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1 Abstract: In this paper we present AWEbox, a Python toolbox for modeling and optimal control of
2 multi-aircraft systems for airborne wind energy (AWE). AWEbox provides an implementation of
s optimization-friendly multi-aircraft AWE dynamics for a wide range of system architectures and
4+ modeling options. It automatically formulates typical AWE optimal control problems based on
s these models, and finds a numerical solution in a reliable and efficient fashion. To obtain a high
o level of reliability and efficiency, the toolbox implements different homotopy methods for initial
7 guess refinement. The first type of methods produces a feasible initial guess from an analytic initial
s guess based on user-provided parameters. The second type implements a warmstart procedure for
o parametric sweeps. We investigate the software performance in two different case studies. In the
10 first case study we solve a single-aircraft reference problem for a large number of different initial
11 guesses. The homotopy methods reduce the expected computation time by a factor of 1.7 and and
12 the peak computation time by a factor of 8, compared to when no homotopy is applied. Overall,
13 the CPU timings are competitive to timings reported in the literature. When the user initialization
14 draws on expert a priori knowledge, homotopies do not increase expected performance, but the
15 peak CPU time is still reduced by a factor of 5.5. In the second case study, a power curve for
16 a dual-aircraft lift-mode AWE system is computed using the two different homotopy types for
17 initial guess refinement. On average, the second homotopy type, which is tailored for parametric
18 sweeps, outperforms the first type in terms of CPU time by a factor of 3. In conclusion, AWEbox
10 provides an open-source implementation of efficient and reliable optimal control methods that
20 both control experts and non-expert AWE developers can benefit from.

21 Keywords: airborne wind energy; optimal control; open-source software

22 1. Introduction

23 Airborne wind energy (AWE) is a renewable energy technology that aims at har-
24 vesting strong and steady high altitudes winds that cannot be reached by conventional
= wind technology, at a fraction of the material resources [1]. It is based on the principle
26 of one or more tethered autonomous aircraft flying fast crosswind maneuvres. In the
=z majority of AWE concepts, electricity is either produced by on-board turbines on the
2 aircraft and conducted to a ground station through the tether (drag-mode), or in a periodic
20 fashion by reeling-out the tether at high tension to drive a winch at the ground station,
30 and reeling back in at low tension, so as to achieve a net positive energy output over one
a1 period (lift-mode). Although there exist many other interesting AWE concepts, e.g. those
52 based on tethered rotorcrafts [2,3], we will limit the scope of this paper to rigid-wing lift-
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s and drag-mode systems. The reader is referred to [4,5] for a recent and comprehensive
s overview of the different technologies.

35 The principle of AWE was first investigated in 1980 by Miles Loyd, who derived an
ss  upper limit for the power that could be produced by a crosswind AWE system [6]. Since
sz then, and in particular in the past two decades, AWE has gained an increasing interest
ss from both academia and industry, leading to significant technological progress and many
3 small- to medium-scale prototypes, the largest of which was based on a 26 m wing span
a0 aircraft [7]. While AWE developers are considering a multitude of different designs,
a1 most systems are based on a single-aircraft setup. At this moment, AWE technology is
.2 still in a pre-commercial stage, with some companies taking first steps towards market-
a3 entry [8]. One of the central unresolved challenges for AWE developers is achieving
s techno-economic performance at utility-scale, i.e. designing systems that produce large
«s amounts of electricity at low cost.

a6 Multi-aircraft systems have been proposed and investigated in the literature as a
«z  more efficient and cheap way of producing utility-scale electricity [9-12]. In a multi-
s aircraft AWE system, two or more tethered aircraft fly tight crosswind maneuvres around
s ashared main tether, thereby minimizing the latter’s crosswind motion and hence also
so the associated dissipation losses due to aerodynamic drag. These systems can be up
51 to twice as efficient as their single-aircraft counterparts [10], while having superior,
52 modular, upscaling properties [12], intrinsically smooth power output profiles [13] and
sz higher potential power densities in farm configurations [14]. As a consequence of the
s« increased system complexity, this system class has thus far only been investigated in
ss simulation studies.

56 A crucial condition for the performance of both single- and multi-aircraft systems is
sz finding power-efficient flight paths that satisfy flight envelope constraints and airframe
ss load limits. This is not only necessary for path planning purposes but also for, e.g., offline
so performance prediction, design optimization and control strategy design. Optimal
e control is an evidently suitable path planning technique for AWE, given its natural
&1 ability to handle unstable, nonlinear, constrained systems with multiple in- and outputs.
ez In the past decade, it has become an established method in the field, leading to various
es applications ranging from performance assessment studies [15], over model predictive
es control [16] and system identification [17], to flight path planning for a real-world
es soft-kite system [18]. We refer the reader to [19] for a complete overview of applications.
o6 Despite its obvious advantages, optimal control comes with its own challenges: the
ez dependence on an accurate model; the computational burden associated with finding a
es numerical solution; and a rather complex implementation that heavily relies on expert
e knowledge. In case an accurate model is unavailable, it is possible to resort to model-free,
70 adaptive techniques such as extremum seeking (ES) [20] or iterative learning control
= (ILC) [21]. However, in [22], a validated reference model was proposed for a lift-mode,
7 rigid-wing single-aircraft system. While identifying the parameters of such a model is a
»s complicated and time-consuming task [17,23], this shows that deriving a physical model
7« that fits the measurements very well is in principle possible. In the following, we will
75 focus on the two other challenges mentioned above.

76 In order to increase computational efficiency, a general model structure based on
7z non-minimal coordinates was proposed in [24], resulting in smooth dynamic equations
e of low symbolic complexity. Also, since the system nonlinearity gives rise to highly
70 non-convex optimization problems, a feasible initial guess is typically needed for fast
s and reliable convergence of Newton-type optimization solvers. Such an initial guess is
e in many cases not available a priori. Therefore, a homotopy procedure was proposed
«2 that produces a close-to-optimal, feasible initial guess based on a generic, naive one [25].
es  Combined with a direct-collocation based transcription method, this led to reported
s« computation times of below one minute for a representative power cycle of a lift-mode
s AWE system with a six-degree-of-freedom aircraft model [26]. Another homotopy
e variant was investigated in [27] to efficiently compute drag-mode power cycles for
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ez large-scale wind data. Note that while in this paper, we only consider optimal control
es problems (OCP) in the time domain, they can also be formulated in the frequency domain
e as proposed in [28]. Such a formulation could in some cases lead to a more efficient
%0 discretization and more easily interpretable solutions.

o1 While many open-source AWE control and simulation frameworks exist for single-
o2 aircraft models [29,30], and even for multi-aircraft models [31], there are only few
o3 available open-source implementations of optimization methods tailored for AWE. The
sa  MATLAB library MegAWES [20] provides an implementation of a megawatt-class system
os model and of a power optimization algorithm based on ES. The Optimal Control Library
96 OpenOCL [32] provides a user-friendly MATLAB interface for formulating and solving
sz OCPs, which can be linked to the optimization-friendly lift-mode model implemented in
os the framework OpenAWE [33]. However, this framework does not offer homotopy-based
9o initial guess refinement or multi-aircraft models.

100 In this paper, we present AWEbox, an open-source Python framework for modeling
11 and optimal control of single- and multi-aircraft AWE systems. The contributions of the
1z software package can be summarized as follows:

13 ®  Usability: the user specifies only high-level modeling and optimization parame-

104 ters. AWEbox implements optimization-friendly system dynamics for single- and
105 multi-aircraft systems, for various system architectures and combinations of model
106 options. It automatically formulates typical AWE optimization problems and im-
107 plements and interfaces the algorithms needed to compute a numerical solution
108 efficiently.

1o ®  Religbility: AWEbox increases reliability by efficiently computing a feasible OCP
110 initial guess via homotopy methods, based on an analytic initial guess defined
111 by a small number of user input parameters. The framework also implements an
112 algorithm to efficiently and reliably perform parameter sweeps.

us ®  Extensibility: within the baseline non-minimal-coordinates structure, users can add
114 new or alternative modeling components (e.g. wind model, aerodynamics, etc.) in
115 straightforward fashion. The homotopy procedure for initial guess refinement can
116 be extended in a modular fashion, so that new model components can be introduced
117 without affecting reliability.

us AWEbox is freely available [34] and open-source under the GNU LGPLv3, which allows
1o Use in proprietary software. The toolbox heavily builds on lower level open-source
120 software packages such as CasADi [35], a framework for algorithmic differentiation and
121 optimization, and the nonlinear program (NLP) solver IPOPT [36].

122 The remainder of this paper is structured as follows. Section 2 discusses the multi-
123 aircraft modeling procedure, while Section 3 gives an overview of the optimization
12a ingredients used to formulate and numerically solve periodic AWE optimal control
125 problems. Section 4 then outlines the software implementation details. Section 5 presents
126 two case studies that highlight the efficiency and reliability of the implementation, as
12z well as its multi-aircraft capability. Section 6 draws conclusions based on these results
1zs and makes suggestions for further research.

120 2. AWE modeling for optimal control

130 In this section, we define the multi-aircraft topologies considered in AWEbox. We out-
131 line the optimization-friendly AWE model structure for six-degrees-of-freedom (6DOF)
132 aircraft dynamics as described in [22] and the extensions made for the multi-aircraft case
s [12,37].

13« 2.1. Topology

135 We consider any tree-structured multi-aircraft topology as previously introduced in
1s  [12]. Each tree is described by a set of nodes N, where each node n € N represents the
137 end-point of a tether. All tethers in the tree are assumed to be rigid and straight, which
1 is a reasonable assumption if tether tension is high compared to gravity and tether drag
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K= {1} K ={2,3,4} K ={2,3,5,6} 5
C={1} £={1} L£=1{1,4}
P(1) =0 P(6) =4

Figure 1. Illustration of the topology of a single-drone (left), triple-drone (middle) and two-layer-
dual-drone (right) AWE system.

10 [22]. Some of the nodes k € K correspond to aircraft nodes, while other nodes I € £
1o are layer nodes, with £ := N\K if [N| > 1 and £ := N in the single-aircraft case. The
1ax  parent map P(n) uniquely defines the interlinkage between nodes, and the children map
12 C(n) = {7 € N|P(i) = n} returns the set of nodes with parent n. Fig. 1 illustrates the
13 proposed notation for some typical examples.

e 2.2. System dynamics and variables

145 The considered topologies require a multi-body modeling approach which should
16 exhibit certain optimization-friendly properties. For one, the dynamics should have a
1z low symbolic complexity to allow for fast repeated numerical evaluation, in particular
s Of its sensitivities. Second, model nonlinearity should be kept low in order to enable fast
120 and reliable use of Newton-type optimization techniques. Third, the model should avoid
10 singularities that might be visited by and that might crash the optimization algorithm.
151 In [24], the efficacy of a non-minimal coordinates modeling approach to describe the
12 translational and rotational dynamics of multiple interlinked aircraft is demonstrated. In
153 this approach, each node is considered as a separate rigid body and linked by algebraic
1sa constraints. The aircraft orientation is parametrized in a non-singular fashion by the
155 direction cosine matrix (DCM).

The resulting multi-body models are of reasonable complexity and nonlinearity but
result in model equations in the form of index-3 DAEs. This representation does not
allow for the deployment of classical integration methods within the optimal control
problem [38]. Therefore an index-reduction technique is applied, which involves time-
differentiation of the algebraic constraints. The resulting model equations for both lift-
and drag-mode AWE systems are summarized by the following index-1 DAE:

F(x(#),x(t),u(t),z(t),0,p) = 0, ey

1ss  with associated consistency conditions C(x(t)) = 0,Vt € R.
To define the differential state vector x for both lift- and drag-mode systems, we
first define the basic multi-aircraft state

xbase . (4,9 R w,d). ()

This state vector firstly contains q and ¢ that are concatenations of the node posi-
tions q, € R3 and velocities q, € R3 respectively, Vn € N. These are followed by
the states specific to aircraft nodes, namely R, w, §, which are concatenations of all
Ry, wy, 6, Vk € K. The DCMs Ry := [&14, &4, &34 € R>*3 contain the chord-wise,
span-wise and upwards unit vectors of the aircraft body frames, expressed in the inertial
frame {ey, ey, e, }. All DCMs should be orthonormal, i.e. they are constrained to evolve
on the 3D manifold defined by

i = Pu(R R — 1) =0, (3)
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157 Where the operator Py is used to select the six upper triangular elements of a matrix. The
s aircraft angular velocities wy € R? are given in the body frame. The surface deflections
10 O = [0a ), O ks Ork] € IR? of aileron, elevator and rudder respectively, give control over
1o the aircraft aerodynamics.

The lift- and drag-mode state vector can now be defined as

lift .— (xbase’ I, lt) and x918 .— (xbase’K) , (4)

12 where the tether length I; € R and speed [; € R describe the main tether reel-in and -out
1z evolution. The variable x is the concatenation of all x; € R, Vk € K, which represent the
163 on-board turbine drag coefficients.

The controls

ulft .= (§,1;) and ud™8 = (§,%) (5)

1 are given by the concatenation of all aircraft surface deflection rates 5y € R?® and by
15 either the tether acceleration I; € R or the concatenation of the turbine drag coefficient
166 derivatives i € R.
The algebraic variables z := A describe the concatenation of all Lagrange multipliers
An € R related to the tether constraints that restrict the position of each node n € N to
evolve on a 2D manifold defined by

1 T )
Cw—z@«MZMW)lO—O, (6)
where
Aq(n) — 9 — qp(n)/ %f né¢lC, @)
qn + Rnrt — qp(n), ifn S K.

In these constraints, r¢ is the tether attachment point described in the aircraft frame. The
variable [,, describes the tether length associated with node 7, and is defined together
with the tether diameter d,, as

(lt,dt), 1f1’l = 1,
(In,dn) = < (Is,ds), ifn € K\{1}, 8)
(li,di), ifne [:\{1},

17 with s and ds the length and diameter of the secondary tethers and /; and d; those of
s the layer-linking tethers in stacked multi-aircraft configurations. The ground station is
160 located at the origin of the inertial frame, such that qo := 0.
The variables 0 represent variable system parameters that can be optimized over.
In the general stacked multi-aircraft case, they are defined as

0lift .= (I, d) and 098 := (I, I, d) 9)

170 where d = (dt, ds, dl)

171 The constant parameters p allow the dynamics to be evaluated for varying model
12 parameters, such as aircraft wing span, wind model parameters, etc. The system param-
17z eters values used in the numerical experiments in this paper are listed in Appendix A,
17a  Table Al.

w75 2.3. Lagrangian dynamics

The system dynamics (1) can be derived in accordance with the Lagrangian ap-
proach proposed in [24]. The system Lagrangian is defined as

L=T-V-A'c, (10)
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with ¢ the concatenation of all tether constraints ¢, for all n € A and with the kinetic
energy T and potential energy V defined as

T:=) Txx+ Y Tin (11)
kek neN
1
V=) mxgqye;+ ) Emt,ng(% —dp(n) €z (12)
ke neN

2
Here, my is the aircraft mass, and the tether mass my, := ptln”Td", with p; the tether
material density, and g is the gravitational acceleration. The kinetic energy related to the
aircraft Ti ; and to the tethers T;, [39] are given by

1 7. 1
Tk x = Equkqu + EwkT]Kwk , (13)
1 T . . LT
T = 2t (dn G+ Ap(n) Ap(n) + dn Gp(n)) (14)
with Jk the aircraft moment of inertia and with the tether velocity at the ground station
given by
. LT . i
qo=q, et with e = (15)

Iy

176 Note that for a drag-mode system with constant tether length, this implies that qo = 0.
With the system Lagrangian defined, the translational dynamics read:

doL oL

= _ 2 —_F+F 16

dtaq  9q + Feorr (16)
with F the concatenation of the external forces F;, exerted on each of the nodes. The term
Feorr is a Lagrangian momentum correction term for open systems:

dmy, . +90qn
Feorr := z q - (17)
neN dt aq

17z This term is non-zero for lift-mode systems, since tether mass and energy are entering
17e  and leaving the system due to the reeling motion.
The rotational dynamics are projected on a 3D manifold in the aircraft body frame
[24] so as to read:

d
]K% +wy X Jxwg +2UR] Vg ATc) =M, Vke kK, (18)

1o with My the aerodynamic moment exerted on the aircraft and with U the “unskew"
10 Operator, i.e. U(skew(a)) = a, as defined in [24].
181 Next to the dynamic equations, also the holonomic constraints ¢ = 0 need to be
12 enforced. Since these constraints do not explicitly depend on the generalized acceler-
1.z ations § or on the algebraic variables A, it is not possible to numerically integrate the
s resulting dynamic equations with standard algorithms. Therefore an index reduction is
s performed by differentiating ¢ twice with respect to time. Note that ¢ depends on §.
Because of the index reduction, as well as the overparametrization of the rotational
degrees-of-freedom, the consistency conditions C(x) := (c,¢,cg) = 0 must be enforced
at an arbitrary time point in the trajectory. These quantities are called invariants, since
their value is preserved by the dynamics. System invariants, when not dealt with
carefully, can lead to failure of the Linear Independence Constraint Qualification (LICQ)
in the context of periodic optimal control. Performing Baumgarte stabilization on the
invariants is an effective way to avoid this issue, while simultaneously ensuring that
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C(x) = 0is satisfied over the entire time period [40]. Therefore the tether constraint
dynamics are augmented with the following Baumgarte stabilization scheme:

¢4 2K¢ + K¢ =0, (19)
16 With x; a Baumgarte tuning parameter [41].

w7 2.4. System Kinematics

The system dynamics also describe the following trivial kinematics. First, as
explained in the previous section, the rotational kinematics are augmented with a
Baumgarte-type stabilization on the orthogonality conditions [42]:

dR; KR T
5= Rk(7(1 —R/Ry) + skew(wk)) , (20)

with xr another tuning parameter. The remaining kinematics

d o d, e d
a(q, 6)=1(q,9), a(lt, It) = (I, It) (lift-mode), =k (drag-mode), (21)
e together with (16) - (20) then complete the system dynamics summarized by (1). The
1o remaining modeling effort now focuses on the generalized forces F and moments M.

1o 2.5. Wind and atmosphere model

101 AWE systems typically operate at altitudes of several hundreds of meters, and the
12 altitude variation within a typical power cycle is of the same order of magnitude [15]. In
103 particular the multi-aircraft variant, unhindered by the drag losses caused by main tether
104 cross-wind motion, can theoretically operate at arbitrarily high altitudes, wherever the
15 wind power density is highest [10,12]. Therefore a wind model is needed that accounts
we for the varying wind power availability with altitude. Within the community, it is
17 common to use one of the following approximations:
a) Logarithmic profile: A logarithmic model [43] is typically used as a very simple
wind shear approximation. Assuming steady, laminar flow, the logarithmic model
provides us with the following expression for the freestream wind velocity ue(2):

2 €x (22)

1s  which in this model is assumed to be aligned with the x-axis in the inertial frame. Here,
10 U is the reference wind speed that is measured at an altitude z,.¢, whereas zj is the
200 surface roughness length, which depends on local terrain characteristics.

b) Power-law profile: Another frequent approximation is given by the power law:

ct
Uoo(2) 1= tef <Z> €x, (23)
Zref

21 where c¢ is a ground surface friction coefficient. We will use this model in the numerical
202 experiments in this paper, in accordance with case studies in [15,22].

203 (c) 3D wind data interpolation: The disadvantage of the logarithmic and power-law
20a models is that they are only useful to represent long-term average wind conditions.
20s Realistic wind profiles come in a wide variety of shapes and they are subject to strong
206 short-term (hourly, diurnal, seasonal) changes. Furthermore, the approximation accuracy
207 typically breaks down at altitudes relevant to AWE systems [44]. Hence, for accurate
20s  Optimal-control based power curve and capacity factor estimation, it is often necessary
200 to generate a more detailed but still differentiable wind model based on highly spatially
210 resolved wind speed measurements.
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To achieve this, we adopt the approach presented in [27,45]. We assume a wind pro-
file that is represented by discrete 2D wind measurements uy, 1, .. ., Um,ny,, € R2. These
measurements correspond to a set of altitudes zq, ..., Ziljpg We can then create a smooth
wind model to approximate the measured wind profile, by creating an interpolating
function based on Lagrange polynomials:

Nag Nag z— 2z
Wzg) =y 611 — | (24)
i=1 I]((;% i k

with { the concatenation of the polynomial coefficients {; € R? obtained by solving the
following optimization problem

' 1 nlag 5 d2
{* == arg min 2 Y (2, 0) — um,i +kH
4 i=1

@0 25)

2 The cost function is tuned with weight k so that {7 ~ uy,;, Vi = 1...1n),5, while prevent-
212 ing overfitting via the penalization of the second derivative of the interpolating polynomi-
21z als. The smooth and differentiable wind model is then given by ue(z) := (W(z,*),0).
Wind power availability is linear in the air density, and the atmospheric density
drop is non-negligible in the altitudes relevant to AWE. Therefore the density variation
with altitude p(z) is modeled according to the international standard atmosphere model
[43]:
To— Tz \ k!
p(z) = po (T ) , (26)
0

214 where R is the universal gas constant. The parameters Ty and pg are the temperature and

215 air density at sea level, and T, is the temperature lapse rate.

zne 2.6, Aerodynamic model

The apparent wind at each aircraft node k € K is defined as

U, == Ueo(qy €2) — G - (27)

We then define the dynamic pressure as q; := 30(q; e;)|u,||>. The aerodynamic forces
(in the inertial frame) and moments (in the body frame) on the aircraft wings are then

given by
b 0 0
For = qrSRCpr and Mupp=qS|0 ¢ 0 |Cy- (28)
0 0 b

with S the aircraft aerodynamic surface and with the aerodynamic coefficients Cgj :=
(Cx ks Cyk, Czx) and Cyp k= (Ck, Con ks Ciu k), Which are a function of the angles of attack
ax and side-slip angles By, given by the small-angle approximations

AT AT
€3 Uak € Uak

= and B:= (29)

AT AT *
€1 Uak €1 Uak

The force and moment coefficients C,  (with o € {EM}) read as
b 00

w
Co = Copn(ar) + Coplap)Br + Cow(@) | 0 ¢ 0| =m0 +Cog(a)d  (30)
0 0 b 2Hua,k||
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The dependence of these coefficients on ay is approximated by second-order polynomials

of the form:

a2

Coo(t) == [Co02 Coo1 Cop0]| & (31)
1

217 with the values of the coefficients ¢, . ; used in this study given in Table 2 in [22].
The tether drag is modeled as follows. Consider the infinitesimal tether drag force
dFiq,(s) := Fiq ,,(s)ds on an infinitesimal segment /,,ds, for s € [0, 1], with:

1
Fid,n(5) = 50(qtn(5) " e2)Cpdulu [t () [en(s) , (32)
with Cp the tether drag coefficient, and where the segment position and apparent wind
speed are given by
Qe (s) = sqp(n) + (1 —5)qn (33)
e (5) = teo(Qn(5) " €2) = Gon(s) - (34)

It is shown in [39,46] that the total drag force can be exactly distributed into contributions
on node n and on its parent node P (), so as to read

1 1
F}d’n ::/O sFiq,(s)ds and F?d,n ::/O (1 —5)Fq,(s)ds (35)

=8 respectively. In order to be able to numerically evaluate the tether drag, the integrals in
210 (35) are discretized using the midpoint rule. Typically, a number of My = 5 integration
220 intervals is sufficiently accurate.

The generalized forces can now be defined for each node as

Fan+Fl if n € KA (x = lift)
Fr o= { Fant Fig, + Frubi  if 7 € KA (x = drag) (36)
Fi,+ L F. ifn e N\K
’ ceC(n)

and the generalized moments are given by the aerodynamic moments, i.e. My := My,
Vk € K. In the drag-mode case, also the braking force of the on-board turbines is acting
on the aircraft:

Frurb k = Kk [tk [[a - (37)

=2 Note that the tether pulling force and moment exerted on the aircraft are implicitly
222 modeled in the constraint-based dynamics (16) and (18) and should not be considered
223 as part of the generalized forces.

22 2.7. Power output

225 For lift-mode systems, the generated power is the product of the main tether force
226 with the tether speed. The pulling force by tether n experienced at node # is given by
227 the expression Fy,, := —A, Vg, ¢;,. Note that a positive multiplier corresponds a positive
228 pulling force. The power transferred through tether 7 is then given by Py, = FtTn dn-
220 For the main tether, this expression can be simplified to P;; := —Aqll;. The mechanical
230 power that arrives at the ground station is given by Plift := —P, ;.

231 In drag-mode systems, electrical power is generated by the on-board turbines and

232 transferred to the ground station through the tethers. Each aircraft k € K generates
233 an amount of electrical power Py, k = rurb Kk || Ua k||, with 770,11 the on-board turbine
234 efficiency. Note that for the case of power consumption, i.e. ¥ < 0, the efficiency needs
235 to be inverted. This can be implemented using the logistic function, as proposed in
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23 [28]. The total power output generated by the drag-mode system is then given by
237 Pdrag = Z Pturb,k'
ke

238 3. Optimization ingredients

239 In this section, we discuss all the necessary ingredients to formulate, discretize
2¢0 and reliably solve power optimization problems for the system model described in
21 the previous section. We state the periodic optimal control problem formulation in
2a2 continuous-time, and we discuss common system constraints. We explain the transcrip-
2a3  tion method to convert the problem into an NLP and we summarize the interior-point
244 solution strategy used by IPOPT to solve it. Then we describe how the initial guess is
2es  constructed, and how it can be refined using two different homotopy methods that are
2e6  tailored for interior-point NLP solvers. Finally we discuss a third homotopy method
2a7  that is tailored for performing parameter sweeps with interior-point NLP solvers.

2es  3.1. Problem formulation for periodic orbits

249 The main goal of the toolbox is to facilitate automated computation of dynamically
=0 feasible, power-optimal periodic orbits for both lift- and drag-mode systems, while
=1 satisfying a set of relevant system contraints. In order to achieve this, we formulate
22 a periodic optimal control problem of a free time period T, which has the distinctive
253 property that the system state at the initial and final time of the OCP time horizon can be
254 chosen freely by the solver, but must be equal. Given that some key system parameters
25 0, such as the tether diameters and lengths, have a huge impact on the system power
26 output and the optimal flight trajectories, they are included as optimization variables as
257 well.
Let the optimization variables be defined as w = (x(t),u(t),z(t),0,T). Then we
can compute power-optimal state and control trajectories and a corresponding system
design 0 for given parameters p by solving the following continuous-time optimization

problem:

LT

min / I(x(t), u(t), z(t))dt (38)
0

st.  F(x(t),x(t),u(t),z(t),06,p) =0, Vt € [0,T], (38b)
h(x(t),x(t),u(t),z(t),0,p) <0, Vt € [0, T], (38¢)
x(0) —x(T) =0, (38d)
P(x(0)) = 0. (380

The Lagrange cost term is given by the sum of the negative power output and a penalty
on the controls in order to mitigate actuator fatigue, as well as on the side slip angle
and the angular accelerations in order to avoid aerodynamic side forces and aggressive
maneuvers:

I(x(£),u(t), z(t)) = —P(t) + D(t) TWa(t), (39)

s with @(t) := (u(t), B(t), w(t)) and W a constant diagonal weighting matrix. The vari-
20 ables B and w are the vertical concatenations of the side slip angles f; and angular
260 accelerations wy, Vk € K. Proper tuning of the weighting matrix W is necessary to
201 achieve fast convergence of the optimization algorithm as well as to obtain a locally
262 Unique solution. We refer the reader to the open-source code for the weighting factors
263 used in the numerical experiments in this study.
The function 1 : R™ — R is used to impose a technical constraint that removes
the phase invariance inherent to periodic OCPs. For lift- and drag-mode systems, this
function is different and reads as either

lphft(tht(())) — Zt(O) L 0 or wdrag(xdrag(o)) = q (O)Tey L 0. (40)
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264 The inequality constraints h are discussed in the following section.

205 Note that the consistency conditions C(x(t)) = 0 are not enforced at any given
266 time within the time horizon of the OCP. In combination with the periodicity constraint
267 (38d), this would lead to LICQ deficiency for all feasible trajectories. There exist several
26s technical solutions for this issue [40]. In the dynamic correction approach chosen here,
260 Baumgarte stabilization is applied to the consistency conditions in the system dynamics,
270 as previously mentioned in section 2.3. Therefore the dynamics of C are exponentially
arn stable and since by value of periodicity it holds that C(x(0)) = C(x(T)), the only feasible
a2 periodic state trajectories are those where C(x(t)) = 0, Vt € [0, T].

273 3.2. System constraints

274 A particular feature of OCP (38) is that it has an economic cost function, which is
27 not lower bounded, as opposed to tracking cost functions [47]. OCPs with an economic
276 cost function tend to having extreme solutions in the absence of constraints. In the
27 context of AWE power optimization, it is therefore crucial to impose constraints that
27 avoid a violation of the flight envelope and that preserve the structural integrity of the
270 airframe and the tether.
The flight envelope consists of upper and lower bounds on the angle-of-attack a
(to avoid stall) and the side-slip angle B (to avoid additional drag and preserve model
validity) for all aircraft in the system. Additionally the stress in the tethers should not
exceed the yield strength with a certain safety factor fs:

4 | | Ft,n
md?

On = fs | < Omax, VneN. (41)

Here, the tether force magnitude can be simplified to ||F,|| = Aul,, following the
definition in Section 2.7. The aircraft orientation is also constrained in order to avoid
collision of the airframe with the tether, which might occur during sharp turns in
transition maneuvers:

(qk - qP(k))TéB,k > COS('Ymax)lk , Vkek, (42)

where Ymayx is the maximum angle between the tether vector and the upwards unit
vector of the aircraft body frame, which should be set lower than at most 77/2. In the
multi-aircraft case, following anti-collision constraints might be included:

lax — qmll2 > fob, Vkme K, k#m, (43)

20 Where f}, is safety factor in multiples of the wing span b.

261 Along these nonlinear constraints, variable bounds are typically imposed on vari-
22 ables such as flight altitude, tether length, speed and acceleration, aircraft angular
2e3  velocity, control surface deflections and their rates, etc. One pair of variable bounds that
204 is crucial in the context of periodic optimal control, are the bounds on the time period T.
2es  Since the OCP will be discretized in a discrete number of numerical integration intervals,
26 the integration accuracy is variable along with T. Therefore T should be bounded from
207 above to guarantee an acceptable simulation accuracy. Also, by translating a priori
2es  knowledge on the optimal value of T into variable bounds, we narrow the search space
200 and exclude many possible local solutions, which typically increases reliability and
200 speeds up convergence of the NLP solver.

201 3.3. Problem transcription

202 The continuous-time OCP (38) has an infinite number of variables and constraints.
203 Hence, we apply direct optimal control to transcribe the OCP to an NLP. We choose
204 transcription by direct collocation, which is a fully simultaneous approach, where the
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20s numerical simulation variables are treated as variables in the optimization problem [26].
206 We chose this approach for the following reasons.

207 First, fully simultaneous optimal control is characterized by faster contraction
208 rates of the Newton-type iterations compared to simultaneous and sequential optimal
200 control, in particular for highly nonlinear and unstable systems [48]. Second, in the
s0  fully simultaneous case, the simulation problem is solved directly by the NLP solver,
s0  which is typically more robust than the rootfinder used in standard available numerical
sz integrators. Finally, since OCP (38) is highly non-convex, the NLP solver benefits from
s computing the Newton step using exact Hessian information. The NLP Hessian becomes
s0a  considerably cheaper to evaluate in the fully simultaneous approach.

305 Although the resulting direct collocation NLP is comparably large, it is also sparse.
ss  In combination with a sparsity-exploiting NLP solver, direct collocation is a highly
so7  efficient transcription method for the models presented in this paper.

In direct collocation, the time horizon is divided into N (usually equidistant) inter-
vals described by [t;, tj11], where 0 < ty) < t; < --- < ty = T. The control trajectory
is parameterized as a piecewise constant function @(t) := u; if t € [t;,t;11). The state
trajectory is parametrized by piecewise polynomials of order M + 1, i.e. X(t) := X;(t)
ift € [tir ti—i—l)r with

M
%i(t) =} §(T)xi;, (44)

with the normalized time T := t;ttf' ,T € [0,1], with At; := t; ;1 — t; and with the variables

xg,]- placed at the time points (10, T), with T = (7y,...,Tv) and with 15 := 0. The
Lagrange polynomials ¢; are uniquely defined by the choice of collocation grid points t:

M

T — T
; = . 45
gitw) =] s)
k#j

Note that it holds that x;(¢; + Atﬂ‘j) =x/ i The state derivative is given by the derivative
of the polynomials, i.e.

%i(t) =) Aftidfr'(r)xglj . (46)

s0s  The algebraic variables are also discretized in each i’th time interval as zg i and allocated
300 to the collocation points 7, ..., Ty.

Let us now define x; := xfro, X; = [xg,l,. ) .,xglM] and Z; := [Zg,l’ ... ,zer]. Then, for

given state vector x; at the start of each interval, the collocation variables X; and Z; are

uniquely determined by enforcing the system dynamics (1) at the grid points 7y, .. ., T

F ):Zi(tl‘ +AtT), X;,l,ui, Z;,lf 0,p

F(x;(t; + Atiw), X5, 0;,2,5,0,p
Gi(x;,u;, X, Z;,0,p,T) = A .1'2 v

=0. (47
F (i(l-(ti + Atiti), X Wi Zi 0 6, p)
The state transition from one interval node to the next is given by the equation

M
Xiy] = ¢(Xi,xi) with ¢(xi,Xi) = f(i(ti+1) = Zg(l)x;,] . (48)
=0

s10 The system of equations (47) corresponds to that of an implicit Runge-Kutta integration
su  scheme, where the choice of collocation grid points T uniquely defines the Butcher-
;12 Tableau of the specific integration method. Here, we choose as collocation grid points
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s the roots of Gauss-Radau polynomials, more specifically those corresponding to the
s« Radau Ila integration scheme because of its high order accuracy and its excellent stability
a5 properties (A- and L-stability), which is particularly relevant for stiff DAE systems [49].
Further, the inequality constraints are imposed on the interval nodes and the
Lagrange term in the cost function can be computed via a quadrature rule [26]:

tiv1

M
/ H(x(t), u(t), z(H)dt ~ Ak YU} -1(X,, w,2)), (49)
£ j=1

1

where the quadrature weights are given by

Li(gy) ... do(g) -
(6] - D] =[8() - Em(D)] : : : (50)
&1 (1) Lm ()

The NLP resulting from discretizing the OCP (38) using direct collocation is then
formulated as

1 N-1 M
min = ) Ak Zb]' 1(x; j, wi, z; ) (51a)
i=0 j=1
s.t. Xi+1 — ¢(x;,X;) =0, Vi=0,..., N—1, (51b)
G;(x;,u;, X;,Z;,0,p,T) =0, Vi=0,...,N—1, (51¢)
h(%;(t + Aita), Xip, w3, Zi g, 8,p) <0, Vi=0,...,N—1, (51d)
Xo—xy =0, (51e)
$(x0) = 0. (519

with the decision variables summarized by w := (xg, X, Zo, ug, X, . .., uny—_1,Xn, 6, T).
For the remainder of this text, we will write NLP (51) in more compact form as the

parametric NLP
Pi(p) i= min  ®(w,p) (52a)
st. G(w,p) =0, (52b)
H(w,p) <0. (52¢)

sie 3.4, Solution strategy

There are two common solution approaches for inequality-constrained nonlinear
programs such as (52): sequential quadratic programming (SQP) methods and interior-
point (IP) methods [50]. SQP methods are based on iteratively solving a series of convex
quadratic programs (QP) that are local approximations of the NLP. IP methods on the
other hand perform iterations directly on a relaxed version of the Karush-Kuhn-Tucker
(KKT) system corresponding to NLP (52), which read as

Vw®(w,p) + AT VuG(w,p) + ' VywH(w,p) =0
G(w,p)=0
H(w,p) +s=10

diag(s)u = 11,

(53)

sz where 1 denotes a vector of ones. Together with the conditions # > 0, s > 0, the KKT
s1s system (53) for barrier parameter T = 0 gives the first-order necessary conditions of opti-
s mality. However, in this case, the KKT system is non-smooth due to the complementarity
;20 condition diag(s)u = 0, and therefore difficult to solve with Newton-type methods.
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sz Therefore, in IP methods, the iterations generally start on a smooth KKT system related
322 to a barrier parameter 1y > 0, which is then gradually reduced to a smaller value 7 > 0,
;23 so that the final solution approximates the exact solution of (53) up to sufficient accuracy.
2 Itholds that |w} — w*||, = O(71), where wi and w* are the solutions to the KKT system
325 for T > 0 and for T = 0, respectively.

326 The advantage of IP methods is that the iterations are computationally cheaper
52z compared those of SQP methods: per iteration only one linear system has to be solved, as
s2s  opposed to one QP of equal size. Also, because IP methods start iterating on a problem
320 with relaxed inequality constraints, and only gradually tighten these constraints, they
;30 are particularly robust in case little or no a priori knowledge on the active set of the
s optimal solution is available, as is typically the case for AWE systems.

332 In this work, we use the interior-point NLP solver IPOPT [36] in combination with
sz the linear solver MA57 [51]. IPOPT implements a particularly reliable algorithm that
;s implements a filter line search method for globalization [52]. The algorithm also exploits
35 the sparsity of the direct collocation NLP which makes it particularly efficient for this
;s application.

sz 3.5. Circular initial guess construction

In order to efficiently converge to a solution of a highly nonlinear, non-convex NLP,
even a robust NLP solver such as IPOPT typically requires a good initial guess. Therefore
we propose here a circular flight trajectory initialization based on a limited number of
user-defined parameters 7z°:

7T0 = (qol NO/ l?l 92, 9((3)/ (PO’ 60) 4 (54)

s3s where (0 is the aircraft flight speed, N{ the number of loops, I the initial tether length,
s 0 the (average) elevation angle of the main tether and 62 the trajectory cone angle with
s0  respect to the average main tether vector. The angle ¢° denotes the phase angle with
saa - which the periodic initial guess can be shifted in time. The parameter 6° is a direct guess
sz for the system parameters 6.

Building on the parameters 7t°

, we then define a stationary tether frame as

e xe
e} == cos(00) - ex +sin(6)) -e,, €)= m , eji=e| xe, (55)
1

after which we can define for each aircraft k a frame that is rotating about the main
tether:

[e(B) €i(t) efy(t)] == Ralge())[ef € €] (56)
with the rotation angle ¢y (t) for each aircraft defined as

gx(t) = 9"+ w’t +27(k — P(k) = 1)/|C(P(k)\ L], (57)
and with the rotation radius and speed, and the time period of one loop defined as

-0
RO .= l,g sin(98) , W= % and Tlo = 2 (58)

wd’

a3 respectively.
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In the general multi-aircraft case, the node positions and (angular) velocities are
then initialized at each time point on the collocation grid t; by

ab;  dpy, 17 et vieL, (59
2

Qs ab, + VI — RO (1) + RO - e (1), vkek,  (60)

Q00 - et Vke K, (61)

wp; 4w’ efi(t), VkeK.  (62)

saa  In the single-aircraft case (X = £ = {1}), the aircraft position is initialized using (60).
a5 The layer node velocities are set to zero.
The aircraft DCMs are initialized so that the initial guess meets the flight envelope
constraints rather than that it exactly satisfies the kinematic relation (20). The apparent
wind speed for each drone at time ¢; is given by

u), o =us(q)e) —qp,, Vke K, (63)

with ue (-) the user-defined wind profile. The DCM is then initialized to have zero angle
of attack and zero side-slip angle:

u®

&) a’“ , Vke K, (64)
H a k 1 ||
e () X &y
&) (1) oy Vke K, (65)
He1,k< z) X el,k,iH
&5, @i X &y, Vke K. (66)
346 The tether multipliers are trivially initialized as /\2 +— 1Nm™1,Vn € N, to ensure

sa7  a strictly positive tether force. All remaining states and controls are initialized as zero.
ses  Finally, the initial overall cycle period is set to T? «+ TloNlO.

349 The initial guess is summarized by the vector w’. In the following, we will refer to
sso the method which uses w? as an initial guess for P as “NH” (no homotopy).

ss1 3.6. Homotopy-based initial guess refinement

352 Even the educated initial guess defined in the previous section often leads to
;3 very slow convergence or even solver failure when solving P¢(p). In order to increase
ssa  computation speed and improve reliability, we propose a refinement procedure based
sss - on homotopy methods, which reliably produces a close-to-optimal, feasible initial guess
6 based on the analytic user-defined initialization.
357 The basic idea is to first solve a trivial version of the intended NLP, and then to
s repeatedly compute the solution while updating the NLP in a controlled and smooth
sse  way to the full nonlinear final problem. Homotopy methods (also known as contin-
30 uation methods) are widely used in the field of non-convex optimization when little
se1 Or no a priori knowledge on the location of the optimal solution is available [53,54].
sz Homotopy methods were originally introduced in the field of AWE optimization in [25].
;e In this paper, we generalize this approach for multiple homotopy stages and discuss
ses  particularities when using interior-point methods.
First we construct a homotopy problem #.(p, ¢), with homotopy parameters
¢ € R"™and ¢; € [0,1],Vi € {1,...,n4}. Note that ¢ can be multidimensional to allow


https://doi.org/10.20944/preprints202212.0018.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2022 d0i:10.20944/preprints202212.0018.v1

16 of 31

for step-wise introduction of distinct model nonlinearities or couplings. The homotopy
problem is defined as

He(p, @) = min  Pu(w,p,P) (67a)
st. Gu(w,p,¢) =0, (67b)
Hy(w,p,¢) <0 (67¢)

ses  with the NLP functions @y, Gy and Hy defined such that H.(p,1) = Po(p) and
sss  Hco(p,0) = Pr(p). Here, Py(p) is a simplified problem which is trivial to optimize
se7  for a large set of initial guesses, and Pg(p) is the target optimization problem defined
ses  in (52). It can be shown that, if H(p, ¢) satisfies the LICQ and second-order sufficient
se0  conditions (SOSC) for all p and ¢, there exists a unique and piecewise smooth homotopy
s0  path w*(p, @) between the optimal solutions w*(p,0) and w*(p, 1) [54].

371 Algorithm 1 (CIPH) describes a classic procedure to follow the homotopy path
s2 W*(p, ¢). First we provide an initial guess w’ which is the approximate solution of the
sz initial problem Py(p). Then, for each step i in the multi-step homotopy, we reduce the
sz« homotopy parameter ¢; from one to zero with an increment % in a total of <y iterations. At
s7s  every iteration the homotopy problem #H.(p, ¢) is solved up to a certain (low) accuracy
sre  level, while the NLP solver is warmstarted with the solution of the previous iteration.
sz To improve performance, that maximum number of NLP iterations can be limited in this
s7s  stage.

379 The output of the homotopy then is an approximate solution Wy to the intermediate
30 problem .(p,0), which can be used as an initial guess for solving P¢(p) up to high
sa1  accuracy. If the LICQ and SOSC conditions are fulfilled, there exists a high enough value
;2 Of 7y to guarantee convergence of this algorithm [54, Theorem 5.2].

Algorithm 1 Classic Interior-Point-based Homotopy (CIPH)

Require: wy,p,y >0
Output: w;
¢ 1n¢><1
w(® «— NLPSOLVER(Py(p), Wo)
fori=1,...,nydo
w(l) < w(i_l)
forj=1,...,vdo

i i — 2
w() < NLPSOLVER(H.(p, ¢), w(®))
end for
end for
W <— W(n4’)

sa3s  3.7. Penalty-based homotopy

384 The fixed-step continuation approach described in the previous section is simple
;s to implement and works well in practice [27,45,55]. Nevertheless it has two drawbacks.
ses  First, the choice of fixed homotopy parameter step renders the algorithm less robust than
se7  if an adaptive-step strategy would be used. Second, in terms of computational efficiency,
ses Y - 1y NLPs need to be solved by default even when larger steps would be feasible.

389 Of course, adaptive step size strategies for homotopy path following exist and are
a0 well-established [53,54]. However, they increase the complexity of the algorithm as well
301 as the amount of hyperparameters to tune. Therefore we propose a simple but effective
302 variation of Algorithm (1), which can be used in particular when the chosen NLP solver
303 is a well-globalised solver. The idea is to use the underlying globalization routines (e.g.
304 line-search) of the NLP solver to choose a suitable homotopy parameter step size.
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The resulting homotopy strategy is penalty-based and builds on the reformulation
Hp of NLP (67) to read:

Hp(p, $) = 55‘12 Dy(w,p, ) +S' ¢ (68a)
st.  Gu(w,p,¢) =0, (68b)

HH<WI | ¢) S 0/ (68C)

¢>¢ > 9. (68d)

s0s In this formulation, the parameters ¢ are treated as a decision variables with a high
396 linear penalty S € Ri"’. The homotopy path is now parametrized by the bounds on ¢,
307 1.6 43 = ($,¢) S [0, 1]

308 Algorithm 2 (PIPH) describes the alternative homotopy procedure. The lower
30 bounds ¢ are successively set to 0 for each homotopy stage, allowing the NLP solver
wo to find a path for the homotopy parameter ¢; in stage i, while simultaneously applying
a1 correction steps to the decision variables w. Afterwards, the problem is solved again
w2 with ¢; = 0 to ensure completion of the homotopy stage.

a03 Because of the high linear penalty on ¢, the NLP solver will take the largest possible
a4 parameter step that is acceptable to the line-search filter, hence providing both robustness
ss and speed. Additionally, only 2 - ny NLPs need to be solved instead of the <y - ny NLPs
206 in the classic continuation homotopy. This can allow for a significant speed-up even if

the number of iterations per NLP solve is naturally higher.

Algorithm 2 Penalty-based Interior-Point-based Homotopy (PIPH)

Require: Wy, p
Output: wy
&/ﬂ/ 4)(0) — 17[4))(1
w0 < NLPSOLVER(Py(p), wo)
fori=1,...,nydo
w(l) <— w(iil)
¢, <0
wl) « NLPSOLVER(H, (p, $), w())

¢; 0

wl) « NLPSOLVER(H,(p, $), w())
end for
Wi W(n‘i’)

a08 Note that the convergence of Algorithm 2 is only guaranteed for small enough
awo updates of the parameter ¢. In practice however, convergence is almost always achieved
a0 for jumps from 1 to 0.

a1 3.8. Interior-point-based homotopy

a12 The homotopy methods presented above are based on the idea of solving a sequence
a1 of closely related problems, where the solution of each problem is used to warmstart
a1a the next. However, because an interior-point NLP solver by default starts iterating on
a5 the relaxed KKT problem (53) (with a high barrier parameter 7), it is unable to exploit
a1s  the (active set) information contained in the initial guess, if it is the solution to the
a1z non-smooth KKT problem. To circumvent this issue, we apply the following barrier
as  strategy [27,56,57] throughout the homotopy:

a1e 1. The initial problem Py is solved from an initial barrier parameter 1y to an interme-
a20 diate T; < 19, so that the KKT system remains sufficiently smooth.

a1 2. The homotopy problem #,, is repeatedly solved for constant barrier parameter .
a2 3. The final problem P is solved from T to a final value 7y < 7.
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.23 Using this strategy, the Newton iterations quickly converge from one intermediate
a2« problem to the next during the homotopy stage.

a2s  3.9. Homotopy design

a26 In this paper, we propose two homotopy stages (1, = 2). The initial problem
a2z Py(p) thus comprises two alterations with respect to the final problem P¢(p). Firstly,
a2s the aerodynamic forces and moments in the model are replaced with the direct force
a0 controls Fgj € R3 and moment controls Mg € R3 for all k € K, which are then added
a0 to the control vector u. This step relaxes the nonlinearities and couplings related to the
a1 aerodynamics [25]. Secondly the initial problem does not optimize the average power
a2 output but rather the tracking error with respect to the user-generated initial guess.

The homotopy problems .(p, ¢) and H(p, ¢) are then constructed by replacing

Fa x and My f in (36) with

Far) _ Fak B Fer
(MA,,{) = (MA,k) A=) (Mf,k> ©)

as well as by changing the stage cost function to
L(x(t), u(t), 2(t),¢) = =g2P(t) + (1= g2) [x(t) =X (D[ + @ (t) 'Wa(t),  (70)

ass with X0(t) the initial state trajectory guess.

Additionally, in order to reduce the initial degrees of freedom, the system pa-
rameters are fixed to their initial values until the second homotopy step. The system
parameters are thus only optimized over when the cost function transitions from tracking
error to power output:

(1-¢,)0+¢,8°<0<(1-¢,)0+¢,6. (71)

a3¢  Substituting equations (69) - (71) into the model, cost function and constraints, we
35 Obtain after repeated discretization with direct collocation the functions ®(w, p, @),

s Gr(w,p,¢) and Hy(w, p, ¢).

a3z 3.10. Parametric sweep warmstarting

a38 Once a solution for NLP (52) has been found, it is often interesting to investigate the
a3 sensitivity of the optimal solution with respect to one or more of the model parameters
a0 Pp. A typical example is when we compute the NLP solution for different values of ¢
a1 (in the case of a logarithmic or power-law wind profile) to compute a power curve for
a2 a particular AWE system. One approach is to apply Algorithms 1 or 2 to compute a
a3 solution for all parameter values based on the same initial guess. However, in case the
aas  distance between the different parameter values is small, it is more efficient and more
ass  reliable to compute an initial guess for one problem from the solution of the previous
426 ONE.

aa7 Algorithm 3 (SIPH) describes how an initial guess for each problem in the set
aas Of NLPs Py¢(p;), fori = 1,...,p, can be generated efficiently. It starts based on the
ass  solution W¢ ) of the homotopy problem H.(po, 0) for an initial set of parameters p. This
aso  initial solution can be computed using CIPH or PIPH. We assume that the sequence
ass1  of parameter vectors py,...,pp is ordered so as to minimize the distance from one
a2 parameter set to the next, as proposed in [27]. Then, we can compute the initial guess wy;
a3 for problem Pg(p;) from the guess W¢; 1 for the previous problem P¢(p;_1), by updating
ssa  the parameter vector p from one value to the next via linear interpolation in 7y}, steps
s and by recursively solving the problem #(p,0). We employ the same barrier strategy
ase  as in section 3.8 and keep the barrier parameter at a constant value 7; while solving H.,
a7 to guarantee a smooth transition from one problem to the next.
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Algorithm 3 Parametric Sweep Interior-Point-based Homotopy (SIPH)

Require: W¢o,po,---,Pp
Output: Wil .- ,Wf,p
fori=1,...,pdo
Wei < Wi
forj=1,...,7p do

P < Pi-1+ 7 (Pi — Pi-1)
Wi ; < NLPSOLVER(Hc(p,0), We ;)

end for
end for
W < W(n4’)
Sweep o Trial [ MPC
Model NLP Optimization

Figure 2. Main AWEbox classes (Python) and overall software structure, including dependencies.

ass 4. The AWEbox software package

aso The goal of the AWEbox software package is to provide a user-friendly interface
a0 that facilitates the automatic construction of the optimization-friendly dynamics (1).
s It formulates the the power optimization problem (38) and reliably finds a numerical
a2 solution. The toolbox is written in Python 3 and relies heavily on the following software
a3 packages: CasADi, an open-source symbolic framework for algorithmic differentiation
se and nonlinear optimization [35]; the interior-point NLP solver IPOPT [36]; and (option-
ses ally) the linear solver MA57 [51]. The six main classes and basic structure of the package
sss are shown in Fig. 2, including the dependencies on the external packages.

a67 Starting at the lowest level, the Model-class takes the user-provided modeling op-
ass tions and assembles the according state, control and algebraic variable vectors. Then, the
a0 dynamics (1), relevant constraints and intermediate model outputs are constructed as
a0 CasADi Function objects. Table 1 gives an overview of the main modeling options imple-
ann mented in AWEbox. Central here is the use of CasADi to compute the partial derivatives
a2 of the system Lagrangian in (16). Finally, the Model class can also be used in stan-
a3 dalone mode, e.g. in case the user is interested in obtaining the dynamics for simulation
a7 purposes only.
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Table 1. Main AWE system modeling options and possible variants implemented in awebox.

Options Variants

Topology single-aircraft, i.e.: (1,1)
multi-aircraft, e.g.: (1,2)
stacked multi-aircraft, e.g.: (2,3)
Power generation lift-mode
drag-mode
Aircraft DOF 6 DOF
3 DOF [10]
Wind profile uniform
logarithmic
power-law
3D-data
Atmosphere uniform
International Standard Atmosphere
Induction constant/zero
actuator-disk

a75 The NLP class receives from a Model instance the dynamics and constraints and
aze  constructs the NLP functions @y, Gy and Hy as CasADi Function objects, using the
a7z direct collocation approach presented in Section 3.3.

a78 From a practical viewpoint, it is essential for the convergence of the NLP solver
aro  that all variables, equations and cost terms are properly scaled. Therefore, AWEbox
a0 implements a heuristics-based scaling procedure based on the system parameters and
a1 the user-defined initialization. We refer the reader to the open-source implementation in
a2 (cite Zenodo) for the scaling factors obtained in the numerical experiments in this study.
283 The NLP functions are then passed on to the Optimization class, where their first-
sea and second-order derivatives are constructed using CasADi, which also provides the
aes  interface to IPOPT. The Optimization class then constructs the initial guess from Section
ass 3.5 and implements both Algorithm 1 and 2 to prepare the homotopy-based initial guess
as7  for solving Problem (52).. It is also possible to warmstart of the solver with a user-
ass provided initial guess. Finally, Problem (52) is solved up to high accuracy. The default
as0 linear solver for computing the Newton step within IPOPT is MUMPS, but in general a
a0 higher performance in terms of speed and reliability is reached using the solver MA57,
a1 which has to be installed separately.

a02 On a higher level, the central class with which the user interacts is the Trial class,
203 which knits together the functionality of the lower-level classes. To start with, the user
as0s can specify modeling options, physical parameters, discretization options, initialization
a5 parameters, etc., as in the following (non-exhaustive) example:

496 1 opts = {}

297 2 opts['model.topology']l] = {1:0} # parent map P(n)
408 3 opts['model.kite_dof'] = 6

499 4 opts['model.system_type']l = 'lift_mode'

500 5 opts['model.wind.model'] = 'uniform'

501 6 opts['model.wind.u_ref'] = 10. # [m/s]

502 7 opts['nlp.N'] = 100

503 8 opts['solver.linear_solver'] = 'mab7'

504 9 opts['solver.initialization.l_t'] = 400. # [m]
505 10 opts['solver.homotopy.phi.0'] = 'penalty'

506 11 opts['solver.homotopy.phi.1'] = 'penalty'

sz With these options, the user can create a Trial object, and build the system dynam-
sos ics, constraints and NLP functions, including derivatives. In this example the power
so0 Optimization is then solved using the penalty-based homotopy. The Trial class then
s10  performs some quality checks on the numerical accuracy of the solution, e.g. by checking
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su  consistency condition satisfaction. The class also contains some basic plotting functional-
s12 ity for visualizing the optimal solution:
513 12 from awebox import Trial

514 13 trial = Trial (opts)
515 14 trial.build ()

516 15 trial.solve ()
517 16 trial.plot(['states', 'controls'])
518 The high-level class Sweep, which builds on the Trial class, can be useful for para-

s19  metric sweeps. This class builds the parametric NLP functions and their derivatives only
s20 once, and implements Algorithm 3 for warmstarting the neighboring NLP problems:

521 17 from awebox import Sweep

522 18 sweep_opts = [('model.wind.u_ref', [4,6,8,10,12,14,16])]

523 19 sweep = Sweep(opts, sweep_opts)

524 20 sweep.build ()

525 21 sweep.run()

526 The MPC class uses the Trial class and the lower level classes to construct the

s2z  tracking MPC problem as defined in [58]. The class takes as an input the optimal
s2s  solution of Problem (38) to construct a periodic reference on the MPC time grid. It
s20  also takes care of correct initialization, and initial guess and periodic reference shifting.
ss0  The MPC problem can then be recursively solved using IPOPT with the warmstarting
s strategy from [57]. The main goal of this class is not to provide highly efficient numerical
s2 solvers aimed at embedded optimization, such as those implemented in the software
s3  packages acados [59] or PolyMPC [60]. Rather, this class provides a reliable controller
s that conveniently allows for offline closed-loop simulations.

535 22 from awebox import Pmpc

536 23 mpc_opts = {}

537 24 mpc_opts['N'] = 20

538 25 mpc_opts['terminal_point_constr'] = True

539 26 Ts = 0.1

540 27 mpc = Pmpc(mpc_opts, Ts, trial)

541 28 u0 = mpc.step(x0)

sz Although the focus here is reliability and not computational efficiency, the user can also
ses  code-generate and compile the MPC solver functions using CasADi, for use in an external
saa  codebase or for embedded application.

sas 5. Numerical Results

546 This section discusses two numerical case studies that highlight the contributions
sez  Of the AWEbox software package. In the first case study we discuss and compare compu-
sss tational performance and robustness of the homotopy algorithms CIPH and PIPH, while
se0  solving a single-aircraft lift-mode reference problem. In the second case study we com-
sso  pute a power curve for a dual-aircraft lift-mode system and compare the performance of
ss1 the algorithms PIPH and SIPH.

ss2  0.1. Single-aircraft case study

553 The first reference problem aims at finding an optimal power cycle for a lift-mode
ssa single-aircraft system, with L = {1}, £ = {1}, and P(1) = 0. The aircraft parameters
sss - are taken from the Ampyx AP2 reference model presented in [22]. We adopt the same
sse  wind profile and atmosphere model as presented in [15]. We assume a “reinforced"
ss7 version of the AP2 airframe, since the real-world airframe load limits lead to an overly
sse  pessimistic average power output estimate. Therefore, compared to the OCP in [15],
sso  the airspeed limits and tether force limits are omitted and replaced only by a tether
seo  stress constraint, while the tether diameter d; is no longer fixed and is treated as an
s Optimization variable. Table Al in Appendix A summarizes the model parameter values
se2  Of this reference problem, while Table 2 lists all variable bounds and path constraints.
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Table 2. System variable bounds and path constraints.
Description Variable Min Max  Units
Side-slip angle B -20.0  20.0 deg
Angle-of-attack o -6.0 9.0 deg
Tether stress o 0.0 3.6 GPa
Rotation angle I -40.0  40.0 deg
Tether length It 10.0  700.0 m
Tether speed Iy -150 200 ms!
Tether acceleration I 2.4 2.4 m s—2
Flight altitude Gz 100.0 - m
Time period T 20.0 70.0 s
Angular velocity w -50.0 500 degs!
Aileron deflection Ja -20.0  20.0 deg
Rudder deflection Or -30.0 30.0 deg
Elevator deflection e -30.0  30.0 deg
Deflection rates ) 2.0 20 rads!
563 We construct the NLPs (67) and (68) using N = 100 intervals, with Radau collocation

ses polynomials of order M = 4, and the controls are discretized using a piecewise constant
ses parameterization. The resulting NLPs have 15334 variables, 14323 equality constraints
ses and 600 inequality constraints. We solve the problem on an Intel Core i7 2.5 Ghz, 16GB
567 RAM.

568 The homotopy meta-parameters are experimentally tuned to minimize the associ-
seo ated CPU time. The intermediate homotopy barrier parameter is chosen as 7; = 1072.
szo For CIPH, the number of parameter update steps per stage are y; = 10 and 7y, = 1. For
s PIPH, the homotopy parameter penalties are S; = 10? and S = 1.

s72 In the following, we wish to investigate the performance and robustness of CIPH
s and PIPH, compared to the case where the user-provided circular initial guess is applied
s7a  without refinement (“no homotopy" - NH). For this purpose, the reference problem de-
s7s  scribed above is solved for each method for a set of 100 uniformly sampled initialization
s7s  parameters 7r0 from the set defined by 7l < 7% < 70

577 In the NH-case, performance heavily depends on the a priori knowledge of the user.
sze 1o account for this fact, we introduce two different users. “User A" is an AWE developer
s7o  with little a priori knowledge on the location of the optimal solution. Therefore, this user
se0  has samples from a wide initialization parameter set. “User B" on the other hand, is a
se1 control engineer who is familiar with the system and its optimal behavior for the given
sz conditions. Therefore User B samples from a parameter set that is defined by a range
se3  thatis a factor 3 smaller than that of User A, centered around the average parameters
sea as evaluated at the solution of interest. Table 3 summarizes the sampling range for all
ses  initialization parameters, for both User A and B. The initial number of loops is chosen to
sse  be Nlo =1

Table 3. Initialization parameter bounds used for uniform sampling by users A and B.

Description Variable Min (A) Max (A) Min(B) Max(B) Units
Flight speed 40 20.0 60.0 30.6 440 ms!
Tether length 19 300.0 600.0 300.0 391.8 m
Elevation angle 69 30.0 50.0 26.3 329 deg
Cone angle 62 20.0 30.0 14.9 21.5 deg
Phase angle @° 0.0 360.0 0.0 93.9 deg

Tether diameter d? 1.0 5.0 1.6 29 mm
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Figure 3. CPU wall time for the NH-, CIPH- and PIPH-method, obtained by initialization parame-
ter sampling by User A and User B.

587 Figure 3 shows the CPU timing results resulting from the initialization sampling
sss by User A and User B. For User A, NH leads to highly variable CPU timings, ranging
se0  from a peak timing of up to 12 minutes down to a minimum of 15 seconds. In two
se0  cases, NH does not converge as it exceeds the maximum number of iterations of the NLP
s solver. The minimum NH-timing is 50% lower than the best timings of the homotopy
s2 methods. Hence, it is possible for User A to “get lucky" and converge to a solution very
sos fast without initialization refinement. However, the peak NH-timing is 8 times higher
sos than the worst PIPH-timing and almost six times higher than the worst CIPH-timing.
sos The average NH-timing is a factor 1.7 times higher than in the PIPH case and a factor 1.3
ses higher than the CIPH case. Therefore, User A benefits significantly from CIPH/PIPH
so7  in terms of expected computational performance and in particular in terms of timing
sos consistency. PIPH is on average 13% faster than CIPH, while the peak timing is 30%
se0  lower.

600 For User B, with much better a priori knowledge, the computation times of NH
so1 significantly improve compared to user A: average timings are reduced by a factor 2.4,
sz to a value slightly lower compared to CIPH/PIPH for User B. The peak NH-timing is
es reduced by a factor of 1.5, which is still a factor 5.5 larger than compared to CIPH/PIPH.
sos Thus, while User B has a slightly better expected performance in the NH-case, he or
sos she can still profit from the improved timing consistency provided by CIPH/PIPH. The
s difference in timings for the CIPH and PIPH methods is almost negligible. The average
sz timings of these methods do not change much compared to the timings obtained for
sos User A. This highlights the property that by pre-structuring the optimization path, the
s homotopy methods are not able to exploit a priori user knowledge to achieve a better
e10 average performance.

611 Overall the PIPH/CIPH CPU timings range between 30 and 100 seconds. This is
ez comparable to the CPU timing range reported in [26] for similar model complexity and
e13 identical collocation grid (but excluding homotopy timings).

614 The NLP (52) has multiple local solutions and the choice of optimization algorithm
e1s  influences the frequency with which certain solutions are found by the optimizer. In the
e1s experiments for User A, a total of 9 different local solutions were found. Fig. 4 shows the
ez dominant, circular, optimal solution, while Fig. 5 shows as an example the third most
e1s frequent optimal solution, which is characterized by the well-known lemniscate flight
e10 pattern. Table 4 summarizes for each method the frequency of local solutions.

620 The homotopy methods almost always converge to the main solution of interest:
621 out of a 100 trials, 100 for PIPH and 98 for CPIH. In the NH-case on the other hand, this
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Figure 4. Locally optimal single-aircraft position and orientation trajectory #1 (circular pattern) as
found by User A.

e22 is only the case for 71 trials, while failing to converge in 2 cases. Hence, the homotopy
ez methods do not only improve performance and reliability for User A, but they are also
s2« more stable in terms of optimization outcome. For User B, all methods always converge
e2s  to the main solution.

Table 4. Solution frequency in a set of 100 trials, optimal time period T*, average power output P*
and maximum consistency violation of locally optimal solutions found by User A.

SoL.# NH PIPH CIPH | T*[s] P*[kW] [|C(x*(-))e

1 71% 100%  98% | 20.2 8.8 8104
2 15% - - 24.0 8.7 9.10*
3 7% - - 27.9 9.3 1.1073
4 1% - 1% | 325 9.0 31073
5 1% - - 415 10.7 71073
6 1% - - 41.2 10.6 2.1072
7 1% - - 47.8 10.0 4.1072
8 1% - - 374 10.3 6-1073
9 0% - 1% 40.4 10.5 1-1072
Fail 2% - - - - -
626 When comparing the different local solutions, we notice that average power output

e27 increases up to 22% with respect to the main solution for solutions with longer optimal
e2s time periods T*. The solutions with a longer time period typically consist of more than
s20 one loop, which leads to a better ratio of reel-out vs. reel-in time, and thus a higher
s30 “pumping efficiency". This is in line with the results reported in [26].

631 Note that for increasing time period T*, consistency condition satisfaction decreases.
e32 This is because the consistency condition trajectory is the periodic solution to the stable
e33  uncontrolled dynamics of the invariants. Hence, as simulation accuracy decreases,
esa consistency conditions are moving away from the theoretically optimal solution of a
e3s constant zero value. For this reason, AWEbox automatically computes the consistency


https://doi.org/10.20944/preprints202212.0018.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2022 d0i:10.20944/preprints202212.0018.v1

25 of 31

',;‘?
200
N 150
8
— 100
50 =
0

0
50

—150
—100
—50

100

150
200

0
250 $\ﬂ“\

Yty 0 100
/ 150 300

Figure 5. Locally optimal single-aircraft position and orientation trajectory #3 (lemniscate pattern)
as found by User A.

ess conditions for each solution and gives out a user warning once a treshold is reached.
e37  The user can then increase the number of collocation intervals, the integration order, or
s lower the upper bound on T if applicable.

o30  5.2. Dual-aircraft power curve

640 In the second case study, we compute the power curve for a dual-aircraft lift-mode
sax system,ie. K = {2,3}, L = {1},and P(1) = 0, P(2) = 1 and P(3) = 1. We retain the
sz model parameters and constraints and discretization of the single-aircraft case study,
ez while adding the anti-collision constraint (43).
To give more structure to the problem, we propose the following modification to the
OCP. We divide the time horizon in two separate intervals with associated time variables
T; and T, and we define the total time period as T := T1 + T,. We then impose that the
first interval is a single reel-out phase, and the second one a single reel-in phase:

>0, Vtel[0,T (72)
i <0, Vte(T,T]. (73)

saa In the discrete time grid, 70 time intervals are allotted to the reel-out phase, and 30
ees intervals to the reel-in phase. The resulting NLP has 33464 variables, 31550 equality
ess constraints and 1402 inequality constraints.

647 The intermediate barrier parameter is tuned manually to be 7, = 10~# for both PIPH
ess and SIPH. The PIPH-tuning is the same as in the single-aircraft case. SIPH performs
ess @ homotopy with 7, = 10 steps for every new parameter value. Additionally, the
eso maximum number of NLP solver iterations is limited to 100 for both methods.

o51 We search for solutions with three loops, i.e. Nl0 = 3. The reason for this is that the
es2 Tresulting trajectories fit well inside the time period bounds defined in Table 2, for all
sss  considered wind speeds. The remaining initialization parameters are set to 4° = 502,

osa 00 =25° 0. =20° ¢0 =0°1" =640m, 19 = 100 m, d = 4 mm and d¥ = \%d?. The
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Figure 6. Average power output P* and optimal time period T* of a dual-aircraft AWE system
(top) and CPU wall time for the PIPH and SIPH method (bottom) as a function of the reference
wind speed 1.

ess secondary tether diameter is initialized under the assumption that the secondary tether
ess force equals the main tether force divided by two.

057 The power curve for the proposed dual-aircraft system is obtained in the following
ess manner. First the optimal trajectory and design is computed with PIPH for a reference
eso  wind speed of u,s = 10 . The resulting optimal design is given by I{ = 1429 m,
eeo  dif =4.3 mm and di = 3.2 mm. The average power output is P* = 42.0 kW. Note that
se1 this is more than a factor of 4 higher than the single-aircraft solutions in the first case
es2 study, while the number of aircraft has only doubled. The power per wing surface area
ee3 is thus more than doubled as a result of the reduced main tether drag and higher flight
ses altitude. This is in line with the results reported in [10,12].

665 The optimal design parameters are then fixed, and the NLP is re-solved for u.¢
ess Tranging from 0 % to 20 % This is done once with PIPH, every time starting from the
ee7 identical user-defined initial guess. Then it is done once using SIPH in two separate
ses sweeps: once downwards and once upwards starting from the solution for u,,s = 107
669 Figure 6 shows the power curve obtained with SIPH, and additionally for each
e7o  wind speed the optimal time period. Similar to the power curve computed in [37], we
ern identify three operational regions. In the first region of zero wind speed up to the cut-in
ez wind speed u,s = 3 T, power is consumed to keep the system airborne. The upper
o3 bound on T is active here, as the aircraft glide downwards about an almost vertical
e7a rotation axis during the reel-out phase. In the reel-in phase, potential energy is injected
ers  back into the system as the aircraft fly slow upwards trajectories. In the second operating
ers  region, power grows cubically until the design wind speed is reached. In the third region,
ez power output still grows with the wind speed, but cubic growth is curtailed in order to
ers  satisfy the tether stress constraints. The main strategy to limit power output here is to
ero increase the tether reel-out speed so as the decrease the available wind. The optimal time
es0  period increases with respect to the design wind speed, as the reel-out speed increases,
es1  while the reel-in speed is constrained and cannot grow proportionally. Figures 7 and 8
es2 illustrate the reel-out and reel-in trajectories for u,f = 18 7.

683 Figure 6 also shows for each wind speed the associated CPU time for PIPH and
esa SIPH. The computation times include both the CPU time for the homotopy procedures
ess and the CPU time to solve the final problem P. PIPH does not converge for the wind


https://doi.org/10.20944/preprints202212.0018.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2022 do0i:10.20944/preprints202212.0018.v1

27 of 31

0 450 400

o 750 700 650 600 550 50

80 < [m]

Figure 7. Optimal dual-aircraft flight trajectories for u,.f = 18 T (reel-out phase).
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Figure 8. Optimal dual-aircraft flight trajectories for u,ef = 18 % (reel-in phase).
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ess speeds of 15 ¥ and 17 to 20 . Note that convergence might be recovered for smaller
ssz update steps of the homotopy parameter ¢. However this falls outside the scope of this
688 study.

o89 SIPH outperforms PIPH at every single wind speed (where PIPH converges), but in
eso particular at low wind speeds, when the optimal solution diverges significantly from the
o1 user-defined initial guess. Up until the wind speed of 15 %, the average CPU time is 5
ez minutes and 23 seconds for SIPH and 15 minutes and 20 seconds for PIPH.

603 6. Discussion

694 In this work, we presented AWEbox, an open-source Python toolbox for modeling
eos and optimal control of single- and multi-aircraft AWE systems. We discussed the gen-
eos eral multi-aircraft modeling structure, optimization ingredients and implementation
o7 details needed to efficiently compute power-optimal orbits for a wide range of system
ess architectures and modeling options. In particular, we proposed and implemented two
e0o interior-point based homotopy method variants, in order to increase the performance
700 and reliability of the optimization algorithms. These methods produce a feasible initial
71 guess for the underlying NLP solver, based on an analytic initial guess shaped by the
702 software user. In a numerical experiment, a reference single-aircraft problem was solved
703 for a large set of different initial guesses.

704 The penalty-based homotopy method reduced the average and peak CPU timing
70s with a factor 1.7 and 8 respectively, compared to the case when no homotopy method
76 Was applied by a user with little a priori knowledge. With good a priori knowledge
707 available, the homotopy methods did not improve performance, but still the peak CPU
7s timing was reduced by a factor 5.5. Overall, computation times were in the range of 30 -
700 100 seconds, which is competitive to those reported in the literature. Additionally, the
70 penalty-based homotopy method consistently led to the same local solution, whereas
=11 the no-homotopy case resulted in different local solutions in 29 out of a 100 cases.

712 In a second case study, we computed a power curve of a dual-aircraft AWE system
73 and compared the performance of the penalty-based homotopy method of the previous
na  case study with that of a third homotopy method tailored for parametric sweeps with
ns  interior-point NLP solvers. The penalty-based method was not able to converge to a
ne solution for all wind speeds, while the sweep method succeeded in doing so, while
7z outperforming the penalty-based method on average by a factor 3 in terms of CPU
ne  timings. The average CPU timing per NLP solution was about 5 minutes.

710 Future work might entail model accuracy improvements, in particular concerning
720 tether and induction modeling. Efficient problem formulations and implementations
722 that include stability and robustness considerations would be a useful contribution, in
722 particular for multi-aircraft systems. Finally, efficient algorithms that enable simultane-
723 ous trajectory and design optimization with expensive models (e.g. aero-elastic models)
722 could lead to faster and more accurate system design loops.
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721 Abbreviations

72 The following abbreviations are used in this manuscript:

AWE  Airborne wind energy
CIPH Classic Interior-Point Homotopy
DCM  Direction Cosine Matrix

1P Interior-Point

KKT  Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualification (LICQ)
MPC  Model Predictive Control
7aa NH No-Homotopy
NLP  Nonlinear Program
OCP  Optimal control problem
PIPH  Penalty-based Interior-Point Homotopy

QP Quadratic Program

SOSC  Second-Order Sufficient Condition
SQP Sequential Quadratic Programming
SIPH  Sweep Interior-Point Homotopy

s  Appendix A

Table Al. System parameters.
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