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Abstract

Microstructure evolution in metal additive manufacturing (AM) is a complex multi-physics and multi-

scale problem. Understanding the impact of AM process conditions  on  the  microstructure 
evolution and the resulting mechanical properties of the printed part is an active area of research. At 
the meltpool scale, the thermo-fluidic governing equations have been extensively modeled in the literature 
to understand the meltpool conditions and the thermal  gradients  in its  vicinity.  In  many 
phenomena governed by partial differential equations, dimensional analysis and identification of 
important dimensionless numbers can provide significant insights into the process dynamics. In this 
context, a novel strategy using dimensional analysis and the method of linear least squares regression 
to numerically investigate the thermo-fluidic governing equations of the Laser Powder Bed Fusion AM 
process is presented in this work. First, the governing equations are solved using the Finite Element 
Method, and the model predictions are validated by comparing with experi-mentally estimated 
cooling rates, and with numerical results from the literature. Then, through dimensional analysis, an 
important dimensionless quantity - interpreted as a measure of heat ab-sorbed by the powdered 
material and the meltpool, is identified. This dimensionless measure of heat absorbed, along with 
classical dimensionless quantities such as Péclet, Marangoni, and Stefan numbers, is used to investigate 
advective transport in the meltpool for different alloys. Further, the framework is used to study the 
variations of thermal gradients and the solidification cooling rate. Important correlations linking 
meltpool morphology and microstructure evolution related variables with classical dimensionless 
numbers are the key contribution of this work.
Key words: LPBF; meltpool; regression; finite element method; alloys; Peclet; Maragoni; surface tension; 
dimensionless
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1 Introduction

Additive manufacturing (AM) has proven to be a path-breaking manufacturing paradigm that has

the potential to disrupt many of the traditional reductive-type manufacturing processes [1]. A

wide variety of AM techniques, suitable for printing metals, glasses, ceramics, and polymers [2],

are in use today and an optimal AM technique can be selected depending on the material, part

complexity and design considerations [3]. Laser Powder Bed Fusion (LPBF) AM process is the focus

of this work. This technique is widely used to print metallic components with intricate geometry

to their near-net shape. Components printed using the LPBF process have the potential to exhibit

improved material properties as compared to the traditional manufacturing process. In particular,

additively manufactured hierarchical stainless steels are not limited by strength-ductility tradeoff

unlike traditionally manufactured stainless steel [4]. Tensile and fatigue properties of additively

built Ti-6Al-4V were shown to be superior to mill-annealed Ti-6Al-4V [5]. However, the properties

of the printed components are very sensitive to the choice of the LPBF process parameters and

the execution of the printing process. Realization of the full potential of AM is not possible

unless optimized process parameters can be identified for various alloys used in laser-based additive

manufacturing [6].

The LPBF manufacturing technique is a multi-stage process. Initially, a moving blade of poly-

mer edge (recoater) spreads a metal powder forming a layer of uniform thickness. A high-energy

laser moves over a powder layer bed in a predefined path. This results in a localized melting of the

powder metal followed by rapid cooling and fusion of melted powder material on the previously built

part. A new layer of the powder is then deposited and the process repeats until the desired part is

printed in a layer-by-layer fashion [2]. This multi-stage additive printing process involves melting

and solidification of the material, formation of the localized meltpool, convection cells inside the

pool, keyhole formation, improper fusion of the powder, building up of the residual stresses, and

sometimes unwanted material deformation, etc. [7]. Existing literature is focused on understanding

the effects of additive process parameters on the properties of experimentally printed components

such as the surface roughness of overhang structures [8], bead geometry and microstructure [9],

tensile strength [10], and, width and penetration depth of single scan track [11], etc. In addition

to experimental studies, various LPBF processes, especially meltpool behavior [12], build layers

[13], laser heat source [14] effects have been analytically studied. Hybrid modeling that combines

analytical models and machine learning-based models is useful in estimating desirable meltpool

dimensions and optimized process variables [15].

On the modeling front for LPBF, literature focused on the modeling of the rich multiphysics

aspects of the process has been extensively published. Abolhasani et al. [16] studied the effect of

reinforced materials on the cooling rates and meltpool behavior of AlSI 304 stainless steel using finite

element method simulations. Ansari et al. [17] developed a 3D finite element method based thermal

model using a volumetric Gaussian laser heat source to model the thermal profile and meltpool
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size in selective laser melting process. The heat diffusion models were reinforced by considering

localized dynamic and unsteady fluid flow inside the meltpool. Dong et al. [18] considered phase

transformation, thermo-physical properties, heat transfer, and meltpool dynamics in their finite

element model to investigate the effect of laser power and hatch spacing on the meltpool. Similar

multiphysics model accounting for heat diffusion and fluid flow was presented by Ansari et al.

[19] to study the effect of laser power and spot diameter on meltpool temperature in the LPBF

process. Gusarov et al. [20] focused on heat transfer and radiation physics in their numerical model.

More comprehensive numerical models of the LPBF considers temperature-dependent properties,

powdered layer, fluid flow, laser scanning, etc. Mukherjee et al. [21] used comprehensive LPBF

numerical models to simulate fluid flow and heat diffusion dynamics for most commonly used

alloys. Khairallah et al [22] provided richer insights into LPBF printing of stainless steel using

various continuum numerical models. Wang et al. [23] coupled finite volume, discrete element, and

volume of fluid methods to rigorously model power spreading, powder melting, and multi-layer

effects during LPBF AM of Ti-6Al-4V alloy. In trying to capture all the important aspects of

the LPBF process in a numerical model, challenges exist in terms of numerous variables, process

parameters, and their complex interactions, and these are outlined in the work of Keshavarzkermani

et al. [24] and Fayazfar et al. [25].

Physical processes with many independent parameters can be analyzed and investigated us-

ing dimensional analysis. Traditional areas of physics and engineering, especially fluid mechanics

and heat transfer have used dimensional and scaling analysis extensively [26]. Researchers in AM-

related problems have recently started incorporating dimensional analysis in their work. Van Elsen

et al. [27] provided a comprehensive list of dimensionless quantities that are relevant for the ad-

ditive and rapid manufacturing process. They justified the usability of the dimensional analysis

to investigate complex additive processes like LPBF. Dimensionless numbers were shown to assist

in choosing previously unknown process parameters for the LPBF process to print Haynes 282, a

nickel-based superalloy [28]. Weaver et. al [29] demonstrated the application of universal scaling

laws to study the effect of process variables such as laser spot radius on the meltpool depth. Rank-

ouhi et al. [30] in their experimental work applied the Buckingham-π theorem in conjunction with

Pawlowski matrix transformation to present dimensionless quantities that correlate well with the

density or porosity of the built component. Their proposed non-dimensional quantity is shown to

be applicable across different material properties and machine variables, thereby achieving desirable

scaling. Another widely applicable dimensionless quantity called Keyhole number was proposed by

Gan et al [31]. They made use of dimensionless analysis in conjunction with multiphysics numerical

models and high-tech X-ray imagining in their discovery. Keyhole number provides useful insights

into the aspect ratio of the meltpool and the transformation of the meltpool from a stable to a

chaotic regime. Wang and Liu [32] proposed four sets of dimensionless quantities combining process

parameters and material properties. Their experimental analysis shows these numbers can effec-
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tively characterize phenomena like the continuity of the track and its size and the part porosity.

Noh et al. [33] showed that normalized enthalpy and relative penetration depth in the vertical

direction can provide reliable process map for printing single track 3D geometries using selective

laser melting process.

The published literature surveyed for this work either uses experimental or numerical methods

to propose new dimensionless quantities which are specific to the AM process and are not always

related to classical dimensionless numbers used in the fields of fluid mechanics and heat transfer.

Classical dimensionless numbers like the Péclet number can provide a good understanding of the

impact of process variables on the printed components. Nusselt, Fourier, and Marangoni number

provide a good understanding of the mode of heat transport inside the meltpool for varying laser

power and scan speed [34]-[35] . Cardaropoliet al. [36] provided a map for Ti-6Al-4V alloy linking

dimensionless quantities with the porosity of built parts. Mukherjee et al. [37] used their established

numerical models of the LPBF process to simulate the building of the different materials with

varied process variables. Using a known set of dimensionless numbers representing heat input,

Péclet, Marangoni, and Fourier numbers, they made sense of the impact of process parameters on

important output variables like temperature field, cooling rates, fusion defects, etc.

Similar to the meltpool in the LPBF process, the traditional welding process also involves

the formation of a weldpool which is the site of various multiphysics interactions and processes.

Literature on the use of dimensional analysis to understand the flow patterns in the weldpool

offers insights that are relevant to AM. This includes the work by Robert and Debroy [38] where

they highlighted the importance of dimensionless numbers like Prandtl, Péclet, and Marangoni in

understanding the aspect ratio of the weldpool. Using the numerical models to predict the weldpool

shape for a range of materials, they presented the insightful role of these numbers in shaping the

weldpool morphology. Similarly, Lu et al. [39] also discusses the role of Marangoni convection in

affecting the aspect ratio and shape of the weldpool. Their analysis shows that the effect of welding

process conditions on the weld part can be understood by looking at the non-dimensional numbers

like Péclet and Marangoni. Wei et al. [40] showed that the formation of a wavy fusion boundary

is linked with the critical values of the Marangoni and Prandtl numbers. Fusion boundaries and

shapes have a significant impact on the microstructure of the material. Asztalos et al. [41] applied

dimensional analysis to study the polymer additive manufacturing processes.

As can be seen from the literature review presented, the use of dimensionless numbers to

understand the complex interaction of physical processes is gaining attention. However, among the

proposed dimensionless quantities, few are universally applicable. Some of them remain applicable

only in the context of a specific study or alloy. A universal dimensionless variable or normalized

graph can facilitate the comparison of results between different studies using different materials [42].

This leaves room for the development of novel approaches to characterize the LPBF process using

dimensional analysis. Our goal in this work is to perform such a dimensional analysis and investigate
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the relation between meltpool morphology and to a lesser degree, microstructure evolution, and the

underlying dimensionless quantities naturally manifested by the thermo-fluidic governing equations

of the LPBF process. In this context, a novel numerical strategy is presented here, where the

data generated using numerical simulations of the thermo-fluidic model for different alloys and

different process parameters was used, along with linear regression analysis, to characterize meltpool

morphology in terms of the dimensionless numbers relevant to the meltpool heat and mass transport.

The outline of the paper is as follows: Section 2 introduces the governing equations of the LPBF

process in their dimensional and non-dimensional forms, along with the corresponding numerical

formulation suitable to be solved using the Finite Element (FE) method. Section 3 covers the

validation of our FE-based implementation of the LPBF thermo-fluidic model with experimental

results and numerical results from the literature. In Section 4, an empirical analysis based on

linear least-squares regression is described to identify an important dimensionless quantity that is

interpreted as a measure of heat absorbed by the powdered material and the resulting meltpool. An

important relationship is then identified relating the measure of heat absorbed by the meltpool and

classical dimensionless quantities relevant to the thermo-fluidic governing equations of the LPBF.

This is followed by a presentation of simulation results in Section 5, including a discussion on the

effects of the dimensionless quantities on the meltpool morphology and the resulting microstructure.

Lastly, concluding remarks are provided in Section 6.

2 Governing equations of the LPBF process

2.1 Thermo-fluidic model of the LPBF process

A discussion of the physical processes underlying LPBF that are relevant to the thermo-fluidic

model is outlined in this section. The schematic in Figure 1 shows an outline of the LPBF process.

In LPBF, a recoater spreads a metal powder layer on top of the powder bed or partially built

part that is enclosed in an inert environment. A high-intensity laser scans over this powder layer,

causing localized melting and fusion of the melted powder on top of the partially built part. At

the macro-scale or part-scale, this laser irradiation of the metal powder results in the formation

of a meltpool (also referred to as molten pool or melting pool in the literature) of the liquified

metal, that subsequently solidifies. This solidification of the meltpool is driven from the mesoscale,

where the liquid melt undergoes a phase transformation to a solid phase, but the solidification is

spatially heterogeneous and leads to the formation of dendritic structures and eventually the grain-

scale microstructure. The formation of dendrites, their morphology, and the related numerical

models have been extensively treated by the authors in a recent publication [43]. In this work,

part-scale and the thermo-fluidic processes that are relevant in the meltpool and its immediate

vicinity are considered. The processes modeled, with varying fidelity, are the movement of the laser-

powered heat source, powder melting, convective flow in the meltpool, heat diffusion, and convective
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Figure 1: Schematic depicting the part-building process in Laser Powder Bed Fusion (LPBF). Laser

irradiation on the powdered material causes localized melting and fusion of the metal powder on

top of the partially built part. The localized melting results in a small pool of liquified metal

referred to as the meltpool. Shown in the inset figure are the state of the powder under the laser -

with the newly solidified region and a meltpool with convective flow of the liquified metal, and this

region comprises the computational domain (Ω) of the numerical model presented in this work.

and radiation losses. These processes and their thermo-fluidic effects can be captured by coupled

partial differential equations solving for the thermal distribution and the velocity distribution in

the meltpool [21].

The governing equations of heat transfer are as follows:

ρc
∂T (x, t)

∂t
+ ρ(ν.∇)T (x, t) = ∇ · k

(

∇T (x, t)
)

+ Sφ + Sp, x ∈ Ω (1a)

Equation 1a is solved for thermal conduction over the domain Ω (see Figure 1). T and ν are the

temperature and velocity, respectively, and are the primal fields of the governing equations. All

through this work, vector quantities like velocity and the gradient operator, ∇, are shown in bold

to distinguish them from other scalar quantities.

Sp is the heat input from the laser and Sφ is the latent heat released by the metal. ρ, c, k

represent density, specific heat capacity, and the thermal conductivity of the material, respectively,

and these can be constant or temperature dependent. Melting of the metal powder consumes latent

heat, which is represented by source term, Sφ = −ρ(ν.∇)φ − ρL(∂φ∂t ). Here the liquid fraction, φ,

determines the state of the material. φ = 0 represents the solidified region, φ = 1 represents the
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liquid, and 0 < φ < 1 represents the mushy zone region [44]. The liquid fraction is a function

of the temperature of the material and is given by the hyperbolic function: φ = eξ

eξ+e−ξ , where

ξ = λ(T−0.5Tm)
Tl−Ts

and Tm = 1
2(Tl + Ts). λ is a constant that represents the solid-liquid interface

thickness, Ts, and Tl are the solidus and the liquidus temperature of the material, respectively.

The shape of the laser beam is modeled as an axisymmetric Gaussian profile, and the moving laser

power is modeled using a source term, Sp = αωP
πr2plp

· e

(

−
f(x−νpt)

2

r2p
−

fy2

r2p
−

fz2

l2p

)

, where P is the laser

power, α is the absorptivity, f is the distribution factor, rp is the laser spot size, lp is the powder

layer thickness, and νp is the laser scan speed.

Effectively, thermal conduction, powder melting due to the moving laser, and the formation of

a liquid meltpool are modeled. Inside the meltpool, heat diffusion, along with the advection and

convection effects of the fluid flow are considered. Convection inside the meltpool is a result of the

competition between the surface tension and the buoyancy effects, but the surface tension driven

flow dominates inside the meltpool [45]. The governing equations for the fluid flow, accounting for

the conservation of mass and momentum, are given by,

ρ
∂ν(x, t)

∂t
+ ρ(ν(x, t).∇)ν(x, t) = −∇p+ βg(T − Ts) +∇.

(

µ∇ν(x, t)
)

−
180µ

d2φ

(1− φ)2

φ3 + δ
ν(x, t)

(1b)

∇.ν(x, t) = 0, x ∈ Ω (1c)

This equation also accounts for advective and diffusive transport, buoyancy-induced flow, and the

pressure drop due to the mushy zone (modeled as a porous zone) [44]. Here, β is the expansion

coefficient, Ts is the solidus temperature, µ is the dynamic viscosity, dφ is the characteristic length

scale of the porous mushy region, and δ is a very small parameter to avoid division by zero when

φ = 0 (solid region). Integral form of governing equations introduced in the Section 2.2.1 are given

by Equations 2a-2b. As will be seen in the integral form, the surface integrals therein also account

for the surface tension-induced flow and losses to the inert surroundings. This is captured by the

inclusion of the convective and radiation heat losses, Marangoni convection from the top surface

of the domain, Ω. At the bottom surface, temperature is fixed to a preheating temperature value

that is above the ambient temperature. To limit the modeling complexity, in this otherwise highly

coupled multiphysics environment, mechanical deformation of the solidified region and keyhole

formation is neglected.

2.2 Non-dimensional formulation of the governing equations

In this section, a dimensionless framework is constructed that exploits the powerful idea of the

Buckingham-π theorem. The LPBF process consists of several process parameters and the thermo-

fluidic model that helps us build an understanding of the complex interaction between several
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of these process parameters. The dimensionless framework facilitates combining several of these

dimensional parameters into fewer dimensionless independent quantities. These dimensionless pa-

rameters then present key details of the complex additive process such as LPBF in fewer numbers of

variables. The classical Buckingham-π theorem [46] provides a mathematical basis for reducing the

parameter dimensionality of the equations and helps group the parameters in the governing equa-

tions into a fewer number of non-dimensional and distinct quantities. This reduction follows from

the application of the Rank-Nullity theorem [47, 48]. Further, as will be discussed in later sections,

the Finite Element Method (FEM) is employed to solve the governing equations considered in this

work. FEM is a widely used numerical method that solves partial differential equations posed in

their weak formulation (integral formulation). Thus, the dimensionless version of the governing

equations that results from the application of the Buckingham-π theorem is also considered in its

weak form and solved using FEM.

2.2.1 Weak formulation

In this section, the process of non-dimensionalization of the governing equations given by Equa-

tion 1(a-c) is discussed. For the process of non-dimensionalization, the laser scan velocity, νp is

chosen as the characteristic velocity in the system, and the non-dimensional velocity in the melt-

pool is then given by ν̃ = ν
νp
. The thickness of the powder layer, lp, is chosen as the characteristic

length, and this leads to the characteristic time, given by tp =
lp
νp
. Now, the non-dimensional time

and length are given by t̃ = t
tp

and x̃ = x
lp
, respectively. Further, the non-dimensional temperature

is chosen to be T̃ = T−T∞

Tl−T∞

, where Tl and T∞ are the liquidus temperature of the metal and the

ambient temperature of the inert surroundings, respectively. The characteristics value of the pres-

sure is chosen to be ρν2
p . A list of the dimensionless variables used in this model are summarized

in Table 1. Using these scaled quantities, the dimensional strong (differential) form of the govern-

ing equations given by Equation 1(a-c) are converted into their corresponding dimensionless weak

(integral) form. Following the standard variational procedure of deriving the weak formulation of

the governing equations from their strong form [49], the following weak formulation is obtained:

Find the primal fields, {T̃ , ν̃}, where,

T̃ ∈ ST , ST = {T̃ ∈ H1(Ω) | T̃ = T̃ ′ ∀ x ∈ ∂ΩT
D},

ν̃ ∈ Sν , Sν = {ν̃ ∈ H1(Ω) | ν̃ = ν̃′ ∀ x ∈ ∂Ων
D}

such that,

∀ ωT ∈ Vu, VT = {ωT ∈ H1(Ω) | ωT = 0 ∀ x ∈ ∂ΩT
D},

∀ ων ∈ Vφ, Vφ = {ων ∈ H1(Ω) | ων = 0 ∀ x ∈ ∂Ων
D}
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and satisfies,

∫

Ω
ωT

(

∂T̃

∂t̃
+ (ν̃.∇̃)T̃

)

dΩ+

∫

Ω
∇ωT .

[ 1

Pe

]

∇̃T̃ dΩ+

∫

Ω
ωT

[ Tc

Ste

](

(ν̃.∇̃)φ̃+
∂φ̃

∂t̃

)

dΩ

−

∫

Ω
ωT

αd

πr̃2l̃

[

Q
]

exp(x̃, ỹ, z̃)dΩ+

∫

∂ΩT
N

ωT

([Bi

Pe

]

T̃ +
[ ts
Bo

]

T̃
)

ndS = 0 (2a)

∫

Ω
ων

(∂ν̃

∂t̃
+ ν̃ · ∇̃ν̃

)

dΩ−

∫

Ω
ων

[RaPr

Pe2

]

(T̃ − T̃s)dΩ −

∫

Ω
∇̃.ων P̃ dΩ+

∫

Ω
ων

[ Pr

DaPe

]

ν̃dΩ

+

∫

Ω

[Pr

Pe

]

(∇̃ων .∇̃ν̃)dΩ +

∫

∂Ων

N

ων

(

P̃ −
[MaPr

Pe2

]

∇̃T̃
)

ndS = 0

(2b)

here, n is the unit outward normal vector at the surface boundary. ∂ΩT
N and ∂Ων

N are the bound-

aries for the temperature and velocity Neumann boundary conditions, respectively, and ∂ΩT
D and

∂Ων
D are the boundaries for the temperature and velocity Dirichlet boundary conditions, respec-

tively. ωT and ων are standard variations from the space H1(Ω) - the Sobolev space of functions

that are square-integrable and have a square-integrable derivatives. In these equations, the rel-

evant dimensionless numbers are grouped inside square brackets. These dimensionless numbers,

along with their physical interpretation, are listed in Table 2. The surface boundary condition in

Equation 2a represents the nondimensional form of the convective and radiation heat losses to the

inert surrounding, and the boundary condition (on the top surface) in Equation 2b represents the

Marangoni flow induced by the surface tension gradient.

Table 1: List of the scaling variables used in the non-dimensionalization of Equations 2a-2b

Parameter Expression Physical interpretation

l̃ lp
lp

Dimensionless powder layer thickness

r̃ rs
l Dimensionless laser spot radius

t̃ tν
lp

Dimensionless time

T̃ T−T∞

Tl−T∞

Dimensionless temperature

ν̃ ν
νp

Dimensionless velocity

p̃ p
ρν2

p
Dimensionless pressure

∇̃
1
lp
∇ Dimensionless gradient operator
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Table 2: Symbols, expressions and their physical interpretation for the dimensionless quantities

considered in Equations 2a-2b

Parameter Expression Physical interpretation

Prandtl (Pr) ν
α Ratio of momentum to thermal diffusivity

Grashof (Gr) gl3β(Tl−T∞)
ν2

Ratio of buoyancy force to viscous force

Darcy (Da) κ
d2φ

Ratio of permeability to the cross-sectional area

Marangoni (Ma) dγ
dT

lp∆T
µα Ratio of advection (surface tension) to diffusive transport

Péclet(Pe) lpνp

α Ratio of advection transport to diffusive transport

Stefan (Ste) c(Tl−Ts)
L Ratio of sensible heat to latent heat

Power (Q) P
ρc(Tl−T∞)νpl2p

Dimensionless power with velocity dependence

Radiation measure ( ts
Bo

) σ(Tl−T∞)3

ρcνp
Measure of radiation contribution to the heat transfer

Biot (Bi) hlp
k Ratio of resistance to diffusion and convection heat transport

2.3 Computational implementation

As stated earlier, the above weak formulation of the governing equations is solved using FEM,

and as model inputs, realistic process parameters and material properties of common LPBF alloys

are chosen, and these are discussed in Section 4.1 and in the Supplementary Information. FEM

implementation is done in an in-house, scalable, finite element code framework written in C++

language with support for adaptive meshing and various implicit and explicit time-stepping schemes,

and is built on top of the deal.II open source Finite Element library [50]. Standard FEM constructs

are adopted, and for all the simulations presented in this work, linear and quadratic Lagrange bases

are used for pressure and other field variables such as temperature and velocity, respectively. The

coupled Navier-Stokes equations are solved using Chorin’s projection method [51]. Following the

standard practice in our group to release all research codes as open source [43, 52, 53, 54, 55],

the complete code base for this work is made available to the wider research community as an

open-source library [56]. A representative schematic of the computational domain and the relevant

boundary conditions are shown in Figure 2. The important boundary conditions such as convective

and radiations losses and shear stress on the top surface expressed as surface tension gradient with

temperature is visible in the surface integral terms in Equation 2a-2b. The initial temperature and

temperature at the bottom surface of the material are assumed to be fixed at 353K. The ambient

temperature was taken as 301.15K. These temperatures were scaled to a dimensionless form in

the computational implementation. The minimum and maximum dimensionless mesh sizes in an

adaptive meshing scheme are taken to be ∆x = 0.8 and ∆x = 6.0 along the x, y, and z directions.
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A uniform dimensionless time step size of ∆t = 1.0 is used for running test cases. The small factor

in Equations 1b, δ = 1.0× 10−5 is used in all the simulations. The interface parameter (λ) used in

our simulation is in the range λ = [0.1, 1.0].

Laser scan path

Adaptive mesh at 
heat source

Fixed temperature on 
the bottom surface

Convection and 
radiation losses 
from sides

 Marangoni convection 
(surface tension gradi-
ent) on the top surface

Dimensionless 
temperature 

Fused material 

Meltpool 
location

Meltpool 
shape

Liquid fraction

z

y

x

Figure 2: Schematic of the 3D finite element (FE) computational domain indicating the laser scan

path and the relevant boundary conditions. Also shown is the underlying adaptive mesh that

evolves with the location of the heat source. Representative dimensionless temperature profile and

location of the meltpool obtained from the FE simulation of SS316 alloy AM are shown. The

numerical parameters and material properties used in this simulation are given in Section 2.3 and

in the Supplementary Information.

3 Experimental and numerical validation

In this section, a validation of the numerical formulation and the FEM-based computational frame-

work is presented. This computational framework solves the thermo-fluidic governing equations of

the meltpool described in Section 2. Further, a comparison is given between the simulation results

with experimentally observed cooling rates (made available to us by our experimental collabora-

tors), and with predictions of other numerical models from the literature. Variables like the cooling

rates during the solidification, material temperature, velocity of fluid inside the pool, and melt-

pool geometry can be used as a yardstick to gauge the capability of our numerical model towards
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simulating the LPBF process. For this validation study, the temperature and velocity distribu-

tions, the cooling rates, and the maximum velocity in the meltpool are obtained from our FEM

implementation. The cooling rate estimates from our simulations are compared with the cooling

rates estimated from experimental data of the LPBF process that were obtained from Bertsch et

al. [57]. Further, our simulation results are compared with the corresponding material temper-

ature distribution and meltpool velocity values obtained from numerical modeling data in Shen

et al. [58]. Simple thin-walled pseudo-2D plates and 3D cuboidal geometries made of stainless

steel (SS316 alloy) using the LPBF process are considered in this validation study. The printed

geometries consists of 13 x 0.2 x 13 mm3 thin wall plates and 50 x 10 x 4 mm3 cuboids. The

schematic of the printed 2D plates and 3D cuboidal geometries can be found in Bertsch et al. [57].

These geometries are subsequently referred to as the 2D walls and 3D cuboids. The powder layer

thickness used was 0.02 mm in both cases. Experimental details, AM technical specifications, and

the post-processing methods used to measure cooling rates can be found in the publications of our

experimental collaborators, Bertsch et al.[57]-Rankouhi et al.[59]. The experimental cooling rates

were estimated by our collaborators, through post-processing of the microstructure morphology,

particularly the secondary dendrite arm spacing (λ2) at a distance of 6.5 mm and 2 mm from the

base for the 2D walls and 3D cuboids, respectively. The dendritic arm spacing in the printed parts

was analyzed by our collaborators using a scanning electron microscope (SEM) following standard

post-processing techniques. The cooling rates for the alloy SS316 were obtained using the relation

λ2 = 25ε̇−0.28 [60], where λ2 is measured from SEM images.

For obtaining the numerical results, temperature-dependent material properties of the SS316

stainless steel alloy are considered separately for the powdered, fused, and liquid state of the

material. The temperature and velocity distributions inside the meltpool were obtained from the

FE model. The cooling rates are given by the expression |∇T |νp, where |∇T |2 is a measure of

the average temperature gradient in the meltpool, and νp is the laser scanning speed. For the 2D

plates, the cooling rate was measured at a location 6.5 mm from the base, both in the experiments

and the FE model. Similarly, for the 3D cuboids, cooling rate estimates were obtained at a location

2 mm from the base, both in the experiments and the FE model. As can be seen from Figure 3,

the cooling rates obtained from the FE model are close to the experimentally reported values.

The cooling rates are used for comparison with experiments in this work, as they are of immense

practical interest due to their influence over the evolution of the microstructure (dendritic growth

and grain growth) that then dictates the mechanical properties of the printed part.

Further, the temperature distribution and maximum velocity values in the meltpool obtained

from the FE model were compared against the reference test cases given in Shen et al. [58]. These

cases represent the simulation of an LPBF process with a laser power of 100W and 200W used to

print AZ91D magnesium alloy parts. As shown in the Figures 4a-4c, the point temperature as a

function of time and the maximum meltpool velocity values obtained from our numerical model
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Figure 3: Dependence of cooling rates obtained from experiments and the FE model on the energy

density, P
νp
. The average cooling rate from the FE model was estimated using the relation: Ṫ =

Gνp = |∇T |νp. Laser power (W) and scan speed (mm/s) combinations used for this study were

(P,νp) = (90, 575), (90, 675).

closely matches the trend reported in the literature. These comparisons provide a good validation

of our FE-based numerical formulation and its computational implementation.
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Figure 4: Validation of the FE model results by comparing with corresponding values reported in

the literature. (4a) Variation of point temperature with time for the case P=200W. (4b) Variation

of point temperature with time for the case P=100W. (4c) Variation of maximum pool velocity

with time for the case P=100W.

4 Empirical analysis of the energy absorbed by the meltpool

In this section, the rationale behind the construction of a model of the energy absorbed by the

meltpool is discussed. Numerical modeling of the AM process, in general, solves governing equations
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of heat conduction, fluid flow, mechanical deformation of the solidified region, etc., that is in terms of

“local” field quantities like temperature, velocity, displacement, etc. However, our goal in this work

is to arrive at estimates of the “global” response of the system at the meltpool-scale, i.e., measures

like the meltpool morphology (size and shape), average temperature distribution, average velocity

distribution, etc. The intention is to propose and validate a “global” model of the energy absorbed

by the meltpool in terms of various process variables, material properties, and output variables, and

thus determine the important quantities, from amongst these dependencies, that have a most direct

impact on the meltpool evolution.

Towards proposing a linear model of the heat energy absorbed by the meltpool, various non-

dimensional quantities are chosen that appear in Equations 2a and 2b. These are the input quanti-

ties made up of material properties, processing conditions, and surrounding environment variables.

The general procedure used to estimate a linear model is as follows: Û , the dimensionless measure of

the heat absorbed by the meltpool, and modeled as linearly dependent on the input non-dimensional

quantities. Such a model can be mathematically expressed as Û =
∑n

i=0 aiπi. where n, πi, and ai

denote the number of inputs, the dimensionless numbers considered and their corresponding coeffi-

cients, respectively. The merits and demerits of choosing various input non-dimensional quantities

to characterize the model are evaluated using physics-based and statistical arguments discussed in

the subsequent sections. Broadly, a method of least squares numerical approach is implemented

to estimate the coefficients, ai, corresponding to each dimensionless number, πi, considered as a

potential variable influencing the heat absorbed by the meltpool. It is the relative magnitude

of these coefficients that inform us about the significance or insignificance of each dimensionless

quantity towards the model of the heat absorbed. Further, it is understood from prior knowledge

that a system with higher Û can potentially correlate to a rise in some measure of the meltpool

temperature. The maximum temperature of the material is arguably higher if the heat received

Û is higher. Thus, as a first-order argument, there exists a phenomenological relation Û ∝ T̃max.

This reasoning permits us to use T̃max as a measure of the Û , and the value of T̃max is obtained

by solving thermo-fluidic model described by Equations 2a-2b on different alloy materials and pro-

cessing conditions listed in the Tables 1- 2 provided in the Supplementary Information. Having

obtained T̃max, the coefficients, ai are estimated, using the method of linear least squares approach

and an explicit form Û in terms of various dimensionless numbers, πi is obtained. Once the linear

model of the heat absorbed by the meltpool, Û , is determined, it is linked with the several output

variables of interest, namely the temperature gradient in the meltpool, the solidification cooling

rate (Gνp), a measure of the advection heat transport due to the surface tension gradient, and

finally the meltpool morphology (aspect ratio( lm
wm

) and volume (lmwmdm)). Important correlations

between the relevant output variables and nondimensional input numbers are discussed at length

in Section 5.
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4.1 Process variables, material properties, and output variables

In this section, the process variables like laser characteristics, the material properties of the alloy,

and the output variables obtained from the thermo-fluidic model are discussed. The powder layer

thickness lp = 0.02 mm and laser spot radius rp = 0.1 mm are taken for all the cases. The

simulation domain geometry, Lx ×Wy ×Hz = 3 × 0.5 × 0.5 mm3, is fixed for all the cases. The

movement of the laser is modeled as a single scan on the centerline of the top surface. The

temporal and 3D spatial variations of the temperature and velocity of the material in the meltpool

are obtained from the FE model. Due to the laser heat source, the temperature of the material

increases past the liquidus melting temperature and results in the formation of a liquid meltpool.

In the simulations, five commonly used LPBF alloy materials are considered, namely stainless

steel (SS316), a Titanium alloy (Ti-6Al-4V), a Nickel Alloy (Inconel 718), an Aluminium alloy

(AlSi10Mg), and a Magnesium alloy (AZ91D) [22, 21, 58]. To limit the complexity of the analysis

by making dimensionless quantities independent of temperature, constant material properties (non-

varying with temperature) are chosen. The numerical values of the input material properties for

each of the alloys considered are provided in the Supplementary Information.

The process variables considered are the laser power value (P ) and laser scan speed νp, a

laser distribution factor, f = 2.0, is fixed for all the cases. For a given alloy, twelve (4 × 3)

combinations of the process variables were chosen to simulate a range of process conditions that

are relevant to the LPBF process. The numerical values of the input process properties for each of

the alloys considered are provided in the Supplementary Information, under Table 1 and Table 2.

In the thermo-fluidic model, the heat transfer coefficient (h) and the Stefan-Boltzmann constant

(σ) are associated with the surrounding inert environment. σ = 5.67 × 10−8 W/(m2K4) is a

known constant. The effect of varying the heat transfer coefficient is found to have a negligible

impact based on our preliminary simulations, so the heat transfer coefficient is taken as h = 10

W/m2K. This is due to the relatively minimal convective and radiation losses to the environment,

as compared to the conduction of the heat through the base plate. In total, we perform about sixty

(5 × 4 × 3) LPBF simulations considering different process variables and material properties. At

a fixed non-dimensional time t̃ = 100, the maximum value of the magnitude of the temperature

gradient G = |∇T | is recorded. The temperature gradient value in the meltpool region is significant

but is relatively small outside this region. The temperature gradient is an important variable that

controls the microstructure evolution in the additively printed material. The cooling rate, given

by Gνp, where νp is the speed of the solid-liquid interface is also an important output variable

for understanding the microstructure evolution. Further, the maximum temperature, Tmax, and

maximum velocity, νmax, in the meltpool, is tracked along with a measure of the maximum extent

of the meltpool length (lm), width (wm) and depth (dm) that characterize the meltpool morphology.
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4.2 Parametrization in terms of the dimensionless quantities

The use of an empirical approach to estimate Û is described in this section. The most appropriate

set of dimensionless input parameters that explain variation in the measure of the heat absorbed

is chosen. As stated earlier, Û is considered proportional to T̃max. Sixty correlations of the form

(Π, T̃max) are generated from our simulations, where Π represents the set of the dimensionless input

quantities considered. The unknown coefficients, (ai) are determined through the standard method

of linear least-squares regression. The data for the regression analysis is obtained from the finite

element simulations of the LPBF process. Here multiple regression attempts were made to arrive at

a linear characterization of Û in terms of the most relevant dimensionless input quantities. While

many combinations of the dimensionless input quantities were considered, three such attempts

as representative of our regression analysis are presented here. The first two attempts result in

correlations that are weak and hence discarded, before converging onto an acceptable correlation

between Û and the relevant dimensionless input quantities in the third attempt.

First attempt of the regression analysis: The following set of independent variables: Π =

{ 1

Pe
,Q, Tc

Ste
, Bi
Pe

, ts
Bo

} are considered. The hypothesized linear relationship is shown below. Here ε

is the error - the difference between the expected and true value of Û .

Û = a0 + a1Q+ a2Pe−1 + a3
Tc

Ste
+ a4

Bi

Pe
+ a4

ts

Bo
+ ε (3a)

The values of the coefficients resulting from the least-squares regression are given in Table 3.

The condition number for this analysis is 8.11 × 107, which is very high. This indicates that

there exists strong collinearity in the assumed input set Π. The collinearity can be understood in

terms of the primary variable as follows: On close inspection of the dimensionless expressions for

Q = P
ρc(Tl−T∞)νpl2p

, 1

Pe
= α

νplp
, Bi
Pe

= hlα
νplp

, and ts
Bo

= σ(Tl−T∞)3

ρcνp
, it is observed that laser scan velocity

is accounted for in all the four variables, and this can potentially reduce the linear independence of

these physical quantities. Further, the role of inert environment variables is limited in our analysis.

Considering the regression coefficients, Bi/Pe and ts/Bo are dropped from our next regression

attempt.

Table 3: First attempt of the regression analysis to estimate the coefficients, ai, using the linear

least-squares approach. Asterisk(∗) indicates the statistical significance of the coefficient using

a t-test with a 95% confidence interval. Other statistics : R2 = 0.65, Adjusted R2 = 0.61, F-

statistic=20.12, P(F)=0.0. Condition number=8.11× 107.

Parameter Intercept Q Pe−1 Tc

Ste

Bi

Pe

ts
Bo

ai 1.45∗ 0.0053∗ −0.1719∗ −0.7076∗ 300.3 −18200∗
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Table 4: Second attempt of the regression analysis to estimate the coefficients, ai, using the linear

least-squares approach. Asterisk(∗) indicates the statistical significance of the coefficient using a

t-test with a 95% confidence interval. Other statistics: R2 = 0.763, Adjusted R2 = 0.750, F-

statistic=55.95, P(F)=0.0. Condition number=1.12× 103.

Parameter Intercept E Pe Tc
Ste

ai 0.6938∗ 0.0087∗ −0.1677∗ 0.1521

Table 5: Third attempt of the regression analysis to estimate the coefficients, ai, using the linear

least-squares approach. Asterisk(∗) indicates the statistical significance of the coefficient using

a t-test with a 95% confidence interval. Other statistics : R2 = 0.746, Adjusted R2 = 0.737,

F-statistic=83.61, P(F)=0.0. Condition number=422.

Parameter Intercept E Pe

ai 0.8146∗ 0.0082∗ −0.1654∗

Second attempt of the regression analysis: In the second iteration, the chosen independent

set is Π = {E,Pe, Tc
Ste

}. The hypothesized linear relationship is given by the following relation.

Û = a0 + a1E + a2Pe+ a3
Tc

Ste
+ ε (3b)

Further, considering the details of the regression analysis, the expression for the variable dimension-

less power, Q, that had a velocity dependence is modified to a new variable, E = P
k(Tl−T∞) = PeQ.

This new variable is a modified dimensionless power and is independent of the laser scan velocity.

Now, the laser scan speed parameter is only represented in the Péclet number, Pe. The fourth

term T c
Ste

is purely dependent on the material properties. Note the least-squares solution yields the

coefficients given in Table 4.

The least-square solution obtained from this model is an improvement over the previous model.

This can be realized from the improvement in the accuracy of the fit given by the variable R2.

The adjusted R2 improves from 0.65 to 0.75 with the less number of variables in the set Π. The

condition number is still high but better than the previous model. Thus, the non-significant variable

is dropped from the set, Π, in our third attempt.

Third attempt of the regression analysis: Π = {E,Pe} and the hypothesized linear rela-

tionship is given by the following relation.

Û = a0 + a1E + a2Pe+ ε (3c)

The least-square solution is summarized in Table 5. The condition number is greatly improved.

The probability that all ai = 0 at the same time is negligible as seen from the probability of F-
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statistic. All the coefficients are statistically significant i.e the hypothesis that individual ai = 0

can be safely discarded.

Now the linear model given by Equation 3c is interpreted in light of the physics of the additive

process. The heat received by the material is defined by a quantity Û . The higher the heat received

greater the temperature reached by the system. This Û is related to the various material property

and process parameters. Using the non-dimensional analysis, several parameters were combined

into a bunch of non-dimensional numbers. These numbers are associated with and are responsible

for several physical phenomena. Using the linear model and the available data, the variation of Û

was explained using a linear combination of constant, E and Pe. A more complete dependence

can potentially be highly non-linear, but this also can be analytically intractable.

5 Results

In the previous section, a linear least-squares regression approach was used to arrive at a relation

for the dimensionless heat energy absorbed, Û . The regression analysis resulted in a relation for

Û in terms of the dimensionless power, E, and the Péclet number, (Pe). In the following sections

(Sections 5.1-5.3), relation for Û is used to investigate the advective transport occurring inside

the meltpool for different alloys and then to characterize their meltpool morphology (aspect ratio

and volume) using the Marangoni number and the Stefan number. In Section 5.4, Û is used to

characterize microstructure evolution using the temperature gradients and the cooling rates in the

solidified region.

5.1 Influence of Péclet number on advection transport in the meltpool

In this section, the extent of advection transport observed in the meltpool in different alloys during

the LBPF process is discussed. The goal is to analyze the macroscopic geometric features of the

meltpool, such as its aspect ratio and volume. In trying to explain the variation of these macroscopic

features, a measure of advection in the meltpool using the relevant dimensionless quantities are

critically investigated. Figure 5 describes the variation of the Péclet number, Pe∗ = Peνmax,

with the non-dimensional quantity MaÛ . It is to be noted that the Péclet number with an

asterisk, Pe∗ = Peνmax = lpνp

α
νmax
νp

, is defined using the maximum velocity in the meltpool,

and is a measure of the advective transport relative to the diffusion transport in the meltpool. A

larger value of Pe∗ denotes a larger circulation of heat inside the meltpool due to the fluid motion.

The dimensionless quantity Ma∗ = MaÛ is a measure of heat transport caused by the fluid flow

induced due to the surface tension gradient. As seen from the Figure 5, for the alloy shown, Pe∗

increase with the Ma∗. This correlation implies the overall movement of fluid in the meltpool

is greater if the advection transport due to surface tension force is greater. Each point in these

plots represents a single simulation result for the relevant quantities plotted and is obtained from
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the FEM framework. Another key information conveyed in Figure 5 is that for some alloys like

AlSi10Mg, advection due to surface tension forces is minimal, as can be seen from the numerical

values of the total advection (Peνmax) shown on the Y-axis. On the other hand, alloys like Ti6Al4V

show a higher value of advection transport due to surface tension forces. These observations are

important correlations between advection measure Pe∗ = Peνmax, Marangoni number, Péclet

number, and the dimensionless power (MaÛ = a0Ma + a1MaE + a2MaPe), and will be used

below to make connections to the meltpool morphology.
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Figure 5: Measure of total advection measured as Peνmax vs surface tension based advection

MaÛ = a0Ma+a1MaE+a2MaPe on a log-log scale for (5a)AlSi10Mg, (5b)SS316, (5c)Ti6Al4V

alloys. Corresponding plots comparing IN718 and AZ91D alloys, and a comparison of all the

five alloys considered in this work can be found in Figure 1 and Figure 2 of the Supplementary

Information, respectively. The advection measure corresponds to the degree of fluid flow inside the

meltpool. Each point in these plots represent a single simulation result for the relevant quantities

plotted, and is obtained from the FEM framework.

5.2 Influence of Marangoni number on the meltpool aspect ratio

In this section, the geometric characteristics of the meltpool, particularly the aspect ratio is dis-

cussed. The meltpool aspect ratio is defined as the ratio of its maximum length to its maximum

width ( lm
wm

). To understand aspect ratio in terms of the input process parameters, dimensionless

quantity MaÛ is useful. For characterizing the meltpool shapes, correlations were found between

MaÛ = a0Ma + a1MaE + a2MaPe and the aspect ratio of the meltpool for different alloys,

and different process parameters. The rise in Û is an indication of enough heat received by the

material to cause melting during the additive process. The aspect ratio of the meltpool is related to

the fluid flow induced inside the meltpool. As shown in the previous section, in Figure 5, AlSi10Mg

alloy has a low advection measure, Peνmax, and Ti6Al4V alloy has a high advection measure.

This information is relevant here to understand the meltpool shapes of these materials. Figure 6a
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shows the variation of the aspect ratio ( lm
wm

) plotted as a function of non-dimensional quantity

MaÛ for Ti6Al4V alloy material. The aspect ratio increases with MaÛ . The aspect ratio with

MaÛ if visualized in a combined plot for all the three alloys considered in this work, it is instruc-

tional to see the separations of materials into three clusters - each for one alloy, as seen in the

Figure 6b. From this clustering, it can be seen that Ti6Al4V almost always produced an elongated

or elliptical-shaped meltpool whose aspect ratio is far from one. The alloy AlSi10Mg produces a

meltpool that is relatively less elongated and has an aspect ratio closer to one. The advection in

the fluid flow causes the meltpool to expand along the direction of the higher temperature gradient.

From this discussion, insightful observations, relating the aspect ratio of the meltpool with MaÛ ,

can be made that help us characterize the meltpool shapes potentially produced by different alloys.
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Figure 6: Correlation of the aspect ratio with MaÛ = a0Ma+ a1MaE + a2MaPe, plotted on

a log-log scale, for (6a) Ti6Al4V alloy, and for (6b) three alloys (Ti6Al4V, SS316 and AlSi10Mg)

shown in a single plot to demonstrate clustering. A combined plot demonstrating this clustering for

all the five alloys (Ti6Al4V, SS316, AlSi10Mg, IN718 and AZ91D) considered in this work can be

found in Figure 3 of the Supplementary Information. Each point in these plots represent a single

simulation result for the relevant quantities plotted, and is obtained from the FEM framework.

5.3 Influence of Stefan number on meltpool volume

In this section, a relation between the input non-dimensional numbers and the volume of the

meltpool is presented. The volume of the meltpool is the volume of the localized region where the

heat received by the material resulted in the melting of the material. the pool volume is identified

using the liquid fraction, φ, which is a variable that we track in the model at all time instances and

all spatial points in the domain. To completely melt the material, the material needs to absorb

enough power to raise the temperature above the liquidus temperature and to overcome the latent
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heat barrier. The dimensionless power absorbed by the material is associated as a form of latent

power, PL = Ωm

l3p

Tc
Ste

. Since Tc
Ste

is constant for a given material, PL is proportional to the volume

of the material melted (Ω̃m). One can expect, as a first-order argument, that more material will

melt if Û is higher. Thus, one can expect PL = Ω̃m
Tc
Ste to increase with Û . This understanding

helps us anticipate that the meltpool volume for different alloys, Ω̃m, increases with SteÛ
Tc

, and

this can indeed be seen in Figure 7a-7c. The numerical range of the meltpool volumes across

the data points is similar, but for a given alloy, the meltpool volume increases with Ste
Tc

Û . With

this analysis, an important correlation is obtained between the meltpool volume and the quantity
Ste
Tc

Û = a0
Ste
Tc

+ a1
SteE
Tc

+ a2
StePe
Tc

.
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Figure 7: Correlation of the meltpool volume (lmwmdm) with SteÛ
Tc

= a0
Ste
Tc

+ a1
SteE
Tc

+ a2
StePe
Tc

,

plotted on a log-log scale, for (7a) AlSi10Mg, (7b) SS316, and (7c) Ti6Al4V alloys. Corresponding

plots comparing IN718 and AZ91D alloys, and a comparison of all the five alloys considered in this

work can be found in Figure 4 and Figure 5 of the Supplementary Information, respectively. Each

point in these plots represent a single simulation result for the relevant quantities plotted, and is

obtained from the FEM framework.

5.4 Influence of the heat absorbed on the solidification cooling rates

In this section, a discussion on characterizing the microstructure of the solidified region is presented.

To support this discussion, Û is used to explain the variation in the output variables like the

temperature gradient, G, and the cooling rate, Gνp, where νp is the laser scan speed. These variables

are traditionally understood to have a direct influence on the microstructure in the solidification

literature. Û = a0 + a1E + a2Pe, has a strong linear correlation with the temperature gradient,

G, as shown in the Figures 8a-8c. Considering the correlations observed in these figures, it can be

inferred that the non-dimensional temperature gradient is proportional to the value of Û . Further,

this relation is expressed entirely in terms of input material properties and process parameters.
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Figure 8: Dimensionless temperature gradient (G) with the Û for different alloys. Plots correspond-

ing to IN718 and AZ91D alloy material can be found in Figure 6 of the Supplementary Information.

Each point in these plots represent a single simulation result for the relevant quantities plotted,

and is obtained from the FEM framework.

In the LPBF process, the laser scan speed controls the speed of movement of the solidification

interface. The laser scan speed used in the simulations is assumed to be equal to the maximum

solid-liquid interface velocity (ν = νp [61, 62]. The variation of the cooling rates, Gνp are observed

with Û by increasing dimensionless laser power, E, but keeping the Péclet number fixed. The

dimensionless temperature gradient, G̃max, will increase with Û . as seen in the Figure 8. It is also

instructional to see that the cooling rate, Gνp, increases with Û , as shown in Figure 9a. There

exists a well-known correlation between a microstructure size, λ2, and the cooling rate, Gνp, in the

solidification process, and is given by the relation λ2 = 25(Gνp)−0.28 [60]. Using this relation, it can

be seen that the size of the microstructure will get finer as we increase Û , which can be achieved

by increasing E. Thus, the size of the microstructure correlates with the input non-dimensional

quantity given by Û = a0 + a1E + a2Pe.

The effect of Û on the cooling rate is studied due to a change in the Péclet number, Pe, but

keeping the dimensionless laser power, E, fixed. Û decreases with increase in Pe and E fixed.

From Figure 8, it is known that the dimensionless temperature gradient, G, and its dimensional

counterpart, both decrease if we decrease Û . Thus the cooling rate, Gνp, decreases with increase

in Û , as seen in Figure 9b. This decrease is solely due to an increase in the value of Pe. Using this

information, a correlation is identified between the change in the size of the microstructure and the

Péclet number, i.e, increasingly coarser microstructural features can be observed with a decrease

in the cooling rate.
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Figure 9: (9a) Variation of the dimensional cooling rate, Gνp, with Û = a0+aaE+a2Pe, plotted

on a log-log scale. Here, Û is changed by changing E, but keeping Pe fixed for SS316 alloy, (9b)

Variation of dimensional cooling rate, Gνp, with Û = a0 + aaE + a2Pe, plotted on a log-log scale.

Here, Û is changed by changing Pe, but keeping E fixed for SS316 alloy.

6 Conclusion

In this work, the meltpool dynamics of the laser powder bed fusion (LPBF) process are numerically

modeled and connections are made to important dimensionless quantities influencing the thermo-

fluidic evolution of the meltpool and its morphology. Processes like the interaction of the moving

laser power source with the powdered metal, formation of the meltpool, its subsequent solidifi-

cation, etc., make LPBF a highly coupled multiphysics process. To investigate the multiphysics

interactions, the thermo-fluidic governing equations relevant to the LPBF process are numerically

modeled using a Finite Element Method (FEM) framework. The simulation predictions were vali-

dated by comparing with available results from the literature and with experimental observations of

the cooling rates available from our experimental collaborators. Using the classical Buckingham-π

theorem and a careful choice of relevant characteristic quantities, the governing equations were

reduced to their dimensionless form. Using the dimensionless form and the FEM simulations, an

important dimensionless quantity, interpreted as the heat absorbed by the metal powder and the

meltpool, is identified. Around sixty different cases of the LPBF process were simulated by varying

the alloy type and the process conditions, and the simulation data was used to obtain an explicit

form of the dimensionless heat absorbed in terms of the input dimensionless numbers using the

method of linear least-squares regression. Using physics-based and statistical arguments, a linear

model showing dependence of the heat absorbed on the Péclet number and the dimensionless power

is established.

The measure of advection inside the meltpool is quantified in terms of the Péclet and the
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Marangoni numbers and it is found that materials such as Ti-6Al-4V show greater advection,

represented by Pe∗, and an elongated elliptical meltpool. Materials like AlSi10Mg show the least

advection and whereas SS316 shows moderate amount of advection. It was found that the meltpool

volume of materials such as Ti-6Al-4V, SS316, and AlSi10Mg increases with the product of Stefan

number and dimensionless measure of heat absorbed. Solidification cooling rates decrease with the

measure of heat absorbed if the Péclet number is reduced keeping dimensionless power fixed. This

characterization of the meltpool morphology using classical dimensionless numbers and the impact

of dimensionless power and Péclet number on the solidification cooling rates is a novel contribution

of this work.

In a future work, potential extension of this dimensional analysis framework to investigate

meltpool characteristics such as keyhole formation and microstructural features such as grain mor-

phology in the solidified meltpool region will be explored.
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