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Abstract: South Italy is characterised by a semi-arid climate with scarce rain and high evaporative 

demand, therefore the need to optimise water resources in this area is crucial, and climate change 

could worsen this condition. In citrus cultivation, which is one of the most important crops bred in 

Southern Italy, and more generally in Mediterranean regions, deficit irrigation strategies are imple-

mented in order to cope with limited resource availability. On this basis, knowledge on how the 

territorial distribution of citrus would change in relation to these strategies constitutes valuable in-

formation for the stakeholders. Therefore, the objective of this study was to determine the probabil-

ity of presence of citrus in Sicily at changing of the percentage of water deficit application, in order 

to analyse change in the surface area and localisation of the crop. The methodology was based on 

the application of Species Distribution Models and Geographic Information Systems to the case 

study of the Province of Syracuse in Sicily. Different geostatistical and machine learning models 

were applied, based on 3-decades bioclimatic variables, DTM and irrigation; assessment of the out-

comes was carried by using classification evaluation metrics. The analysis of the outcomes showed 

that uncorrelated predictor layers mainly included water input that affected most the probability of 

presence. Moreover, GIS analyses showed that deficit irrigation strategies would generate an overall 

reduction of cultivation surfaces in the territory and a decrease of citrus presence in southern areas 

of the considered territory, where climate conditions are less favourable in terms of temperature 

and precipitations, thus providing useful information for decision support tools in agriculture and 

land use policy.  

Keywords: Vistrails-SAHM software; citrus; spatial distribution; probability of presence; Mediter-

ranean climate; predictor layers 

 

1. Introduction 

The sustainable use of the natural resources is one of the most important targets of 

Agenda 2030. This target become even more crucial in agriculture considering that global 

warming, by producing temperature increase and modifying weather patterns, would de-

termine considerable effects on those resources vital for agriculture, such as water availa-

bility.  

Sicily is a region highly suited to agriculture. In 2018, the production of citrus fruits 

in Sicily reached a value of around 600 million euros, calculated at the basic prices of the 

citrus sector and the agricultural sector in South Italy. Sicily holds the primacy of national 

production, having considerable extensions such as that, for example, of the Plain of Ca-

tania, equal to 43,000 hectares [1]. 

In the Syracuse province, especially in the territories of Carlentini, Lentini and Fran-

cofonte, there is an excellent quality of citrus fruits recognised at European level with the 

recognition of the PGI (Protected Geographical Indications). 

In the Mediterranean semi-arid environment, irrigation plays a crucial role in the 

success of citrus production. It is, therefore, essential to manage the available water re-

sources in a sustainable way, in order to optimise the productivity of the citrus groves, 
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while enhancing their adaptation to water shortage conditions. For instance, this is the 

case of drought management in Morocco that has a high production (about 2.2 million 

tons of citrus in 2014), and an increase of citrus cultivated area (24 percent between 2008 

and 2014) [2]. 

Species distribution models (SDM) and Geographic Information Systems (GIS) have 

been applied for different types of geospatial studies at different territorial levels (global, 

regional, provincial, and municipal). Examples of those applications range from ecologo-

climatic and geographical divergence of plant species [3], to potential biomass exploita-

tion [4], risk assessments and prediction of future potential establishment of invasive spe-

cies [5], and climate adaptation planning of protected areas [6].  

Species distribution models (SDM), are frequently used to forecast shifts in species 

geographic distributions under climate change. When associations between species 

ranges and environmental factors can be reliably used to estimate the ecological require-

ments, these associations can be utilised to forecast species range shifts under climate 

change scenarios [7]. In this field, the use of GIS tools provides an added value to the 

analysis of spatial distribution of the probability of presence and on input and output 

production. 

Therefore, the main aim of the present study was to produce valuable information 

for resource optimization by pursuing the following objectives: (1) investigate feasibility 

of SDMs application to citrus in Mediterranean climate; 2) analyse the main factors that 

influence the presence of citrus plant; (3) simulate the effects of deficit irrigation on the 

spatial distribution of citrus in the territory.  

2. Materials and Methods 

The methodology was based on the application of Species distribution models (SDM) 

and Geographic Information System (GIS) tools. Different geostatistical and machine 

learning models were applied and assessment of the outcomes were compared by using 

appropriate metrics. In detail, VISTRAILS:SAHM software allowed utilisation of the 

SDMs algorithms, i.e., MaxEnt, Boosted Regression Tree (BRT), Multivariate Adaptive Re-

gression Splines (MARS), Generalized Linear Model (GLM), and Random Forest (RF), in 

order to predict the distribution of citrus across geographic space. 

The methodology defined in this study was developed in three phases. The first 

phase concerns the acquisition and processing of the input data set, with the support of 

GIS tools to manage spatial data. In the second phase, the modules of the software 

VISTRAILS: SAHM were analysed and applied. Finally, the results obtained were assessed 

through specific metrics and mapped by using GIS tools. 

2.1. Study area and period of simulations 

The methodology was applied to the case study of the Province of Syracuse, in Sicily 

(Italy). The province of Syracuse extends for about 2100 km2 and represents the southern-

most geographical part of Italy (Fig. 1). From a geological point of view, the Syracuse area 

is characterised by a mountain range called Monti Iblei [8]. 

Based on data availability, described in the following Sections, the period of simula-

tion was the year 2000. The methodology could be further applied to different time series.  
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Figure 1 - Location of Syracuse province within Sicily (Italy). 

2.2. Input data acquisition and processing 

The model requires presence data of the species (.csv) and other predictor layers in 

raster format (.tiff).  

Citrus presence data was obtained by overlaying the Sicilian TRC (Technical Re-

gional Cartography) with the IT2000 orthophotos available in the Sicilian Land Infor-

mation System (SITR) by using GIS software, specifically ArcGIS® for Desktop 10.3 and 

QGIS 3.10.0. In detail, about 10000 presence points were used as input data in the 

VISTRAILS:SAHM. 

By using the GIS tools, 19 bioclimatic variables provided by the WorldClim database 

for three decades, from 1970 to 2000, were represented in raster format. WorldClim data 

is routinely used for cropland suitability studies because they provide a comprehensive 

picture of monthly, quarterly, and annual bioclimatic conditions [9]. Furthermore, the set 

of covariates was enriched by the Digital Terrain Model (DTM) that brings valuable infor-

mation about altitude for plant presence. This layer is related to a 20 m resolution and 

DTM_20 was the related predictor.  

To simulate the effects of deficit irrigation, the watering volume was gradually re-

duced by 10% from the 100% values acquired from the A.C.Q.U.A. project (‘Agrumicultura 

Consapevole della Qualità e Uso dell’Acqua’ – ‘Awareness of quality and use of water in Citrus 

cultivation’), which surveyed the actual irrigation volumes in the area under study; these 

data can be acquired from the WebGIS of the project (http://www.distrettoagrumidisici-

lia.it/wp-content/web_gis/index.html). To transform irrigation data from point data to 

continuous data, the ‘Kriging Ordinary’ interpolation method was applied with default 

settings to the irrigation data to produce a map in raster format, named Sir_Irr hereafter, 

suitable for the models input. 

2.3. Modules selection  

In the second phase of the methodology, the modules within VISTRAILS: SAHM 

were selected based on the scheme defined by Morisette et al. [10]. It establishes which 

modules are suitable for each phase of the model, in problems of the type examined in 

this study. In addition to that scheme, the ApplyModel module was added to allow com-

parison among various simulations of increasing deficit irrigation. 

The most important software modules, at each stage, were the following: 

- in the ‘Preprocessing phase’, the key module to speed up the input processing phase 

is the PARC module, which allows for projection, aggregation, resampling and clipping 

of input geospatial data to match the TemplateLayer; 

- in the ‘Preliminary model analysis and decision’ phase, the ModelSelectionSplit and 

CovariateCorrelationAndSelection modules were used. The first module reserves some of 

the data from the model training process for testing the model and reports evaluation 

metrics on all models. Based on the literature in this field, the amount of presence data is 

critical and the training ratio of 70% with testing ratio equal to 30% produces a more ro-

bust model [6, 11, 12]. 
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Finally, the CovariateCorrelationSelector module provides a breakpoint in the model-

ling workflow to allow the user to evaluate how each variable explains the distribution of 

the sampled data points and allows you to remove any variables that may be highly cor-

related with others [13]; in fact, collinearity can lead to large model prediction errors [6]. 

To select only predictors that were less strongly correlated, the maximum value between 

the Pearson, Spearman and Kendall coefficients calculated for the pairs of variables was used; 

specifically, the threshold value for the three coefficients was set to ± 0.8 [4, 14, 15]. There-

fore, since values of the coefficients higher than the thresholds infer that there is a strong 

association between the two variables, in this case one of the two variables was considered 

and the other was discarded.  

The description of the influence of predictors in the model was analysed through the 

responseCurve graphs, provided by the software for each model. They describe the values 

of each predictor in relation to the probability of presence, in order to select the range 

where the probability is higher, and the percentage that the predictor provide to the prob-

ability for the specific model [16].  

2.4. Accuracy measures 

In this study, the measurement of the accuracy of the SDM classifications was con-

ducted through the calculation of the Receiver Operating Characteristic (ROC) curve and 

the related metric Area Under the Curve (AUC), a threshold independent metric that eval-

uates the ability of a model to discriminate the presence from the background [11, 12]. 

Moreover, AUC values, computed as the difference between the AUC of the training and 

the AUC of the testing, were considered for assessing overfitting, according to [17]. In de-

tail, when the AUC value exceeds 0.05, overfitting occurs [18].  

Moreover, True Skills Stat (TSS) [19] was considered in this study to compare the dif-

ferent models, by applying the following relations: 

 

TSS = Sensitivity + Specificity – 1  

in which Sensitivity (or True Positive Rate - TPR) and Specificity (or True Negative Rate - 

TNR) are defined as: 

 

Sensitivity (TPR) = 
  ��

��� ��
 

 

Specificity (TNR) = 
  ��

��� ��
  

 

where TP is the number of True Positives, FN is the number of false negatives, TN is the 

number of True Negatives, and FP is the number of False Positives. 

The thresholds for significance of these metrics are referred to a random ranking. 

This has on average an AUC value of 0.5, whereas a perfect ranking achieves the best 

possible AUC value equal to 1.0; models with values above 0.75 are considered potentially 

useful [20]. TSS ranges from −1 to +1, where +1 indicates perfect agreement and zero or 

negative values indicate a performance no better than random [19]. To analyse TSS, ac-

cording to some authors [21, 22], the difference TSS between training e testing was com-

puted. 

Elaborations on output surfaces, at a 10% step of probability (classes 1 to 10), were 

carried out by computing the weighted variation in percentage between the surface Supi 

related to the considered deficit irrigation level and the surface Sup100 related to 100% ir-

rigation, according to the following relation:  

    

���� =  
(�����������)

 ������
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Moreover, other elaborations were carried out to relate the surface area of the class 

to the overall surface of the province.  

3. Results and Discussion  

All models showed a quite stable output: there was wide consensus among the dif-

ferent models on the location of areas with the highest probability of presence for the spe-

cies. In detail, the results showed that the highest probability of presence of citrus trees in 

the study area was found in the northern areas of the province, and in eastern ones (mu-

nicipalities of Syracuse, Noto and Avola) while the central and southern areas were con-

sidered unsuitable by all models (Figure 2). In Figure 2, according to Akpoti [16] the prob-

ability was subdivided into presence/absence through the utilisation of the threshold val-

ues computed by each SDM, in order to allow comparisons among the different models 

output. The threshold values obtained for this case study were: 0.59 for RF; 0.55 for Mars; 

0.4095 for MaxEnt; 0.61 for GLM; and 0.57 for BRT. 

Based on these thresholds and the use of GIS tools, a detailed territorial analysis at 

the province level was carried out (Figure 2). Presence areas (in green colour) have a con-

tinuous aspect in GLM, MARS and MaxEnt models (figs. 2b, 2c, and 2d), whereas in RF 

and BRT models (figs. 2a and 2e) those areas are composed of polygons with holes. The 

highest differences among the models’ output were found in the northern part of the prov-

ince (especially in the municipalities of Francofonte, Carlentini and Augusta) and in the 

inner part of the territory (municipalities of Sortino and Floridia) where, for instance, the 

MARS model showed no presence of the species.   

The overall surface area (km2) where the models predict a probability of presence 

above the threshold (in green) are the following: 519.59 for BRT; 484.35 for GLM; 505.17 

for MARS; 676.30 for MaxEnt; and 401.45 for RF. Therefore, RF underestimated most com-

pared to the average value of the model predictions, whereas MaxEnt overestimated. The 

differences among the simulations of the presence areas obtained by BRT, GLM, and 

MARS were not high (with a maximum of about 35 km2), and the information of the ter-

ritorial distribution of probability of presence acquired by GIS representation was ex-

tremely valuable.  

For a more in-depth spatial analysis of the results, the probability was subdivided 

into 10 classes, at 10% intervals of probability, in order to refine comparison among the 

different areas (Figure 3). The surfaces of each class were calculated for each model by 

using the QGIS software (Table 1). From the comparison of class 10 obtained by RF and 

BRT models, the localisation of the areas was similar (in the municipalities of Lentini, Au-

gusta, Carlentini, Francofonte, Melilli, Sortino, Siracusa, Avola e Noto) and quite spread, 

though the surfaces are wider in RF than in BRT. In GLM model, class 10 is found in a 

lower number of areas (in the municipalities of Francofonte and Lentini) and even less for 

MARS model (in Carlentini municipality). The greatest surface areas for class 1 (1178.5 

km2) and class 10 (116.1 km2) were confirmed for RF. 
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Figure 2. - Probability Maps, obtained by applying the threshold for probability, for each model in 

the province of Syracuse: a) BRT; b) GLM; c) MARS; d) MaxEnt; and e) RF. 
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Figure 3. - Probability Maps, obtained by applying the 10-classes subdivision for probability, for 

each model in the province of Syracuse: a) BRT; b) GLM; c) MARS; d) MaxEnt; and e) RF. 

Moreover, the sum of the surfaces from class 7 to class 10 for each model except for 

MaxEnt, that required summing the values from class 5 to 10, confirmed the outcomes 

obtained by the application of the thresholds, i.e., MaxEnt had the highest area (703.1 km2) 

whereas RF had the lowest one (393.3 km2). GLM was close to the mean value of the over-

all surface computed on all the models output (496.46 km2), BRT and MARS slightly over-

estimated the overall surface area (444.8 and 442.7 km2, respectively) whereas MaxEnt 

highly overestimated and RF moderately underestimated compared to the average value. 
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Table 1. Values of the surface areas (km2) for each class and model: in bold green the presence data, 

while in red the absence data. 

class BRT RF MAXENT GLM MARS 

1 961.8 1178.5 688.7 826.0 715.9 

2 187.9 175.3 197.3 189.6 210.9 

3 140.3 111.2 235.4 175.0 173.4 

4 133.3 84.5 278.4 163.9 191.8 

5 125.4 79.8 315.5 120.1 232.2 

6 115.6 80.3 385.4 130.1 136.1 

7 122.50 82.3 2.2 176.6 122 

8 147.90 88.1 0.0 190.4 152.8 

9 153.40 106.8 0.0 127.1 164.3 

10 21.00 116.1 0.0 4.3 3.6 

 

To assess which, among the models, had a higher capability to estimate the probabil-

ity of presence of citrus, the metrics, produced by the SDMs in VisTrails: Sahm, were con-

sidered and analysed.   

The analysis of the metrics for the classifications (Tables 2 and 3) highlighted that the 

AUC of all the models exceeded 0.83, therefore the classifications were assessed as ‘very 

good’, and TSS was higher than 0.50. 

Based on the results reported in Table 2, the BRT had the highest metrics for training 

among the models whereas the MARS model showed the lowest metrics. 

In Table 3, the BRT model shows a ΔAUC equal to 0.08 thus highlighting that model 

overfitting is high, and therefore this SDM was not considered as adequate. In detail, over-

fitting would make the algorithm produce very different predictions for similar data (low 

bias and high variance). The lowest ΔAUC equal to 0 was found for RF model, while the 

values for MARS, GLM and MaxEnt showed a ΔAUC in the order of hundredths, thus 

also suitable because of the low overfitting associated.   

Moreover, for TSS, table 3 shows that BRT model had a high value (about 0.15) com-

pared to those of the other SDMs, having values in the range 0 ÷ 0.005. 

Based on all the considerations above described, RF can be considered as the model 

with the highest ability to predict the citrus coverage. Therefore, the subsequent simula-

tions on deficit irrigation were carried out by applying the RF model.  

Table 2. - Values of the metrics for training and testing and for each model. 

 Model metrics for Training  Model metrics for Testing 

BRT GLM MARS MAXENT RF BRT GLM MARS MAXENT RF 

AUC 0.91 0.85 0.83 0.86 0.88 0.83 0.85 0.83 0.85 0.88 

PCC 82.60 76.30 75.70 77.60 81.10 75.15 76.33 75.40 77.70 80.82 

TPR 0.82 0.76 0.76 0.77 0.81 0.75 0.76 0.76 0.79 0.81 

TNR 0.83 0.77 0.76 0.78 0.81 0.75 0.77 0.75 0.77 0.81 

TSS 0.65 0.53 0.51 0.55 0.62 0.50 0.53 0.51 0.55 0.62 
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Table 3. – Values of ΔAUC e ΔTSS for the different SDMs. 

  

  BRT GLM MARS MAXENT RF 

ΔAUC 0.0819 0.002 -0.001 0.006 0 

ΔTSS 0.148941 -0.001 0 -0.003 0.005 

3.1. Deficit Irrigation 

To simulate the effects of deficit irrigation, the watering volume was gradually re-

duced by 10%, from 100% of the actual irrigation volume to 50%. 

Based on the results of the elaborations, the probability maps showed that the in-

creasing reduction of irrigation volume produced a reduction of the probability values of 

presence though the localisation of the areas was similar (Figure 4). Moreover, the more 

the reduction of irrigation volume the more is the reduction of probability. The consider-

ations deriving from the maps are confirmed by the numerical data processed (Tables 4, 

5, and 6).  

For RF, the sum of the surface areas from class 7 to 10 proved that the deficit irrigation 

simulations would cause a maximum surface reduction of 173.41 km2 (at a deficit irriga-

tion equal to 50% of the actual) and a minimum one of 75.99 km2 (at a deficit irrigation 

equal to 90% of the actual value) with an average value of 122.32 km2 (Table 4).  

The reduction of irrigation would highly affect the probability of presence, especially 

for 9 and 10 classes. For instance, the surface of class 10, for a 90% irrigation, would reduce 

by 85.36%, compared to 100% irrigation, and from 5.51% to 0.81% of the whole surface of 

the province (Tables 5 and 6); whereas, for a deficit irrigation equal to 80% of the actual 

value, the surface area for class 10 is 9.20 km2 (-92.07%) and 37.56 km2 (-64.82%) for class 

9 (Tab. 4 and 5). However, an increase of the surface of intermediate classes, mainly for 6 

and 7 would occur. For instance, the surface of class 7 would increase by 65.29 km2 (mainly 

in the municipality of Lentini), compared to 100% irrigation, under the hypothesis of a 

reduction of irrigation to 60%. 

Although the loss of probability in one class could be compensated by the area in the 

lower one (albeit always considering the classes 7 to 10, that have a higher probability 

than about 0.6, according to the thresholds of presence/absence), however the surface loss 

would range from 19.3% (at 90% deficit irrigation) to 44.09% (at 50% deficit irrigation).  

In table 5, the weighted variation in percentage between the deficit irrigation level 

and the 100% irrigation was reported; Dsup shows that the probability of presence drasti-

cally reduced for classes 8 to 10 at increasing of irrigation reduction in the territory. This 

is confirmed in the probability maps where, as the irrigation contribution decreases, there 

is progressively a reduction in the extent of the presence of the species in the areas until it 

remains only in the north and east of the provincial territory.  

Therefore, the spatial analysis outcomes show that eastern and northern areas of the 

province would be the most suitable to allow deficit irrigation for this kind of species, 

whereas for the southern citrus producing areas of the province it would not be advisable 

to perform deficit irrigation.  
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(a) 

 

(b) 

Figure 4. Probability Maps for RF model, reporting a Deficit irrigation of 80% (a) and 50% (b) of 

the actual value, in the Province of Syracuse. 

 

Table 4. Values of the surface areas Si (km2) for the deficit irrigation from 100% to 50% of the ac-

tual value and the ten classes, for the RF model. 

Surface areas Si [km2] for RF 

 Sir_Irr [%] 

Class 1  

 (0-0.1) 

Class 2    

(0.1-0.2) 

Class 3 

(0.2-0.3) 

Class 4 

(0.3-0.4) 

Class 5 

(0.4-0.5) 

Class 6 

(0.5-0.6) 

Class 7 

(0.6-0.7) 

Class 8 

(0.7-0.8) 

Class 9 

(0.8-0.9) 

Class 10 

(0.9-1) 

100 1178.51 175.31 111.24 84.47 79.82 80.29 82.30 88.11 106.78 116.12 

90 1037.24 258.91 135.18 114.69 110.68 128.96 133.06 104.70 62.56 17.00 

80 938.60 297.99 173.17 132.91 126.14 150.23 146.69 90.47 37.56 9.20 

70 897.24 323.55 190.02 136.93 126.88 151.10 148.63 88.85 33.04 6.73 

60 878.25 338.28 195.36 145.18 130.22 159.13 147.59 75.55 29.10 4.30 

50 873.12 347.13 191.05 147.93 142.12 181.72 130.23 66.01 20.48 3.18 

 

Table 5. Values of the weighted difference in percentage Dsup, for the deficit irrigation from 100% 

to 50% of the actual value and the ten classes, for the RF model. 

Dsup [%] 

  Sir_Irr [%] Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 

90 -11.99 47.69 21.51 35.77 38.65 60.62 61.67 18.82 -41.42 -85.36 

80 -20.36 69.98 55.67 57.34 58.02 87.10 78.24 2.68 -64.82 -92.07 

70 -23.87 84.55 70.81 62.09 58.96 88.19 80.59 0.84 -69.06 -94.20 

60 -25.48 92.96 75.61 71.87 63.14 98.19 79.32 -14.26 -72.75 -96.29 

50 -25.91 98.00 71.74 75.13 78.04 126.33 58.23 -25.08 -80.82 -97.26 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2022                   doi:10.20944/preprints202211.0502.v1

https://doi.org/10.20944/preprints202211.0502.v1


 

 

Table 6. Values of the ratio between the surface areas Si and the total area of the province Stot. for 

the deficit irrigation from 100% to 50% of the actual value and the ten classes, for the RF model. 

Si / Stot [%] 

Sir_Irr [%] Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 

100 55.88 8.31 5.27 4.01 3.78 3.81 3.90 4.18 5.06 5.51 

90 49.18 12.28 6.41 5.44 5.25 6.11 6.31 4.96 2.97 0.81 

80 49.18 12.28 6.41 5.44 5.25 6.11 6.31 4.96 2.97 0.44 

70 44.50 14.13 8.21 6.30 5.98 7.12 6.96 4.29 1.78 0.32 

60 42.54 15.34 9.01 6.49 6.02 7.16 7.05 4.21 1.57 0.20 

50 41.40 16.46 9.06 7.01 6.74 8.62 6.17 3.13 0.97 0.15 

 

The analysis of the ResponseCurve produced for RF model (Figure 5) provided useful 

information about the range of the predictors most contributing to the probability values.  

 

Figure 5. ResponseCurves of the predictors for the RF model, for the case study analysed. 

The predictors Bio_15 (Precipitation Seasonality (Coefficient of Variation)), Bio_16 

(Precipitation of Wettest Quarter), Bio_19 (Precipitation of Coldest Quarter), Bio_9 (Mean 

Temperature of Driest Quarter), Bio_17 (Precipitation of Driest Quarter), Bio_3 (Isother-

mality), DTM_20 and Sir_Irr were considered by the models as those affecting the proba-

bility of presence of citrus, in the case study analysed. 

The analysis of the ResponseCurve graphs for DTM_20 in the province of Syracuse 

showed that the altitudes suitable for citrus production were correctly identified by RF 

model, i.e., points with a probability greater than the threshold were found for altitudes 

lower than 400 m a.s.l. [23, 24]. The Response curves of predictors showed the following 

ranges where the predicted value for citrus probability of presence is higher: Bio_3 be-

tween 35% and 39%, showing the diurnal temperature range lower than annual one; 

Bio_19 greater than 180 mm, representing the level of overall precipitations during the 

coldest quarter of the year; Bio_15 greater than 70%, showing the variation of monthly 

precipitations during the year; Bio_16 above 220 mm of rain, showing the precipitation 

amount in the wettest quarter; Bio_17 above 15 mm, indicating the minimum precipita-

tions of the driest quarter. The contribute to prediction, equal to about 0.45, deriving from 

the values of Sir_Irr confirms the importance of water input for the citrus crop; in fact, 

most of the influencing bioclimatic variables are related to precipitations. 

It is well known, in fact, that citrus trees require large volumes of water compared to 

other tree crops, especially when precipitation scarcity is recurrent, as well as suitable 

temperature levels and other growing conditions beneficial for achieving high quality 
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productions. Therefore, water consumption is one of the most demanding issues for the 

citrus sector, especially in times of climate variability and change. 

4. Conclusions 

The research study described in this paper investigated the feasibility of applying 

algorithms for Species distribution modelling (SDMs) to predict citrus distribution in the 

territory in order to derive information on SDMs application in Mediterranean climate 

and analyse the main factors that influence the presence of the citrus plant. The aim of 

providing improved knowledge on spatial distribution of the species was also achieved 

by analysing the effects of deficit irrigation, in the application to the case study of the 

Province of Syracuse, Italy. 

This study constitutes the first step toward an in-depth spatial knowledge of citrus 

in Mediterranean areas in relation to bioclimatic variables and other driving factors; cli-

mate covariates and terrain elevation as well as irrigation were analysed as major predic-

tors suitable for this knowledge. General uniformities in the models' predictions suggest 

that the multi-model approach contributes to increase consistency of the outcomes. Mod-

eling showed that BRT and RF produced higher evaluation metrics compared to the other 

models, however BRT suffered from overfitting. GIS contributed to the analysis of the out-

comes by showing and quantifying the spatial distribution of citrus presence as well as 

allowing the comparison among the simulations of different levels of irrigation. 

Investigation on model parameters would be object of further studies aimed at fine-

tuning the performance of the predictions, and research is in progress to investigate on 

input data by involving computation of the bioclimatic data from local weather stations. 

Further analysis could regard predictions of future probability of presence, based on cli-

mate models for the determination of future bioclimatic predictors. 
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