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Abstract: In the extended scalar sector of the SMASH (Standard Model - Axion - Seesaw - Higgs

portal inflation) framework, we conduct a phenomenological investigation of the observable effects.

In a suitable region of the SMASH scalar parameter spaces, we solve the vacuum metastability

problem and discuss the one-loop correction to the triple Higgs coupling, λHHH . The λHHH and SM

Higgs quartic coupling λH corrections are found to be proportional to the threshold correction. A

large λHHH correction (& 5%) implies vacuum instability in the model and thus limits the general

class of theories that use threshold correction. We performed a full two-loop renormalization group

analysis of the SMASH model. The SMASH framework has also been used to estimate the evolution

of lepton asymmetry in the universe.

Keywords: Higgs portal inflation; Beyond the Standard Model; SMASH; Higgs triple coupling; Higgs

trilinear coupling

PACS: 12.60.-i, 14.80.Cp, 12.10.Kt, 11.10.Hi

1. Introduction

After the discovery of the Standard Model (SM) Higgs boson [1,2], every elementary particle of

the SM has been confirmed to exist. Even though the past forty years have been a spectacular triumph

for the SM, the mass of the Higgs boson (mH = 125.25 ± 0.17 GeV) [3] poses a serious problem for

the SM [4]. It is well-known that the SM Higgs potential is metastable [5], as the sign of the quartic

coupling, λH , turns negative at instability scale ΛIS ∼ 1011 GeV. On the other hand, the SM is devoid

of non-perturbative problems since the non-perturbative scale ΛNS ≫ MPl , where MPl = 1.22 × 1019

GeV is the Planck scale, but still there are studies on non-perturbative effects of the SM [6–10]. In the

post-Planckian regime, effects of quantum gravity are expected to dominate, and the non-perturbative

scale is therefore well beyond the validity region of the SM, unlike the instability scale. The largest

uncertainties in SM vacuum stability are driven by top quark pole mass and the mass of the SM Higgs

boson [11]. The current data is in significant tension with the stability hypothesis, making it more

likely that the universe is in a false vacuum state [12–15]. The expected lifetime of vacuum decay to a

true vacuum is extraordinarily long, and it is unlikely to affect the evolution of the universe [16,17].

However, it is unclear why the vacuum state entered into a false vacuum to begin with during the

early universe. In this post-SM era, the emergence of vacuum stability problems (among many others)

forces the particle theorists to expand the SM in such a way that the λH will stay positive during the

run all the way up to the Planck scale.
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It is possible that at or below the instability scale, heavy degrees of freedom originating from

a theory beyond the SM start to alter the running of the SM parameters of renormalization group

equations (RGE). It has been shown that incorporating the Type-I seesaw mechanism [18–28] will have

a large destabilizing effect if the neutrino Yukawa couplings are large [29], and an insignificantly small

effect if they are small. Thus, to solve the vacuum stability problem simultaneously with neutrino

mass, a larger theory extension is required. Embedding the invisible axion model [30–32] together

with the Type-I seesaw was considered in [33,34]. The axion appears as a phase of a complex singlet

scalar field. This approach aims to solve the vacuum stability problem by proving that the universe

is currently in a true vacuum. The scalar sector of such a theory may stabilize the vacuum with a

threshold mechanism [35,36]. The effective SM Higgs coupling gains a positive correction δ ≡ λ2
Hσ/λσ

at mρ, where λHσ is the Higgs doublet-singlet portal coupling and λσ is the quartic coupling of the

new scalar.

Corrections altering λH in such a model would also induce corrections to the triple Higgs coupling,

λtree
HHH = 3m2

H/v, where v = 246.22 GeV is the SM Higgs vacuum expectation value (VEV) [37–39].

The triple Higgs coupling is uniquely determined by the SM but is unmeasured. In fact, the Run 2

data from the Large Hadron Collider (LHC) has only been able to determine the upper limit of the

coupling to be 12 times the SM prediction [3]. Therefore, future prospects of measuring a deviation of

triple Higgs coupling by the high-luminosity upgrade of the LHC (HL-LHC) [40,41] or by a planned

next-generation Future Circular Collider (FCC) [42–49] give us hints of the structure of the scalar sector

of a beyond-the-SM theory. Previous work has shown that large corrections to triple Higgs coupling

might originate from a theory with one extra Dirac neutrino [50,51], inverse seesaw model [52], two

Higgs doublet model [38,39,53,54], one extra scalar singlet [37,55,56] or in the Type II seesaw model

[57].

The complex singlet scalar, and consequently the corresponding threshold mechanism, is

embedded in a recent SMASH [58–60] theory, which utilizes it at λHσ ∼ −10−6 and λσ ∼ 10−10.

The mechanism turns out to be dominant unless the new Yukawa couplings of SMASH are O(1). In

addition to its simple scalar sector extension, SMASH includes electroweak singlet quarks Q and Q

and three heavy right-handed Majorana neutrinos N1, N2 and N3 to generate masses for neutrinos.

The structure of this paper is as follows: In Section 2, we summarize the SMASH model and

cover the relevant details of its scalar sector. We also establish the connection between the threshold

correction and the leading order λHHH correction. In Section 3, we discuss the methods, numerical

details, RGE running, and our choice of benchmark points. Our results are presented in Section 4,

where the viable parameter space is constrained by various current experimental limits. In SMASH,

one can obtain at most ∼ 5% correction to λHHH while simultaneously stabilizing the vacuum. We

give our short conclusions on Section 5.

2. Theory

The SMASH framework [58–60] expands the scalar sector of the SM by introducing a complex

singlet field

σ =
1√
2
(vσ + ρ) eiA/vσ , (1)

where ρ and A (the axion) are real scalar fields, and vσ ≫ v is the VEV of the complex singlet. The

scalar potential of SMASH is then

V(H, σ) = λH

(

H† H − v2

2

)2

+ λσ

(

|σ|2 − v2
σ

2

)2

+2λHσ

(

H† H − v2

2

)(

|σ|2 − v2
σ

2

)

. (2)
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Defining φ1 = H and φ2 = σ, in basis (H, σ), the scalar mass matrix of this potential is

(Mij)scalar = 1
2

∂2V
∂φi∂φj

∣

∣

∣

∣

∣

∣

H=v/
√

2,
σ=vσ/

√
2

=

(

2λHv2 2λHσvvσ

2λHσvvσ 2λσv2
σ

)

, (3)

which has eigenvalues

m2
H = v2λH + v2

σλσ −
√

v4λ2
H + 4v2v2

σλ2
Hσ − 2v2v2

σλHλσ + v4
σλ2

σ, (4)

and

m2
ρ = v2λH + v2

σλσ +
√

v4λ2
H + 4v2v2

σλ2
Hσ − 2v2v2

σλHλσ + v4
σλ2

σ. (5)

At the heavy singlet limit λσv2
σ ≫ λHv2

m2
H = 2v2

(

λH − λ2
Hσ

λσ

)

+O
(

v2

v2
σ

)

, (6)

and

m2
ρ = 2v2

σλσ − 2v2 λ2
Hσ

λσ
+O

(

v4

v2
σ

)

. (7)

Defining threshold correction δ ≡ λ2
Hσ/λσ in Equation 13,

m2
H ≈ 2v2(λH − δ) ≡ 2v2λSM

H , (8)

and

m2
ρ ≈ 2v2

σλσ − 2v2δ . (9)

The first term in the Equation 9 is the leading component.

The SMASH framework also includes a new quark-like field, Q, which has color but is an

electro-weak singlet. It gains its mass via the Higgs mechanism, through a complex singlet σ. It arises

from the Yukawa term

LY
Q = YQQσQ ⇒ mQ ≈ YQvσ√

2
. (10)

We will show later that YQ = O(1) is forbidden by the vacuum stability requirement. The hypercharge

of Q is chosen to be q = −1/3, even though q = 2/3 is possible. Our analysis is almost independent of

the hypercharge assignment.

Threshold correction: Consider an energy scale below mρ < ΛIS, where the heavy scalar ρ is

integrated out. The low-energy Higgs potential should match the SM Higgs potential

V(H) = λSM
H

(

H† H − v2

2

)2

. (11)

It turns out that the quartic coupling we measure has an additional term

λSM
H = λH − λ2

Hσ

λσ
. (12)

Since the SM Higgs quartic coupling will be approximately λH(MPl) ≈ −0.02, the threshold correction

δ ≡ λ2
Hσ

λσ
(13)
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should have a minimum value close to |λH(MPl)| or slightly larger to push the high-energy counterpart

λH to positive value all the way up to MPl . A too large correction will however increase λH too rapidly,

exceeding the perturbativity limit
√

4π. We demonstrate the conditions for δ in Section 4. Similar to

λH , the SM Higgs quadratic parameter µH gains a threshold correction

(

µSM
H

)2
= µ2

H − λHσ

λσ
µ2

σ. (14)

In the literature [35,36], there are two possible ways of implementing this threshold mechanism.

One may start by solving the SM RGE’s up to mρ, where the new singlet effects kick in, and the

quadratic and quartic couplings gain sudden increments. Continuation of RGE analysis to even higher

scales then requires utilizing the new RGE’s up to the Planck scale.

Another approach is to only solve the new RGEs on the SM scale while ignoring the low-scale SM

RGEs entirely. We will use the former approach.

One-loop correction to triple Higgs coupling: The portal term of the Higgs potential contains

the trilinear couplings for HHρ and Hρρ vertices. The vertex factors for HHρ and Hρρ vertices are

introduced in Figure 1. The one-loop diagrams contributing to SM triple Higgs coupling are in Figure

2. We denote the SM tree-level triple Higgs coupling as λHHH . The correction is gained by adding all

the triangle diagrams (taking into account the symmetry factors)

∆λHHH =
(

22 · λHHHλ2
Hσv2

σ I(mH , mH , mρ; p, q) + 2 permutations
)

+
(

23 · λ3
Hσvv2

σ I(mH , mρ, mρ; p, q) + 2 permutations
)

+ 23 · λ3
Hσv3 I(mρ, mρ, mρ; p, q). (15)

Here p and q are the external momenta and the loop integral is defined as

I(mA, mB, mC; p, q) =

∫

d4k

(2π)4

1

(k2 − m2
A)((k − p)2 − m2

B)((k + q)2 − m2
C)

. (16)

The contribution from diagram Figure 3 is subleading, since it is proportional to λ2
Hσv ⇒ δλσv ≪

λHHH .

H

ρ

H

= −i2λHσvσ, H

ρ

ρ

= −i2λHσv

Figure 1. Vertex factors on trilinear vertices involving the SM Higgs boson as well as a real singlet ρ.

They can be derived from Equation (2). We denote ρ and its propagator by red color.
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H

H ρ

H

H H

H

H ρ

ρ

H H

H

ρ ρ

ρ

H H

Figure 2. One-loop corrections to SM triple Higgs coupling induced by the existence of an extra scalar

singlet. In Equation 15, the correction ∆λHHH is derived.

H

H

H

ρ

ρ

λHσv λHσ

Figure 3. One-loop SM triple Higgs coupling correction diagram with a cubic vertex and a quartic

vertex.

The process H∗ → HH is disallowed for on-shell external momenta, so at least one of them must

be off-shell. Specifically, the momentum-dependent correction to the triple coupling at the tree-level is

an effective coupling that enters the specific process with one off-shell higgs decaying into two real

higgses. Note that the correction is dependent on the Higgs off-shell momentum q ≡ q∗, which we

assume to be at O(1) TeV at the LHC and HL-LHC. The first diagram is dominant due to the heaviness

of the ρ scalar. Therefore, we may ignore the subleading contributions of diagrams involving two or

more ρ propagators. We integrate out the heavy scalar, causing the finite integral in Equation 16 to be

logarithmically divergent. We calculate the finite part of it using dimensional regularization and obtain

∆λHHH = −4λHHH

(

vσ

mρ

)2
(

λ2
Hσ

16π2

)(

2 + ln
µ2

m2
H

− z ln
z + 1

z − 1

)

≃ −2λHHH

(

δ

16π2

)

(

2 + ln
µ2

m2
H

− z ln
z + 1

z − 1

)

, (17)

where z ≡
√

1 + (4m2
H/q2) and µ = mρ is the regularization scale1. We have used the modified

minimal subtraction scheme (MS), where the terms ln 4π and Euler-Mascheroni constant γE ≈ 0.57722

emerging in the calculation are absorbed to the regularization scale µ. For calculations, we use the

value q∗ = 1 TeV. It is especially interesting to see that at the leading order, the triple Higgs coupling

correction is proportional to the threshold corrections. This intimate connection forbids a too large

correction. In fact, the bound from vacuum stability turns out to constrain the triple Higgs coupling

1 We integrate out ρ at the tree-level and then compute loop corrections to the triple Higgs coupling in the resulting effective
theory with ρ integrated out. By construction, the effective theory is just the SM plus higher-dimensional operators
suppressed by inverse powers of mρ. Deviations from the SM triple Higgs coupling can then only come from the effects of
the higher-dimensional operators, and so these deviations should involve the inverse powers of mρ which are in Equation 17.
In other words, in the limit mρ → ∞, one should recover the SM result, which Equation 17 does satisfy.
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correction to . 5%, as we shall see in Section 4. Consequently, if LHC or HL-LHC manages to

measure a correction to λHHH , this will rule out theories that utilize exclusively threshold correction

mechanisms as a viable solution to the vacuum stability problem. Indeed, there are alternate ways to

produce large ∆λHHH without expanding the scalar sector [50,52].

It should be noted that loop corrections contributing to the final to-be-observed value are included

in the SM. Indeed, experiments are measuring λSM
HHH = λSM(tree)

HHH + λ
SM(1-loop)
HHH (q∗) + . . ., where the

SM one-loop correction depends on the Higgs off-shell momentum. At the O(1) TeV scale we are

considering, the SM 1-loop correction amounts to approximately −7% [50].

Light neutrino masses: The neutrino sector of SMASH is able to generate correct neutrino masses

and observe the baryon asymmetry of the universe with suitable benchmarks. The relevant Yukawa

terms for neutrinos in the model are

LY
ν = −1

2
Y

ij
n σNi Nj − Y

ij
ν LiεHNj. (18)

We take a simplified approach: Dirac and Majorana Yukawa matrices (Yν and Yn, respectively) are

assumed to be diagonal.

Yν =







y1 0 0

0 y2 0

0 0 y3






, Yn =







Y1 0 0

0 Y2 0

0 0 Y3






. (19)

To generate baryonic asymmetry in the universe, SMASH utilizes the thermal leptogenesis

scenario [61], which generates lepton asymmetry in the early universe and leads to baryon asymmetry.

In the scenario, heavy neutrinos require a sufficient mass hierarchy [62,63] and one or more Yukawa

couplings must have complex CP phase factors. We assume the CP phases are O(1) radians to

near-maximize the CP asymmetry [64–66]

εCP =
Γ(N1 → H + ℓL)− Γ(N1 → H† + ℓ†

L)

Γ(N1 → H + ℓL) + Γ(N1 → H† + ℓ†
L)

.
3M1m3

16πv2
. (20)

If the CP violation is maximal, the largest value is obtained. To produce matter-antimatter asymmetry

in the universe, a large asymmetry is required. Following [58], we set the heavy neutrino mass

hierarchy at M3 = M2 = 3M1, corresponding to Y3 = Y2 = 3Y1. These choices give the full 6 × 6

neutrino mass matrix

Mν =

(

03×3 mD

mT
D MM,

)

, (21)

which is in block form, and contains two free parameters: vσ and Y1. Here mD = Yνv/
√

2 is the Dirac

mass term and MM = Ynvσ/
√

2 is the Majorana mass term. Light neutrino masses are then generated

via well-known Type I seesaw mechanism [18–28], by block diagonalizing the full neutrino mass

matrix Mν.

It is possible to obtain light neutrino masses consistent with experimental constraints from

atmospheric and solar mass splittings ∆m2
32 and ∆m2

21 [67] and cosmological constraint m1 + m2 +

m3 < 0.12 eV [68–73] (corresponding to m1 . 0.03 (0.055) eV with normal (inverse) neutrino mass

ordering, from Equation 10 to 12 and Figure 1 of [74] for upper bound), assuming the standard ΛCDM

cosmological model [74–78]. But, the total mass m1 + m2 + m3 should not be less than 0.06 (0.10) eV

for normal (inverse) hierarchy as per Equation 13 of [74].

The light neutrino mass matrix is

mν = − v2

√
2vσ

YνY−1
n YT

ν . (22)
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Benchmarks BP1 BP2 BP3

y1 1.118 × 10−7 1.312 × 10−5 9.610 × 10−6

y2 7.754 × 10−4 5.347 × 10−4 1.893 × 10−3

y3 1.878 × 10−3 1.309 × 10−3 4.582 × 10−3

Y1 9.947 × 10−3 9.614 × 10−3 8.423 × 10−3

YQ 10−3 10−3 10−3

vσ (GeV) 1011 5 × 1010 7 × 1011

λσ 7.2 × 10−9 4.48 × 10−7 2.48 × 10−7

λHσ −3 × 10−5 −2.25 × 10−4 −1.67 × 10−4

Table 1. Used benchmark points (BP) in our analysis. Note that we assume specific texture to

right-handed neutrino Yukawa matrix Yn.

After removing the irrelevant sign via field redefinition

mν = C







y2
1/Y1 0 0

0 y2
2/Y2 0

0 0 y2
3/Y3







=









m1 0 0

0
√

m2
1 + ∆m2

31 0

0 0
√

m2
1 + ∆m2

21 + ∆m2
32









, (23)

where we have denoted C = v2/(
√

2vσ) and assumed normal mass ordering m1 < m2 < m3. This

gives the neutrino masses mi = Cy2
i /Yi. We do not know the absolute masses, but the mass squared

differences have been measured by various neutrino oscillation experiments [67,79]. Nevertheless,

their values provide two constraints, leaving three free parameters. However, the heavy neutrino

Yukawa couplings Yi must be no larger than O(10−3) to avoid vacuum instability [59].

In addition, an order-of-magnitude estimate of the generated matter-antimatter asymmetry

(baryon-to-photon ratio) is directly proportional to the CP asymmetry

η ≡ nB

nγ
= O

(

10−2
)

εCPκ, (24)

where κ ∼ 0.01 − 0.1 is an efficiency factor. We arrive at

η = O
(

10−10
)

× vσ

108 GeV
× Y1

10−2
× κ

0.1
, (25)

which in principle, can be consistent with the observed η. To achieve successful resonance leptogenesis,

vσ should be between 1010 and 1012 GeV (Table 1). We will provide suitable benchmark points in the

next section. The estimation of lepton asymmetry, which is one of the crucial implications of SMASH

as the framework claims to solve the matter-asymmetry issue. Since the scenario only consists of the

decay and inverse decay of N2 or N3 to N1. The leptogenesis evolution for the benchmark values

shown in Table 2 is in Figure 4.
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Benchmarks BP1 BP2 BP3 Experimental values

m1 (meV) 5.39 × 10−7 0.015 6.71 × 10−4 . 55 (Equation 10 & 11 and Figure 1 of [74]

m2 (meV) 8.64 8.50 8.68 with mass bound from [68])

m3 (meV) 50.67 50.93 50.88
. 60 (Equation 12 and Figure 1 of [74]

with mass bound from [68])

m1 + m2 + m3 (meV) 59.30 59.45 59.57
< 120 [68,70]

but, ' 60 (Equation 13 of [74])

∆m2
21 (10−5 eV2) 7.46 7.22 7.54 6.79 – 8.0[67,79]

|∆m2
32| (10−3 eV2) 2.57 2.59 2.59 2.412 – 2.625[67,79]

M1 (GeV) 7.03 × 108 3.40 × 108 4.17 × 109

Unknown
M2, M3 (GeV) 2.11 × 109 1.02 × 109 1.25 × 1010

Table 2. The computed values of neutrino masses for normal hierarchy (m1 < m2 < m3), the sum of light neutrino masses, and light neutrino mass squared

differences. These neutrino masses are within experimental limits [67–73,79]. meV is Milli(10−3) (symbol m) eV.
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Figure 4. The evolution of the “abundance” of N2 in blue, the “abundance” of N2 in thermal equilibrium

in red, and the lepton asymmetry generated by the CP violating decays and inverse decays of N2

divided by the CP asymmetry parameter εCP in black. T is the temperature of the universe in GeV, as

well as the mass of heavy neutrinos M2 in GeV. ∆L is the number of changes in lepton number over

entropy density s.
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Parameter mMS
t (mt) mb mH mτ v g1 g2 g3 λH

Value 164.0 4.18 125.25 1.777 246.22 0.357 0.652 1.221 0.126

Table 3. Used SM inputs in our analysis, at µ = mZ = 91.18 GeV, with the exception of top mass,

which is evaluated at µ = mt. Masses and vacuum expectation values are in GeV units [3].

We will investigate the influence of N1, N2, and N3 oscillations (i.e., right-handed neutrino

oscillations) on leptogenesis evolutions, predict baryon-to-photon ratios for different set masses of

light active left-handed neutrinos, and evaluate a more precise value of κ by solving complicated

Boltzmann equations in the future course of analysis in the SMASH framework.

3. Methods

We generate the suitable benchmark points demonstrating different physics aspects of the model

in the neutrino sector by fitting in the known neutrino mass squared differences ∆m2
ij, assuming normal

mass ordering (m1 < m2 < m3). This leaves three free neutrino parameters, the values of which we

generate by logarithmically distributed random sampling. These are the candidates for benchmark

points. We then require that the candidate points be consistent with the bounds for the sum of light

neutrino masses [68–78]. The next step is to choose suitable values for other unknown parameters,

using the stability of the vacuum as a requirement.

The authors of [58] have generated the corrections to the two-loop β functions of SMASH.

We solve numerically the full two-loop 14 coupled renormalization group differential equations

with SMASH corrections with respect to Yukawa (Yu, Yd, Ye, Yν, Yn, YQ), gauge (g1, g2, g3) and scalar

couplings (µ2
H , µ2

S, λH , λσ, λHσ), ignoring the light SM degrees of freedom, from MZ to Planck scale.

We assume Yukawa matrices are on a diagonal basis, with the exception of Yν. We use the MS scheme

for the running of the RGE’s. Since the top quark MS mass is different from its pole mass, the difference

is taken into account via the relation [80]

m
pole
t ≈ mMS

t

(

1 + 0.4244α3 + 0.8345α2
3 + 2.375α3

3 + 8.615α4
3

)

, (26)

where α3 ≡ g2
3/4π ≈ 0.1085 at µ = mZ. We define the Higgs quadratic coupling as µH = mH/

√
2 and

quartic coupling as λH = m2
H/2v2.

We use MATLAB R2019’s ode45-solver. See Table 1 for the used SMASH benchmark points and

Table 3 for our SM input [3]. Our scale convention is t ≡ log10 µ/ GeV.

In some papers, the running of SM parameters (Yt, Yb, Yτ , g1, g2, g3, µ2
H , λH) obeys the SM RGE’s

without corrections from a more effective theory until some intermediate scale ΛBSM [35], after

which the SM parameters gain threshold correction (where it is relevant) and the running of all SM

parameters follows the new RGE’s from that point onwards. We choose to utilize this approach while

acknowledging an alternative approach, where the threshold correction is applied at the beginning

(µ = mZ) [36], and both approaches give almost the same results. As previously stated, SM Higgs

quadratic and quartic couplings will gain the threshold correction.

Our aim is to find suitable benchmark points, which

• allow the quartic and Yukawa couplings of the theory to remain positive and perturbative up to

the Planck scale,
• utilize threshold correction mechanism to λH via δ ≃ 0.1,
• avoid the overproduction of dark radiation via the cosmic axion background (requiring λHσ < 0),
• produce a significant contribution matter-antimatter asymmetry via leptogenesis (requiring

hierarchy between the heavy neutrinos), and
• produce a ∼ 5% correction to triple Higgs coupling λHHH .
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4. Results

Stability of vacuum: We have plotted how the running of the SM quartic coupling, λH changes

with each benchmark point in Figure 5. Note that all the threshold corrections are utilized well before

the SM instability scale ΛIS. One can choose vσ > ΛIS if mρ < ΛIS is ensured. This is the case with

BP3.
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Figure 5. Running of SM Higgs quartic coupling in Standard Model (dashed line) and in SMASH with

benchmark points BP1-BP3 (solid line). Threshold correction is utilized at mρ.
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We numerically scanned over the parameter space m
pole
t ∈ [164, 182] GeV and mH ∈ [110, 140]

GeV to analyze vacuum stability in three different benchmark points BP1-BP3. Our results for the

chosen benchmarks are in Figure 6, where the SM best fit is denoted by a red star. Clearly the

electroweak vacuum is stable with our benchmark points, and it is assigned to m
pole
t ≃ 172.69 ± 0.3

GeV and mH ≃ 125.25 ± 0.17 GeV [3]. For every case, we investigated the running of the quartic

couplings of the scalar potential. We used the following stability conditions

λH(µ) > 0, λσ(µ) > 0, λH(µ)λσ(µ) > λHσ(µ)
2, (27)

and for λHσ < 0 [35]

− λHσ(µ) <
√

λH(µ)λσ(µ). (28)
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Figure 6. Vacuum stability of SMASH in (mH , m
pole
t ) plane with benchmark points BP1-BP3. The red

star corresponds to the SM best-fit value. The height and width of the star correspond to the present

uncertainties. The vacuum is stable in the yellow region. The contour numbers n correspond to the

vacuum instability scale 10n GeV.
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If one or more conditions are not met on the scale µ ∈ [mZ, MPl ], we denote this point as unstable.

If any of the quartic couplings rises above
√

4π, we denote this point non-perturbative.

We have chosen the new scalar parameters in such a way that the threshold correction is large but

allowed, 0.1 < δ < λH . This changes the behavior of the coupling’s running so that after the correction,

the λH increases in energy instead of decreasing, the opposite of the coupling’s running in a pure SM

scenario. A too-large threshold correction will have an undesired effect, lowering the non-perturbative

scale to energies lower than the Planck scale. These effects are visualized in Figure 7, where for each

benchmark point kept λσ at its designated value in Table 1. Instead, we let the portal coupling, λHσ,

vary between 0 and
√

0.6λσ. This demonstrates the small range of viable parameters space.
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Figure 7. The rise of the instability scale (above) and the fall of the non-perturbative scale (below) as a

function of threshold correction δ, for BP1-BP3.

We have also investigated the significance of vσ on the bounds of threshold correction δ. A

choice of δ is available as long as vσ . 2 × 1013 GeV. This can be seen clearly from Figure 8. Given

a fixed δ, the result is independent of λHσ and λσ. The lower and higher bound for δ increases as

a function of vσ. Instability bound increases, since the needed vacuum-stabilizing threshold effect

increases as one approaches the SM instability scale ΛIS. At vσ & 2 × 1013 GeV, the mρ > ΛIS, so

the quartic coupling λH will turn negative before threshold correction is utilized. On the other hand,
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the non-perturbative scale increases, since as the cutoff point mρ increases, the quartic coupling λH

decreases and correspondingly the largest possible threshold correction increases.
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Nonperturbativity
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Figure 8. The available parameter space is consistent with a stable vacuum in (vσ, δ) space. λσ is fixed,

while λHσ is determined by Equation 13 and mρ by Equation 9. We have denoted our benchmark

points with a red star.

Our next scan was over the new quartic couplings, log10(−λHσ) ∈ [−7, 0] and log10 λσ ∈ [−10, 0].

The scalar potential is stable and the couplings remain perturbative at only a narrow band, where

δ ∼ 0.01 − 0.1, see Figure 9. If one considers small δ, the SM Higgs quartic coupling will decrease

to near zero at µ = MPl . This corresponds to a region near the left side of the stability band. In

contrast, we chose our benchmarks with large δ, placing it near the right side of the stability band,

corresponding to the large value of λH at µ = MPl . This was a deliberate choice to maximize the

correction to λHHH .
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Figure 9. Above: Different regions in the logarithmic (−λHσ, λσ) plane. The contour numbers n above

the yellow band correspond to the vacuum instability scale 10n GeV. Below the yellow band the

contour numbers m correspond to the non-perturbative scale 10m GeV. The color coding is interpreted

as in Figure 6. For nonperturbative scale calculations, we have used BP1. Below: Zoomed-in detail of

the figure above, showing in addition our chosen benchmarks.

In addition, we have scanned the Dirac neutrino and new quark-like particle Yukawa couplings

(y1 and YQ, respectively) over y1 ∈ [0, 2] and YQ ∈ [0, 0.04], keeping y2 and y3 small, real2 and positive

but non-zero. See Figure 10 for details corresponding to each benchmark point. There we have pointed

to an area producing a stable vacuum. The Dirac neutrino Yukawa couplings may have a maximum

value of O(1), but a more stringent constraint is found for YQ. It should be noted that even though,

from the vacuum instability point of view, Ymax
Q < ymax

1 , this does not imply YQ < y1, since both

are in principle free parameters. See Table 2 for computed values for neutrino masses for normal

hierarchy (m1 < m2 < m3) corresponding to each benchmark. Note that all BP1-BP3 produces a value

of baryon-to-photon ratio comparable to experimental values and a mass of axion consistent with axion

dark matter scenario, because it requires axion decay constant fA ≡ vσ to be O(1011) GeV [30–32].

2 We acknowledge that neutrino Yukawa coupling matrix Yν should be complex in order to allow leptogenesis scenario to
work. The vacuum stability analysis, however, is unaffected by this, and we can safely ignore the imaginary parts of the
Yukawa couplings in this part of the analysis.
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corresponds to the chosen benchmark point value. The color coding and the contour numbers are

interpreted as in Figure 6.
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In Figure 4, we show the evolution of N2 or N3 abundance, as well as the lepton asymmetry

generated by the CP violating decays and inverse decays of N2 or N3, divided by the CP asymmetry

parameter εCP as per [62]. The resulting lepton asymmetry is translated to baryon asymmetry via

the sphaleron process with a cs fraction. We have also shown the N2 or N3 abundance in thermal

equilibrium. The number density n of particles decreases in an expanding universe if there are now

particle number-changing interactions. However, the ratio of number density n to entropy density

s, that is, “abundance” = n/s is constant. Changing “abundance” during the early universe thus

indicates particle interactions, or in our case, N2 or N3 decays and inverse decays. A corresponding

mass hierarchy for right-handed neutrinos implies an upper bound of εCP ∼ 10−5 to 10−6 [63,81].

Correction to SM triple Higgs coupling: According to PDG [3], the largest possible experimental

value for λHHH is 12 times the SM prediction3, from Run 2 data for the bb̄γγ channel alone. The

real singlet scalar ρ mixes with the SM Higgs, providing a one-loop correction to SM triple Higgs

coupling λHHH . We scanned the parameter space with log10(−λHσ) ∈ [−7, 0] and log10 λσ ∈ [−10, 0].

At each point, we calculated the correction to λHHH . See Figure 11 for details. We identified a section

of parameter space excluded by triple Higgs coupling searches from LHC run 2 and determined the

area sensitive to future experiments, namely HL-LHC and FCC-hh. We assume HL-LHC uses 14 TeV

center-of mass energy and integrated luminosity L = 3 ab−1, for FCC-hh we assume center-of-mass

energy 100 TeV and integrated luminosity L = 3 ab−1. The relative correction in Table 4 is calculated

with respect to the SM tree-level prediction. We have chosen our benchmark points in a way that their

correction to triple Higgs coupling will be borderline observable at FCC-hh, [82] that is, the correction

will be ∼ 5%. So, η in BP3 for a factor of 10 larger is necessary for stable vacuum and FCC-hh better

detection shown in Figure 11. Future FCC-hh accelerator, which is sensitive to ∼ 5 % deviation of the

Standard Model prediction. This is demonstrated by the benchmark points we have chosen. Although

the model’s stable region allows for even smaller deviations, part of the region is still accessible by

FCC-hh.

3 https://pdg.lbl.gov/2022/reviews/rpp2022-rev-higgs-boson.pdf, page 29-30, chapter 11, section 3.4.2 and page 66, chapter
11, section 6.2.5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2023                   doi:10.20944/preprints202211.0538.v2

Peer-reviewed version available at Universe 2023, 9, 43; doi:10.3390/universe9010043

https://doi.org/10.20944/preprints202211.0538.v2
https://doi.org/10.3390/universe9010043


21 of 26

-6 -5 -4 -3 -2 -1 0

log
10

 -
H

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
 

Too
 la

rg
e 

H
H
H

Stable vacuum

LHC run 2

HL-LHC (35 %)

FCC-hh (5 %)

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3

log
10

 -
H

-8.5

-8

-7.5

-7

-6.5

-6

lo
g

1
0
 

Stable vacuum

LHC run 2

HL-LHC (35 %)

FCC-hh (5 %)

BP1

BP2

BP3

Figure 11. Above: Different regions in the logarithmic (−λHσ, λσ) plane. The yellow band corresponds

to a stable vacuum configuration. The red area is excluded from the second run of the Large Hadron

Collider since the triple Higgs coupling corrections to SMASH would be too large. The dashed line

corresponds to the expected sensitivity of the high-luminosity LHC, and the dotted line to the expected

sensitivity of the Future Circular Collider in hadronic collision mode. Below: Zoomed-in detail of the

figure above, showing in addition our chosen benchmarks.
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Benchmarks BP1 BP2 BP3 Experimental values

δ(µ = mρ) 0.125 0.113 0.113 None

mA (eV) 5.7 × 10−5 1.1 × 10−4 8.1 × 10−6

Model-dependent
mρ (GeV) 8.49 × 106 3.34 × 107 3.49 × 108

η ∼ 10−11 ∼ 10−11 ∼ 10−10 (6.0 ± 0.2)× 10−10

λH(MPl) 0.222 0.166 0.149
None

λσ(MPl) 5.44 × 10−9 4.5 × 10−7 2.47 × 10−7

∆λHHH −5 % −5 % −6 % < 1400%

Table 4. The computed values of threshold correction δ, BSM scalar masses mA and mρ,

baryon-to-photon ratio η, quartic self-couplings at MPl , correction to the triple Higgs coupling ∆λHHH

compared to the SM prediction.

This has implications for a general class of BSM theories that utilize complex singlet scalars and

other new non-scalar fields. If the corrections from non-scalar contributions to SM triple Higgs and

quartic couplings are tiny, any large correction to λHHH (such as, a discrepancy from a SM value

measured by the HL-LHC) would rule out such a class of theories, including SMASH. It will be up to

the HL-LHC experiment to determine whether this is the case.

5. Conclusions

We have investigated suitable benchmark scenarios for the simplest SMASH model regarding the

scalars and neutrinos, constraining the new Yukawa couplings and scalar couplings via the vacuum

stability and theory perturbativity requirements. The model can easily account for the neutrino

sector, predicting the correct light neutrino mass spectrum while evading the experimental bounds for

right-handed heavy sterile Majorana neutrinos. In [58], the authors of the SMASH model performed a

one-loop RGE analysis of the model and presented the two-loop RGE’s. We have extended the analysis

to two-loop to gain the increased precision needed for the combined achievement of a stabilized

electroweak vacuum and a large enough triple Higgs coupling correction to be sensitive at FCC-hh.

To the best of the authors’ knowledge, this is the first report on the connection between threshold

correction to λH and one-loop correction to λHHH .

We found an interesting interplay between the triple Higgs coupling correction and the SM Higgs

quartic coupling correction. A successful vacuum stabilization mechanism (threshold mechanism) in

SMASH is consistent with small triple Higgs coupling corrections, requiring it to be at most ∼ 5%.

Since the ∆λHHH is proportional to the threshold correction δ, a large correction to ∆λHHH inevitably

leads to a large threshold correction. Detecting a λHHH correction larger than ∼ 35% is within the

sensitivity of a future high-luminosity upgrade of the LHC [40,41]. If detected, it would, therefore,

rule out the simplest scalar sector of the model completely. This would force the model to develop

non-minimal alternatives, such as an additional scalar doublet or triplet instead of a singlet. These

alternatives have been considered by the authors of the SMASH model in their recently updated study

[60]. The lepton asymmetry |∆L/εCP| is around 6 × 10−7 to 10−5 for the present-day scenario of the

universe, which can be verified experimentally [83] at the FCC [47], LHC [84], and by the Circular

Electron Positron Collider (CEPC) [85] for the SMASH framework.
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