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Abstract—Recommender systems as an effective information filtering s ystem c an b e u sed t o o btain i nformation t hrough t he user’s 
explicit or implicit behavior. On the one hand finding i tems that may be of interest to the user. On the other hand, the recommendation 
facilitates the interaction between the user and the item to increase the revenue. Recommender systems have been widely used in 
various fields, s uch a s e -commerce, t ravel r ecommendation, o nline b ooks a nd m ovies, s ocial n etworks, e tc, w hich c an s atisfy the 
intrinsic implicit needs of users through personalized services. In recent years, the development of deep learning has further improved 
the performance of recommendation systems. Although these methods improve the performance of the recommendation system, when 
the number of users and products increases, the recommendation system may face sparsity and cold start problems, and thus cannot 
achieve personalized recommendations. Knowledge graphs, which are structured data, have become the choice of many algorithms 
due to the high quality and wide scale of the data, and therefore many recommendation algorithms combined with knowledge graphs 
have emerged as a popular new direction in recommendation systems. These algorithms are able to preserve the rich connections 
between different entities. Moreover, when constructing the features of an entity, the entities that are far away from the central entity can 
also be utilized. Entities are no longer only directly connected to each other. To address the shortcomings of existing recommendation 
algorithms, this paper designs the recommendation algorithm GPRE using graph neural networks. GPRE focuses on expressing the 
user’s features. The graph neural network provides GPRE with a strong generalization capability for modeling, which can provide long-
range semantics between users and entities, as well as selective entity selection in the auxiliary graph neural network. Explicit semantic 
links are established between remote and central nodes to reduce the introduction of noise. In this paper, experiments are conducted 
on real-world datasets and the results are compared with baselines. The experimental results show that GPRE performs well on the 
experimental dataset.

Index Terms—Recommendation; GNN, Feature; Path; Embedding.

✦
1 INTRODUCTION

With the development of web information technology,
recommendation systems are widely used In the field
of social media networks, news delivery, shopping
platforms and so on. Recommender systems as an
effective information filtering system can be used to
obtain information through the user’s explicit or implicit
behavior [1]. On the one hand finding items that may be of
interest to the user. On the other hand, the recommendation
facilitates the interaction between the user and the item
to increase the revenue. Recommender systems have been
widely used in various fields, such as e-commerce, travel
recommendation, online books and movies, social networks,
etc [2], which can satisfy the intrinsic implicit needs of users
through personalized services.

Collaborative filtering is one of the most widely
used recommendation algorithms. The main idea of
collaborative filtering is to discover the correlation between
users based on their preferences for products and make
recommendations based on the correlation, i.e., users
with high similarity tend to have similar preferences [3].
In general, collaborative filtering is modeled by the
historical interaction information between users and
products (e.g., ratings, click-through rates, etc.), and their
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embedding representations are obtained. For example,
matrix decomposition [4] maps users and products into the
same dimensional hidden space, and uses inner product to
calculate users’ preferences for products.

The advantage of CF algorithm is very obvious, it does
not need to know the details of users and items, only
requires a record of user-item interactions to complete
the entire recommendation process [5]. Therefore, the
algorithm does not need to processing complex text, image
and other information, and can be used in a variety
of scenarios, such as video recommendation, product
and music recommendations. The greatest advantage of
CF is its simplicity and universality. Because of this
advantage, CF algorithms have been widely successful in
many fields. However, despite the excellent performance
of CF algorithms, the algorithms do not perform well
when dealing with cold-start problems [6]. The cold start
problem refers to when the number of users is small and
the user-item interaction is low in the early stages of a
recommendation system. Since the CF algorithm essentially
recommends a new item to a user based on the user’s
history of interaction with the item, in a cold start situation,
the history of user-item interactions is very sparse, so it is
difficult for the CF algorithm to play its role.

In recent years, the development of deep learning
has further improved the performance of recommendation
systems [7]. The NCF model proposed by He et al. [8]
further optimizes the traditional model by integrating the
traditional matrix decomposition and MLP. The NGCF
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model proposed by Wang et al. [9] constructs a bipartite 
graph of user-goods and embeds the historical interactions 
between users and goods into the feature vector by 
graph model. The NMCL proposed by Wei et al. [10] 
split the consistent component and the complementary 
component by a novel relation-aware attention mechanism. 
Although these methods improve the performance of the 
recommendation system, when the number of users and 
products increases, the recommendation system may face 
sparsity and cold start problems, and thus cannot achieve 
personalized recommendations. To fundamentally solve 
the cold-start problem, many algorithms have started to 
use external resources, such as users’ and items’ own 
attributes, to alleviate the over-reliance of collaborative 
filtering a lgorithms o n u sers’ h istorical b ehaviors. This 
approach can be understood as using knowledge and 
common sense to infer user interests.

Knowledge graphs, which are structured data, have 
become the choice of many algorithms due to the high 
quality and wide scale of the data, and therefore many 
recommendation algorithms combined with knowledge 
graphs have emerged as a popular new direction 
in recommendation systems. The knowledge graph 
embedding model represented by TransE [11] models 
the knowledge graph structural relationships in a way 
that the embeddings of entities are obtained using the 
well-established knowledge graph embedding model. And 
the embeddings of the entities corresponding to the 
items in the knowledge graph are used as a new input 
feature, either by using existing mature algorithms [12] 
or by designing new algorithms [13] for recommendation 
prediction. The most distinctive feature of metapath-based 
approaches is the use of expert-constructed metapaths 
followed by recommendation prediction using similarity 
based metapaths [14], as in PER [15], or embeddings 
of metapath-generating entities [16]. The biggest problem 
with these types of approaches using metapaths is that 
their effectiveness is highly dependent on the quality of 
the metapaths themselves, which are often constructed 
by humans in order to ensure quality, which requires 
considerable expertise of the constructors. For multiple path 
features between users and items, RKGE [17] only considers 
the most significant f eatures i n e ach d imension o f these 
path features, which undoubtedly results in information 
loss. KPRN [18] considers all paths and selects each path for 
utilization based on different importance through an update 
strategy with weights, which is theoretically reasonable. 
This is theoretically reasonable, since obviously not all rules 
should work, or work equally. However, if some of the 
low-quality rules can be removed by a suitable filtering 
strategy, it can both reduce the computational burden of 
the model and improve its predictive power. Methods 
such as GCN [19], GAT [20], MMGCN [21] KGAT [22] 
and KGCN [23] sequentially aggregate neighboring entities 
around an entity at different distances to that entity so that 
the entity can obtain information about the surrounding 
nodes. These algorithms are able to preserve the rich 
connections between different entities. Moreover, when 
constructing the features of an entity, the entities that are 
far away from the central entity can also be utilized. Entities 
are no longer only directly connected to each other.
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Fig. 1: Schematic diagram of the information propagation.

To address the shortcomings of existing recommendation
algorithms, this paper designs the recommendation
algorithm GPRE using graph neural networks. GPRE
focuses on expressing the user’s features. The graph
neural network provides GPRE with a strong generalization
capability for modeling, which can provide long-range
semantics between users and entities, as well as selective
entity selection in the auxiliary graph neural network.
Explicit semantic links are established between remote
and central nodes to reduce the introduction of noise.
In this paper, experiments are conducted on real-world
datasets and the results are compared with baselines. The
experimental results show that GPRE performs well on the
experimental dataset.

2 RELATED WORK

2.1 Graph Neural Networks

Collaborative Filtering is a very classical algorithm that has
been widely successful in recommender systems. Its basic
idea is very simple. Taking music as an example, when
recommending a song to a user, the CF algorithm searches
for users who like the same songs and artists as this user,
and then recommends the songs liked by the searched
users to the target user. In terms of implementation, the
classical SVD algorithm [24] constructs an interaction matrix
with users as rows and items as columns, and obtains the
feature representations of users and items through matrix
decomposition, and then makes recommendation prediction
of items. In recent years, some works such as NeuACF [25]
have introduced deep neural networks into collaborative
filtering and also achieved excellent results. The biggest
problem of collaborative filtering algorithms is the cold start
problem [26]. Collaborative filtering requires rich interaction
between the user and the item to be effective, but when
there is too little interaction between the user and the item,
the collaborative filtering algorithm becomes less effective.
For example, in the early stage of a commercial music
software, there is very little interaction between users and
songs, which makes it very difficult to use collaborative
filtering algorithms. One way to solve this problem is
to provide additional information about users and items
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to the recommendation system. Knowledge graphs, as 
high-quality structured data, are increasingly chosen by 
algorithms to solve the cold-start problem and improve 
the recommendation capability of recommendation systems 
due to their advantages of high data quality.

2.2 Graph Neural Networks

With the rapid development of the Internet, large-scale 
graph structured data has spread across various fields. 
Unlike images and text, graph structures are complex and 
variable irregular domains. The key aspect of graph analysis 
using machine learning algorithms and mathematical 
models is the graph representation. Graph neural networks 
are able to learn graph structure information and node 
features while saving computational space and time, and 
are suitable for for tasks such as node classification, edge 
prediction, and graph classification [ 27, 2 8]. G raph neural 
networks have received increasing attention as a deep 
learning method for analyzing graph structures. Since the 
node ordering of non-Euclidean data is irregular, traditional 
neural networks [29] need to traverse all possible orders 
of nodes and can hardly afford such a large computational 
effort. Also inspired by network embedding [30], the nodes 
and edges of the graph are represented as low-dimensional 
vectors. Defferrard et al. [31] proposed ChebNet, which 
defined t he fi lter as  a Ch ebyshev po lynomial, verifying 
the ability to learn local features on graphs. Gao et 
al. [32] retained the node sequences by biasing random 
wandering, focusing only on the structural information and 
ignoring the attribute information of the nodes. However, 
recommendation tasks are heterogeneous and contain 
large and multiple types of information. Graph network 
based recommendation tasks consider users and items 
as nodes and need to integrate the connections between 
them and other auxiliary information to improve the 
recommendation quality [33]. MKR [13] designed a separate 
cross-compress unit to make the recommendation task 
better by sharing the feature parameters of recommendation 
and knowledge graph embedding. CKE [12] also inputs 
visual knowledge related to items, textual knowledge, and 
structured knowledge from the knowledge graph as features 
into the CF algorithm to improve the predictive power. 
KGCN and KGCNLS [23] use graph convolutional neural 
networks to clustered around an entity to that entity. 
These two works use the Attention mechanism to construct 
the relationships between entities The explicit long-range 
semantics between users and entities are ignored, and it 
is difficult t o c larify w hat s emantic c onnections a re made 
between points that are distant from the central node and 
the central node. Meanwhile, the KGCN and KGCNLS 
sample the points for aggregation randomly, which may 
cause information loss. This may cause information loss.

3 METHODOLOGY

3.1 Embedding Layer

The embedding layer transforms the input sparse vectors 
into dense vectors, randomly initializes the vector matrix of 
users and itemsE ∈ R(M+N)×d, where the number of users

is M, the number of items is N, and d is the dimension
representing the size.

E = [eu1, eu2, . . . , euM , ei1, ei2, . . . , eiN ] (1)

3.2 Propagation Layer

For any node pair (u, i) of a user, define the information
transfer function from item i to user u as shown in equation
(2). Where ei is the feature vector of the item, eu is the
feature vector of the user, 1√

|Ni||Nu|
is the weight coefficient

between user u and item i, Ni and Nu represent the
number of neighbor nodes of user and item respectively,
and W1,W2 ∈ Rd is the weight matrix parameter.

mu←i = frac1
√
|Ni||Nu|(W1ei +W2ei ⊙ eu) (2)

Since the user may have more than one neighbor node, the
final vector representation of the user is the fusion of all its
neighbor nodes. Through the information transfer in layer l,
the user can obtain the information of its neighbors of order
l. The feature vector representation in layer l is shown in
equation (3). It can be seen that the user not only fuses the
features of its neighboring nodes, but also keeps the features
of the user itself during the information transfer process.

e(l)u = LeakyReLU(m
(
u←il) +

∑
i∈Nu

m(
u←ul)) (3)

m
(
u←il) = pui(W

l
1e

(l−1)
i +W l

2e
(l−1)
i ⊙ e(l−1)u ) (4)

m(
u←ul) = W l

1e
(l−1)
u (5)

where ui is the weight coefficient, W1 and W2 are matrix
parameters, e(l−1)i is the eigenvector of the items in layer
l-1, and e

(l−1)
u is the eigenvector of the users in layer l-1. The

final representation of the user and product feature vectors
is shown in equation (6), where || denotes the concatenation
between the vectors.

e∗u = e(l)u || · ||e(l)u , e∗i = e
(l)
i || · ||e(l)i (6)

3.3 User Profile Construction

GPRE extends along path to the user. Then, GPRE reverse
aggregates the extended entity nodes to the user node. This
process constructs the feature representation of the user
under r1 path. The set of k-hop extended entities of user
u on path r is obtained from the following equation.

Dk
u(r) = {o|(s, pk, o), s ∈ Dk−1

u (r)} (7)

where k ∈ [1, h], h is the length of the path r.
When this extends u along path r, if the (k-1)-hop

extended entity set Dk−1
u (r) cannot generate a k-hop

extended entity set using the k-th predicate in path r. This
point should receive a negative feedback indicating that
path r is not suitable for user u to some extent.

In the aggregation process, the set of entities to which
the aggregation operation is applied is represented by the
following equation.

Ji = {D0
u(r) ∪D1

u(r) ∪ · · · ∪Dh−i
u (r)} (8)
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Fig. 2: Schematic diagram of our model.

where h represents the length of path r and the total number
of iterations to be performed on path r. GPRE aggregates
each of the expanded points in turn along the direction
of expansion. The user is the first point to perform the
aggregation operation, and the nodes expanded by the
user are the subsequent points to perform the aggregation
operation. The nodes expanded by user are the subsequent
points to be aggregated. The aggregation process is repeated
h times, on J1 to Jh. In the i+1 iteration, the entities in the
set Ji+1 are updated by applying the aggregation operation.
The state e of entity e in Ji+1 is changed from ei to ei+1.

ei+1 = c(ei ⊕Avg(e1i , . . . , e
y
i )) (9)

c(x) = δ(Wax+ b) (10)

Avg(e1i , . . . , e
y
i ) =

1

y

y∑
a=1

eai (11)

where e is a one-dimensional vector of dimension d, δ
is a nonlinear function such as Sigmoid, and ei+1 is the
new state obtained by entity e after the i+1 update. After
h iterations, the feature representation obtained by user u
under path r is denoted as Uh

r , which is a one-dimensional
vector of dimension d.

The feature representation of the central node is
constructed by aggregating the feature representations of
neighboring nodes to the central node and imposing a
nonlinear activation function. Meanwhile, GPRE enables
the central node to receive information from distant, non-
directly connected nodes by repeating the aggregation and
nonlinear activation process.

3.4 Features in Multiple Dimensions

Suppose that L paths {r1, r2, . . . , rL}, the L feature
representations of user u are obtained. The final
representation U of user u is given by the following
equation.

U = LW = [Uh1
r1 , U

h2
r2 , . . . , U

hL
rL ]W (12)

where h is the length of path r. W is a weight vector of size
L × 1. L is the representation matrix obtained under the L
paths, of size d× L.

The loss function is defined as follows.

loss =
1

N

N∑
i=1

(li − q(UT
i Mi)

2) + µ||W ||2 (13)

where Ui, Mi and li are the user feature representation, item
feature representation and label, respectively. The label is 1 if
there is an interaction between the user and the item, and 0 if
the opposite. µ is the hyperparameter of L2 regularization.
The size of Mi is d × 1. q is a nonlinear function, such as
sigmoid.

4 EXPERIMENTS
4.1 Datasets
In this paper, we chose two real-world datasets: Last.FM,
MovieLens-1M, which correspond to the two domains of
music and movies respectively. Last.FM is the world’s
largest music social platform, with more than 20 million
users using the site every month, and with its large user
base, the site provides real, reliable and high-quality music
recommendation data. In this paper, we use the publicly
available dataset of 1871 users, 3864 music tracks and 42346
user-music interactions. MovieLens-1M is a widely used
recommendation dataset in the movie domain, published
by the GroupLens Research Program at the University of
Minnesota. The dataset contains 6036 users, 2445 items and
753772 user interactions with movies.

The complete statistics of the two datasets are presented
in Table 1, where users represents the number of users, items
represents the number of items, interactions represents
the number of interactions between users and items,
entities represents the number of entities in the knowledge
graph, and triples represents the number of triples in the
knowledge graph.

4.2 Metrics
In this paper, we use AUC and F1 to evaluate the
performance of the model in a clickthrough rate prediction
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TABLE 1: Statistical information of datasets.

MovieLens-1M Last.FM
users 6036 1872
items 2445 3864

interactions 753772 42346
entities 182011 9366
triples 1241995 15518

TABLE 2: Model Performance Comparison on Movielens-
1M.

Model AUC F1
SVD 0.823 0.762
CKE 0.795 0.736
PER 0.846 0.803

KGCN 0.865 0.815
GPRE 0.887 0.833

TABLE 3: Model Performance Comparison on Last.FM.

Model AUC F1
SVD 0.774 0.735
CKE 0.745 0.724
PER 0.796 0.773

KGCN 0.802 0.781
GPRE 0.821 0.803

(CTR) scenario, which measure the ability of the model
to determine whether a pair of users and items interact
with each other. The performance of the model in the topK
recommendation scenario is also evaluated using hits@k
and ndcg@k (k ∈ {5, 10}), which measure the ability of
the model to discover items of interest to users among the
top-K recommended items.

AUC, the size of the area under the subject
operating characteristic curve (ROC, Receiver Operating
Characteristic Curve). the horizontal coordinate of the ROC
curve is the rate of false positives and the vertical coordinate
is the rate of true positives.

AUC =

∑
ri − M(1+M)

2

M ×N
(14)

where M is the number of positive class samples, and N is
the number of negative class samples, the meaning of the
formula is equivalent to evaluating the number of positive
sample scores greater than negative sample scores among
M ×N positive and negative sample pairs.

TABLE 4: Model Performance Comparison on Movielens-
1M.

Model AUC F1
SVD 0.315 0.506
CKE 0.236 0.375

KGCN 0.403 0.522
GPRE 0.428 0.545

TABLE 5: Model Performance Comparison on Last.FM.

Model AUC F1
SVD 0.357 0.541
CKE 0.187 0.304

KGCN 0.378 0.573
GPRE 0.405 0.603

4.3 Baselines

In this paper, we chose SVD, CKE, PER, and KGCN as
comparison methods. The rationale for the selection of these
methods, a brief description and hyperparameter settings
are as follows.
• SVD [24] is a representative of the classical collaborative

filtering-based recommendation algorithm. It uses the
user and item feature vectors as the inner product of
the recommendation probabilities. For implementation,
this paper uses an unbiased version of SVD, where The
dimensionality of both the user feature vector and the
item feature vector is 8.

• CKE [12] is a representative of using entity embeddings
only to design recommendation algorithms. In the original
paper of CKE, it combines two types of knowledge
- structured knowledge, textual knowledge and visual
knowledge - into a collaborative filtering algorithm
for recommendation. In the test dataset used in this
paper, textual knowledge and visual knowledge are not
available in this paper, so in terms of implementation,
this paper follows the setup in the original paper and
uses TransR to obtain the embedding of structured
knowledge and combines the structured knowledge into
the collaborative filtering algorithm as the CKE algorithm.
The dimensionality of the entity embeddings generated
by TransR is 64.

• PER [15] is a representative of meta-path-based
recommendation algorithms. This algorithm treats
the whole knowledge graph as Heterogeneous
Information Network (HIN), and calculates the meta-
paths by similarity based on meta-paths to perform
recommendation prediction.

• KGCN [23] is a representative of aggregation-based
recommendation algorithms, and this algorithm uses
graph convolutional neural networks for aggregation. In
this paper, we use the source code of this paper published
on Github to obtain the performance of this model on the
test dataset. In this paper, we use the source code of this
paper published on Github to obtain the performance of
this model on the test data set, and the hyperparameters
are referred to the default settings in the paper and the
code.

4.4 Result Analysis

GPRE achieved the best AUC and F1 on the
Last.FM, MovieLens1M datasets. GPRE has stronger
recommendation prediction ability. CKE’s AUC and F1
on Last.FM and MovieLens-1M datasets are weaker than
the algorithm SVD which does not use knowledge graph
at all. The AUC and F1 metrics of PER on Last.FM and
MovieLens1M are the worst among all methods. In this
paper, we argue that this shows the high dependence
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of meta-path-based methods on the quality of manually 
constructed meta-paths, and without high-quality meta-
paths, the effectiveness of such algorithms is greatly 
discounted. The PER algorithm for automatic path mining 
leads PER in AUC and F1 on all two datasets, which also 
indicates that the automatic mining rule algorithm has 
better robustness than the algorithm using meta-paths.

Compared to the rest of the algorithms, PER for 
automatic path mining has more outstanding AUC and F1 
on each dataset, and the result on MovieLens-1M is second 
only to GPRE, which shows that the algorithm for automatic 
path mining has the ability to get rid of the dependence 
on human resources. However, the algorithm has much 
lower hit@k and ndcg@k values on all two datasets than the 
other algorithms lower, which is a result of the difference in 
testing strategies.

5 CONCLUSION AND FUTURE WORK

Collaborative filtering i s o ne o f t he m ost w idely used 
recommendation algorithms. The main idea of collaborative 
filtering i s t o d iscover t he c orrelation b etween users 
based on their preferences for products and make 
recommendations based on the correlation, i.e., users with 
high similarity tend to have similar preferences. The 
advantage of CF algorithm is very obvious, it does not 
need to know the details of users and items, only requires 
a record of user-item interactions to complete the entire 
recommendation process. The greatest advantage of CF is its 
simplicity and universality. However, despite the excellent 
performance of CF algorithms, the algorithm has been very 
successful in dealing with cold recommendations. The cold 
start problem refers to when the number of users is small 
and the user-item interaction is low in the early stages of a 
recommendation system. Since the CF algorithm essentially 
recommends a new item to a user based on the user’s 
history of interaction with the item, in a cold start situation, 
the history of user-item interactions is very sparse, so it is 
difficult for the CF algorithm to play its role. In recent years, 
the development of deep learning has further improved 
the performance of recommendation systems. Knowledge 
graphs, which are structured data, have become the choice 
of many algorithms due to the high quality and wide 
scale of the data, and therefore many recommendation 
algorithms combined with knowledge graphs have emerged 
as a popular new direction in recommendation systems. The 
knowledge graph embedding model represented by TransE 
models the knowledge graph structural relationships in a 
way that the embeddings of entities are obtained using the 
well-established knowledge graph embedding model. And 
the embeddings of the entities corresponding to the items 
in the knowledge graph are used as a new input feature, 
either by using existing mature algorithms or by designing 
new algorithms for recommendation prediction. The biggest 
problem with these types of approaches using metapaths is 
that their effectiveness is highly dependent on the quality 
of the metapaths themselves, which are often constructed 
by humans in order to ensure quality, which requires 
considerable expertise of the constructors. Methods such 
as GCN, GAT, MMGCN, KGAT and KGCN sequentially 
aggregate neighboring entities around an entity at different

distances to that entity so that the entity can obtain
information about the surrounding nodes. These algorithms
are able to preserve the rich connections between different
entities. Moreover, when constructing the features of an
entity, the entities that are far away from the central entity
can also be utilized. Entities are no longer only directly
connected to each other. To address the shortcomings of
existing recommendation algorithms, this paper designs
the recommendation algorithm GPRE using graph neural
networks. GPRE focuses on expressing the user’s features.
The graph neural network provides GPRE with a strong
generalization capability for modeling, which can provide
long-range semantics between users and entities, as well
as selective entity selection in the auxiliary graph neural
network. Explicit semantic links are established between
remote and central nodes to reduce the introduction of
noise. In this paper, experiments are conducted on real-
world datasets and the results are compared with baselines.
The experimental results show that GPRE performs well on
the experimental dataset.
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