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Abstract: This work focused on the evaluation of some machine learning (ML) models and their 

application in e-health, using intermediate nodes within an Internet of Things (IoT) platform used 

for heartbeat anomaly detection. For the evaluation of ML models, a set of statistical validation met-

rics was selected. These metrics were applied in the training, testing and validation phases of the 

models. The results obtained can determine relevant factors for the selection of ML models, either 

based on the statistical and intrinsic efficiency of the ML models, or on their suitability to be imple-

mented in intermediate nodes within an IoT platform. the more Lightweight models such as Simple 

Linear Regression, Logistic Regression, and K Nearest Neighbors, could easily operate in interme-

diate nodes, and they are models that require low processing and storage to work. In conclusion, 

the approach for intermediate nodes of Internet of Things platforms using cognitive networks de-

creases the processing cost in cloud computing and transfers it to the fog layer. 
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1. Introduction 

For many authors, the beginning of the fourth industrial revolution was given by the 

rise of Internet of Things (IoT) platforms, the increased use of IoT platforms, which prom-

ises various changes in all aspects of human life and especially in the healthcare industry 

[1,2]. IoT can help provide access to many services, such as remote monitoring from many 

locations, thanks to its ubiquity feature. IoT presents different challenges when imple-

menting e-health applications and tools; for example, the large number of sensors and 

heterogeneous networks that compose IoT platforms generate large volumes of data; 

these volumes are characterized by velocity, volume, variety, value, and veracity [3,4,5]. 

There are other challenges when it comes to implementing e-health applications in 

IoT, where latency plays a critical role in making life-saving decisions. Although cloud 

environments have the computational capacity to resolve and interpret large volumes of 

data at very low latencies, the implementation of e-health applications in these environ-

ments comes with limitations in terms of multi-hop distance from the data source, so it 

must be ensured that at least the most critical part of the overall service is always available 

to the patient, even in the presence of hostile environments with intermittent or no net-

work connectivity to the Cloud without neglecting privacy, which aims to protect the 

user’s sensitive health-related data [6,7,8].  

In recent years, artificial intelligence (AI) has been proposing solutions to some of the 

challenges of e-health in a disruptive and effective way, the main challenge for AI imple-

mentation in IoT platforms is resource consumption, as it requires cost and computational 

complexity to achieve its objectives [9,10]. AI and ML model implementation techniques 

require a high number of memory resources and computational (processing) capacity for 

training large models. However, some new algorithms and lighter ML models are being 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202212.0014.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202212.0014.v1
http://creativecommons.org/licenses/by/4.0/


 

 

designed or adapted so that they can work more efficiently on devices with limited com-

putational capabilities, requiring less storage resources and computational power 

[11,12,13]. 

Machine Learning (ML) is one of the AI techniques that has been applied in different 

fields, including e-health, the inclusion of ML models in the classification and prediction 

of heartbeat, can contribute to the improvement of quality of life [14, 15].  According to 

the World Health Organization (WHO), diseases associated with heart failure (heart dis-

ease) are one of the chronic Non-Communicable Diseases (NCDs) that can affect all people 

of all ages. The NCDs together account for nearly 70% of deaths worldwide. According 

the WHO also warns that due to NCDs, almost 86% of the 17 million people who die 

prematurely are in low-or middle-income countries [16], as is the case of Colombia where 

this work is being developed. 

AI techniques mixed in distributed computing environments can be a solution to the 

challenges posed by e-health applications and their approach based on multi-architectures 

[17]. This work focused on the evaluation of some of the classification and regression mod-

els used for the anomaly detection; we had a groups of metrics the group of metrics, are 

the statistical metrics where accuracy, precision, recall, specificity, F1 score and AUC were 

taken into account [18,19]. 

2. Materials and Methods 

For the implementation of the IoT platform scenario, two types of nodes were used, 

cloud nodes (server’s nodes) and intermediate nodes (Raspberry Pi3 and Mini Pc -Intel 

Celeron 2.0 GHz, and, 2 GB on memory ram), these nodes were hosted in Telemedicine 

Research Group (TIGUM) location, show Figure 1. The evaluation of the ML models was 

performed according to two groups of metrics, the first group of metrics corresponds to 

the metrics shown in the table, these statistical metrics allow us to determine if the models 

will do a good job of detection or prediction for new and future target data.  

 
Figure 1. Intermediate nodes design 

 

Figure 2 shows the architecture proposed and developed for the implementation of 

the IoT platform to be evaluated, this consists of an upper layer called Cloud layer, where 

the largest capacity in terms of storage and processing (computational resources) are lo-

cated, in this layer are carried out all the activities that require higher computational costs 

and the requirement of services or applications allows a higher latency. The second layer 

called Fog, is a layer that has some processing and storage resources in smaller quantities 

than the cloud layer, in fog activities that require an intermediate computational cost are 

carried out. At the edge are the devices that connect with sensors and people, this layer 

called edge, has few storage and processing resources, but allows performing low com-

putational cost jobs at very low latencies. 
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Figure 2. Internet of Things platform architecture 

 

The statistical metrics were implemented in the training and testing-validation 

phases, the metrics were extracted by implementing a tool in Python 3.9.5, whose objective 

was the classification and detection of heartbeat anomalies, based on the results of the two 

data sets that supported this experiment. The models used for this study are listed in Table 

1.  

                                                               Table 1. Machine learning models 

Machine learning models  Acronym 

Simple Linear Regression SLR 
Logistic Regression LR 

K Nearest Neighbors  KNN 
Stochastic Gradient Descent  SGD 
Naive Bayes NB 
Decision Tree Classifier DT 
Random Forest RF 
Extremely Random Trees ETC 
Gradient Boosting Classifier GBC 
XG Boost Classifier XGBC 
Sequential Model Neural network  SNN 
Multi-layer Perceptron Neural Network MLP 

2.1 Data set 

Two datasets were used in this work, the first dataset used is available in [20], this 

study selected potential participants (115) between 18 and 90 years old, this dataset shows 

on average 36300 measurements per individual, Age, blood pressure, heartbeat rate, sam-

ple time and BMI. Within the study informed consent was obtained from all participants 

[21]. The second data set was obtained from the Fluke Biomedical Patient Monitor Simu-

lators (PS420) this set was obtained with the same biomedical signals as the first set. Per-

sonal data, such as age, gender, height, and weight, were collected prior to data collection 

and this information, along with the collected sensor readings, were anonymized and 

stored in accordance with HIPAA [22,23]. 

Some key features characteristic of PS420 patient simulator, are: small enough to fit 

in a pocket, the handy it features a wide variety of simulation capability, including a full 

range of ECG, respiration, blood pressure, temperature and cardiac output conditions. 

The tool includes 12-lead ECG, two-channel blood pressure simulation, 35 arrhythmia se-

lections, pacemaker simulation as well as adult and pediatric normal sinus rhythms, ECG 
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performance waveforms, ST segment levels, ECG artifact, etc. This tool has 12 Lead ECG 

with nine independent outputs referenced to RL. The Table 2 shows some specifications 

of PS420 patient simulator [24]. 

Table 2. Some specifications of PS420 patient simulator. 

ECG Details 

Normal rate 80 BPM 
Selectable rates 30, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, and 300 BPM 

Accuracy ± 1 % 
Output impedance 500 Ω, 1000 Ω, 1500 Ω, and 2000 Ω for Leads I, II, and III 
ECG amplitudes 0.5 mV, 1 mV, 1.5 mV, and 2 mV 

Amplitude accuracy ± 2 % Lead II 

Arrhythmias 

Base rate of 80 BPM 

Sinus arrhythmia 

Atrial (PAC)* 

Missed beat* 

Atrial tachycardia 

Atrial flutter 

Nodal (PNC)* 

Nodal rhythm 

Supraventricular tachycardia 

PVC1 left ventricular focus* 

PVC 1 early, LV focus* 

PVC1 R on T, LV focus* 

PVC2 right ventricular focus* 

Conduction defects 

First degree 

Second degree 

Third degree 

PVC2 early, RV focus* 

PVC2 R on T, RV focus* 

Multifocal PVCs* 

Atrial fibrillation coarse/fine 

PVCs 6/minute 

PVCs 12/minute 

PVCs 24/minute 

Frequent Multifocal PVCs 

Bigeminy 

Trigeminy 

Pair PVCs* 

Run 5 PVCs* 

Run 11 PVCs* 

Ventricular tachycardia 

Ventricular fibrillation (coarse 

and fine) on all leads except 

Lead III 

Asystole 

Right/Left bundle branch block 

 

2.2 Data cleaning 

 

The data sets were treated with to adjust records without value, duplicates or cor-

rupted, with the clean data sets, the prevalence calculation was performed in the output 

function and, this function contains, values between 0 and 1, where the patients found 

with the presence of a heartbeat anomaly are identified with the number 1, the prevalence 

yielded a value of 0.5, which indicates that 50 % of the readings of the data set contain 

data with the features of a heartbeat anomaly. Prevalence is the percentage of samples 

that have the target characteristic to be predicted, as shows in the equation. 

𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
∑ 𝑦𝑖𝑛
𝑖=1

𝑖
 (1) 

 

The data set obtained was divided into two sets (Training and validate), the training 

set with 70% and the validate set with 30% [25]. Once the subset of data has been obtained, 
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the prevalence calculation is performed, yielding 0.519 for the training set, 0.659 for vali-

dation, as the objective is to train a model that classifies correctly and the previous one 

shows that the majority class does not reflect heartbeat anomalies, For the above reason, 

a balancing of the data set is carried out, so that the training team has the same number of 

random results with a positive value (Heartbeat anomaly) and a negative value for patient 

without anomalies. 

2.3 Metrics 

 

The accuracy of a classification can be evaluated by calculating the number of cor-

rectly recognized class examples, those are true positives (tp), the number of correctly 

recognized examples that do not belong to the class are true negatives (tn), and examples 

that were incorrectly assigned to the class are false positives (fp), or that were not recog-

nized as class examples are false negatives (fn) [25]. To carry out the evaluation of the 

models, two groups of metrics were taken, the first group of metrics is oriented to the 

measurement of performance, through accuracy, precision, specificity, recall and F1 − 

score; the Table 3. shows the measure, formula and general definition. 

Table 3. Metrics 

ML models  Formula Description 

Accuracy (𝑡𝑝 + 𝑡𝑛)

(tp + tn)
 

Overall effectiveness of model 

Recall 𝑡𝑝

(tp + tn)
 Class agreement of the data labels with the positive labels given by classifier 

Specific-
ity 

𝑡𝑛

(tp + tn)
 

Effectiveness of a classifier to identify positive labels 

Precision 𝑡𝑝

(tp + fp)
 

How effectively a classifier identifies negative labels 

F1 - 
Score 2 ∗

Precision ∗ Recall

Precision + Recall
 

Weighted average of the precision and recall 

AUC 1

2
∗

𝑡𝑝

(tp + fn)
+

𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

Classifier’s ability to avoid false classification 

 

3. Results 

Results in training stage, are presented in Table 4. Three models with high accuracy 

can be identified for this training stage, XGBC, RF AND GB whit 1.0. The models that 

presented the lowest accuracy values for this metric were KNN 0.79, SGD and NB with 

0.82. For the F1-score metric, the three most relevant models were DT, GB and XGBC all 

with 1.0; on the other hand, the models with the lowest values in this metric were KNN 

with 0.80, SGD and NB with 0.83. In general, all the models evaluated for the training 

stage are in the fourth quarter (0.75 - 1.0), which represents a good performance in the 

classification of cardiac anomalies within the data sets used. 

 

 

 

 

Table 4. Training models results. 

Model Data_set AUC Accuracy Recall Precision Specificity F1-score 

SLR train 0,9147 0,8352 0,8571 0,8211 0,8132 0,8387 
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LR train 0,9163 0,8352 0,8462 0,8280 0,8242 0,8370 

KNN train 0,9003 0,7967 0,8242 0,7813 0,7692 0,8021 

SGD train 0,9140 0,8297 0,8462 0,8191 0,8132 0,8324 

NB train 0,9022 0,8297 0,8571 0,8125 0,8022 0,8342 

DT train 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

RF train 1,0000 0,9945 1,0000 0,9891 0,9890 0,9945 

GB train 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

XGBC train 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

ETC train 0,9679 0,8736 0,8901 0,8617 0,8571 0,8757 

SNN train 0,9482 0,9451 0,9560 0,9355 0,9341 0,9457 

CLF train 0,9873 0,9615 0,9231 1,0000 1,0000 0,9600 

 

Table 5 shows the results for intermediate nodes in stage of validation, for this case 

highly accuracy models are:  LR, ETC and SNN with 0.85, and NB, XGBC with 0.87; DT 

0.65 and GB with 0.84 presented the lowest values for this metric. For the F1-score metric, 

the NB and XGBC with 0.90, ETC with 0.89, are the models show the highest performance 

values; the models with the lowest performance were DT with 0.72, GB and CLF with 0.85. 

In this phase, not all models were able to obtain metrics that are in the last quarter (0.75-

1.0). This is the case of DT, RF and SLR, which in some of the metrics did not achieve a 

threshold equal to or greater than 0.75. 

Table 5. Validation models results. 

Model Data_set AUC Accuracy Recall Precision Specificity F1-score 

SLR valid 0,9153 0,8293 0,8889 0,8571 0,7143 0,8727 

LR valid 0,9127 0,8537 0,8889 0,8889 0,7857 0,8889 

KNN valid 0,9087 0,8293 0,9259 0,8333 0,6429 0,8772 

SGD valid 0,9206 0,8293 0,8889 0,8571 0,7143 0,8727 

NB valid 0,9206 0,8780 0,9259 0,8929 0,7857 0,9091 

DT valid 0,6548 0,6585 0,6667 0,7826 0,6429 0,7200 

RF valid 0,8677 0,8293 0,8889 0,8571 0,7143 0,8727 

GB valid 0,8624 0,8049 0,8889 0,8276 0,6429 0,8571 

XGBC valid 0,8598 0,8780 0,9259 0,8929 0,7857 0,9091 

ETC valid 0,8386 0,8537 0,9259 0,8621 0,7143 0,8929 

SNN valid 0,9021 0,8537 0,8519 0,9200 0,8571 0,8846 

CLF valid 0,8796 0,8293 0,7778 0,9545 0,9286 0,8571 

 

AUC and ROC analysis is one of the most important evaluation metrics to verify the 

performance of any classification model. ROC is given by the receiver operating charac-

teristics, while AUC is given by the area under the curve [26]. The Figure 3 shows the 

results in the training and validation stages for all the models evaluated; in it we can ob-

serve two types of behaviors, the first one is a group of models SLR, KNN, LR, SGD, ETC 

and NB, where the performance of the training and validation metrics behaves in an as-

similated way. The second group of models CLF, DT, RF, GB, XGBC, SNN and CLF, pre-

sent a higher performance in the training stage and then this performance decreases con-

siderably in the validation stage.  
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Figure 3: Accuracy comparison 

 

Figure 4 shows the AUC comparison with general performance of the models in the 

two stages, this method is convenient for the following reasons: It is scale invariant, it 

measures how well the predictions are ranked, rather than their absolute values. It is in-

variant with respect to the classification threshold, it measures the quality of the model 

predictions, regardless of which classification threshold is chosen.  as well as the accu-

racy evaluation, there are two types of behavior, one group and models that maintain 

similar behaviors in the two stages, such as SLR, LR, KNN, SGD, NB and SNN, the other 

group shows a difference between the performance achieved in the two stages, this is the 

case of DT, RF, GB, XGBC, ETC and CLF. 

 

 
Figure 4: AUC comparison 

 

Finally, Figure 5 shows the ROC comparison behavior of the models according to the 

Fp and Tp, obtained in the validation stage, this metric shows the group of models LSR, 

LR, KNN and CLF, with a high performance and stability, while the DT, ETC and XBGC 

models, show the lowest performance.  

 

1 − 𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
Fp

Tp+Fp
     (2) 
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Figure 5: ROC comparison. Supplementary material. 

 

4. Conclusions 

This study was able to demonstrate the effectiveness of the new design of the FOG 

layer of an intermediate biosignals processing node with cognitive networks applied to 

an Internet of Things architecture. The results show that the lighter models such as LSR, 

LR and KNN are highly functional and require low processing and heap storage capacity. 

 

For the comparison of the models, the cross-validation mechanism was presented as 

a tool that allowed us to test the generation of the models; in it, all the evaluated models 

met the accuracy threshold, allowing reliable estimates to be obtained for the detection of 

possible heartbeat anomalies, both for the testing and validation sets. 

 

It is important to highlight that all the models evaluated can classify cardiac anoma-

lies with great precision, with the exception of DT and RF, which in the validation stage 

presented metrics lower than 0.75, being below the 4th percentile. 

 

Finally, with this new efficient approach detection of abnormal heartbeats is very 

important for early diagnosis in places whose connection to IoT networks are precarious. 

With the help of ML, the detection allows obtaining data that guides the possible diagno-

sis. 

Supplementary Materials: The results tables in excel format. 
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Appendix A 

Supplementary data: a date results of machine learning proofs. 
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