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Abstract: This work focused on the evaluation of some machine learning (ML) models and their
application in e-health, using intermediate nodes within an Internet of Things (IoT) platform used
for heartbeat anomaly detection. For the evaluation of ML models, a set of statistical validation met-
rics was selected. These metrics were applied in the training, testing and validation phases of the
models. The results obtained can determine relevant factors for the selection of ML models, either
based on the statistical and intrinsic efficiency of the ML models, or on their suitability to be imple-
mented in intermediate nodes within an IoT platform. the more Lightweight models such as Simple
Linear Regression, Logistic Regression, and K Nearest Neighbors, could easily operate in interme-
diate nodes, and they are models that require low processing and storage to work. In conclusion,
the approach for intermediate nodes of Internet of Things platforms using cognitive networks de-
creases the processing cost in cloud computing and transfers it to the fog layer.
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1. Introduction

For many authors, the beginning of the fourth industrial revolution was given by the
rise of Internet of Things (IoT) platforms, the increased use of IoT platforms, which prom-
ises various changes in all aspects of human life and especially in the healthcare industry
[1,2]. IoT can help provide access to many services, such as remote monitoring from many
locations, thanks to its ubiquity feature. IoT presents different challenges when imple-
menting e-health applications and tools; for example, the large number of sensors and
heterogeneous networks that compose IoT platforms generate large volumes of data;
these volumes are characterized by velocity, volume, variety, value, and veracity [3,4,5].

There are other challenges when it comes to implementing e-health applications in
IoT, where latency plays a critical role in making life-saving decisions. Although cloud
environments have the computational capacity to resolve and interpret large volumes of
data at very low latencies, the implementation of e-health applications in these environ-
ments comes with limitations in terms of multi-hop distance from the data source, so it
must be ensured that at least the most critical part of the overall service is always available
to the patient, even in the presence of hostile environments with intermittent or no net-
work connectivity to the Cloud without neglecting privacy, which aims to protect the
user’s sensitive health-related data [6,7,8].

In recent years, artificial intelligence (AI) has been proposing solutions to some of the
challenges of e-health in a disruptive and effective way, the main challenge for Al imple-
mentation in IoT platforms is resource consumption, as it requires cost and computational
complexity to achieve its objectives [9,10]. Al and ML model implementation techniques
require a high number of memory resources and computational (processing) capacity for
training large models. However, some new algorithms and lighter ML models are being
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designed or adapted so that they can work more efficiently on devices with limited com-
putational capabilities, requiring less storage resources and computational power
[11,12,13].

Machine Learning (ML) is one of the Al techniques that has been applied in different
fields, including e-health, the inclusion of ML models in the classification and prediction
of heartbeat, can contribute to the improvement of quality of life [14, 15]. According to
the World Health Organization (WHO), diseases associated with heart failure (heart dis-
ease) are one of the chronic Non-Communicable Diseases (NCDs) that can affect all people
of all ages. The NCDs together account for nearly 70% of deaths worldwide. According
the WHO also warns that due to NCDs, almost 86% of the 17 million people who die
prematurely are in low-or middle-income countries [16], as is the case of Colombia where
this work is being developed.

Al techniques mixed in distributed computing environments can be a solution to the
challenges posed by e-health applications and their approach based on multi-architectures
[17]. This work focused on the evaluation of some of the classification and regression mod-
els used for the anomaly detection; we had a groups of metrics the group of metrics, are
the statistical metrics where accuracy, precision, recall, specificity, F1 score and AUC were
taken into account [18,19].

2. Materials and Methods

For the implementation of the IoT platform scenario, two types of nodes were used,
cloud nodes (server’s nodes) and intermediate nodes (Raspberry Pi3 and Mini Pc -Intel
Celeron 2.0 GHz, and, 2 GB on memory ram), these nodes were hosted in Telemedicine
Research Group (TIGUM) location, show Figure 1. The evaluation of the ML models was
performed according to two groups of metrics, the first group of metrics corresponds to
the metrics shown in the table, these statistical metrics allow us to determine if the models
will do a good job of detection or prediction for new and future target data.

N |

Figure 1. Intermediate nodes design

Figure 2 shows the architecture proposed and developed for the implementation of
the IoT platform to be evaluated, this consists of an upper layer called Cloud layer, where
the largest capacity in terms of storage and processing (computational resources) are lo-
cated, in this layer are carried out all the activities that require higher computational costs
and the requirement of services or applications allows a higher latency. The second layer
called Fog, is a layer that has some processing and storage resources in smaller quantities
than the cloud layer, in fog activities that require an intermediate computational cost are
carried out. At the edge are the devices that connect with sensors and people, this layer
called edge, has few storage and processing resources, but allows performing low com-
putational cost jobs at very low latencies.
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Figure 2. Internet of Things platform architecture

The statistical metrics were implemented in the training and testing-validation
phases, the metrics were extracted by implementing a tool in Python 3.9.5, whose objective
was the classification and detection of heartbeat anomalies, based on the results of the two
data sets that supported this experiment. The models used for this study are listed in Table

1.
Table 1. Machine learning models
Machine learning models Acronym
Simple Linear Regression SLR
Logistic Regression LR
K Nearest Neighbors KNN
Stochastic Gradient Descent SGD
Naive Bayes NB
Decision Tree Classifier DT
Random Forest RF
Extremely Random Trees ETC
Gradient Boosting Classifier GBC
XG Boost Classifier XGBC
Sequential Model Neural network SNN
Multi-layer Perceptron Neural Network MLP
2.1 Data set

Two datasets were used in this work, the first dataset used is available in [20], this
study selected potential participants (115) between 18 and 90 years old, this dataset shows
on average 36300 measurements per individual, Age, blood pressure, heartbeat rate, sam-
ple time and BMI. Within the study informed consent was obtained from all participants
[21]. The second data set was obtained from the Fluke Biomedical Patient Monitor Simu-
lators (PS420) this set was obtained with the same biomedical signals as the first set. Per-
sonal data, such as age, gender, height, and weight, were collected prior to data collection
and this information, along with the collected sensor readings, were anonymized and
stored in accordance with HIPAA [22,23].

Some key features characteristic of PS420 patient simulator, are: small enough to fit
in a pocket, the handy it features a wide variety of simulation capability, including a full
range of ECG, respiration, blood pressure, temperature and cardiac output conditions.
The tool includes 12-lead ECG, two-channel blood pressure simulation, 35 arrhythmia se-
lections, pacemaker simulation as well as adult and pediatric normal sinus rhythms, ECG
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performance waveforms, ST segment levels, ECG artifact, etc. This tool has 12 Lead ECG
with nine independent outputs referenced to RL. The Table 2 shows some specifications
of P5420 patient simulator [24].

Table 2. Some specifications of PS420 patient simulator.

ECG Details
Normal rate 80 BPM
Selectable rates 30,40, 60,80,100,120,140, 160,180,200, 220, 240, 260, 280, and 300 BPM
Accuracy 1%
Output impedance 500 €, 1000 ©, 1500 Q, and 2000 Q for Leads I, II, and III
ECG amplitudes 0.5mV,1mV, 1.5mV,and 2 mV

Amplitude accuracy

+ 2% Lead Il

Arrhythmias

Base rate of 80 BPM

Sinus arrhythmia

Atrial (PAC)*

Missed beat*

Atrial tachycardia

Atrial flutter

Nodal (PNC)*

Nodal rhythm
Supraventricular tachycardia
PVC1 left ventricular focus*
PVC 1 early, LV focus*

PVC1 R on T, LV focus*

PVC2 right ventricular focus*
Conduction defects

First degree

Second degree

Third degree

PVC2 early, RV focus*

PVC2 Ron T, RV focus*
Multifocal PVCs*

Atrial fibrillation coarse/fine
PVCs 6/minute

PVCs 12/minute

PVCs 24 /minute

Frequent Multifocal PVCs
Bigeminy

Trigeminy

Pair PVCs*

Run 5 PVCs*

Run 11 PVCs*

Ventricular tachycardia
Ventricular fibrillation (coarse
and fine) on all leads except
Lead III

Asystole

Right/Left bundle branch block

2.2 Data cleaning

The data sets were treated with to adjust records without value, duplicates or cor-
rupted, with the clean data sets, the prevalence calculation was performed in the output
function and, this function contains, values between 0 and 1, where the patients found
with the presence of a heartbeat anomaly are identified with the number 1, the prevalence
yielded a value of 0.5, which indicates that 50 % of the readings of the data set contain
data with the features of a heartbeat anomaly. Prevalence is the percentage of samples
that have the target characteristic to be predicted, as shows in the equation.

no.
prevalenCe - # (1)

The data set obtained was divided into two sets (Training and validate), the training
set with 70% and the validate set with 30% [25]. Once the subset of data has been obtained,
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the prevalence calculation is performed, yielding 0.519 for the training set, 0.659 for vali-
dation, as the objective is to train a model that classifies correctly and the previous one
shows that the majority class does not reflect heartbeat anomalies, For the above reason,
a balancing of the data set is carried out, so that the training team has the same number of
random results with a positive value (Heartbeat anomaly) and a negative value for patient
without anomalies.

2.3 Metrics

The accuracy of a classification can be evaluated by calculating the number of cor-
rectly recognized class examples, those are true positives (tp), the number of correctly
recognized examples that do not belong to the class are true negatives (tn), and examples
that were incorrectly assigned to the class are false positives (fp), or that were not recog-
nized as class examples are false negatives (fn) [25]. To carry out the evaluation of the
models, two groups of metrics were taken, the first group of metrics is oriented to the
measurement of performance, through accuracy, precision, specificity, recall and F1 -
score; the Table 3. shows the measure, formula and general definition.

Table 3. Metrics

ML models Formula Description
Accuracy (tp + tn) Overall effectiveness of model
(tp +tn)
Recall i tp 5 Class agreement of the data labels with the positive labels given by classifier
tp +tn
Specific- b tn Effectiveness of a classifier to identify positive labels
ity (tp + tn)
Precision tp How effectively a classifier identifies negative labels
(tp + fp)
F1- Precision * Recall Weighted average of the precision and recall
Score " Precision + Recall
AUC l . ip n tn Classifier’s ability to avoid false classification
2 (tp+fn) tn+fp
3. Results
Results in training stage, are presented in Table 4. Three models with high accuracy
can be identified for this training stage, XGBC, RF AND GB whit 1.0. The models that
presented the lowest accuracy values for this metric were KNN 0.79, SGD and NB with
0.82. For the F1-score metric, the three most relevant models were DT, GB and XGBC all
with 1.0; on the other hand, the models with the lowest values in this metric were KNN
with 0.80, SGD and NB with 0.83. In general, all the models evaluated for the training
stage are in the fourth quarter (0.75 - 1.0), which represents a good performance in the
classification of cardiac anomalies within the data sets used.
Table 4. Training models results.
Model Data_set AUC Accuracy Recall Precision Specificity Fl1-score

SLR train 0,9147 0,8352 0,8571 0,8211 0,8132 0,8387
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LR train 0,9163 0,8352 0,8462 0,8280 0,8242 0,8370
KNN train 0,9003 0,7967 0,8242 0,7813 0,7692 0,8021
SGD train 0,9140 0,8297 0,8462 0,8191 0,8132 0,8324
NB train 0,9022 0,8297 0,8571 0,8125 0,8022 0,8342
DT train 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
RF train 1,0000 0,9945 1,0000 0,9891 0,9890 0,9945
GB train 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
XGBC train 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
ETC train 0,9679 0,8736 0,8901 0,8617 0,8571 0,8757
SNN train 0,9482 0,9451 0,9560 0,9355 0,9341 0,9457
CLF train 0,9873 0,9615 0,9231 1,0000 1,0000 0,9600

Table 5 shows the results for intermediate nodes in stage of validation, for this case
highly accuracy models are: LR, ETC and SNN with 0.85, and NB, XGBC with 0.87; DT
0.65 and GB with 0.84 presented the lowest values for this metric. For the F1-score metric,
the NB and XGBC with 0.90, ETC with 0.89, are the models show the highest performance
values; the models with the lowest performance were DT with 0.72, GB and CLF with 0.85.
In this phase, not all models were able to obtain metrics that are in the last quarter (0.75-
1.0). This is the case of DT, RF and SLR, which in some of the metrics did not achieve a
threshold equal to or greater than 0.75.

Table 5. Validation models results.

Model Data_set AUC Accuracy Recall Precision Specificity F1-score
SLR valid 0,9153 0,8293 0,8889 0,8571 0,7143 0,8727
LR valid 0,9127 0,8537 0,8889 0,8889 0,7857 0,8889
KNN valid 0,9087 0,8293 0,9259 0,8333 0,6429 0,8772
SGD valid 0,9206 0,8293 0,8889 0,8571 0,7143 0,8727
NB valid 0,9206 0,8780 0,9259 0,8929 0,7857 0,9091
DT valid 0,6548 0,6585 0,6667 0,7826 0,6429 0,7200
RF valid 0,8677 0,8293 0,8889 0,8571 0,7143 0,8727
GB valid 0,8624 0,8049 0,8889 0,8276 0,6429 0,8571
XGBC valid 0,8598 0,8780 0,9259 0,8929 0,7857 0,9091
ETC valid 0,8386 0,8537 0,9259 0,8621 0,7143 0,8929
SNN valid 0,9021 0,8537 0,8519 0,9200 0,8571 0,8846
CLF valid 0,8796 0,8293 0,7778 0,9545 0,9286 0,8571

AUC and ROC analysis is one of the most important evaluation metrics to verify the
performance of any classification model. ROC is given by the receiver operating charac-
teristics, while AUC is given by the area under the curve [26]. The Figure 3 shows the
results in the training and validation stages for all the models evaluated; in it we can ob-
serve two types of behaviors, the first one is a group of models SLR, KNN, LR, SGD, ETC
and NB, where the performance of the training and validation metrics behaves in an as-
similated way. The second group of models CLF, DT, RF, GB, XGBC, SNN and CLF, pre-
sent a higher performance in the training stage and then this performance decreases con-
siderably in the validation stage.
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Figure 3: Accuracy comparison

Figure 4 shows the AUC comparison with general performance of the models in the
two stages, this method is convenient for the following reasons: It is scale invariant, it
measures how well the predictions are ranked, rather than their absolute values. It is in-
variant with respect to the classification threshold, it measures the quality of the model
predictions, regardless of which classification threshold is chosen. as well as the accu-
racy evaluation, there are two types of behavior, one group and models that maintain
similar behaviors in the two stages, such as SLR, LR, KNN, SGD, NB and SNN, the other
group shows a difference between the performance achieved in the two stages, this is the
case of DT, RF, GB, XGBC, ETC and CLF.
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Figure 4: AUC comparison

Finally, Figure 5 shows the ROC comparison behavior of the models according to the
Fp and Tp, obtained in the validation stage, this metric shows the group of models LSR,
LR, KNN and CLF, with a high performance and stability, while the DT, ETC and XBGC
models, show the lowest performance.

1 — especifity = Tpipr (2)
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4. Conclusions

This study was able to demonstrate the effectiveness of the new design of the FOG
layer of an intermediate biosignals processing node with cognitive networks applied to
an Internet of Things architecture. The results show that the lighter models such as LSR,
LR and KNN are highly functional and require low processing and heap storage capacity.

For the comparison of the models, the cross-validation mechanism was presented as
a tool that allowed us to test the generation of the models; in it, all the evaluated models
met the accuracy threshold, allowing reliable estimates to be obtained for the detection of
possible heartbeat anomalies, both for the testing and validation sets.

It is important to highlight that all the models evaluated can classify cardiac anoma-
lies with great precision, with the exception of DT and RF, which in the validation stage
presented metrics lower than 0.75, being below the 4th percentile.

Finally, with this new efficient approach detection of abnormal heartbeats is very
important for early diagnosis in places whose connection to IoT networks are precarious.
With the help of ML, the detection allows obtaining data that guides the possible diagno-
sis.

Supplementary Materials: The results tables in excel format.
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