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Abstract: Inspired by the reflective and deliberative control mechanisms used in cognitive
architec-tures such as SOAR and Sigma, we propose an alternative decision mechanism driven by 
architectural appraisals allowing robots to overcome impasses. The presented work builds on and
improves on our previous work on a generally applicable decision mechanism with roots in the
Standard Model of the Mind and the Generalized Cognitive Hour-glass Model. The proposed
decision mechanism provides automatic context-dependent switching between exploration-
oriented, goal-oriented, and backtracking behavior, allowing a robot to overcome impasses. A
simulation study of two applica-tions utilizing the proposed decision mechanism is presented
demonstrating the applicability of the proposed decision mechanism.
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1. Introduction 13

Robotic technology has immense potential to change our daily life. In the industry, 14

human-robot co-working is envisioned to play a key role in the next industrial revolution 15

known as Industry 5.0 [1]. In healthcare robots also see increasing usage e.g. in personalized 16

healthcare for providing assistance to patients, and the elderly [2,3], and during the COVID- 17

19 pandemic, robots were deployed to disinfect common spaces, such as supermarkets and 18

hospitals [4]. Common to the above is the increased need for autonomous robots that can 19

safely and naturally interact with humans while solving different abstractly and/or vaguely 20

defined tasks. Due to the uncertainties in such problems, pure goal-driven problem-solving 21

architectures will often end up in local minima in the problem formulation also known 22

as impasses. I.e., situations where the information or action selection strategy currently 23

available to the robot is insufficient to solve the task. Thus, one core faculty of such robotic 24

systems should be the ability to reflect on the current situation to timely deviate from one 25

action selection strategy to try out other strategies or to retrieve new information about the 26

task. 27

The next generation of cognitive architectures, based on modern machine learning 28

techniques, has the potential to revolutionize robotics by allowing roboticists to develop 29

such autonomous systems easily. In previous work, we proposed the Generalized Cogni- 30

tive Hour-glass Model constituting a framework for developing cognitive architectures 31

by composing them from generally applicable probabilistic programming idioms over 32

which powerful general algorithms can perform inference [5]. The idiomatic approach to 33

composing cognitive architectures, encouraged by this framework, allows researchers and 34

practitioners to more easily cooperate by mixing and matching probabilistic programming 35

idioms developed by others while being able to handcraft parts of a system for which 36

current solutions do not suffice. 37

In another work, we proposed one such probabilistic programming idiom based on 38

the “standard model of the mind” [6] for the task of Active Knowledge Search (AKS) in 39
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unknown environments[7]. This idiom defines a probabilistic decision process that en- 40

courages a robot to take actions to discover, i.e. obtain information about, its environment 41

based purely on notions of progress and information gain while avoiding constraint viola- 42

tions. Simulations applying this idiom to the specific problem of active mapping and robot 43

exploration showed promising results. However, limitations were also identified. The 44

main limitation was that in specific situations the simulated robot would get “stuck” taking 45

repetitive actions yielding no new information about the environment, thus hindering 46

full exploration of the environment. As we will discuss in more detail in Section 4, this 47

is essentially caused by the fixed strategy for action selection employed by the previous 48

solution. 49

In the literature related to robot navigation, similar phenomena are commonly known 50

as “the local minima issue” [8], “deadlocks” [9], “limit cycles” [10], “infinite loops”[11], 51

“dead ends”, “cyclic dead ends”, or “trap-situations” [12]. Like the problem mentioned 52

above, all of these terms refer to situations in which a fixed strategy for action selection 53

results in no meaningful progress towards a goal state or compared to a measure of 54

optimality. To resolve these situations solutions proposed by researchers within robotics 55

usually rely on problem-specific information, e.g. geometric properties, to detect and/or 56

resolve the impasse. As an example consider the approach used in [13] where a grid map is 57

defined over the workspace with a counter attached to each of the cells keeping track of the 58

number of times a given cell has been visited. Whenever this counter reaches a predefined 59

threshold, it is registered as a limit cycle. When a limit cycle is detected a temporary way- 60

point is generated, guiding the robot out of the enclosure causing the limit cycle. Finally, 61

when the robot gets outside the enclosure, a virtual wall is generated, ensuring that the 62

robot does not enter the problematic enclosure again. As another example consider the 63

approach used in [14] where deadlock loops are detected based on the periodicity of the 64

distance to the goal. Whenever a deadlock loop is detected, the distance to the goal is stored, 65

and a wall-following behavior is initiated until an escape condition has been met. Similarly, 66

in [15], deadlocks are detected based on a preferred velocity magnitude, the actual velocity 67

magnitude, and the unsigned distance between robots. Whenever a deadlock is detected a 68

deadlock resolution strategy is initiated. While the solutions suggested above might work 69

for specific problems, they do not easily generalize to other problems. 70

In the literature related to cognitive architectures, similar phenomena in which an 71

agent is unable to make progress with the information that is currently available are 72

often referred to as impasses [16,17]. As we will elaborate upon in Section 2 research 73

in cognitive architectures is focused on generally applicable solutions opposite to the 74

problem-specific solutions commonly proposed in the robotics literature. Nevertheless, 75

solutions seem to follow the same pattern as those proposed by researchers in robotics. 76

First, systems are made able to detect impasses. Secondly, systems are induced with some 77

sort of reflective mechanism that based on the detected impasse can choose appropriate 78

temporary decision strategies until the impasse has been resolved. However, as we will also 79

elaborate upon in Section 2 the approaches taken by some of the most prominent cognitive 80

architectures, SOAR[16] and Sigma[17], usually requires that controls are abstracted to 81

symbolic representations that have to be decoded by an extra module external to the 82

decision process. Thus, the fine level of control needed within robotics cannot be accounted 83

for as an intrinsic part of the decision process. 84

For these reasons, our intention with this paper is to present our recent efforts toward 85

implementing general reflective mechanisms similar to the ones found in cognitive archi- 86

tectures within the scope of the framework proposed in [5] in a way that is suitable for 87

robotic applications. The main contributions of this paper are: 88

• A description and implementation of a control structure grounded in stochastic varia- 89

tional inference that is capable of deliberate and reflective control based on architec- 90

tural appraisals. 91

• A demonstration of how such a control structure overcomes the limitations of the 92

probabilistic programming idiom previously proposed in [7]. 93
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• A demonstration of how such general control structure compares to problem-specific 94

approaches commonly used in robotics. 95

• A discussion of the time complexity of the proposed control structure. 96

This paper is organized as follows: Section 2 reviews how some of the most prominent 97

cognitive architectures have tackled impasse phenomena. Section 3 introduces the notation 98

used within this paper. Section 4 shortly describes the previously proposed probabilistic 99

programming idiom in more detail together with the impasse phenomenon observed. 100

Modifications and extensions to the previously proposed idiom are presented in Section 5 101

and Section 6. Simulation results utilizing the modifications are provided in Section 102

Section 7. Section 8 concludes the paper, and potential future directions are given in this 103

section. 104

2. Impasses in SOAR and Sigma 105
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Figure 1. Illustration of the tri-level control structure employed by the two cognitive architectures
SOAR[16] and Sigma[17]. For the state at time t = 0, S0, only a single operator is relevant and a
reactive control mechanism thus chooses to effectuate this operator which leads to a new state, S1.
In this new state, S1, multiple operators, O1, O2, O3, are proposed by the reactive control mechanism.
Since no preference exists for these operators a tie impasse is detected, and the deliberate control
mechanism simulates the expected outcome, E(Oi), from effectuating each of the operators. In this
state, S1, the deliberate control mechanism is able to select an operator, O2, based on preferences for
the expected outcome, leading to a new state S2. In S2 a tie impasse also occurs, however, this time
the expected result of applying any of the proposed operators, O1, O2, O3, results in the next state,
S3, being similar to the current state, i.e. S3 = S2. Therefore, a no-change impasse is detected, and
a reflective control mechanism is activated which changes the current state in a way such that a new
operator, O4, can be proposed.

Two of the most prominent cognitive architectures, SOAR[16] and Sigma[17], are both 106

based on the problem space computational model[18], suggesting that problem spaces can 107

be specified in terms of sets of states, S, and operators, O, and that goals can be reached by 108

knowledge search in such problem spaces. However, both architectures acknowledge that 109

direct knowledge search might not always be possible e.g., due to insufficient or ambiguous 110

knowledge. Therefore, these architectures implement a nested tri-level control structure 111

with higher levels activated by the detection of impasses as illustrated in Figure 1 [17]. At 112

the base level, a reactive control mechanism proposes operators relevant to the current state 113

based on available knowledge. If only one relevant operator is proposed this operator is 114

effectuated. If multiple relevant operators, O1, ..., Oi are proposed it is detected as a tie 115

impasse and the deliberative control mechanism can evaluate the expected outcome resulting 116

from applying each of the proposed operators to the current state. Based on these outcomes 117
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the deliberative control mechanism might be able to settle on one of the relevant operators 118

to effectuate. By controlling how the expected outcome influences the decision making 119

the deliberative control mechanism can form sequential, knowledge-driven, or algorithmic 120

behavior. Finally, whenever the deliberative control mechanism cannot pick a unique operator 121

other types of impasses are detected. The impasses detected depend on the reason why 122

no operator could be picked. Based on these impasses a reflective control mechanism can 123

take additional actions in order to solve the impasse. The actions taken by the reflective 124

control mechanism depend on the specific impasse detected and can include the generation 125

of alternative sub-goals, the inclusion of additional information into the problem space, or 126

even the generation of additional and entirely different problem spaces e.g., to perform 127

meta-reasoning. Table 1 summarizes the different types of impasses detected by the two 128

cognitive architectures SOAR and Sigma. 129

Table 1. Overview of the different types of impasses detected by the two cognitive architecture SOAR
and Sigma.

Impasse SOAR [16] Impasse Sigma [19]

Operator
Tie

Occurs when multiple operators
are proposed without any
preference being able to select
between them

Tie

Occurs when there are multiple
candidate operators, but available
knowledge is insufficient to
choose among them.

Operator
Conflict

Occurs when preferences for two
proposed operators, O1 and O2,
indicates that O1 � O2 and
O2 � O1

No-
Change1

Occurs when an operator is
selected but no state change
results.

Operator
No-
Change

An operator remains selected for
consecutive decision cycles None Occurs when there are no

candidate operators for selection.

State No-
Change

No acceptable preferences or
every candidate operator also has
a reject preference

1 According to the description given in [19], however, in [17] it is stated that a no-change impasse occurs “when
an operator remains selected for more than one cycle”.

To summarize, in these tri-level control structures the reflective control mechanism 130

uses the deliberative control mechanism as its inner loop which in turn uses the reactive 131

control mechanism as its own inner loop. This approach assumes that there a priori exists 132

a discrete/symbolic set of operators that re-actively can be either sorted out or proposed 133

for further evaluation, thereby making detection of the impasses straightforward without 134

any problem-specific knowledge. This approach has some clear benefits with respect to 135

attention, i.e., the effective allocation of limited (computational) resources. Since each of the 136

layers focuses computations on the information actually needed to solve a given problem 137

in a specific context/state a lot of computations are saved. This is especially true when the 138

approach is coupled with Appraisal Theory [20,21], such that the evaluations of operators 139

initiated by the deliberative control mechanism are grounded in a limited set of appraisals 140

variables. However, the approach also raises some difficulties in robotics, where a lot of 141

the low-level control is more naturally described by means of continuous variables. As 142

an example, consider the position control of a robot. In SOAR and Sigma, such controls 143

are usually abstracted to symbolic representations such as “walk towards target object”, 144

“run towards target object”, “pick up target object” or “walk towards random object”[17]. 145

These symbolic representations then have to be decoded by an extra module external to the 146

decision process, called the motor buffer, before they can be manifested in the environment. 147

This layer of abstraction makes it hard to incorporate uncertainties resulting from low-level 148

control into the decision process, which in the end will result in less optimal responses 149

being picked. 150
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3. Preliminaries 151

As in paper [7] we use the following notation. X is used to denote observed variables,
Z is used to denote latent variables, and C is used to denote a collection of both types of
variables. A superscript in curly brackets is used to indicate the index of a variable. For time
indexes, the set of indexes of future variables is indicated as {t}+ =

{
t + 1, ..., t + T

}
. Simi-

larly, the set of indexes of past variables is indicated as {t}− = {t− T, ..., t}. Furthermore,
within this paper the following approximate probabilistic logic

p(z ∈ z ∨ y ∈ y) def
= p(z ∈ z) + p(y ∈ y)− p(z ∈ z)p(y ∈ y)

p(z ∈ z ∧ y ∈ y) def
= p(z ∈ z) · p(y ∈ y)

p

(
I∧

i=1

z{i} ∈ z{i}
)

def
=

I

∏
i=1

p
Ä

z{i} ∈ z{i}
ä

is used, where ∧ and ∨ denotes an approximate and and or operation, respectively. 152

These approximate probabilistic logic rules constitute a probabilistic intersection and union 153

with an independence assumption implied, respectively. 154

4. Problem elaboration 155

As stated in Section 1, the probabilistic programming idiom proposed in [7] defines
a probabilistic decision process for Active Knowledge Search in unknown environments,
based on the “standard model of the mind” [6]. This was done by first defining a probabilis-

tic model relating the previous content of working memory, Z{t}
−

WM , with the future content,

C{t}
+

WM , while taking variables stored in the long-term memory, ZLTM, into account. In [7],
the working memory was further sub-divided into variables relating to motoric actions
i.e., the motor buffer, ZMb, variables related to the perceptual buffer, ZPb, State variables, Zs,

representing the state of the agent itself, the environment, and decision variables C{t}
+

D . From
this a probabilistic decision model with the factorization

p
(

C{t}
+

WM\b, Z{t−1}+
Mb , Z{t}

+

Pb |Z
{t}−
WM\b, ZLTM

)
(1)

de f
=

[
t+T

∏
τ=t+2

p
(

C{τ}D |Z{τ}s , Z{t}
−

WM\b, ZLTM

)
p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)
p
(

Z{τ−1}
Mb

)]
· p
(

C{t+1}
D |Z{t+1}

s , Z{t}
−

WM\b, ZLTM

)
p
(

Z{t+1}
s |Z{t}s , Z{t}Mb

)
p
(

Z{t}Mb

)
were derived, where ZWM\b = ZWM\{ZMb, ZPb}. Inspired by the work on emotions in
[22], a subset of the decision variables, xA, was denoted attention variables. The purpose of
these attention variables is to control how the decision process is influenced by the other
decision variables: progress, zp, information gain, zi, and constraints, zc, hereafter referred to
as appraisal variables. In [7] this was done via the fixed relation

p
(

x{τ}A |Z
{τ}
s , Z{t}

−

WM\b, ZLTM

)
(2)

= Bernoulli
(

p
([

z{τ}p = 1∨ z{τ}i = 1
]
∧ z{τ}c = 1

∣∣∣Z{τ}s , Z{t}
−

WM\b, ZLTM

))
which basically states that during the decision process attention should be given to future
states that yield progress or new information and does not violate constraints. Having
defined the model in Equation (1) and the relation in Equation (2), Stochastic Variational
Inference was used to approximate the posterior over optimal future motoric actions given
the attention variables, i.e.,

q
φ
{t−1}+ ,∗
Mb

(
Z{t−1}+

Mb

)
≈ p

(
Z{t−1}+

Mb |x{t}
+

A = 1
)

(3)
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The above was implemented as an abstract class utilizing the probabilistic programming 156

language Pyro [23], thereby ensuring that the probabilistic programming idiom can be 157

reused in multiple applications by implementing a few abstract methods defined by the 158

abstract class.
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Figure 2. A simulated trajectory of using the method presented in [7] for the floor plan with ID
“0a1b29dba355df2ab02630133187bfab” from the HouseExpo dataset [24]. The robot keeps driving
around in the same room, without exploring the rest of its environment.

159

To investigate the performance of the idiom, it was used to implement an algorithm 160

for autonomous robot exploration which was simulated on the full HouseExpo dataset 161

[24], containing 35126 different floor plans. From these simulations, one of the observations 162

was that the robot sometimes would end up taking repetitive actions purely driven by the 163

progress appraisal variable. Whereby, the robot would not fully explore its environment as 164

illustrated in Figure 2. In other words, the robot ended up at an impasse. It was further 165

concluded that an alternative to the fixed decision strategy given by Equation (2) would be 166

needed to overcome this problem. 167

5. Overall Idea 168

Even though both SOAR and Sigma are said to implement a tri-level control structure, 169

the distinction between the deliberative control and the reflective control mechanisms seems 170

architectural rather than conceptual. By that, we mean that they both simply comprise a 171

specific architectural response to similar architectural stimuli, i.e., the detection of impasses. 172

When we further consider the statement: 173

“Work in Sigma on appraisal, and its relationship to attention, has led to the conclusion that the 174

detection of impasses should itself be considered as a form of appraisal”[17]. 175

It hints toward the possibility that similar functionality might be obtained from an 176

architecturally simpler control structure. Based on this, and to overcome the limitations of 177

the approach described in Section 2, we propose an alternative approach centered around 178

appraisals. As illustrated in Figure 3, our proposal is to have a control structure consisting 179

of a single architectural layer with decisions being the result of three main steps: 180

• Deliberate Attention Proposal 181

• Deliberate Attention Evaluations 182

• Affective Responses 183
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Figure 3. Illustration of the proposed approach with an indication of where we consider each element
of the approach to fit into the approximate timescales at which humans make decisions set forward
by Allen Newell in [25].

Considering the tri-level control structure described in Section 2 this resembles a com- 184

bination of the deliberate and reflective mechanism. The main difference is that here 185

attention mechanisms for choosing motoric actions similar to Equation (2) are proposed 186

for evaluation rather than operators for which the outcome is known a priori. Each of 187

the proposed deliberate attention mechanisms might consider a subset of and/or special 188
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combinations and weightings of the appraisal variables available to the robot. Thereby, 189

promoting different behaviors. The posterior distributions describing the specific motoric 190

actions corresponding to these proposed deliberate attention mechanisms first become 191

available to the decision process as part of the Deliberate Attention Evaluations step. To 192

obtain the posterior over motoric actions the Deliberate Attention Evaluations step follows 193

the same steps described in Section 4 for each of the attention mechanisms proposed by 194

the Deliberate Attention Proposal step. Besides inferring the motoric action posterior the 195

Deliberate Attention Evaluations step also evaluates what the expected appraisals would be 196

from effectuating each of them. Based on the expected appraisals of each of the motoric 197

action posteriors the last step in the decision process can initiate different affective responses, 198

such as effectuating one of the action posteriors or proposing additional attention mecha- 199

nisms to evaluate. Thus, instead of treating the detection of and responses to impasses as 200

distinctive architectural mechanisms, we propose that this is treated as affective responses to 201

appraisals evaluated during the Deliberate Attention Evaluations step. While the proposed 202

approach conceptually does support deliberate and reflective responses via the affective 203

responses, it does not currently have support for reactive responses, since all motoric actions 204

have to be inferred from the deliberate attention mechanisms. However, in Section 8 we 205

will discuss how we imagine that reactive responses could be incorporated into the control 206

structure. Furthermore, modern probabilistic programs such as Pyro [23] can combine 207

stochastic variational inference with enumeration to infer the motoric action posterior. 208

Thereby, making it possible to combine operators represented by both discrete/symbolic 209

and continuous variables in the proposed control structure. 210

6. Idiom Modifications and Extensions 211

To test the approach proposed in Section 5 several modifications and extensions were 212

made to the probabilistic programming idiom proposed in [7]. This includes additional 213

appraisal variables, the possibility of adding and using additional deliberate attention 214

mechanisms, together with an implementation of simple mechanisms for deliberate attention 215

proposal and affective responses. In order to make the implementation reusable in the spirit of 216

the framework presented in [5], all of this is implemented as a series of abstract python 217

classes each constituting a probabilistic programming idiom available at [26]. 218

6.1. Additional Appraisal Variables 219

Besides the progress, zp, information gain, zi, and constraints, zc, appraisal variables
defined in [7], a couple of new appraisal variables has been implemented. The first was the
accummulated constraints appraisal,

p
(

zAc = 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
(4)

= Bernoulli

Ñ
p

Ñ
T∧

τ=t+1

z{τ}c = 1

∣∣∣∣∣∣Z{t+1:T}
s , Z{t}

−

WM\b, ZLTM

éé
,

which was implemented due to a need to check constraint violations of a full state trajectory
rather than at a single state. The second originated from a need to be able to define
desirable/goal states that a robot should seek to attain. First, we approximate the KL-
divergence between a desirable state, Z∗s , and the state, Z{τ}s , after effectuating the motoric
action, Z{τ−1}

Mb , as

DKL

[
p
(
Z∗s
)
||p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)]
= E

Ẑ{τ}s

log

Ñ
p
(

Z{τ}s = Ẑ{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)
p
(

Z∗s = Ẑ{τ}s

)
é
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≈ 1
I

I

∑
i=1

(
log
(

p
(

Z∗s = Ẑ{τ},{i}s

))
− log

(
p
(

Z{τ}s = Ẑ{τ},{i}s |Z{τ−1}
s , Z{τ−1}

Mb

)))
≈ ReLu

(
log
(

p
(

Z∗s = Ẑ{τ}s

))
− log

(
p
(

Z{τ}s = Ẑ{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)))
def
= DZ∗s

(
Ẑ{τ}s

)
.

Inspired by the optimality variable defined in [27] we then define the desirability appraisal,
z{τ}d,Z∗s

, as

p
(

z{τ}d,Z∗s
= 1

∣∣∣Z{t+1:T}
s = Ẑ{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
(5)

=


0, 0 ; if p

(
zAc = 1

∣∣∣Z{t+1:T}
s , Z{t}

−

WM\b, ZLTM

)
< 1

Bernoulli
Å
−e−σd ·DZ∗s

(
Ẑ{τ}s

)ã
; else

where the subscript Z∗s in z{τ}d,Z∗s
is used to denote the dependency on p(Z∗s ), and σd is a

scaling factor. Equation (5) defines a pseudo probability for which states most similar to
the desirable state, Z∗s , has the highest probability, and states that are less similar have
an exponentially lower probability, while states resulting from trajectories that violate
constraints have zero probability. The dependency on the accummulated constraint appraisal
was introduced to aid in overcoming a small probability of constraint violation observed in
[7]. For the same reason the progress, zp, and information gain, zi, appraisals has also been
modified as follows

p
(

z{τ}i = 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
=

0, 0 ; if p
(

zAc = 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
< 1

p
(

z{τ}
ĩ

= 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
; else

p
(

z{τ}p = 1
∣∣∣Z{t+1:T}

s = Ẑ{t+1:T}
s , Z{t}

−

WM\b, ZLTM

)
=

0, 0 ; if p
(

zAc = 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
< 1

p
(

z{τ}p̃ = 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
; else

where z p̃ and zĩ are the progress, zp, and information gain, zi, appraisals as defined in [7]. 220

6.2. Deliberate Attention mechanisms 221

Based on the appraisals defined in Section 6.1 five different deliberate attention mech-
anisms have been implemented. All these can be defined as

p
(

x{τ}A |Z
{t+1:T}
s , Z{t}

−

WM\b, ZLTM

)
= Bernoulli

(
p
(

Φ(τ)
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

))
where Φ(τ) defines the logic for combining appraisals as in Table 2. Each of these deliberate 222

attention mechanisms promotes different behaviors. 223

6.3. Deliberate Attention Proposal And Affective Responses 224

Based on the deliberate attention mechanisms defined in Section 6.2, an affective response 225

mechanism has been implemented with the purpose of making a robot effectively explore 226

its environment and possibly navigate towards a goal state, Z∗s , if defined. This affective 227

response mechanism can be sub-divided into three parts responsible for different types of 228

behaviors with pseudo-code given in Algorithm A1, Algorithm A2, and Algorithm A3. 229
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Table 2. Definitions of Φ(τ) used for each of the implemented deliberate attention mechanisms.

Deliberate Attention Mechanism
Φ(τ) for

τ ∈ [t + 1; T − 1] Φ(T) for τ = T

ConstraintAvoidance - CA zAc = 1 zAc = 1

StateReach - SR(Z∗s ) zAc = 1
{

zAc = 1 ; P(zAc = 1) < 1

z{T}d,Z∗s
= 1 ; else

StateReachWithProgress - SRP(Z∗s ) zAc = 1
{

zAc = 1 ; P(zAc = 1) < 1

z{T}d,Z∗s
= 1∧ z{T}p = 1 ; else

StateReachWithExplore - SRE(Z∗s ) zAc = 1
{

zAc = 1 ; P(zAc = 1) < 1

z{T}d,Z∗s
= 1∧ z{T}i = 1 ; else

Explore - E zAc = 1
{

zAc = 1 ; P(zAc = 1) < 1

z{T}i = 1 ; else

ExploreWithProgress - EP zAc = 1
{

zAc = 1 ; P(zAc = 1) < 1

z{T}i = 1∧ z{T}p = 1 ; else

Algorithm A1:
“Go-to-Goal”

Algorithm A2:
“Explore”

Algorithm A3:
“Backtrack”

No-Change Impasse
No-Change Impasse

or No-Infomation

StateReach yields a
significant amount of

information

New information can
be obtained

DAM{t−1}

=E ∨ EP

=SR(Z̃s) for Z̃s ∈ PBT=SR
(
Z∗

s
)
∨ SRP

(
Z∗

s
)
∨ SRE

(
Z∗

s
)

Figure 4. Overview of the implemented affective response mechanism sub-divided into 3 algorithms.
Dotted lines indicate what algorithm is activated based on the which deliberate attention mechanism,
DAM{t−1}, resulted in the effectuation of a motoric action in the last time step. Solid lines indicate
a reflective response resulting in a direct transition between the algorithms. Each direct transition
requires a new deliberate attention proposal and deliberate attention evaluation. A dashed line indicates an
indirect transition between the algorithms which takes effect in the next decision cycle. Z∗s denotes a
goal state, and PBT denotes a path of previous states to backtrack.

Algorithm A1 yields behavior that strives for the goal state. Algorithm A2 yields behavior 230

that strives to obtain new information about the environment. Finally, Algorithm A3 yields 231

behavior that strives to backtrack. The combined affective response only depends on the 232

appraisals defined in Section 6.1 and [7] which requires no problem-specific information, 233

thereby, making this affective response mechanism general and reusable. As illustrated 234

in Figure 4, each part of the affective response mechanism is activated either as a reflective 235

response to another part of the affective response mechanism or based on the deliberate 236

attention mechanism that caused a motoric action to be effectuated in the last decision 237

cycle. E.g. if the deliberate attention mechanism “Explore (E)” caused the effectuation of 238

q{E}φ

(
Z{t−1}

Mb

)
at time t− 1, then Algorithm A2 will be activated first at time t. In cases where 239

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2022                   doi:10.20944/preprints202211.0511.v1

https://doi.org/10.20944/preprints202211.0511.v1


the motoric action was caused by the deliberate attention mechanism “ConstraintAvoidance 240

(CA)”, the same algorithm is simply activated again. The intuition behind this affective 241

response mechanism is as follows. If a goal state is known and if it is possible to attain it 242

with the current knowledge directly, this should have first priority. If this is not possible 243

new information should be sought after until the goal state can be attained. Finally, if in 244

a state where new information cannot be obtained, the system should be able to bring 245

itself back to a previous state in which new information can be obtained via backtracking. 246

To support this affective response mechanism a deliberate attention proposal mechanism has 247

been implemented that simply proposes the deliberate attention mechanisms required for 248

each part of the affective response mechanism. When combined this exemplifies how both 249

deliberate and reflective responses can be implemented grounded in the appraisals defined 250

in Section 6.2. In particular, notice that something similar to the “no-change” impasse in 251

SOAR and Sigma is obtained on the basis of the “Progress” appraisal in both Algorithm A1 252

and Algorithm A2. 253

7. Results 254

To test the effectiveness of the proposed approach two different simulation studies 255

were performed. Both of these were done utilizing the Pseudo-SLAM simulator [24], and 256

using the same implementation of abstract methods for the probabilistic programming 257

idiom that was used in [7]. The exact parameters used for each of these simulations can be 258

found at [26], which also contains scripts to replicate each of the experiments. 259

7.1. Pure Exploration 260
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AKS not done
AR not done
AR small not done
True
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AR smoothed
AR small smoothed

Figure 5. The area that the robot explored in each of the simulations. The indices of the 784 floorplans
have been sorted by the true area of the map in ascending order. “AKS” shows results from using
the method presented in [7]. “AR” shows results from using the affective response mechanism from
Section 6.3. The “smoothed” curves show a moving average with a window size of 100 and shifted
50 indexes. The “not done” scatter shows the exact area explored by the simulations in which the
robot did not manage to explore 95% of the map or more.

The first simulation study was done in order to compare with results from [7]. In [7] 261

we tested the exploration capability of the proposed algorithm by simulating it in 35126 262

floor plans from the HouseExpo dataset[24]. However, (1) many of these were so small that 263
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they were fully discovered in a few iterations, and (2) on the other end of the spectrum 264

some of the floor plans were simply too big to be fully discovered within the maximum 265

of 200 time-steps that was allowed in each simulation. Furthermore, (3) the problems of 266

the previous solution discussed in Section 4 are only noticeable in floor plans with more 267

than one room. Additionally, (4) it was found that for some of the floor plans openings 268

between the rooms were physically too small for the robot to squeeze through. Thus, for 269

the purpose of efficiently testing the approach proposed in this paper we selected a smaller 270

subset of the HouseExpo dataset satisfying the following criteria. 271

1. The floor plans should have a bounding box larger than 100 m2 to avoid spending 272

time on simulations redundant due to (1). 273

2. The floor plans should be fully discovered in the experiment from [7], in order to 274

minimize the influence from (2) and (4). 275

3. The floor plans should contain more than 3 rooms in order to provoke (3). 276

Based on this, a subset of the HouseExpo dataset consisting of 784 floor plans where 277

selected. Figure 5 and Table 3 show the results of simulating our old approach, “AKS”, 278

again as well as the approach proposed within this paper, “AR”. The simulations were 279

performed with the same environmental and robot settings used in [7]. As no goal state 280

was specified, only Algorithm A2 and Algorithm A3 were effectively used to drive the 281

behavior of the “AR” method in these simulations. For each floor plan a random initial 282

position where selected, and this initial position were utilized for both simulations. Notice, 283

that even though one of the criteria for the selection of the subset of floor plans was that 284

it should be fully explored by “AKS” in the experiment in [7], Figure 5 indicates that not 285

all floor plans where fully explored by “AKS” in this new round of simulations. This is 286

simply due to a difference in initial positions between simulations and illustrates a lack 287

of robustness of “AKS”. From Figure 5 it might seem that “AR” does not perform better 288

than “AKS” for small floor plans. By visual inspection of the simulation trajectories, it was 289

found that the reason for “AR” not being able to explore some floor plans fully was due to 290

a lesser willingness to violate constraints compared to “AKS”. This can be verified from 291

the row “Collision pr. Timesteps” in Table 3. This is especially pronounced in small floor 292

plans, where the openings between rooms tend to be smaller. To further verify that the lack 293

of exploration by “AR” is indeed due to its unwillingness to violate constraints, the third 294

series of simulations denoted “AR small” was performed. In these simulations, the size of 295

the robot, the uncertainty in its initial position, and the assumed motion uncertainty was 296

decreased. By changing these parameters, it becomes easier for the robot to take actions 297

through narrow openings without constraint violations. From Figure 5 it is seen that “AR 298

small” fully explores nearly all of the small floor plans, and performs similarly to “AR” for 299

all other maps as expected. As the floor plans get bigger, the ability of all three methods to 300

fully explore the floor plans to a greater extent depends on initial conditions, rather than 301

the ability of the methods to escape local minima. As a result, from Figure 5 it is observed 302

that as the floor plans get larger all methods perform very similarly. Nevertheless, from 303

Table 3 it is evident that “AR” is indeed better for overcoming local minima and making 304

the robot efficiently explore its environment. 305

7.2. Goal Seeking 306

The second series of simulations were performed in order to compare the proposed 307

approach with more problem-specific approaches from [8]. To do so three of the test 308

environments from [8] were recreated in the Pseudo-SLAM simulator as illustrated in 309

Figure 6. These three environments are designed specifically with the purpose of causing 310

local minima, and as such are perfect for testing the proposed approach. Since the approach 311

proposed in this paper is based on probabilistic methods, some degree of variations in 312

results should be expected. Therefore, 100 simulations were performed for each of these 313

environments with the same initial conditions and goal state as in [8]. Since a goal state 314

where specified for these simulations, the full capabilities of the affective response mechanism 315

described in Section 6.3 were effectively in use. Table 4 summarizes the results from these 316
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Table 3. Comparison of our approach with results for 6 different methods presented in [8].

Metric AKS RGS RGS small

Maps Not Fully
Explored 484 331 314

Mean Exploration
Percentage 84,9% 87,3% 90,7%

Mean percentage
explored for

unfinished maps
78,6% 76,7% 84,4%

Maps with Collisions 18 0 0

Collisions 19 0 0

Collision pr.
Timesteps 0,14‰ 0,00‰ 0,00‰

Table 4. The traveled distance in 3 different environments utilizing our approach, AR, compared
with results for 6 other methods presented in [8]. As AR is based on probabilistic methods we ran 100
simulations and present the mean of the results together with the minimum and maximum values for
each of the environments. The best result for each environment is highlighted with bold text.

Environment Random1
Reflected
Virtual
Target1

Global Path
Backtracking1

Half Path
Backtracking1

Local Path
Backtracking1

Wall-
Following1 AR

C-shaped 55 45 59 101 59 1915 45,34
[39,38-73,97]

Double
U-shaped 97 88 100 110 96 466 47,51

[28,07-72,56]

V-shaped 38 27 29 31 28 111 52,91
[22,91-114,98]

Average 63,33 53,33 62,67 80,67 61 830,67 48,59
1 Results from Table 2 in [8].

simulations and compares them to the results from [8]. In all of the simulations, the robot 317

managed to reach the goal state, thereby substantiating the ability of the proposed approach 318

to escaping local minima. From Table 4 it is furthermore seen that the “AR” method is 319

better than any of the problem-specific methods in all three environments when only 320

considering the minimum traveled distance. However, when considering the average 321

distance for the “V-shape” environment it is nearly twice that of the best method from 322

[8], i.e., “Reflected Virtual Target”. Considering the first column of Figure 6 it is clear 323

that the robot generally can take the two paths indicated with green and yellow colors. 324

We suspect that the better average performance of the “Reflected Virtual Target” method 325

in the “V-shape” environment is caused by an initial condition that makes the problem- 326

specific methods favor paths similar to the one marked with yellow in Figure 6. The better 327

performance achieved by such preference would not necessarily lead to better performance 328

in general environments/problems, and a more reasonable comparison would probably be 329

obtained by some variations in the initial conditions and/or goal state. As such we do not 330

consider this an inauspicious characteristic of the “AR” approach. 331
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Figure 6. The robot trajectories in each of the 100 simulations for each of the three environments:
“V shape”, “C shape”, and “double U shape”. Each of the trajectories is color-coded according to
the length of the trajectory. Tmax = 308, Tmax = 191, and Tmax = 208 for “V shape”, “C shape”, and
“double U shape”, respectively.
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7.3. Timings 332
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Figure 7. Timings for the main steps of the proposed solution running on two different CPUs, for
the deliberate attention mechanism and the affective response mechanism presented in Section 6.2
and Section 6.3, respectively, and for the abstract method implementations specifically used for the
simulations in Section 7.1 and Section 7.2.

One of the most critical features of any robotics system is the satisfaction of the real- 333

time constraint, i.e., the ability of the system to make decisions on time scales appropriate to 334

the expected behavior of the system. To investigate the computational time required for the 335

proposed approach the average computation times were measured on two different CPUs. 336

The results can be seen in Figure 7. Notice, that these timings are based on a relatively 337

slow python implementation and are uniquely tied to the specific use-case presented in 338

Section 7.1 and Section 7.2. As such, they should not be seen as the definitive timings 339

that can be obtained utilizing the method, but rather as indicative of roughly what can be 340

expected by the approach. Nevertheless, the timings given in Figure 7 would probably be 341

too slow or jerky for most real-world robot applications. As should be clear from Figure 7 342

the most time-consuming part of the approach with the current implementation is the 343

inference part of the deliberate attention evaluations step. As such, further optimization of 344

this step would be needed to make the approach usable. 345

8. Discussion 346

The intention of the presented efforts was to implement general reflective mechanisms 347

suitable for robotic applications with an outset in previous work. In Section 7.1 and 348

Section 7.2 we demonstrate that the proposed method functionally improves upon our 349

previous proposed probabilistic programming idiom and that it at least can perform as well 350

as, if not better than, problem-specific methods. However, in Section 7.3 it was concluded 351

that the current implementation would probably be too slow and jerky for real-world 352

robot applications. The approach presented within this paper is supposed to be generally 353

applicable and reusable, making it hard to assess how much the current implementation 354

should be improved to be applicable to real-world robot applications since this would 355

of course depend on each specific use case. One way to asses this anyway could be by 356

comparing it to Allan Newell’s analysis of the time scales of human cognition [25]. This 357

is reasonable because the ultimate end goal of our efforts is to make robots as capable as 358

humans. 359

In a single cycle of deliberate attention proposal, deliberate attention evaluation and affective 360

response, access to parts of cognition distal to the decision process have to have occurred 361

multiple times in order to infer the motor buffer posteriors. This places the proposed 362

approach somewhere above the “biological band” of Newell’s analysis said to be on the 363

order of ∼ 10 ms. The next step up in Newell’s analysis is to the “cognitive band” starting 364

at the level of deliberate acts in the order of∼ 100 ms. However, the proposed approach does 365

not merely comprise deliberation, i.e., choosing one known operation over other known 366

operators by bringing available knowledge to bear, since operators are constructed for the to- 367
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be-produced response based on the proposed deliberate attention mechanisms. Therefore, 368

the proposed approach also belongs somewhere above the time scales of deliberate acts. At 369

the other end of the “cognitive band”, we have unit tasks in the order of ∼ 10 s. At the time 370

scale of unit tasks, operations should be composed to deal with tasks. By design, the specific 371

affective response presented in Section 6.3 can only deliver simple responses in one decision 372

cycle and not a plan of responses to solve complete tasks. This leaves us at the time scales of 373

elementary cognitive operations or immediate external cognitive behavior at ∼ 1 s. According to 374

Newell’s analysis, such elementary reactions often take ∼ 2− 3 s, however, with learning 375

from experience, simplification, preparation, and carefully shaped anticipation, it can take 376

less than ∼ 0, 5 s. By design, the specific affective response presented in Section 6.3 can 377

deliver simple responses within 1 to 3 full cycles of deliberate attention proposal, deliberate 378

attention evaluation and affective response. With the timings in Figure 7a a response thus 379

takes anywhere from ∼ 1.7 s up to at most ∼ 5.34 s in the case of two impasses. Thus, to 380

arrive at the upper end of elementary reactions, the computational times of the current 381

implementation would have to be improved with a factor of ∼ 2− 3. Obtaining such 382

improvements does not seem implausible via code optimizations, however, it brings us 383

nowhere near the lower end of ∼ 0, 5 s. This begs the question: can the proposed approach 384

support the necessary machinery to learn from experience in order to deliver responses at 385

the lower end of ∼ 0, 5 s? 386

In Section 4 and Section 5 we described the use of stochastic variational inference, as 387

the basis for inferring a parametric approximation of the posterior over the motor buffer, 388

q{i}φ

(
Z{t−1}+

Mb

)
. It was assumed that this inference process would have to be done from 389

scratch in each decision cycle. However, this need not necessarily be the case. Instead, we 390

could make use of amortized variational inference [28–31]. Thus, instead of making use of 391

a variational distribution with free parameters, φ, we would make use of a variational dis- 392

tribution with parameters determined by a parametric function, φ = f {i}φ

(
Z{t}

−

WM\b, ZLTM

)
, 393

e.g., a neural network. When new situations are encountered we would not necessarily 394

gain much by doing so, however, over time this would in principle allow the system to 395

generate proper responses to situations similar to those that the system has previously 396

encountered, without performing any inference. Thereby, removing the need for the most 397

time-consuming step in the decision cycle. Again, when considering the timings in Fig- 398

ure 7a, reducing the inference step to near zero, would bring the total time of a single 399

decision cycle down to around ∼ 500 ms with the current implementation. Now if it is 400

possible to improve the other steps with a factor of∼ 2− 3 via code optimizations, it would 401

indeed seem plausible to achieve immediate external cognitive behavior in around∼ 0, 5 s after 402

an initial learning period. 403

Further optimization might be achieved by considering when to stop the underlying 404

inference algorithm. In the current implementation, the underlying inference algorithm 405

uses a fixed number of iterations that has to be pre-defined. It might not be necessary with 406

the same number of iterations in all situations, and thus time could be saved if a more 407

clever mechanism for deciding the number of iterations could be implemented. 408

With these additions and optimizations of the approach and its implementation, we 409

believe that the approach will be applicable to real-world robot applications, and thereby 410

contribute to the goal of constructing autonomous robots that can safely and naturally 411

interact with humans while solving different abstractly and/or vaguely defined tasks. As 412

such, these optimizations will be the focus of our future work. 413
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The following abbreviations are used in this manuscript: 423

AKS Active Knowledge Search
RGS Reflective Goal Search

424

Appendix A. Affective Responses 425

Require: Deliberate Attention Evaluations of CA, SR(Z∗s ), SRP(Z∗s ), and SRE(Z∗s )
1: DAMS← {SR(Z∗s ), SRP(Z∗s ), SRE(Z∗s )}
2: if @DAM ∈ DAMS : p

(
z{DAM}

p = 1
)
> Pzp,lim then # No-change impasse

3: Run Algorithm A2 # Reflective Response
4: else
5: repeat
6: DAM*← arg max

DAM∈DAMS
p
(

z{DAM}
d = 1

)
# pick the most desirable DAM

7: if p
(

z{DAM*}
d = 1

)
≥ p

(
z{SR}

d = 1
)

then
8: # Only pick DAM* if it is more desirable than SR to avoid motoric
9: # actions driven mainly by the progress or information gain appraisals

10: if p
(

z{DAM*}
Ac = 1

)
≥ Pzc,lim or p

(
z{DAM*}

Ac = 1
)
≥ p

(
z{CA}

Ac = 1
)

then

11: effectuate q{DAM∗}
φ

(
Z{t}Mb

)
12: end if
13: end if
14: DAMS← DAMS\DAM*
15: until DAMS = ∅
16: effectuate q{CA}

φ

(
Z{t}Mb

)
# pick the constraint avoidance

strategy as a backup
17: end if

Algorithm A1: Affective response for State reach
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Require: Deliberate Attention Evaluations of CA, E, EP, and SR(Z∗s ) if Z∗s 6= None
1: DAMS← {E, EP}
2: DAM*← arg max

DAM∈DAMS
p
(

z{DAM}
i = 1

)
# pick the DAM yielding most info-

mation

3: if @DAM ∈ DAMS : p
(

z{DAM}
p = 1

)
> Pzp,lim # No-change impasse

or p
(

z{DAM*}
i = 1

)
≤ Pzi,lim then # No information gain possible

4: PBT ← set_path_to_backtrack() # Generate the path to backtrack,
PBT, from the state tree

5: Run Algorithm A3 # Reflective Response
6: else
7: repeat
8: DAM*← arg max

DAM∈DAMS
p
(

z{DAM}
d = 1

)
# pick the most desirable DAM

9: if Z∗s 6= None and p
(

z{SR(Z∗s )}
i = 1

)
≥ p

(
z{DAM*}

i = 1
)
· (1− Pzi,∆) # StateReach gives nearly as much

information

and p
(

z{SR(Z∗s )}
p = 1

)
> Pzp,lim then # and sufficient progress

10: DAM*← SR
(
Z∗s
)

# If SR does not violate constraints
it will be effectuated and Algo-
rithm A1 will be used in the next
iteration.

11: end if
12: if p

(
z{DAM*}

Ac = 1
)
≥ Pzc,lim or p

(
z{DAM*}

Ac = 1
)
≥ p

(
z{CA}

Ac = 1
)

then # No constraint violation?

13: effectuate q{DAM∗}
φ

(
Z{t}Mb

)
14: else
15: DAMS← DAMS\DAM*
16: end if
17: until DAMS 6= ∅
18: effectuate q{CA}

φ

(
Z{t}Mb

)
# pick the constraint avoidance

strategy as a backup
19: end if

Algorithm A2: Affective response for explore
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Require: Deliberate Attention Evaluations of CA, E, EP, and SR(PBT[τ]) for τ ∈ [1, ..., TBT]
1: DAM*← arg max

DAM∈{E,EP}
p
(

z{DAM}
i = 1

)
# pick the DAM yielding most in-

formation

2: if p
(

z{DAM*}
i = 1

)
> Pzi,lim and p

(
z{DAM*}

p = 1
)
> Pzp ,lim then # new information can be obtained

3: create_new_state_branch() # add branch to state tree
4: else
5: DAMS← ∅

6: for DAM* ∈
TBT⋃
τ=0
{SR(P[TBT − τ])} do # SR for the first TBT states in PBT

7: DAMS← DAM*∪DAMS
8: if p

(
z{DAM*}

d = 1
)
> PBT,min then # state can be reached

9: if p
(

z{DAM*}
Ac = 1

)
≥ Pzc,lim # without collision

or p
(

z{DAM*}
Ac = 1

)
≥ p

(
z{CA}

Ac = 1
)

then
10: PBT ← PBT\DAMS # remove the reachable states from

the path currently being back-
tracked

11: if PBT = ∅ then # end of path has been reached
12: PBT ← set_path_to_backtrack() # generate new path to backtrack
13: end if
14: effectuate q{DAM∗}

φ

(
Z{t}Mb

)
15: end if
16: end if
17: end for
18: end if
19: if p

(
z{DAM*}

Ac = 1
)
≥ Pzc,lim or p

(
z{DAM*}

Ac = 1
)
≥ p

(
z{CA}

Ac = 1
)

then # DAM* is less risky

20: effectuate q{DAM∗}
φ

(
Z{t}Mb

)
# than collision avoidance

21: else
22: effectuate q{CA}

φ

(
Z{t}Mb

)
23: end if

Algorithm A3: Affective response for backtracking
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