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Abstract

Microstructure evolution in metal additive manufacturing (AM) is a complex multi-physics and multi-
scale problem. Understanding the impact of AM process conditions on the microstructure
evolution and the resulting mechanical properties of the printed part is an active area of research. At
the meltpool scale, the thermo-fluidic governing equations have been extensively modeled in the literature
to understand the meltpool conditions and the thermal gradients in its vicinity. In many
phenomena governed by partial differential equations, dimensional analysis and identification of
important dimensionless numbers can provide significant insights into the process dynamics. In this
context, a novel strategy using dimensional analysis and the method of linear least squares regression
to numerically investigate the thermo-fluidic governing equations of the Laser Powder Bed Fusion AM
process is presented in this work. First, the governing equations are solved using the Finite Element
Method, and the model predictions are validated by comparing with experi-mentally estimated
cooling rates, and with numerical results from the literature. Then, through dimensional analysis, an
important dimensionless quantity - interpreted as a measure of heat ab-sorbed by the powdered
material and the meltpool, is identified. This dimensionless measure of heat absorbed, along with
classical dimensionless quantities such as Péclet, Marangoni, and Stefan numbers, is used to investigate
advective transport in the meltpool for different alloys. Further, the framework is used to study the
variations of thermal gradients and the solidification cooling rate. Important correlations linking
meltpool morphology and microstructure evolution related variables with classical dimensionless
numbers are the key contribution of this work.
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1 Introduction

Additive manufacturing (AM) has proven to be a path-breaking manufacturing paradigm that has
the potential to disrupt many of the traditional reductive-type manufacturing processes ﬂ] A
wide variety of AM techniques, suitable for printing metals, glasses, ceramics, and polymers [2],
are in use today and an optimal AM technique can be selected depending on the material, part
complexity and design considerations [3]. Laser Powder Bed Fusion (LPBF) AM process is the focus
of this work. This technique is widely used to print metallic components with intricate geometry
to their near-net shape. Components printed using the LPBF process have the potential to exhibit
improved material properties as compared to the traditional manufacturing process. In particular,
additively manufactured hierarchical stainless steels are not limited by strength-ductility tradeoff
unlike traditionally manufactured stainless steel [4]. Tensile and fatigue properties of additively
built Ti-6Al-4V were shown to be superior to mill-annealed Ti—6A1—4VgE

of the printed components are very sensitive to the choice of the LPBF process parameters and

|. However, the properties

the execution of the printing process. Realization of the full potential of AM is not possible
unless optimized process parameters can be identified for various alloys used in laser-based additive
manufacturing [6].

The LPBF manufacturing technique is a multi-stage process. Initially, a moving blade of poly-
mer edge (recoater) spreads a metal powder forming a layer of uniform thickness. A high-energy
laser moves over a powder layer bed in a predefined path. This results in a localized melting of the
powder metal followed by rapid cooling and fusion of melted powder material on the previously built
part. A new layer of the powder is then deposited and the process repeats until the desired part is
printed in a layer-by-layer fashion ] This multi-stage additive printing process involves melting
and solidification of the material, formation of the localized meltpool, convection cells inside the
pool, keyhole formation, improper fusion of the powder, building up of the residual stresses, and
sometimes unwanted material deformation, etc. ﬁ Existing literature is focused on understanding
the effects of additive process parameters on the properties of experimentally printed components
such as the surface roughness of overhang structures [8], bead geometry and microstructure [9],
tensile strength [10], and, width and penetration depth of single scan track [11], etc. In addition
to experimental studies, various LPBF processes, especially meltpool behavior [12], build layers
], laser heat source ] effects have been analytically studied. Hybrid modeling that combines
analytical models and machine learning-based models is useful in estimating desirable meltpool
dimensions and optimized process variables [15].

On the modeling front for LPBF, literature focused on the modeling of the rich multiphysics
aspects of the process has been extensively published. Abolhasani et al. ] studied the effect of
reinforced materials on the cooling rates and meltpool behavior of AISI 304 stainless steel using finite
element method simulations. Ansari et al. |17] developed a 3D finite element method based thermal

model using a volumetric Gaussian laser heat source to model the thermal profile and meltpool
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size in selective laser melting process. The heat diffusion models were reinforced by considering
localized dynamic and unsteady fluid flow inside the meltpool. Dong et al. [18] considered phase
transformation, thermo-physical properties, heat transfer, and meltpool dynamics in their finite
element model to investigate the effect of laser power and hatch spacing on the meltpool. Similar
multiphysics model accounting for heat diffusion and fluid flow was presented by Ansari et al.
| to study the effect of laser power and spot diameter on meltpool temperature in the LPBF
process. Gusarov et al. [20] focused on heat transfer and radiation physics in their numerical model.
More comprehensive numerical models of the LPBF considers temperature-dependent properties,
powdered layer, fluid flow, laser scanning, etc. Mukherjee et al. | used comprehensive LPBF
numerical models to simulate fluid flow and heat diffusion dynamics for most commonly used
alloys. Khairallah et al ] provided richer insights into LPBF printing of stainless steel using
various continuum numerical models. Wang et al. [23] coupled finite volume, discrete element, and
volume of fluid methods to rigorously model power spreading, powder melting, and multi-layer
effects during LPBF AM of Ti-6Al-4V alloy. In trying to capture all the important aspects of
the LPBF process in a numerical model, challenges exist in terms of numerous variables, process
parameters, and their complex interactions, and these are outlined in the work of Keshavarzkermani

et al. dﬂ] and Fayazfar et al. @]
Physical processes with many independent parameters can be analyzed and investigated us-
ing dimensional analysis. Traditional areas of physics and engineering, especially fluid mechanics
E.E] Researchers in AM-

related roblems have recently started incorporating dimensional analysis in their work. Van Elsen
27

and heat transfer have used dimensional and scaling analysis extensively
et al. [27] provided a comprehensive list of dimensionless quantities that are relevant for the ad-
ditive and rapid manufacturing process. They justified the usability of the dimensional analysis
to investigate complex additive processes like LPBF. Dimensionless numbers were shown to assist
in choosing previously unknown process parameters for the LPBF process to print Haynes 282, a
nickel-based superalloy [28]. Weaver et. al [29] demonstrated the application of universal scaling
laws to study the effect of process variables such as laser spot radius on the meltpool depth. Rank-
ouhi et al. E] in their experimental work applied the Buckingham-7m theorem in conjunction with
Pawlowski matrix transformation to present dimensionless quantities that correlate well with the
density or porosity of the built component. Their proposed non-dimensional quantity is shown to
be applicable across different material properties and machine variables, thereby achieving desirable
scaling. Another widely applicable dimensionless quantity called Keyhole number was proposed by
Gan et al [31]. They made use of dimensionless analysis in conjunction with multiphysics numerical
models and high-tech X-ray imagining in their discovery. Keyhole number provides useful insights

proposed four sets of dimensionless quantities combining process

into the aspect ratio of the meltpool and the transformation of the meltpool from a stable to a
chaotic regime. Wang and Liu Bl]j

parameters and material properties. Their experimental analysis shows these numbers can effec-
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tively characterize phenomena like the continuity of the track and its size and the part porosity.
Noh et al. )| showed that normalized enthalpy and relative penetration depth in the vertical
direction can provide reliable process map for printing single track 3D geometries using selective
laser melting process.

The published literature surveyed for this work either uses experimental or numerical methods
to propose new dimensionless quantities which are specific to the AM process and are not always
related to classical dimensionless numbers used in the fields of fluid mechanics and heat transfer.
Classical dimensionless numbers like the Péclet number can provide a good understanding of the
impact of process variables on the printed components. Nusselt, Fourier, and Marangoni number
provide a good understanding of the mode of heat transport inside the meltpool for varying laser
power and scan speed ]-ﬂ;j] . Cardaropoliet al. [36] provided a map for Ti-6A1-4V alloy linking
dimensionless quantities with the porosity of built parts. Mukherjee et al. [37] used their established
numerical models of the LPBF process to simulate the building of the different materials with
varied process variables. Using a known set of dimensionless numbers representing heat input,
Péclet, Marangoni, and Fourier numbers, they made sense of the impact of process parameters on
important output variables like temperature field, cooling rates, fusion defects, etc.

Similar to the meltpool in the LPBF process, the traditional welding process also involves
the formation of a weldpool which is the site of various multiphysics interactions and processes.
Literature on the use of dimensional analysis to understand the flow patterns in the weldpool
offers insights that are relevant to AM. This includes the work by Robert and Debroy @] where
they highlighted the importance of dimensionless numbers like Prandtl, Péclet, and Marangoni in
understanding the aspect ratio of the weldpool. Using the numerical models to predict the weldpool
shape for a range of materials, they presented the insightful role of these numbers in shaping the
weldpool morphology. Similarly, Lu et al. [39] also discusses the role of Marangoni convection in
affecting the aspect ratio and shape of the weldpool. Their analysis shows that the effect of welding
process conditions on the weld part can be understood by looking at the non-dimensional numbers
like Péclet and Marangoni. Wei et al. @] showed that the formation of a wavy fusion boundary
is linked with the critical values of the Marangoni and Prandtl numbers. Fusion boundaries and
shapes have a significant impact on the microstructure of the material. Asztalos et al. M] applied
dimensional analysis to study the polymer additive manufacturing processes.

As can be seen from the literature review presented, the use of dimensionless numbers to
understand the complex interaction of physical processes is gaining attention. However, among the
proposed dimensionless quantities, few are universally applicable. Some of them remain applicable
only in the context of a specific study or alloy. A universal dimensionless variable or normalized
graph can facilitate the comparison of results between different studies using different materials ]
This leaves room for the development of novel approaches to characterize the LPBF process using

dimensional analysis. Our goal in this work is to perform such a dimensional analysis and investigate
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the relation between meltpool morphology and to a lesser degree, microstructure evolution, and the
underlying dimensionless quantities naturally manifested by the thermo-fluidic governing equations
of the LPBF process. In this context, a novel numerical strategy is presented here, where the
data generated using numerical simulations of the thermo-fluidic model for different alloys and
different process parameters was used, along with linear regression analysis, to characterize meltpool
morphology in terms of the dimensionless numbers relevant to the meltpool heat and mass transport.

The outline of the paper is as follows: Section [2/introduces the governing equations of the LPBF
process in their dimensional and non-dimensional forms, along with the corresponding numerical
formulation suitable to be solved using the Finite Element (FE) method. Section [3] covers the
validation of our FE-based implementation of the LPBF thermo-fluidic model with experimental
results and numerical results from the literature. In Section 4] an empirical analysis based on
linear least-squares regression is described to identify an important dimensionless quantity that is
interpreted as a measure of heat absorbed by the powdered material and the resulting meltpool. An
important relationship is then identified relating the measure of heat absorbed by the meltpool and
classical dimensionless quantities relevant to the thermo-fluidic governing equations of the LPBF.
This is followed by a presentation of simulation results in Section [B} including a discussion on the
effects of the dimensionless quantities on the meltpool morphology and the resulting microstructure.

Lastly, concluding remarks are provided in Section

2 Governing equations of the LPBF process

2.1 Thermo-fluidic model of the LPBF process

A discussion of the physical processes underlying LPBF that are relevant to the thermo-fluidic
model is outlined in this section. The schematic in Figure [l shows an outline of the LPBF process.
In LPBF, a recoater spreads a metal powder layer on top of the powder bed or partially built
part that is enclosed in an inert environment. A high-intensity laser scans over this powder layer,
causing localized melting and fusion of the melted powder on top of the partially built part. At
the macro-scale or part-scale, this laser irradiation of the metal powder results in the formation
of a meltpool (also referred to as molten pool or melting pool in the literature) of the liquified
metal, that subsequently solidifies. This solidification of the meltpool is driven from the mesoscale,
where the liquid melt undergoes a phase transformation to a solid phase, but the solidification is
spatially heterogeneous and leads to the formation of dendritic structures and eventually the grain-
scale microstructure. The formation of dendrites, their morphology, and the related numerical
models have been extensively treated by the authors in a recent publication ]. In this work,
part-scale and the thermo-fluidic processes that are relevant in the meltpool and its immediate
vicinity are considered. The processes modeled, with varying fidelity, are the movement of the laser-

powered heat source, powder melting, convective flow in the meltpool, heat diffusion, and convective
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Figure 1: Schematic depicting the part-building process in Laser Powder Bed Fusion (LPBF). Laser
irradiation on the powdered material causes localized melting and fusion of the metal powder on
top of the partially built part. The localized melting results in a small pool of liquified metal
referred to as the meltpool. Shown in the inset figure are the state of the powder under the laser -
with the newly solidified region and a meltpool with convective flow of the liquified metal, and this

region comprises the computational domain (€2) of the numerical model presented in this work.

and radiation losses. These processes and their thermo-fluidic effects can be captured by coupled
partial differential equations solving for the thermal distribution and the velocity distribution in
the meltpool ]

The governing equations of heat transfer are as follows:

caT(a:, t)

5 T p(w V)T (z,t) =V - k(VT(2,t)) + S+ Sp, xT€Q (1a)

p

Equation [lal is solved for thermal conduction over the domain Q (see Figure[l). T" and v are the
temperature and velocity, respectively, and are the primal fields of the governing equations. All
through this work, vector quantities like velocity and the gradient operator, V, are shown in bold
to distinguish them from other scalar quantities.

Sp, is the heat input from the laser and Sy is the latent heat released by the metal. p, ¢, k
represent density, specific heat capacity, and the thermal conductivity of the material, respectively,
and these can be constant or temperature dependent. Melting of the metal powder consumes latent
heat, which is represented by source term, Sy = —p(v.V )¢ — pL( %). Here the liquid fraction, ¢,

determines the state of the material. ¢ = 0 represents the solidified region, ¢ = 1 represents the
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liquid, and 0 < ¢ < 1 represents the mushy zone region M] The liquid fraction is a function

of the temperature of the material and is given by the hyperbolic function: ¢ = eéji%’ where

€ = MT—=0.5T)
= T T-T,

thickness, Ty, and T; are the solidus and the liquidus temperature of the material, respectively.

and T}, = %(Tl + Ts). A is a constant that represents the solid-liquid interface

The shape of the laser beam is modeled as an axisymmetric Gaussian profile, and the moving laser
(_ fa—vpt)? _Lﬁ_g)
2

2 .
awl ¢ P » '» 7 where P is the laser

2
ralp

power is modeled using a source term, S5, =
power, o is the absorptivity, f is the distribution factor, r, is the laser spot size, [, is the powder
layer thickness, and v, is the laser scan speed.

Effectively, thermal conduction, powder melting due to the moving laser, and the formation of
a liquid meltpool are modeled. Inside the meltpool, heat diffusion, along with the advection and
convection effects of the fluid flow are considered. Convection inside the meltpool is a result of the
competition between the surface tension and the buoyancy effects, but the surface tension driven
flow dominates inside the meltpool ] The governing equations for the fluid flow, accounting for

the conservation of mass and momentum, are given by,

v(x — ¢)?
p%t’t) + pv(x,1).V)v(z,t) = =Vp+ Bg(T — T;) + V.(uVv(x,t)) — 13%” %V(m, t)
(1b)
Vuv(x,t)=0, e (1c)

This equation also accounts for advective and diffusive transport, buoyancy-induced flow, and the
pressure drop due to the mushy zone (modeled as a porous zone) . Here, 3 is the expansion
coefficient, Ty is the solidus temperature, p is the dynamic viscosity, dy is the characteristic length
scale of the porous mushy region, and ¢ is a very small parameter to avoid division by zero when
¢ = 0 (solid region). Integral form of governing equations introduced in the Section [2.2.1 are given
by Equations 2al2bl As will be seen in the integral form, the surface integrals therein also account
for the surface tension-induced flow and losses to the inert surroundings. This is captured by the
inclusion of the convective and radiation heat losses, Marangoni convection from the top surface
of the domain, Q2. At the bottom surface, temperature is fixed to a preheating temperature value
that is above the ambient temperature. To limit the modeling complexity, in this otherwise highly
coupled multiphysics environment, mechanical deformation of the solidified region and keyhole

formation is neglected.

2.2 Non-dimensional formulation of the governing equations

In this section, a dimensionless framework is constructed that exploits the powerful idea of the
Buckingham-7 theorem. The LPBF process consists of several process parameters and the thermo-

fluidic model that helps us build an understanding of the complex interaction between several
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of these process parameters. The dimensionless framework facilitates combining several of these
dimensional parameters into fewer dimensionless independent quantities. These dimensionless pa-
rameters then present key details of the complex additive process such as LPBF in fewer numbers of
variables. The classical Buckingham-7 theorem [46] provides a mathematical basis for reducing the
parameter dimensionality of the equations and helps group the parameters in the governing equa-
tions into a fewer number of non-dimensional and distinct quantities. This reduction follows from
the application of the Rank-Nullity theorem , ] Further, as will be discussed in later sections,
the Finite Element Method (FEM) is employed to solve the governing equations considered in this
work. FEM is a widely used numerical method that solves partial differential equations posed in
their weak formulation (integral formulation). Thus, the dimensionless version of the governing
equations that results from the application of the Buckingham-7 theorem is also considered in its

weak form and solved using FEM.

2.2.1 Weak formulation

In this section, the process of non-dimensionalization of the governing equations given by Equa-
tion [1(a-c) is discussed. For the process of non-dimensionalization, the laser scan velocity, v, is
chosen as the characteristic velocity in the system, and the non-dimensional velocity in the melt-
pool is then given by U = V—”p The thickness of the powder layer, [,, is chosen as the characteristic
length, and this leads to the characteristic time, given by t, = i—’; Now, the non-dimensional time
and length are given by t = % and T = %, respectively. Further, the non-dimensional temperature

is chosen to be T = %:?‘Z, where T} and T, are the liquidus temperature of the metal and the

ambient temperature of the inert surroundings, respectively. The characteristics value of the pres-
sure is chosen to be pl/g. A list of the dimensionless variables used in this model are summarized
in Table[Il Using these scaled quantities, the dimensional strong (differential) form of the govern-
ing equations given by Equation [I[(a-c) are converted into their corresponding dimensionless weak
(integral) form. Following the standard variational procedure of deriving the weak formulation of
the governing equations from their strong form [49], the following weak formulation is obtained:

Find the primal fields, {T, U}, where,

TeSp, Sp={TecH(Q)|T="TVaxecdb},

ve, S={pcH(Q)|v=70VYxco)
such that,

Ywr €, Yp={wrcHY(Q)|wr=0Vacdl},

Yw, €% Vy={w, €eH(Q)|w, =0V xcd0h}
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and satisfies,

/Qwu(%Jrﬁ-w)dQ—/Qwu [%] (T—Ts)da—/ﬂkuﬁda+/gwu [%]ﬁdﬁ

i /Q P (o, Fi)a0 + /6 L (P~ [B22T] 97 ) nds = 0

Pe?

(2b)

here, n is the unit outward normal vector at the surface boundary. 89% and 0€2%; are the bound-
aries for the temperature and velocity Neumann boundary conditions, respectively, and 89% and
0§, are the boundaries for the temperature and velocity Dirichlet boundary conditions, respec-
tively. wr and w, are standard variations from the space H(Q) - the Sobolev space of functions
that are square-integrable and have a square-integrable derivatives. In these equations, the rel-
evant dimensionless numbers are grouped inside square brackets. These dimensionless numbers,
along with their physical interpretation, are listed in Table [2. The surface boundary condition in
Equation [2al represents the nondimensional form of the convective and radiation heat losses to the
inert surrounding, and the boundary condition (on the top surface) in Equation [2b] represents the

Marangoni flow induced by the surface tension gradient.

Table 1: List of the scaling variables used in the non-dimensionalization of Equations 2ali2D]

Parameter Expression Physical interpretation
7 [ . . .
l T Dimensionless powder layer thickness
P
T o Dimensionless laser spot radius
t ';—” Dimensionless time
P
T % Dimensionless temperature
oo
v Lz Dimensionless velocity
Vp
p p% Dimensionless pressure
P
\Y% v Dimensionless gradient operator
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Table 2: Symbols, expressions and their physical interpretation for the dimensionless quantities
considered in Equations [2al2b]

Parameter Expression Physical interpretation
Prandtl (Pr) - Ratio of momentum to thermal diffusivity
Grashof (Gr) w Ratio of buoyancy force to viscous force
Darcy (Da) % Ratio of permeability to the cross-sectional area
Marangoni (Ma) j—%% Ratio of advection (surface tension) to diffusive transport
Péclet(Pe) l”% Ratio of advection transport to diffusive transport
Stefan (Ste) @ Ratio of sensible heat to latent heat
Power (Q) m Dimensionless power with velocity dependence
Radiation measure (%) U(T;);ig;c"ﬁ Measure of radiation contribution to the heat transfer
Biot (B%) th" Ratio of resistance to diffusion and convection heat transport

2.3 Computational implementation

As stated earlier, the above weak formulation of the governing equations is solved using FEM,
and as model inputs, realistic process parameters and material properties of common LPBF alloys
are chosen, and these are discussed in Section [4.1] and in the Supplementary Information. FEM
implementation is done in an in-house, scalable, finite element code framework written in C++
language with support for adaptive meshing and various implicit and explicit time-stepping schemes,

@I]). Standard FEM constructs

are adopted, and for all the simulations presented in this work, linear and quadratic Lagrange bases

and is built on top of the deal.IT open source Finite Element library

are used for pressure and other field variables such as temperature and velocity, respectively. The

|. Following the
|52, 54, s, s,

the complete code base for this work is made available to the wider research community as an

coupled Navier-Stokes equations are solved using Chorin’s projection method

standard practice in our group to release all research codes as open source &

open-source library [56]. A representative schematic of the computational domain and the relevant
boundary conditions are shown in Figure[2. The important boundary conditions such as convective
and radiations losses and shear stress on the top surface expressed as surface tension gradient with
temperature is visible in the surface integral terms in Equation [2all2bl The initial temperature and
temperature at the bottom surface of the material are assumed to be fixed at 353K. The ambient
temperature was taken as 301.15K. These temperatures were scaled to a dimensionless form in
the computational implementation. The minimum and maximum dimensionless mesh sizes in an

adaptive meshing scheme are taken to be Az = 0.8 and Ax = 6.0 along the x, y, and z directions.

10
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A uniform dimensionless time step size of At = 1.0 is used for running test cases. The small factor
in Equations [Ib] 6 = 1.0 x 107° is used in all the simulations. The interface parameter ()\) used in

our simulation is in the range A = [0.1,1.0].

Laser scan path

Adaptive mesh at
heat source

Marangoni convection
(surface tension gradi-
ent) on the top surface

Fixed temperature on
the bottom surface
Fused material L
) radiation losses
from sides

Meltpool
location

Meltpool
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temperature
00 04 07 11 14 00 02 05 08 10

Liquid fraction

Figure 2: Schematic of the 3D finite element (FE) computational domain indicating the laser scan
path and the relevant boundary conditions. Also shown is the underlying adaptive mesh that
evolves with the location of the heat source. Representative dimensionless temperature profile and
location of the meltpool obtained from the FE simulation of SS316 alloy AM are shown. The
numerical parameters and material properties used in this simulation are given in Section [2.3 and

in the Supplementary Information.

3 Experimental and numerical validation

In this section, a validation of the numerical formulation and the FEM-based computational frame-
work is presented. This computational framework solves the thermo-fluidic governing equations of
the meltpool described in Section [2l Further, a comparison is given between the simulation results
with experimentally observed cooling rates (made available to us by our experimental collabora-
tors), and with predictions of other numerical models from the literature. Variables like the cooling
rates during the solidification, material temperature, velocity of fluid inside the pool, and melt-

pool geometry can be used as a yardstick to gauge the capability of our numerical model towards

11
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simulating the LPBF process. For this validation study, the temperature and velocity distribu-
tions, the cooling rates, and the maximum velocity in the meltpool are obtained from our FEM
implementation. The cooling rate estimates from our simulations are compared with the cooling
rates estimated from experimental data of the LPBF process that were obtained from Bertsch et
al. B] Further, our simulation results are compared with the corresponding material temper-
ature distribution and meltpool velocity values obtained from numerical modeling data in Shen
et al. @] Simple thin-walled pseudo-2D plates and 3D cuboidal geometries made of stainless
steel (SS316 alloy) using the LPBF process are considered in this validation study. The printed
geometries consists of 13 x 0.2 x 13 mm? thin wall plates and 50 x 10 x 4 mm? cuboids. The
schematic of the printed 2D plates and 3D cuboidal geometries can be found in Bertsch et al. ﬂa]
These geometries are subsequently referred to as the 2D walls and 3D cuboids. The powder layer
thickness used was 0.02 mm in both cases. Experimental details, AM technical specifications, and
the post-processing methods used to measure cooling rates can be found in the publications of our
experimental collaborators, Bertsch et al.|57]-Rankouhi et al.[59]. The experimental cooling rates
were estimated by our collaborators, through post-processing of the microstructure morphology,
particularly the secondary dendrite arm spacing (\2) at a distance of 6.5 mm and 2 mm from the
base for the 2D walls and 3D cuboids, respectively. The dendritic arm spacing in the printed parts
was analyzed by our collaborators using a scanning electron microscope (SEM) following standard
post-processing techniques. The cooling rates for the alloy SS316 were obtained using the relation
g = 25¢0-28 |, where Ay is measured from SEM images.

For obtaining the numerical results, temperature-dependent material properties of the SS316
stainless steel alloy are considered separately for the powdered, fused, and liquid state of the
material. The temperature and velocity distributions inside the meltpool were obtained from the
FE model. The cooling rates are given by the expression |VT|v,, where |VT|; is a measure of
the average temperature gradient in the meltpool, and v, is the laser scanning speed. For the 2D
plates, the cooling rate was measured at a location 6.5 mm from the base, both in the experiments
and the FE model. Similarly, for the 3D cuboids, cooling rate estimates were obtained at a location
2 mm from the base, both in the experiments and the FE model. As can be seen from Figure [B]
the cooling rates obtained from the FE model are close to the experimentally reported values.
The cooling rates are used for comparison with experiments in this work, as they are of immense
practical interest due to their influence over the evolution of the microstructure (dendritic growth
and grain growth) that then dictates the mechanical properties of the printed part.

Further, the temperature distribution and maximum velocity values in the meltpool obtained
from the FE model were compared against the reference test cases given in Shen et al. @] These
cases represent the simulation of an LPBF process with a laser power of 100W and 200W used to
print AZ91D magnesium alloy parts. As shown in the Figures dalldc, the point temperature as a

function of time and the maximum meltpool velocity values obtained from our numerical model
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Figure 3: Dependence of cooling rates obtained from experiments and the FE model on the energy
P
V_p-
Gv, = |VT|v,. Laser power (W) and scan speed (mm/s) combinations used for this study were
(P,vp) = (90,575), (90, 675).

density, The average cooling rate from the FE model was estimated using the relation: 7' =

closely matches the trend reported in the literature. These comparisons provide a good validation

of our FE-based numerical formulation and its computational implementation.
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Figure 4: Validation of the FE model results by comparing with corresponding values reported in
the literature. (4a) Variation of point temperature with time for the case P=200W. (4b]) Variation
of point temperature with time for the case P=100W. ({c) Variation of maximum pool velocity
with time for the case P=100W.

4 Empirical analysis of the energy absorbed by the meltpool

In this section, the rationale behind the construction of a model of the energy absorbed by the

meltpool is discussed. Numerical modeling of the AM process, in general, solves governing equations
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of heat conduction, fluid flow, mechanical deformation of the solidified region, etc., that is in terms of
“local” field quantities like temperature, velocity, displacement, etc. However, our goal in this work
is to arrive at estimates of the “global” response of the system at the meltpool-scale, i.e., measures
like the meltpool morphology (size and shape), average temperature distribution, average velocity
distribution, etc. The intention is to propose and validate a “global” model of the energy absorbed
by the meltpool in terms of various process variables, material properties, and output variables, and
thus determine the important quantities, from amongst these dependencies, that have a most direct
impact on the meltpool evolution.

Towards proposing a linear model of the heat energy absorbed by the meltpool, various non-
dimensional quantities are chosen that appear in Equations2al and 2bl These are the input quanti-
ties made up of material properties, processing conditions, and surrounding environment variables.
The general procedure used to estimate a linear model is as follows: U , the dimensionless measure of
the heat absorbed by the meltpool, and modeled as linearly dependent on the input non-dimensional
quantities. Such a model can be mathematically expressed as U = > aimi. where n, m;, and a;
denote the number of inputs, the dimensionless numbers considered and their corresponding coeffi-
cients, respectively. The merits and demerits of choosing various input non-dimensional quantities
to characterize the model are evaluated using physics-based and statistical arguments discussed in
the subsequent sections. Broadly, a method of least squares numerical approach is implemented
to estimate the coefficients, a;, corresponding to each dimensionless number, 7;, considered as a
potential variable influencing the heat absorbed by the meltpool. It is the relative magnitude
of these coefficients that inform us about the significance or insignificance of each dimensionless
quantity towards the model of the heat absorbed. Further, it is understood from prior knowledge
that a system with higher U can potentially correlate to a rise in some measure of the meltpool
temperature. The maximum temperature of the material is arguably higher if the heat received
U is higher. Thus, as a first-order argument, there exists a phenomenological relation U x Tz
This reasoning permits us to use Tmaw as a measure of the U , and the value of Tmaw is obtained
by solving thermo-fluidic model described by Equations [2al2blon different alloy materials and pro-
cessing conditions listed in the Tables [I- 2] provided in the Supplementary Information. Having
obtained Tiyae, the coefficients, a; are estimated, using the method of linear least squares approach
and an explicit form U in terms of various dimensionless numbers, 7; is obtained. Once the linear
model of the heat absorbed by the meltpool, U, is determined, it is linked with the several output
variables of interest, namely the temperature gradient in the meltpool, the solidification cooling
rate (Gvp), a measure of the advection heat transport due to the surface tension gradient, and

finally the meltpool morphology (aspect ratio(-22) and volume (I, w,,d,)). Important correlations

lm
Wm,

between the relevant output variables and nondimensional input numbers are discussed at length

in Section |5
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4.1 Process variables, material properties, and output variables

In this section, the process variables like laser characteristics, the material properties of the alloy,
and the output variables obtained from the thermo-fluidic model are discussed. The powder layer
thickness [, = 0.02 mm and laser spot radius r, = 0.1 mm are taken for all the cases. The
simulation domain geometry, L, x W, x H, = 3 x 0.5 x 0.5 mm?, is fixed for all the cases. The
movement of the laser is modeled as a single scan on the centerline of the top surface. The
temporal and 3D spatial variations of the temperature and velocity of the material in the meltpool
are obtained from the FE model. Due to the laser heat source, the temperature of the material
increases past the liquidus melting temperature and results in the formation of a liquid meltpool.
In the simulations, five commonly used LPBF alloy materials are considered, namely stainless
steel (SS316), a Titanium alloy (Ti-6Al-4V), a Nickel Alloy (Inconel 718), an Aluminium alloy
(AlSil0Mg), and a Magnesium alloy (AZ91D) , , @] To limit the complexity of the analysis
by making dimensionless quantities independent of temperature, constant material properties (non-
varying with temperature) are chosen. The numerical values of the input material properties for
each of the alloys considered are provided in the Supplementary Information.

The process variables considered are the laser power value (P) and laser scan speed v, a
laser distribution factor, f = 2.0, is fixed for all the cases. For a given alloy, twelve (4 x 3)
combinations of the process variables were chosen to simulate a range of process conditions that
are relevant to the LPBF process. The numerical values of the input process properties for each of
the alloys considered are provided in the Supplementary Information, under Table [L and Table [2|
In the thermo-fluidic model, the heat transfer coefficient (h) and the Stefan-Boltzmann constant
(o) are associated with the surrounding inert environment. o = 5.67 x 1078 W/(m?K?) is a
known constant. The effect of varying the heat transfer coefficient is found to have a negligible
impact based on our preliminary simulations, so the heat transfer coefficient is taken as h = 10
W/m?K. This is due to the relatively minimal convective and radiation losses to the environment,
as compared to the conduction of the heat through the base plate. In total, we perform about sixty
(5 x 4 x 3) LPBF simulations considering different process variables and material properties. At
a fixed non-dimensional time ¢ = 100, the maximum value of the magnitude of the temperature
gradient G = |VT| is recorded. The temperature gradient value in the meltpool region is significant
but is relatively small outside this region. The temperature gradient is an important variable that
controls the microstructure evolution in the additively printed material. The cooling rate, given
by Gv,, where v, is the speed of the solid-liquid interface is also an important output variable
for understanding the microstructure evolution. Further, the maximum temperature, T4, and
maximum velocity, Vpmqs, in the meltpool, is tracked along with a measure of the maximum extent

of the meltpool length (I,,,), width (w,,) and depth (d,,) that characterize the meltpool morphology.
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4.2 Parametrization in terms of the dimensionless quantities

The use of an empirical approach to estimate U is described in this section. The most appropriate
set of dimensionless input parameters that explain variation in the measure of the heat absorbed
is chosen. As stated earlier, U is considered proportional to0 Thae. Sixty correlations of the form
(11, Tmax) are generated from our simulations, where II represents the set of the dimensionless input
quantities considered. The unknown coefficients, (a;) are determined through the standard method
of linear least-squares regression. The data for the regression analysis is obtained from the finite
element simulations of the LPBF process. Here multiple regression attempts were made to arrive at
a linear characterization of U in terms of the most relevant dimensionless input quantities. While
many combinations of the dimensionless input quantities were considered, three such attempts
as representative of our regression analysis are presented here. The first two attempts result in
correlations that are weak and hence discarded, before converging onto an acceptable correlation

between U and the relevant dimensionless input quantities in the third attempt.

First attempt of the regression analysis: The following set of independent variables: II =

{%, Q, %, %, ;so} are considered. The hypothesized linear relationship is shown below. Here €

is the error - the difference between the expected and true value of U.

. Te B ts
U=ay+a1Q+asPe ' +a3— +ay— +as— +¢ 3a
0 1Q 2 3S’te 4Pe 4Bo (32)

The values of the coefficients resulting from the least-squares regression are given in Table Bl
The condition number for this analysis is 8.11 x 107, which is very high. This indicates that
there exists strong collinearity in the assumed input set II. The collinearity can be understood in

terms of the primary variable as follows: On close inspection of the dimensionless expressions for

Q-——P 1 _ a Bi_ ha gqts_ ofi-Tx)?
T pe(T—Too)vpl2? Pe — vply’ Pe — vplp’ Bo — pevp

is accounted for in all the four variables, and this can potentially reduce the linear independence of

, it is observed that laser scan velocity

these physical quantities. Further, the role of inert environment variables is limited in our analysis.
Considering the regression coefficients, Bi/Pe and ts/Bo are dropped from our next regression

attempt.

Table 3: First attempt of the regression analysis to estimate the coefficients, a;, using the linear
least-squares approach. Asterisk(*) indicates the statistical significance of the coefficient using
a t-test with a 95% confidence interval. Other statistics : R? = 0.65, Adjusted R?> = 0.61, F-
statistic=20.12, P(F)=0.0. Condition number=8.11 x 107.

Parameter Intercept Q Pe ! % % ]gso
a; 1.45* 0.0053* —0.1719* -0.7076* 300.3 —18200*
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Table 4: Second attempt of the regression analysis to estimate the coefficients, a;, using the linear
least-squares approach. Asterisk(*) indicates the statistical significance of the coefficient using a
t-test with a 95% confidence interval. Other statistics: R? = 0.763, Adjusted R? = 0.750, F-
statistic=55.95, P(F)=0.0. Condition number=1.12 x 103,

Parameter Intercept E Pe %
a; 0.6938*  0.0087* —0.1677* 0.1521

Table 5: Third attempt of the regression analysis to estimate the coefficients, a;, using the linear
least-squares approach. Asterisk(*) indicates the statistical significance of the coefficient using
a t-test with a 95% confidence interval. Other statistics : R? = 0.746, Adjusted R?> = 0.737,
F-statistic=83.61, P(F)=0.0. Condition number=422.

Parameter Intercept E Pe
a; 0.8146*  0.0082* —0.1654*

Second attempt of the regression analysis: In the second iteration, the chosen independent

set is Il = {E, Pe Te }. The hypothesized linear relationship is given by the following relation.

) Ste
N Tc
U=ay+a1E+ayPe+az3— +¢ (3b)
Ste
Further, considering the details of the regression analysis, the expression for the variable dimension-
less power, @, that had a velocity dependence is modified to a new variable, E = m = PeQ.

This new variable is a modified dimensionless power and is independent of the laser scan velocity.
Now, the laser scan speed parameter is only represented in the Péclet number, Pe. The fourth
term % is purely dependent on the material properties. Note the least-squares solution yields the
coefficients given in Table 4.

The least-square solution obtained from this model is an improvement over the previous model.
This can be realized from the improvement in the accuracy of the fit given by the variable RZ.
The adjusted R? improves from 0.65 to 0.75 with the less number of variables in the set II. The
condition number is still high but better than the previous model. Thus, the non-significant variable

is dropped from the set, II, in our third attempt.

Third attempt of the regression analysis: II = {E, Pe} and the hypothesized linear rela-
tionship is given by the following relation.

U=ay+aE+ayPe+e (3c)

The least-square solution is summarized in Table [5. The condition number is greatly improved.

The probability that all a; = 0 at the same time is negligible as seen from the probability of F-
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statistic. All the coefficients are statistically significant i.e the hypothesis that individual a; = 0
can be safely discarded.

Now the linear model given by Equation [3¢/is interpreted in light of the physics of the additive
process. The heat received by the material is defined by a quantity U. The higher the heat received
greater the temperature reached by the system. This U is related to the various material property
and process parameters. Using the non-dimensional analysis, several parameters were combined
into a bunch of non-dimensional numbers. These numbers are associated with and are responsible
for several physical phenomena. Using the linear model and the available data, the variation of U
was explained using a linear combination of constant, E and Pe. A more complete dependence

can potentially be highly non-linear, but this also can be analytically intractable.

5 Results

In the previous section, a linear least-squares regression approach was used to arrive at a relation
for the dimensionless heat energy absorbed, U. The regression analysis resulted in a relation for
U in terms of the dimensionless power, E, and the Péclet number, (Pe). In the following sections
(Sections [5.145.3)), relation for U is used to investigate the advective transport occurring inside
the meltpool for different alloys and then to characterize their meltpool morphology (aspect ratio
and volume) using the Marangoni number and the Stefan number. In Section [5.4] U is used to
characterize microstructure evolution using the temperature gradients and the cooling rates in the

solidified region.

5.1 Influence of Péclet number on advection transport in the meltpool

In this section, the extent of advection transport observed in the meltpool in different alloys during
the LBPF process is discussed. The goal is to analyze the macroscopic geometric features of the
meltpool, such as its aspect ratio and volume. In trying to explain the variation of these macroscopic
features, a measure of advection in the meltpool using the relevant dimensionless quantities are
critically investigated. Figure [5 describes the variation of the Péclet number, Pe* = Pevmaq,
with the non-dimensional quantity M aU. 1t is to be noted that the Péclet number with an
asterisk, Pe* = PeVpyge = l”%”ﬁ%, is defined using the maximum velocity in the meltpool,
and is a measure of the advective transport relative to the diffusion transport in the meltpool. A
larger value of Pe* denotes a larger circulation of heat inside the meltpool due to the fluid motion.
The dimensionless quantity Ma* = MaU is a measure of heat transport caused by the fluid flow
induced due to the surface tension gradient. As seen from the Figure B for the alloy shown, Pe*
increase with the Ma*. This correlation implies the overall movement of fluid in the meltpool
is greater if the advection transport due to surface tension force is greater. Each point in these

plots represents a single simulation result for the relevant quantities plotted and is obtained from
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the FEM framework. Another key information conveyed in Figure [5 is that for some alloys like
AlSi10Mg, advection due to surface tension forces is minimal, as can be seen from the numerical
values of the total advection (Pevpax) shown on the Y-axis. On the other hand, alloys like Ti6A14V
show a higher value of advection transport due to surface tension forces. These observations are
important correlations between advection measure Pe* = Pevy,q:, Marangoni number, Péclet
number, and the dimensionless power (Maf] =apMa + ayMaFE + a;MaPe), and will be used

below to make connections to the meltpool morphology.
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Figure 5: Measure of total advection measured as Pevpmax vs surface tension based advection
MaU = qyMa+a; MaE+a;MaPe on a log-log scale for (5a)AlSil0Mg, (5h)SS316, (5c) Ti6A14V
alloys. Corresponding plots comparing IN718 and AZ91D alloys, and a comparison of all the
five alloys considered in this work can be found in Figure [[l and Figure 2] of the Supplementary
Information, respectively. The advection measure corresponds to the degree of fluid flow inside the
meltpool. Each point in these plots represent a single simulation result for the relevant quantities

plotted, and is obtained from the FEM framework.

5.2 Influence of Marangoni number on the meltpool aspect ratio

In this section, the geometric characteristics of the meltpool, particularly the aspect ratio is dis-
cussed. The meltpool aspect ratio is defined as the ratio of its maximum length to its maximum
width (z%n) To understand aspect ratio in terms of the input process parameters, dimensionless
quantity M aU is useful. For characterizing the meltpool shapes, correlations were found between
MaU = ayMa + a;MaE + asMaPe and the aspect ratio of the meltpool for different alloys,
and different process parameters. The rise in U is an indication of enough heat received by the
material to cause melting during the additive process. The aspect ratio of the meltpool is related to
the fluid flow induced inside the meltpool. As shown in the previous section, in Figurel5, AISil0Mg
alloy has a low advection measure, Pevy,qs, and Ti6Al4V alloy has a high advection measure.

This information is relevant here to understand the meltpool shapes of these materials. Figure [6al
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shows the variation of the aspect ratio (fuﬂm) plotted as a function of non-dimensional quantity
MaU for Ti6Al4V alloy material. The aspect ratio increases with Mal. The aspect ratio with
MaU if visualized in a combined plot for all the three alloys considered in this work, it is instruc-
tional to see the separations of materials into three clusters - each for one alloy, as seen in the
Figure[6bl From this clustering, it can be seen that Ti6Al4V almost always produced an elongated
or elliptical-shaped meltpool whose aspect ratio is far from one. The alloy AlSi10Mg produces a
meltpool that is relatively less elongated and has an aspect ratio closer to one. The advection in
the fluid flow causes the meltpool to expand along the direction of the higher temperature gradient.
From this discussion, insightful observations, relating the aspect ratio of the meltpool with M alA],

can be made that help us characterize the meltpool shapes potentially produced by different alloys.
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Figure 6: Correlation of the aspect ratio with M aU = ayMa + a; MaE + a;MaPe, plotted on
a log-log scale, for (6al) Ti6A14V alloy, and for (6b]) three alloys (Ti6A14V, SS316 and AlSi10Mg)
shown in a single plot to demonstrate clustering. A combined plot demonstrating this clustering for
all the five alloys (Ti6Al4V, SS316, AlSil0Mg, IN718 and AZ91D) considered in this work can be
found in Figure [ of the Supplementary Information. Each point in these plots represent a single

simulation result for the relevant quantities plotted, and is obtained from the FEM framework.

5.3 Influence of Stefan number on meltpool volume

In this section, a relation between the input non-dimensional numbers and the volume of the
meltpool is presented. The volume of the meltpool is the volume of the localized region where the
heat received by the material resulted in the melting of the material. the pool volume is identified
using the liquid fraction, ¢, which is a variable that we track in the model at all time instances and
all spatial points in the domain. To completely melt the material, the material needs to absorb

enough power to raise the temperature above the liquidus temperature and to overcome the latent
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heat barrier. The dimensionless power absorbed by the material is associated as a form of latent

power, Pr, = S}—g’"% Since % is constant for a given material, P;, is proportional to the volume

of the material melted (€,,). One can expect, as a first-order argument, that more material will

melt if U is higher. Thus, one can expect P = ), LS St tO increase with U. This understanding

SteU

helps us anticipate that the meltpool volume for different alloys, Q.. increases with 7= and

this can indeed be seen in Figure [fal7c. The numerical range of the meltpool volumes across
the data points is similar, but for a given alloy, the meltpool volume increases with %ﬁ With

this analysis, an important correlation is obtained between the meltpool volume and the quantity

Ste 17 Ste SteE StePe
T-U = aps + a1 + ag .
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Figure 7: Correlation of the meltpool volume (I,,wy,d,,) with ST =0T T a1t + eSS,

plotted on a log-log scale, for (7a) AlSil0Mg, (7b) SS316, and (7c) Ti6A14V alloys. Corresponding
plots comparing IN718 and AZ91D alloys, and a comparison of all the five alloys considered in this
work can be found in Figure 4 and Figure [5 of the Supplementary Information, respectively. Each
point in these plots represent a single simulation result for the relevant quantities plotted, and is
obtained from the FEM framework.

5.4 Influence of the heat absorbed on the solidification cooling rates

In this section, a discussion on characterizing the microstructure of the solidified region is presented.
To support this discussion, U is used to explain the variation in the output variables like the
temperature gradient, G, and the cooling rate, Gv,, where v, is the laser scan speed. These variables
are traditionally understood to have a direct influence on the microstructure in the solidification
literature. U = ao + a1 FE 4 a2 Pe, has a strong linear correlation with the temperature gradient,
G, as shown in the Figures Considering the correlations observed in these figures, it can be
inferred that the non-dimensional temperature gradient is proportional to the value of U. Further,

this relation is expressed entirely in terms of input material properties and process parameters.
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Figure 8: Dimensionless temperature gradient (G) with the U for different alloys. Plots correspond-
ing to IN718 and AZ91D alloy material can be found in Figure6 of the Supplementary Information.
Each point in these plots represent a single simulation result for the relevant quantities plotted,

and is obtained from the FEM framework.

In the LPBF process, the laser scan speed controls the speed of movement of the solidification
interface. The laser scan speed used in the simulations is assumed to be equal to the maximum
solid-liquid interface velocity (v = v, M, @] The variation of the cooling rates, Gv, are observed
with U by increasing dimensionless laser power, E, but keeping the Péclet number fixed. The
dimensionless temperature gradient, Gmagz, Will increase with U. as seen in the Figurel8l It is also
instructional to see that the cooling rate, Gv,, increases with Ij, as shown in Figure [9al There
exists a well-known correlation between a microstructure size, A2, and the cooling rate, Gv,, in the

—0.28 @] Using this relation, it can

solidification process, and is given by the relation Ay = 25(Grp)
be seen that the size of the microstructure will get finer as we increase U, which can be achieved
by increasing E. Thus, the size of the microstructure correlates with the input non-dimensional
quantity given by U = ag + a1 E + ay Pe.

The effect of U on the cooling rate is studied due to a change in the Péclet number, Pe, but
keeping the dimensionless laser power, E, fixed. U decreases with increase in Pe and E fixed.
From Figure [8] it is known that the dimensionless temperature gradient, GG, and its dimensional
counterpart, both decrease if we decrease U. Thus the cooling rate, Gv,, decreases with increase
in U, as seen in Figure[9bl This decrease is solely due to an increase in the value of Pe. Using this
information, a correlation is identified between the change in the size of the microstructure and the
Péclet number, i.e, increasingly coarser microstructural features can be observed with a decrease

in the cooling rate.
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Figure 9: (Qal) Variation of the dimensional cooling rate, Gv,, with U = ap+ a.E + as Pe, plotted
on a log-log scale. Here, U is changed by changing E, but keeping Pe fixed for SS316 alloy, (9nl)
Variation of dimensional cooling rate, Gv,, with U =ap+a.E + asPe, plotted on a log-log scale.
Here, U is changed by changing Pe, but keeping E fixed for $SS316 alloy.

6 Conclusion

In this work, the meltpool dynamics of the laser powder bed fusion (LPBF) process are numerically
modeled and connections are made to important dimensionless quantities influencing the thermo-
fluidic evolution of the meltpool and its morphology. Processes like the interaction of the moving
laser power source with the powdered metal, formation of the meltpool, its subsequent solidifi-
cation, etc., make LPBF a highly coupled multiphysics process. To investigate the multiphysics
interactions, the thermo-fluidic governing equations relevant to the LPBF process are numerically
modeled using a Finite Element Method (FEM) framework. The simulation predictions were vali-
dated by comparing with available results from the literature and with experimental observations of
the cooling rates available from our experimental collaborators. Using the classical Buckingham-7
theorem and a careful choice of relevant characteristic quantities, the governing equations were
reduced to their dimensionless form. Using the dimensionless form and the FEM simulations, an
important dimensionless quantity, interpreted as the heat absorbed by the metal powder and the
meltpool, is identified. Around sixty different cases of the LPBF process were simulated by varying
the alloy type and the process conditions, and the simulation data was used to obtain an explicit
form of the dimensionless heat absorbed in terms of the input dimensionless numbers using the
method of linear least-squares regression. Using physics-based and statistical arguments, a linear
model showing dependence of the heat absorbed on the Péclet number and the dimensionless power
is established.

The measure of advection inside the meltpool is quantified in terms of the Péclet and the

23


https://doi.org/10.20944/preprints202212.0017.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2022 d0i:10.20944/preprints202212.0017.v2

Marangoni numbers and it is found that materials such as Ti-6Al-4V show greater advection,
represented by Pe*, and an elongated elliptical meltpool. Materials like A1Si10Mg show the least
advection and whereas SS316 shows moderate amount of advection. It was found that the meltpool
volume of materials such as Ti-6Al-4V, SS316, and AlSil0Mg increases with the product of Stefan
number and dimensionless measure of heat absorbed. Solidification cooling rates decrease with the
measure of heat absorbed if the Péclet number is reduced keeping dimensionless power fixed. This
characterization of the meltpool morphology using classical dimensionless numbers and the impact
of dimensionless power and Péclet number on the solidification cooling rates is a novel contribution
of this work.

In a future work, potential extension of this dimensional analysis framework to investigate
meltpool characteristics such as keyhole formation and microstructural features such as grain mor-

phology in the solidified meltpool region will be explored.
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