w(i−1)

φ
i
← 0

w(i) ← NLPSOLVER(Hp(p, φ̂), w(i))

φi ← 0
w(i) ← NLPSOLVER(Hp(p, φ̂), w(i))

end for
w̄f ← w(nφ)

407

Note that the convergence of Algorithm 2 is only guaranteed for small enough408

updates of the parameter φ̂. In practice however, convergence is almost always achieved409

for jumps from 1 to 0.410

3.8. Interior-point-based homotopy411

The homotopy methods presented above are based on the idea of solving a sequence412

of closely related problems, where the solution of each problem is used to warmstart413

the next. However, because an interior-point NLP solver by default starts iterating on414

the relaxed KKT problem (53) (with a high barrier parameter τ), it is unable to exploit415

the (active set) information contained in the initial guess, if it is the solution to the416

non-smooth KKT problem. To circumvent this issue, we apply the following barrier417

strategy [27,56,57] throughout the homotopy:418

1. The initial problem P0 is solved from an initial barrier parameter τ0 to an interme-419

diate τi < τ0, so that the KKT system remains sufficiently smooth.420

2. The homotopy problemHp is repeatedly solved for constant barrier parameter τi.421

3. The final problem Pf is solved from τi to a final value τf < τi.422
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Using this strategy, the Newton iterations quickly converge from one intermediate423

problem to the next during the homotopy stage.424

3.9. Homotopy design425

In this paper, we propose two homotopy stages (nφ = 2). The initial problem426

P0(p) thus comprises two alterations with respect to the final problem Pf(p). Firstly,427

the aerodynamic forces and moments in the model are replaced with the direct force428

controls Ff,k ∈ R3 and moment controls Mf,k ∈ R3 for all k ∈ K, which are then added429

to the control vector u. This step relaxes the nonlinearities and couplings related to the430

aerodynamics [25]. Secondly the initial problem does not optimize the average power431

output but rather the tracking error with respect to the user-generated initial guess.432

The homotopy problemsHc(p, φ) andHp(p, φ̂) are then constructed by replacing
FA,k and MA,k in (36) with(

F̂A,k
M̂A,k

)
:= φ1

(
FA,k
MA,k

)
+ (1− φ1)

(
Ff,k
Mf,k

)
(69)

as well as by changing the stage cost function to

l(x(t), u(t), z(t), φ) := −φ2P(t) + (1− φ2)‖x(t)− x̄0(t)‖2
Q + ŵ(t)>Wŵ(t) , (70)

with x̄0(t) the initial state trajectory guess.433

Additionally, in order to reduce the initial degrees of freedom, the system pa-
rameters are fixed to their initial values until the second homotopy step. The system
parameters are thus only optimized over when the cost function transitions from tracking
error to power output:

(1− φ
2
)θ+ φ

2
θ0 ≤ θ ≤ (1− φ

2
)θ̄+ φ

2
θ0 . (71)

Substituting equations (69) - (71) into the model, cost function and constraints, we434

obtain after repeated discretization with direct collocation the functions ΦH(w, p, φ),435

GH(w, p, φ) and HH(w, p, φ).436

3.10. Parametric sweep warmstarting437

Once a solution for NLP (52) has been found, it is often interesting to investigate the438

sensitivity of the optimal solution with respect to one or more of the model parameters439

p. A typical example is when we compute the NLP solution for different values of uref440

(in the case of a logarithmic or power-law wind profile) to compute a power curve for441

a particular AWE system. One approach is to apply Algorithms 1 or 2 to compute a442

solution for all parameter values based on the same initial guess. However, in case the443

distance between the different parameter values is small, it is more efficient and more444

reliable to compute an initial guess for one problem from the solution of the previous445

one.446

Algorithm 3 (SIPH) describes how an initial guess for each problem in the set447

of NLPs Pf(pi), for i = 1, . . . , p, can be generated efficiently. It starts based on the448

solution w̄f,0 of the homotopy problemHc(p0, 0) for an initial set of parameters p0. This449

initial solution can be computed using CIPH or PIPH. We assume that the sequence450

of parameter vectors p0, . . . , pp is ordered so as to minimize the distance from one451

parameter set to the next, as proposed in [27]. Then, we can compute the initial guess w̄f,i452

for problem Pf(pi) from the guess w̄f,i−1 for the previous problem Pf(pi−1), by updating453

the parameter vector p from one value to the next via linear interpolation in γp steps454

and by recursively solving the problemHc(p, 0). We employ the same barrier strategy455

as in section 3.8 and keep the barrier parameter at a constant value τi while solvingHc,456

to guarantee a smooth transition from one problem to the next.457
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Algorithm 3 Parametric Sweep Interior-Point-based Homotopy (SIPH)

Require: w̄f,0, p0, . . . , pp
Output: w̄f,1, . . . , w̄f,p

for i = 1, . . . , p do
w̄f,i ← w̄f,i−1
for j = 1, . . . , γp do

p← pi−1 +
j

γp
(pi − pi−1)

w̄f,i ← NLPSOLVER(Hc(p, 0), w̄f,i)
end for

end for
w̄f ← w(nφ)

TrialSweep MPC

Optimization

CasADi
IPOPT

NLP

CasADi

Model

CasADi

Figure 2. Main AWEbox classes (Python) and overall software structure, including dependencies.

4. The AWEbox software package458

The goal of the AWEbox software package is to provide a user-friendly interface459

that facilitates the automatic construction of the optimization-friendly dynamics (1).460

It formulates the the power optimization problem (38) and reliably finds a numerical461

solution. The toolbox is written in Python 3 and relies heavily on the following software462

packages: CasADi, an open-source symbolic framework for algorithmic differentiation463

and nonlinear optimization [35]; the interior-point NLP solver IPOPT [36]; and (option-464

ally) the linear solver MA57 [51]. The six main classes and basic structure of the package465

are shown in Fig. 2, including the dependencies on the external packages.466

Starting at the lowest level, the Model-class takes the user-provided modeling op-467

tions and assembles the according state, control and algebraic variable vectors. Then, the468

dynamics (1), relevant constraints and intermediate model outputs are constructed as469

CasADi Function objects. Table 1 gives an overview of the main modeling options imple-470

mented in AWEbox. Central here is the use of CasADi to compute the partial derivatives471

of the system Lagrangian in (16). Finally, the Model class can also be used in stan-472

dalone mode, e.g. in case the user is interested in obtaining the dynamics for simulation473

purposes only.474
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Table 1. Main AWE system modeling options and possible variants implemented in awebox.

Options Variants

Topology single-aircraft, i.e.: (1, 1)
multi-aircraft, e.g.: (1, 2)
stacked multi-aircraft, e.g.: (2, 3)

Power generation lift-mode
drag-mode

Aircraft DOF 6 DOF
3 DOF [10]

Wind profile uniform
logarithmic
power-law
3D-data

Atmosphere uniform
International Standard Atmosphere

Induction constant/zero
actuator-disk

The NLP class receives from a Model instance the dynamics and constraints and475

constructs the NLP functions ΦH, GH and HH as CasADi Function objects, using the476

direct collocation approach presented in Section 3.3.477

From a practical viewpoint, it is essential for the convergence of the NLP solver478

that all variables, equations and cost terms are properly scaled. Therefore, AWEbox479

implements a heuristics-based scaling procedure based on the system parameters and480

the user-defined initialization. We refer the reader to the open-source implementation in481

(cite Zenodo) for the scaling factors obtained in the numerical experiments in this study.482

The NLP functions are then passed on to the Optimization class, where their first-483

and second-order derivatives are constructed using CasADi, which also provides the484

interface to IPOPT. The Optimization class then constructs the initial guess from Section485

3.5 and implements both Algorithm 1 and 2 to prepare the homotopy-based initial guess486

for solving Problem (52).. It is also possible to warmstart of the solver with a user-487

provided initial guess. Finally, Problem (52) is solved up to high accuracy. The default488

linear solver for computing the Newton step within IPOPT is MUMPS, but in general a489

higher performance in terms of speed and reliability is reached using the solver MA57,490

which has to be installed separately.491

On a higher level, the central class with which the user interacts is the Trial class,492

which knits together the functionality of the lower-level classes. To start with, the user493

can specify modeling options, physical parameters, discretization options, initialization494

parameters, etc., as in the following (non-exhaustive) example:495

1 opts = {}496

2 opts['model.topology '] = {1:0} # parent map P(n)497

3 opts['model.kite_dof '] = 6498

4 opts['model.system_type '] = 'lift_mode '499

5 opts['model.wind.model '] = 'uniform '500

6 opts['model.wind.u_ref '] = 10. # [m/s]501

7 opts['nlp.N'] = 100502

8 opts['solver.linear_solver '] = 'ma57'503

9 opts['solver.initialization.l_t'] = 400. # [m]504

10 opts['solver.homotopy.phi.0'] = 'penalty '505

11 opts['solver.homotopy.phi.1'] = 'penalty '506

With these options, the user can create a Trial object, and build the system dynam-507

ics, constraints and NLP functions, including derivatives. In this example the power508

optimization is then solved using the penalty-based homotopy. The Trial class then509

performs some quality checks on the numerical accuracy of the solution, e.g. by checking510
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consistency condition satisfaction. The class also contains some basic plotting functional-511

ity for visualizing the optimal solution:512

12 from awebox import Trial513

13 trial = Trial(opts)514

14 trial.build()515

15 trial.solve()516

16 trial.plot(['states ', 'controls '])517

The high-level class Sweep, which builds on the Trial class, can be useful for para-518

metric sweeps. This class builds the parametric NLP functions and their derivatives only519

once, and implements Algorithm 3 for warmstarting the neighboring NLP problems:520

17 from awebox import Sweep521

18 sweep_opts = [('model.wind.u_ref ', [4,6,8,10,12,14,16])]522

19 sweep = Sweep(opts , sweep_opts)523

20 sweep.build()524

21 sweep.run()525

The MPC class uses the Trial class and the lower level classes to construct the526

tracking MPC problem as defined in [58]. The class takes as an input the optimal527

solution of Problem (38) to construct a periodic reference on the MPC time grid. It528

also takes care of correct initialization, and initial guess and periodic reference shifting.529

The MPC problem can then be recursively solved using IPOPT with the warmstarting530

strategy from [57]. The main goal of this class is not to provide highly efficient numerical531

solvers aimed at embedded optimization, such as those implemented in the software532

packages acados [59] or PolyMPC [60]. Rather, this class provides a reliable controller533

that conveniently allows for offline closed-loop simulations.534

22 from awebox import Pmpc535

23 mpc_opts = {}536

24 mpc_opts['N'] = 20537

25 mpc_opts['terminal_point_constr '] = True538

26 Ts = 0.1539

27 mpc = Pmpc(mpc_opts , Ts , trial)540

28 u0 = mpc.step(x0)541

Although the focus here is reliability and not computational efficiency, the user can also542

code-generate and compile the MPC solver functions using CasADi, for use in an external543

codebase or for embedded application.544

5. Numerical Results545

This section discusses two numerical case studies that highlight the contributions546

of the AWEbox software package. In the first case study we discuss and compare compu-547

tational performance and robustness of the homotopy algorithms CIPH and PIPH, while548

solving a single-aircraft lift-mode reference problem. In the second case study we com-549

pute a power curve for a dual-aircraft lift-mode system and compare the performance of550

the algorithms PIPH and SIPH.551

5.1. Single-aircraft case study552

The first reference problem aims at finding an optimal power cycle for a lift-mode553

single-aircraft system, with K = {1}, L = {1}, and P(1) = 0. The aircraft parameters554

are taken from the Ampyx AP2 reference model presented in [22]. We adopt the same555

wind profile and atmosphere model as presented in [15]. We assume a “reinforced"556

version of the AP2 airframe, since the real-world airframe load limits lead to an overly557

pessimistic average power output estimate. Therefore, compared to the OCP in [15],558

the airspeed limits and tether force limits are omitted and replaced only by a tether559

stress constraint, while the tether diameter dt is no longer fixed and is treated as an560

optimization variable. Table A1 in Appendix A summarizes the model parameter values561

of this reference problem, while Table 2 lists all variable bounds and path constraints.562

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202212.0018.v1

https://doi.org/10.20944/preprints202212.0018.v1


22 of 31

Table 2. System variable bounds and path constraints.

Description Variable Min Max Units

Side-slip angle β -20.0 20.0 deg
Angle-of-attack α -6.0 9.0 deg
Tether stress σ 0.0 3.6 GPa
Rotation angle γr -40.0 40.0 deg
Tether length lt 10.0 700.0 m
Tether speed l̇t -15.0 20.0 m s−1

Tether acceleration l̈t -2.4 2.4 m s−2

Flight altitude qz 100.0 - m
Time period T 20.0 70.0 s
Angular velocity ω -50.0 50.0 deg s−1

Aileron deflection δa -20.0 20.0 deg
Rudder deflection δr -30.0 30.0 deg
Elevator deflection δe -30.0 30.0 deg
Deflection rates δ̇ -2.0 2.0 rad s−1

We construct the NLPs (67) and (68) using N = 100 intervals, with Radau collocation563

polynomials of order M = 4, and the controls are discretized using a piecewise constant564

parameterization. The resulting NLPs have 15334 variables, 14323 equality constraints565

and 600 inequality constraints. We solve the problem on an Intel Core i7 2.5 Ghz, 16GB566

RAM.567

The homotopy meta-parameters are experimentally tuned to minimize the associ-568

ated CPU time. The intermediate homotopy barrier parameter is chosen as τi = 10−2.569

For CIPH, the number of parameter update steps per stage are γ1 = 10 and γ2 = 1. For570

PIPH, the homotopy parameter penalties are S1 = 102 and S2 = 1.571

In the following, we wish to investigate the performance and robustness of CIPH572

and PIPH, compared to the case where the user-provided circular initial guess is applied573

without refinement (“no homotopy" - NH). For this purpose, the reference problem de-574

scribed above is solved for each method for a set of 100 uniformly sampled initialization575

parameters π0 from the set defined by π0
lb ≤ π0 ≤ π0

ub576

In the NH-case, performance heavily depends on the a priori knowledge of the user.577

To account for this fact, we introduce two different users. “User A" is an AWE developer578

with little a priori knowledge on the location of the optimal solution. Therefore, this user579

has samples from a wide initialization parameter set. “User B" on the other hand, is a580

control engineer who is familiar with the system and its optimal behavior for the given581

conditions. Therefore User B samples from a parameter set that is defined by a range582

that is a factor 3 smaller than that of User A, centered around the average parameters583

as evaluated at the solution of interest. Table 3 summarizes the sampling range for all584

initialization parameters, for both User A and B. The initial number of loops is chosen to585

be N0
l = 1.586

Table 3. Initialization parameter bounds used for uniform sampling by users A and B.

Description Variable Min (A) Max (A) Min (B) Max (B) Units

Flight speed q̇0 20.0 60.0 30.6 44.0 m s−1

Tether length l0
t 300.0 600.0 300.0 391.8 m

Elevation angle θ0
e 30.0 50.0 26.3 32.9 deg

Cone angle θ0
c 20.0 30.0 14.9 21.5 deg

Phase angle ϕ0 0.0 360.0 0.0 93.9 deg
Tether diameter d0

t 1.0 5.0 1.6 2.9 mm

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202212.0018.v1

https://doi.org/10.20944/preprints202212.0018.v1


23 of 31

0 100 200 300 400 500 600 700
CPU time [s]

PIPH-B

CIPH-B

NH-B

PIPH-A

CIPH-A

NH-A

Figure 3. CPU wall time for the NH-, CIPH- and PIPH-method, obtained by initialization parame-
ter sampling by User A and User B.

Figure 3 shows the CPU timing results resulting from the initialization sampling587

by User A and User B. For User A, NH leads to highly variable CPU timings, ranging588

from a peak timing of up to 12 minutes down to a minimum of 15 seconds. In two589

cases, NH does not converge as it exceeds the maximum number of iterations of the NLP590

solver. The minimum NH-timing is 50% lower than the best timings of the homotopy591

methods. Hence, it is possible for User A to “get lucky" and converge to a solution very592

fast without initialization refinement. However, the peak NH-timing is 8 times higher593

than the worst PIPH-timing and almost six times higher than the worst CIPH-timing.594

The average NH-timing is a factor 1.7 times higher than in the PIPH case and a factor 1.3595

higher than the CIPH case. Therefore, User A benefits significantly from CIPH/PIPH596

in terms of expected computational performance and in particular in terms of timing597

consistency. PIPH is on average 13% faster than CIPH, while the peak timing is 30%598

lower.599

For User B, with much better a priori knowledge, the computation times of NH600

significantly improve compared to user A: average timings are reduced by a factor 2.4,601

to a value slightly lower compared to CIPH/PIPH for User B. The peak NH-timing is602

reduced by a factor of 1.5, which is still a factor 5.5 larger than compared to CIPH/PIPH.603

Thus, while User B has a slightly better expected performance in the NH-case, he or604

she can still profit from the improved timing consistency provided by CIPH/PIPH. The605

difference in timings for the CIPH and PIPH methods is almost negligible. The average606

timings of these methods do not change much compared to the timings obtained for607

User A. This highlights the property that by pre-structuring the optimization path, the608

homotopy methods are not able to exploit a priori user knowledge to achieve a better609

average performance.610

Overall the PIPH/CIPH CPU timings range between 30 and 100 seconds. This is611

comparable to the CPU timing range reported in [26] for similar model complexity and612

identical collocation grid (but excluding homotopy timings).613

The NLP (52) has multiple local solutions and the choice of optimization algorithm614

influences the frequency with which certain solutions are found by the optimizer. In the615

experiments for User A, a total of 9 different local solutions were found. Fig. 4 shows the616

dominant, circular, optimal solution, while Fig. 5 shows as an example the third most617

frequent optimal solution, which is characterized by the well-known lemniscate flight618

pattern. Table 4 summarizes for each method the frequency of local solutions.619

The homotopy methods almost always converge to the main solution of interest:620

out of a 100 trials, 100 for PIPH and 98 for CPIH. In the NH-case on the other hand, this621
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Figure 4. Locally optimal single-aircraft position and orientation trajectory #1 (circular pattern) as
found by User A.

is only the case for 71 trials, while failing to converge in 2 cases. Hence, the homotopy622

methods do not only improve performance and reliability for User A, but they are also623

more stable in terms of optimization outcome. For User B, all methods always converge624

to the main solution.625

Table 4. Solution frequency in a set of 100 trials, optimal time period T∗, average power output P̄∗

and maximum consistency violation of locally optimal solutions found by User A.

Sol. # NH PIPH CIPH T∗ [s] P̄∗ [kW] ‖C(x∗(·))‖∞

1 71% 100% 98% 20.2 8.8 8·10−4

2 15% - - 24.0 8.7 9·10−4

3 7% - - 27.9 9.3 1·10−3

4 1% - 1 % 32.5 9.0 3·10−3

5 1% - - 41.5 10.7 7·10−3

6 1% - - 41.2 10.6 2·10−2

7 1% - - 47.8 10.0 4·10−2

8 1% - - 37.4 10.3 6·10−3

9 0% - 1% 40.4 10.5 1·10−2

Fail 2% - - - - -

When comparing the different local solutions, we notice that average power output626

increases up to 22% with respect to the main solution for solutions with longer optimal627

time periods T∗. The solutions with a longer time period typically consist of more than628

one loop, which leads to a better ratio of reel-out vs. reel-in time, and thus a higher629

“pumping efficiency". This is in line with the results reported in [26].630

Note that for increasing time period T∗, consistency condition satisfaction decreases.631

This is because the consistency condition trajectory is the periodic solution to the stable632

uncontrolled dynamics of the invariants. Hence, as simulation accuracy decreases,633

consistency conditions are moving away from the theoretically optimal solution of a634

constant zero value. For this reason, AWEbox automatically computes the consistency635
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Figure 5. Locally optimal single-aircraft position and orientation trajectory #3 (lemniscate pattern)
as found by User A.

conditions for each solution and gives out a user warning once a treshold is reached.636

The user can then increase the number of collocation intervals, the integration order, or637

lower the upper bound on T if applicable.638

5.2. Dual-aircraft power curve639

In the second case study, we compute the power curve for a dual-aircraft lift-mode640

system, i.e. K = {2, 3}, L = {1}, and P(1) = 0, P(2) = 1 and P(3) = 1. We retain the641

model parameters and constraints and discretization of the single-aircraft case study,642

while adding the anti-collision constraint (43).643

To give more structure to the problem, we propose the following modification to the
OCP. We divide the time horizon in two separate intervals with associated time variables
T1 and T2 and we define the total time period as T := T1 + T2. We then impose that the
first interval is a single reel-out phase, and the second one a single reel-in phase:

l̇t ≥ 0 , ∀t ∈ [0, T1] (72)

l̇t ≤ 0 , ∀t ∈ (T1, T] . (73)

In the discrete time grid, 70 time intervals are allotted to the reel-out phase, and 30644

intervals to the reel-in phase. The resulting NLP has 33464 variables, 31550 equality645

constraints and 1402 inequality constraints.646

The intermediate barrier parameter is tuned manually to be τi = 10−4 for both PIPH647

and SIPH. The PIPH-tuning is the same as in the single-aircraft case. SIPH performs648

a homotopy with γp = 10 steps for every new parameter value. Additionally, the649

maximum number of NLP solver iterations is limited to 100 for both methods.650

We search for solutions with three loops, i.e. N0
l = 3. The reason for this is that the651

resulting trajectories fit well inside the time period bounds defined in Table 2, for all652

considered wind speeds. The remaining initialization parameters are set to q̇0 = 50 m
s ,653

θ0
e = 25◦, θc = 20◦, φ0 = 0◦, l0

t = 640 m, l0
s = 100 m, d0

t = 4 mm and d0
s = 1√

2
d0

t . The654
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Figure 6. Average power output P̄∗ and optimal time period T∗ of a dual-aircraft AWE system
(top) and CPU wall time for the PIPH and SIPH method (bottom) as a function of the reference
wind speed uref.

secondary tether diameter is initialized under the assumption that the secondary tether655

force equals the main tether force divided by two.656

The power curve for the proposed dual-aircraft system is obtained in the following657

manner. First the optimal trajectory and design is computed with PIPH for a reference658

wind speed of uref = 10 m
s . The resulting optimal design is given by l∗s = 142.9 m,659

d∗t = 4.3 mm and d∗s = 3.2 mm. The average power output is P̄∗ = 42.0 kW. Note that660

this is more than a factor of 4 higher than the single-aircraft solutions in the first case661

study, while the number of aircraft has only doubled. The power per wing surface area662

is thus more than doubled as a result of the reduced main tether drag and higher flight663

altitude. This is in line with the results reported in [10,12].664

The optimal design parameters are then fixed, and the NLP is re-solved for uref665

ranging from 0 m
s to 20 m

s . This is done once with PIPH, every time starting from the666

identical user-defined initial guess. Then it is done once using SIPH in two separate667

sweeps: once downwards and once upwards starting from the solution for uref = 10 m
s .668

Figure 6 shows the power curve obtained with SIPH, and additionally for each669

wind speed the optimal time period. Similar to the power curve computed in [37], we670

identify three operational regions. In the first region of zero wind speed up to the cut-in671

wind speed uref = 3 m
s , power is consumed to keep the system airborne. The upper672

bound on T is active here, as the aircraft glide downwards about an almost vertical673

rotation axis during the reel-out phase. In the reel-in phase, potential energy is injected674

back into the system as the aircraft fly slow upwards trajectories. In the second operating675

region, power grows cubically until the design wind speed is reached. In the third region,676

power output still grows with the wind speed, but cubic growth is curtailed in order to677

satisfy the tether stress constraints. The main strategy to limit power output here is to678

increase the tether reel-out speed so as the decrease the available wind. The optimal time679

period increases with respect to the design wind speed, as the reel-out speed increases,680

while the reel-in speed is constrained and cannot grow proportionally. Figures 7 and 8681

illustrate the reel-out and reel-in trajectories for uref = 18 m
s .682

Figure 6 also shows for each wind speed the associated CPU time for PIPH and683

SIPH. The computation times include both the CPU time for the homotopy procedures684

and the CPU time to solve the final problem Pf. PIPH does not converge for the wind685
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Figure 7. Optimal dual-aircraft flight trajectories for uref = 18 m
s (reel-out phase).
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Figure 8. Optimal dual-aircraft flight trajectories for uref = 18 m
s (reel-in phase).
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speeds of 15 m
s and 17 to 20 m

s . Note that convergence might be recovered for smaller686

update steps of the homotopy parameter φ̄. However this falls outside the scope of this687

study.688

SIPH outperforms PIPH at every single wind speed (where PIPH converges), but in689

particular at low wind speeds, when the optimal solution diverges significantly from the690

user-defined initial guess. Up until the wind speed of 15 m
s , the average CPU time is 5691

minutes and 23 seconds for SIPH and 15 minutes and 20 seconds for PIPH.692

6. Discussion693

In this work, we presented AWEbox, an open-source Python toolbox for modeling694

and optimal control of single- and multi-aircraft AWE systems. We discussed the gen-695

eral multi-aircraft modeling structure, optimization ingredients and implementation696

details needed to efficiently compute power-optimal orbits for a wide range of system697

architectures and modeling options. In particular, we proposed and implemented two698

interior-point based homotopy method variants, in order to increase the performance699

and reliability of the optimization algorithms. These methods produce a feasible initial700

guess for the underlying NLP solver, based on an analytic initial guess shaped by the701

software user. In a numerical experiment, a reference single-aircraft problem was solved702

for a large set of different initial guesses.703

The penalty-based homotopy method reduced the average and peak CPU timing704

with a factor 1.7 and 8 respectively, compared to the case when no homotopy method705

was applied by a user with little a priori knowledge. With good a priori knowledge706

available, the homotopy methods did not improve performance, but still the peak CPU707

timing was reduced by a factor 5.5. Overall, computation times were in the range of 30 -708

100 seconds, which is competitive to those reported in the literature. Additionally, the709

penalty-based homotopy method consistently led to the same local solution, whereas710

the no-homotopy case resulted in different local solutions in 29 out of a 100 cases.711

In a second case study, we computed a power curve of a dual-aircraft AWE system712

and compared the performance of the penalty-based homotopy method of the previous713

case study with that of a third homotopy method tailored for parametric sweeps with714

interior-point NLP solvers. The penalty-based method was not able to converge to a715

solution for all wind speeds, while the sweep method succeeded in doing so, while716

outperforming the penalty-based method on average by a factor 3 in terms of CPU717

timings. The average CPU timing per NLP solution was about 5 minutes.718

Future work might entail model accuracy improvements, in particular concerning719

tether and induction modeling. Efficient problem formulations and implementations720

that include stability and robustness considerations would be a useful contribution, in721

particular for multi-aircraft systems. Finally, efficient algorithms that enable simultane-722

ous trajectory and design optimization with expensive models (e.g. aero-elastic models)723

could lead to faster and more accurate system design loops.724
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Abbreviations741

The following abbreviations are used in this manuscript:742

743

AWE Airborne wind energy
CIPH Classic Interior-Point Homotopy
DCM Direction Cosine Matrix
IP Interior-Point
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualification (LICQ)
MPC Model Predictive Control
NH No-Homotopy
NLP Nonlinear Program
OCP Optimal control problem
PIPH Penalty-based Interior-Point Homotopy
QP Quadratic Program
SOSC Second-Order Sufficient Condition
SQP Sequential Quadratic Programming
SIPH Sweep Interior-Point Homotopy

744

Appendix A745

Table A1. System parameters.

Description Parameter Value Units

Aircraft mass mK 3.6800e+01 kg
Moment of inertia JK,x 2.5000e+01 kg·m2

Moment of inertia JK,y 3.2000e+01 kg·m2

Moment of inertia JK,z 5.6000e+01 kg·m2

Moment of inertia JKz,xz 4.7000e-01 kg·m2

Wing span b 5.5000e+00 m
Wing chord c 5.5000e-01 m
Wing area S 3.0000e+00 m2

Tether drag coefficient CD,t 1.2000e+00 -
Tether density ρt 1.4642e+03 kg·m−3

Tether Baumgarte constant κt 1.0000e+00 -
Tether attachment point rt,x, rt,y, rt,z 0.0000e+00 m
DCM Baumgarte constant κR 1.0000e+00 -
Wind friction coefficient cf 1.5000e-01 -
Reference height zref 1.0000e+02 m
Sea level temperature T0 2.8820e+02 K
Temperature lapse rate TL 6.5000e-03 K·m−1

Sea level air density ρ0 1.2250e+00 kg·m−3

Tether safety factor fs 3.0000e+00 -
Anticollision safety factor fb 4.0000e+00 -
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