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Abstract: Tin (IV) oxide nanoparticles (SnO2 NPs) have received a lot of interest because of their 
interesting features. SnO2 NPs have proven productive in a range of fields, including water purifi-
cation, supercapacitors, batteries, antibacterial and antioxidant agents, and others. SnO2-based na-
noparticles found a wide range of applications after incorporating materials with varying chemical 
compositions. SnO2 NPs and their nanocomposites have been used effectively as antibacterial agents 
against various pathogenic bacteria, photocatalysts for dye degradation, and electrode materials for 
supercapacitors (SCs). This article covers the characteristics of SnO2 NPs, SnO2 nanocomposite ma-
terials, applications of SnO2 NPs and their composite materials, including antibacterial, energy stor-
age, and photocatalysis, as well as some significant recent studies.  

Keywords: SnO2 NPs and their nanocomposites; Photocatalysis; Supercapacitors; Antibacterial ac-
tivities 
 

1. Introduction 
Nanomaterials are used in a wide range of industries, including storing energy, wa-

ter treatment, nanomedicine, fuel cells, sensing, catalysis, optoelectronics, and tunable res-
onant devices. This is because nanoscaled materials have higher surface-to-volume ratios 
than their microsized counterparts, which results in unsaturated and thus more reactive 
surface atoms [1]. If a material has at least one dimension smaller than 100 nm, it is re-
ferred to as a nanoparticle. As opposed to bulk materials of the same substances, engi-
neered nanoparticles possess unique features that are not present in them. The thermal, 
optical, electrical, and surface properties of metal and metal oxide nanoparticles differ 
from those of their original bulk components in a number of ways. They also show mul-
tiple physicochemical characteristics [2]. Gold (Au), copper (Cu), silver (Ag), manganese 
(Mn), platinum (Pt), palladium (Pd), magnesium oxide (MgO), titanium oxide (TiO2), zinc 
oxide (ZnO), cupric oxide (CuO), calcium oxide (CaO), manganese oxide (MnO2), tin ox-
ide (SnO2), and iron oxides include the most widely known metal-based nanoparticles [3-
7]. Because of their improved features, these nanoparticles have been used in catalysis, 
water remediation, pharmaceuticals, the textile industry, and in other fields of contempo-
rary science and engineering [8]. Tin (IV) oxide nanoparticles (SnO2 NPs) have received a 
lot of interest because of their potential applications in research and industrial fields [7-
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10]. SnO2 is a prominent n-type wide-bandgap semiconductor, and due to the variety of 
controllable physicochemical features of SnO2-based nanostructures, they are emerging as 
one of the most significant classes. Many studies have recently reported the synthesis of 
SnO2-based nanocomposite materials, which can significantly improve performance 
[8,11]. SnO2 NPs and their nanocomposites have been successfully employed as the elec-
trode materials of SCs, as photo-catalysts for dye degradation, and as antibacterial agents 
against different pathogenic bacteria [12-14]. Due to their high specific capacitance and 
chemical stability, SnO2-based SCs have received a lot of attention [8]. The SnO2-based 
nanomaterials have been predicted to be potent photocatalysts for the degradation of or-
ganic pollutants in wastewater due to extraordinary properties such as transparency, in-
ertness, photosensitivity, environmental friendliness, and stability [15]. SnO2 NPs have 
received interest as an antibacterial agent and have been considered significant in inhibit-
ing the development of numerous bacterial strains. Other significant features of SnO2 NPs 
include antitumor, antioxidant, and anticancer activities [16]. In this article, we have dis-
cussed the properties of SnO2 NPs, nanocomposite materials of SnO2, applications (espe-
cially antimicrobial, energy storage, and photocatalysis) of SnO2 NPs and their composite 
materials, and some important current studies. 

2. SnO2 nanoparticles (SnO2 NPs) and SnO2-based nanocomposites 
SnO2, an n-type wide-bandgap semiconductor, and point defects act as donors or ac-

ceptors, which causes it to conduct electricity. Tetragonal rutile structures result from 
SnO2 crystallisation. Six oxygen atoms surround each tin atom, whereas three tin atoms 
surround each oxygen atom. This material's numerous distinctive qualities make it ex-
tremely valuable in a wide variety of applications [17]. Adjusting the SnO2 conduction 
band minimum and, in turn, altering its optical absorption characteristics has received a 
lot of scientific attention [10]. The printed electronics application (electron transport and 
hole blocking layers) is provided by the specific electronic properties of SnO2 NPs. Addi-
tionally, they may carry out electron injection and charge recombination activities for a 
variety of thin film designs, such as organic light-emitting diodes, printed photodetectors, 
and organic photovoltaics [10,17]. SnO2 possesses high electrical conductivity, high optical 
transparency, low electrical resistance, and stability under a variety of environmental con-
ditions. It is being thoroughly investigated because of its potentially catalytic uses [18]. 
The important properties of SnO2 NPs are depicted in figure 1.  SnO2 NPs have attracted 
a great deal of attention because of their prospective uses in sensors, SCs, lithium-ion bat-
teries, catalysis, field emission displays, light-emitting diodes, optoelectronics, medicine, 
photocatalysis, and antistatic coatings [7–10]. (Fig. 2). Heterogeneous or hybrid materials 
contain at least one component made up of nanoscaled particles known as nanocompo-
sites. The components, structure, and interfacial interactions of each specific property 
have a significant impact on them. In addition to improved economic potential for a num-
ber of industrial sectors that are highly beneficial to humanity and the environment 
[19,20]. Metal doped SnO2, conducting polymers/SnO2, transition metal oxides 
(TMOs)/SnO2, graphene/SnO2, and other important SnO2 based nanocomposites have 
been used in solar cells, SCs, Li-ion batteries, water purification, catalysis, sensors, medi-
cine, electronics devices, and other sectors. The increased effectiveness of its practical ap-
plications may be due to the improved properties, such as increased surface area, chemical 
and thermal stability, increased surface activities or number of active surface sites, en-
hanced charge transfer processes, mechanical strength, reduced electron-hole recombina-
tion, etc. [21-30]. 
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Figure 1: Some important features of SnO2 NPs 
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Figure 2: Applications of SnO2 NPs 

 

3. Photo-catalytic activity of SnO2 NPs and its nanocomposites 
Various techniques are used in the treatment of wastewater that has become contam-

inated by dye, as it is a major global concern. Among the treatment methods for 
wastewater containing dyes is photocatalysis [31]. The dyes are subsequently released 
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into both fresh and saltwater after being used in the leather, plastic, pharmaceutical, pa-
per, food, and textile industries. The dyes are water-soluble organic species, and both the 
dyes directly and their derivatives are dangerous to humans and other living organisms 
[32]. There is a broad range of synthetic dyes found in wastewater that have been used in 
industry and are typically referred to as azo, sulphur, indigo, anthraquinone, triphenyl-
methyl (trityl), and phthalocyanine derivatives [33]. They are very difficult to remove 
from water and wastewater because of their high solubility. Most dyes irritate the skin, 
induce headaches, harm the eyes, cause coughing and nausea, skin discoloration, sup-
press the immune system, and cause other health issues [34,35]. Metal oxide based photo-
catalysts show charge transport properties, adequate electronic structure, and ability to 
adsorb suitable radiation. The desired band gap, large surface area, stability, appropriate 
morphology, and reusability are the important aspects of the photocatalytic system 
[32,35]. When the photocatalyst is subjected to incident photons, electrons are shifted to 
the conduction band (CB), while holes formation takes place in the valence band (VB). The 
photogenerated pair (e-/h+) has the ability to reduce or oxidise a pollutant that has been 
adsorbed on the surface of catalyst. Metal-based catalysts have two ways to show photo-
catalytic behaviour; one, the oxidation of OH- ions to form OH* radicals, and second, the 
reduction of oxygen to produce O2 radicals. Organic pollutants can be broken down or 
converted into less hazardous by-products by radicals and anions [35,36]. Figure 3 depicts 
the mechanism of photocatalytic process. The overall photocatalytic process is affected by 
different operational parameters such as dye concentration, irradiation time, morphology 
of catalysts, dosage of photocatalyst, reaction temperature, pH of dye containing solution, 
and light intensity [34] (Fig. 4). In general, as dye concentration increases and catalyst 
quantities remain constant, the percentage of degradation decreases. It may be because of 
the availability of a limited number of active sites on catalysts [37]. Hole-electron pair 
separation suffers with recombination at lower light intensities, which lowers the genera-
tion of free radicals and, as a result, decreases the rate of degradation of organic compo-
nents, which could be eliminated at higher light intensities [38]. It was found that when 
the catalyst concentration increased, the rate at which the dye degraded also increased. 
Because there are more active sites available, dye molecules can interact with them more 
readily [39]. The rate of dye degradation typically increases with irradiation time, but after 
a time it remains stable because the catalyst surface is saturated with dye molecules [40]. 
When the pH is increased beyond the nanophotocatalyst's isoelectric point, the photocata-
lyst surface becomes negatively charged. The functional groups are protonated as the pH 
lowers, which enhances the positive charge on the surface of the photocatalyst. When the 
pH is higher, the negatively charged surfaces on photocatalyst enhance the uptake of cat-
ionic molecules, whereas when the pH is lower, it favours uptake of anionic molecules 
[41]. Other crucial factors are surface morphology and particle size. The number of pho-
tons striking the catalyst determines the rate of reaction, indicating that the reaction occurs 
solely in the received phases of the photocatalyst [42]. The reaction temperature enhances 
the rate of photocatalytic activity. The optimum temperature for the effective photominer-
alization of organic substances has been noted to be in the range of 20 to 80 °C [41]. 
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Figure 3: General mechanism of photocatalysis 
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Figure 4: Factors influencing on photocatalysis  
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Figure 5: Photocatalytic mechanism of SnO2 NPs 

Tin-oxide (SnO2) nanoparticles have been predicted to be potent photocatalysts for the 
degradation of organic pollutants in aqueous media based on their advanced characteristics, 
which include low cost, chemical and biological inertness, non-toxicity, ease of fabrication, and 
light sensitivity [15]. SnO2 is analogous to titanium dioxide (TiO2), a prominent photocatalyst, in 
aspects of band gap, morphology, and chemical resistance. SnO2 is also poorly absorbed by the 
human body and has no negative impact on health. High photocatalytic activity is expected for 
SnO2 based materials [13]. A heterojunction is formed between two different semiconductors 
with different band structures. As a consequence, addressing the problems with a single SnO2-
based photocatalyst can be achieved through creating a heterojunction with SnO2 [11]. Figure 5 
depicts the possible mechanism of photocatalysis by SnO2 NPs. Conventional heterojunctions 
are categorised into type-I (straddling gap), type-II (staggered gap), and type-III (broken gap) 
[43] (Fig. 6). The h+ s and e− s are shifted from first semiconductor (SC-I) to second semiconductor 
(SC-II) in the same direction in type I heterojunction. In a type II heterojunction, the h+ and e- 
ions shift in the opposite direction [38]. Because there are fewer opportunities for charge transfer 
between the different semiconductors in type III heterojunctions compared to the other types. A 
redox reaction occurs on different semiconductor surfaces, and the h+ ions of SC-I recombine 
with the photoexcited e- ions of SC-II [44]. The type-II heterojunction is the effective conventional 
heterojunction because of spatial separation of electron-hole pairs among the aforementioned 
conventional heterojunctions [43,44] (Fig. 6). 
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Figure 6: Type of heterojunctions 

The precipitation approach was studied by Kim et al. [13] for the fabrication of SnO2 NPs. 
Applying X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray 
absorption spectroscopy (XAS), the synthesised SnO2 NPs were characterized. The agglomerated 
nanoparticles can degrade methylene blue (MB) 3.8 times faster than bulk SnO2 and have a 
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particle size of 4 to 5 nm. The photocatalytic activity of hydrothermally produced SnO2 NPs for 
the degradation of eosin red (ER), MB, and rhodamine B (RhB) was reported by Xing et al. [45]. 
SnO2 NPs are still highly photocatalytically active after five cycles. RhB, ER, and MB all degraded 
at rates of 98%, 91%, and 53%, respectively. The catalytic activity of SnO2 NPs against the 
degradation of MB and CR was investigated by Paramarta et al. [15]. The results indicate that 
SnO2 NPs have a well-crystalline structure with crystallites that are 44 nm in size. By monitoring 
the decrease in dye concentration before and after exposure to ultrasonic and light radiation, 
respectively, it has been possible to determine the degradation of organic dyes. Other factors, 
including pH, catalyst dosage, and scavenger dosage, have also been studied for their effects. To 
confirm the stability of the utilised catalysts, experiments on reusability have also been 
performed. Yuan and co-workers [46] investigated the photodegradation of methyl orange (MO) 
using SnO2 NPs under different batch conditions. The particle size of SnO2 NPs was found to be 
30 to 40 nm. These nanoparticles were capable of degrading 97 % of dye after 120 min. He and 
Zhou [47] have reported the photocatalytic ability of sphere-line SnO2 NPs for the degradation 
of RhB under UV-light illumination. The SnO2 spheres' surfaces will become rough as the 
reaction time increases and smooth as the time goes on. Tammina et al. [48] studied the effect of 
the size of SnO2 NPs on the degradation of MB. They observed the maximum degradation takes 
place due to the smaller size of SnO2 NPs. The water decolourisation was completed within 20 
min of contact time. Pouretedal and other [49] workers reported the synthesis of SnO2 NPs using 
controlled precipitation method and its photocatalytic behaviour. The SnO2 NPs have been 
characterised by the help of XRD, TEM, UV-Vis, and other methods. At 150 minutes, SnO2 NPs 
degrades MB was more than >95% at a basic pH of 11. 

The green fabrication of SnO2 NPs with the leaf extract of Delonix elata was taken into 
account by Suresh et al. [50]. SnO2 NPs were synthesised using the microwave, wet chemical, 
and sonication processes. RhB was broken down by the greenly synthesised SnO2 NPs under UV 
light. After 150 minutes of radiation exposure, 92.8% of RhB had degraded. Karthik et al. [51] 
studied the synthesis of SnO2 NPs using the Andrographis paniculate extract. With a particle size 
of 27 nm, the tetragonal structure of SnO2 NPs has been found. The photodegradation of CR dye 
under sunlight used the biologically synthesised SnO2 NPs. The experimental results showed 
that the bioinspired SnO2 NPs were found to be very effective for degrading CR dye. Wicaksono 
et al. [52] studied the use of Amaranthus tricolor extract in the synthesis of SnO2 NPs. The 
photocatalytic behaviour of SnO2 NPs has been assessed in the photodegradation of 
bromophenol blue (BPB) using photocatalytic and photooxidation methods in the presence of 
H2O2. Physical-chemical analyses have validated the photoactive properties of SnO2 NPs. Both 
of the routes for degradation follow pseudo-second order kinetics, and the degradation was 
observed from the altered spectra of the treated solution. Pomegranate (Punica granatum) leaves 
were used by Singh et al. [53] to synthesise SnO2 NPs in an inexpensive and environmentally 
friendly manner. In this study, SnO2 NPs that had been successfully synthesised with a particle 
size of 20 nm were employed as an effective photocatalyst to degrade MB dye in the presence of 
sunlight. At 240 min, 91.5% of the degradation efficiency was estimated. The degradation of MB 
under UV light was carried out by Viet et al. [54] using hydrothermally synthesised SnO2 NPs. 
The 3 nm-sized, highly photocatalytically active nanoparticles were synthesised; 88.8% of the 
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MB solution was degraded by SnO2 NPs after 30 minutes of UV light, and 90.0% after 120 
minutes of UV irradiation. Pometia pinnata leaf extract was used by Fatimah et al. [55] to 
biofabricate flower like SnO2 NPs. On the photooxidation of bromophenol blue (BPB), the 
nanoparticles' photocatalytic activity was investigated. The diameter of the nanoparticles, which 
ranged from 8 to 20 nm, was seen to be uniformly spherical. The SnO2 NPs exhibited great 
photocatalytic activity in the photooxidation of BPB as the degradation efficiency exceeded 
99.9%, and the photocatalyst displayed reusability as the degradation efficiency values were 
little modified until the fifth cycle. The treatment of wastewater containing dye has attracted a 
lot of interest using SnO2-based nanocomposites as photocatalysts; hazardous dyes are degraded 
with remarkable efficiency (Table 1) [56-68].  

Table 1: SnO2-based nanocatalysts for dye degradation 

 
SnO2-based 
nanocatalysts 

 
Degraded dye 

 
Maximum 
degradation (%) 

 
References 

SnO2/rGO MB 98.2 [56] 

Bi/SnO2/TiO2-
graphene 

 

Pentachlorophenol 
(PCP) 

84.0 [57] 

SnO2/TiO2/RGO RhB 83.8 [58] 

ZnO/SnO2–Sn 
 

MB 95.6 [59] 

SnSe/SnO2 RhB 90.0 [60] 

Fe3O4/SnO2 Crystal violet 83.0 [61] 

SnO/SnO2 MB 64.5  [62] 

ZnO/SnO2 Biebrich scarlet (BS) 97.0 [63] 

PbS/SnO2 MO 87.0 [64] 

B4C/SnO2 MB 79.4 [65] 

SnO2/CuO MB 92.0 [66] 

SnO2/NiO RhB 82.0 [67] 

mpg-C3N4/SnO2 RhB 93.0 [68] 

  

4. SnO2 NPs and its nanocomposites as electrode materials for SCs  
Concerns about the consumption and production of electricity have been highlighted as a 

result of the energy crisis and the growing world population. Therefore, a more potentially pow-
erful system for energy storage than what is available now is required [69]. Energy storage de-
vices serve as a reservoir for the electrical system, accumulating excess energy generated during 
periods of high production and releasing it when needed [70]. SCs are energy-storage electro-
chemical systems with high energy and power densities, excellent charge-discharge rates, and 
an extra life span. These features contribute to high-energy storage capacity. This is necessary 
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for the advancement of technology. SCs have a high storage capacity, are bigger than normal 
capacitors, and have a low internal resistance. It bridges the gap between rechargeable batteries 
and regular capacitors [69,70]. Two parallel electrodes which are separated from each other by a 
separator constitute SCs. A separator is a conducting material coated with an electrolyte; when 
the voltage is applied, electrolyte ions adhere to the electrode's surface. Electrostatic double layer 
(EDL) formation is caused by charge build-up and interaction with the electrode surface. The 
EDL generation mechanism produces efficient charge-discharge cycles and is reversible. SCs ex-
perience substantial power as a consequence (Fig. 7) [71-73]. 
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Figure 7: Supercapacitors (SCs) 

SCs are divided into electrostatic double-layer capacitors (EDLC), pseudo-capacitors, and 
hybrid capacitors (Fig.8). The EDLC is made up of two electrodes, an electrolyte, and a separator. 
An electrolyte consists of cations and anions, and a separator is used to keep the two electrodes 
apart. In general, EDLC has electrodes of carbon and its derivatives, which have a significantly 
greater electrostatic double-layer capacitance [74-76]. Pseudo capacitors generally utilise metal 
oxide or conducting polymer-based electrodes. By transferring electron charges between an elec-
trode and an electrolyte, these components store electrical energy. The transfer of electrons is a 
process of reduction-oxidation, or redox process. The hybrid capacitors are made up of double-
layer capacitors and pseudo-capacitors [77-79]. Conducting polymers, carbon materials, and 
metal oxides have been employed as electrode materials in these SCs. The capability of one elec-
trode to display electrostatic capacitance and the capability of the second electrode to show elec-
trochemical capacitance. Hybrid SCs, which include an EDLC and a pseudocapacitor, act as ca-
pacitance enhancers due to their asymmetric behaviour [80]. 
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SnO2 NPs are regarded as potent electrode material like RuO2, Co3O4, and NiO, because of 
excellent physical and chemical properties, ease of synthesis, and cost-effectiveness [81]. 
Velmurugan et al. [82] studied on the SnO2/graphene nanocomposite for SCs applications.  The 
SnO2/graphene composite was analysed using Fourier transform infra-red (FTIR), X-ray diffrac-
tion (XRD), and high-resolution transmission electron microscopy (HRTEM) methods. At a scan 
rate of 5 mV/s, a maximum specific capacitance of 818.6 F/g for the SnO2/graphene composite 
was reported, confirming that the addition of graphene matrix significantly improved the elec-
trochemical performances of SnO2.  The SnO2/PPY/graphene-based electrode material for the 
SCs applications was reported by Wang et al. [83]. At 1 mV/s, it was found that this ternary 
mixture had a specific capacitance of 616 F/g. After 1000 galvanostatic cycles, the electrode ex-
hibits improved cycle durability and no apparent deterioration. It has a specific power density 
of 9973.2 W/kg and an energy density of 19.4 Wh/kg. Ramesh et al. [84] investigated the 
SnO2/NGO-based composite as an electrode material for SCs. SnO2/NGO composite that has 
been examined utilising a variety of methods, including XRD, HR-TEM, SEM, and others. Some 
of the electrochemical properties of SnO2/NGO included a specific capacitance of 378 F/g at a 
current density of 4 A/g and improved cycle stability up to 5000 cycles. Manikandan et al. [81] 
synthesised SnO2 NPs by the coprecipitation process, and galvanostatic charge-discharge and 
cyclic voltammetry were used to assess the supercapacitor's electrochemical performance. A spe-
cific capacitance of 122 F/g was attained with a scan rate of 2 mV/s. The Zn2SnO4/SnO2/CNT 
nanocomposite has been reported by Samuel and others [85] as a supercapacitor electrode. Cy-
clic voltammetry showed the enhanced electrode's capacitive performance with a specific capac-
itance of 260 F/g at a current density of 10 A/g. After 15000 galvanostatic charge/discharge cycles, 
the specific capacitance was retained with great precision (93%). The MnO2/SnO2 composite was 
developed by Feng et al. [86] and employed as an electrode for SCs. The composite provided 
541.6 F/g capacitance at 1 A/g and has good cyclic stability. The specific capacitance of 
MnO2/SnO2 continues to remain at 498 F/g even after 1500 cycles of testing at 2 A/g. The electro-
chemical performance of SnO2/r-GO composites was reported by Zhang et al. [87]. According to 
the results, the composite's specific capacitance may achieve 262.2 F/g at a current density of 100 
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mA/g. The composite retains its original capacitance of 96.1% after 6000 cycles, demonstrating 
remarkable electrochemical performance. Liu et al. [88] studied the electrochemical behaviour 
of SnO2-based composites, such as SnO2/NiO, SnO2/Co3O4, and SnO2/MnO2. Maximum specific 
capacitance, strong rate capability, and outstanding cycling stability were all exhibited by the 
SnO2/MnO2 electrode. In table 2, other SnO2 based electrode materials for SCs are listed. 

Table 2: SnO2-based electrode materials for SCs 

 
SnO2-based electrode 
materials 

 
Specific 
capacitance 

 
Energy and power 
density 

 
Cyclic stability 

 
References 

CuO/SnO2 1972 F/g at 1 A/g 117.32 Wh/ kg at 
13 624.2 W/kg 

96.05% after 10 000 
cycles 

[89] 

SnO2/NiO 464.67 F/g at 
5 mV/s 

- 84.4% after 1,000 
cycles 

[90] 

CC/ZnO/MnO2 585.8 F/g at 
1.0 Ma/cm 2 

- 100 % after 10,000 
cycles 

[91] 

Fe2O3/SnO2 562.3 F/g at 1 
A/g 

50.2 Wh/kg at 
650 W/kg 

92.8 % after 3000 
cycles 

[91] 

Zn2SnO4/SnO2/CNT 260 F/g at 10 
A/g 

98 Wh/kg at 1000 
W/kg 

93 % after 15000 
cycles 

[85] 

r-SnO2/GN 947.4 F/g at 2 
mA/cm2 

- 88.2 % after 1000 
cycles 

[92] 

Co3O4/SnO2/MnO2 
 

225 F/g at 0.5 A/ 
g 

- 90.7% after 6000 
cycles 

[93] 

MnO2/SnO2 800 F/g at 1 A/g 35.4 W h/kg at 25 
kW/kg 

98 % after 2000 
cycles 

[94] 

CNTs/SnO2 113.6 F/g at 2 
A/g 

20.3 Wh/kg at 
118W/kg 

92 % after 1000 
cycles 

[95] 

MnO2/SnO2 367.5 F/g at 
50 mV/s 

- 91.3% after 2000 
cycles 

[96] 

 
 

5. Antimicrobial activity of SnO2 NPs/ SnO2 based nanocomposites 
The antibacterial properties of metal and metal oxide engineered nanoparticles have at-

tracted extensive interest over the last twenty years [97]. The need for new antibiotic agents has 
been emphasised by the continuous rise of bacterial resistance. Metal-based NPs, which have 
shown potent antibacterial action in a vast majority of investigations, are some of the most prom-
ising of these novel antibiotic agents [98]. MONPs are shown to be an efficient bacterial strain 
inhibitor [99]. It is essential to actively explore nanomaterials at the nanoscale since the antibac-
terial activity of NPs depends on their size and form. Various metal oxides with varying shapes 
and sizes have recently been the subject of basic and applied research for their possible use in a 
wide range of applications, including sensing, energy storage, antibacterial agents, semiconduc-
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tors, etc. Metal-based nanoparticles with antibacterial properties have been found to include sil-
ver (Ag), gold (Au), copper oxide (CuO), calcium oxide (CaO), zinc oxide (ZnO), magnesium 
oxide (MgO), tin oxide (SnO2), silver oxide (Ag2O), and titanium dioxide (TiO2) [1,2,99-102].  
The MONPs have been used in the destruction of gram-positive and gram-negative bacteria, and 
other pathogens. In addition to these advantages, SnO2 has drawn attention for its effectiveness 
as an antibacterial agent in preventing the growth of several bacterial strains. Other significant 
biological features such as antioxidant, anticancer, and antitumor activities of SnO2 NPs have 
also been found [1,2]. Formation of ROS (Reactive oxygen species), damage of cell wall/mem-
brane, metal-ion release, and particle internalisation into bacteria are some of the unique mech-
anisms that have been proposed for these substances' antibacterial effects, though their exact 
mechanism is still up for debate (Fig. 9). Metal oxides easily undergo redox reactions that are 
promoted by light. Their unique electrical configuration, which includes features like an occu-
pied CB and an empty valence band VB, is the main reason for this activity. The generated elec-
trons and holes have a probability of interacting with other species like O2 and H2O adsorbed on 
the metal oxide surfaces. The ROS (OH•), hydrogen peroxide (H2O2), and superoxide (O2-*) con-
sidered to degrade the bacterial cell into CO2, H2O, and other nontoxic substances by several 
chain redox processes [103,104] (Fig. 10). The first phase of the antibacterial mechanism is the 
interaction of the nanoparticles with the cell membrane. The cell membrane's structural modifi-
cations and inhibition of its transport channels proceed subsequently. After this, NPs may be 
incorporated, causing ionisation inside the cell and the destruction of intracellular structures, 
ultimately resulting in cell death [105]. The other major mechanistic ways in which NPs exhibit 
antibacterial behaviour are the deactivation of enzymes, their attachment to NPs, and the dis-
ruption of the hydrogen bonding between two antiparallel strands of DNA [101]. 
 

Bacterial cell
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due to ROS
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electron transport

system

Damage of
enzyme and

protein

Disruption of
cell membrane/

wall Damage of
DNA and

ribosomes

 
 
Figure 9: Some basic ways to understand the antibacterial activity of MONPs 
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Figure 10: Destruction of bacterial cell due to formation of ROS 
Pometia pinnata leaf extract was used by Fatimah et al. [55] for the biofabrication of flowers 

like SnO2 NPs. Antibacterial testing revealed that the synthesised SnO2 NPs exhibit an inhibition 
of the tested bacteria and have the potential to be used in other medicinal applications. The SnO2 
NPs have strong antibacterial activity against both the gram-negative and gram-positive bacteria 
that were used in testing, suggesting that they might be further improved for use in biomedical 
applications. Amininezhad et al. [14] studied the synthesis of SnO2 NPs using a solvothermal 
process. The Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) were rendered inactive 
by the SnO2 NPs. It was observed that SnO2 NPs exhibit significantly more activity against E. coli 
than S. aureus. The shape of the cellular membrane and the resistivity of the outer membrane to 
the reactive oxygen species formed at the photocatalyst surface also influence the rate of pho-
toinactivation of bacteria in addition to cell wall thickness.  

A microwave irradiation approach was used by Apsana et al. [106] to synthesise SnO2 NPs, 
which were then examined for their antibacterial activity. Proteus vulgaris (P. vulgaris), E. coli, 
Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumonia (K. pneumonia), and Morganella mor-
ganii (M. morganii) were treated with SnO2 NPs. Due to the SnO2 NPs' smaller size and the crucial 
phenolic chemicals in Ocium sanctum leaves, remarkable antibacterial activity has been seen in 
O. sanctum extract-derived SnO2 NPs. The synthesis of SnO2 NPs using Alovera extract was re-
ported by Ayeshamariam et al. [107]. They found that SnO2 NPs had more potent anti-bacterial 
and anti-fungal capabilities than bulk SnO2, especially for Streptococcus pyogenes, Aspergillus niger 
and Mucor indicus pathogens. SnO2 NPs were synthesised by Khanom et al. [108] for the inacti-
vation of S. aureus and E. coli. Antibacterial activity diminishes as the amount of nanoparticles 
in the solution decreases. SnO2 NPs have nearly the same susceptibility to the gentamycin anti-
biotic, and E. coli exhibits no resistance to nalidixic acid. When used against S. aureus, SnO2 NPs 
are found to be more sensitive than the both antibiotics.   

Kamraj et al. [109] studied the antibacterial activity of SnO2 NPs against E. coli and S. aureus 
bacteria. They have seen that SnO2 NPs showed more antibacterial activity against E. coli than S. 
aureus. Because E. coli lacks a cell wall, nanoparticles could easily penetrate, producing greater 
cell damage than in S. aureus. Gowri et al. [110] also reported the antimicrobial activity of SnO2 
NPs against E. coli and S. aureus. They found that SnO2 NPs show good antibacterial activity. 
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Additionally, they observed maximum inhibition of S. aureus strain as compared to E. coli. Fati-
mah and co-workers [111] reported biofabricating SnO2 NPs with the intervention of Pometia 
pinnata leaf extract. The bacterial strain such as K. pneumonia, E. coli and S. aureus, and Streptococ-
cus pyogenes (S. pyogenes) were used to evaluate the antibacterial activity. The findings of the 
antibacterial test showed that the synthesised SnO2 NPs inhibit the examined bacteria and have 
the potential to be used in other medicinal applications. Din et al. [112] used Populus ciliate leaf 
extract to synthesise SnO2 NPs, which were then examined using several physico-chemical meth-
ods. The antibacterial properties of SnO2 NPs were examined against S. aureus, S. pyogenes and 
K. pneumonia, and E. coli. With increasing nanoparticle concentration, it was shown that both 
antioxidant and antibacterial activities increased. Table 2 lists other SnO2-based materials for 
antibacterial activity against different bacteria. 

Table 3: SnO2-based nanomaterials as antimicrobial agents 

 
SnO2-based materials 

 
Bacterial species 

 
Zones of 

inhibition (mm 
or %) 

 
References 

Ag-doped SnO2 S. aureus, E. coli, K. 
pneumoniae, P. aeruginosa, E. 

faecali, and B. cereus 

27 mm, 25 mm, 
26 mm, 22 mm, 
27 mm, and 23 

mm 

[113] 

Cu/SnO2 S. aureus and P. aeruginosa 10 mm and 12 
mm 

[114] 

ZnO/SnO2 S. aureus, L. monocytogenes, E. 
coli, and S. typhi 

100%, 90%, 100%, 
and 80 % 

[115] 

Co-doped SnO2 E. coli and B. subtilis 16 and 22 mm [116] 

Zr/SnO2 E. coli and S. aureus 7 and 5 mm [117] 

Fe/SnO2 E. coli 80% [118] 

Au/SnO2 B. subtilis and E. coli 30 and 16 mm [119] 

S-GO-SnO2 E. coli and P. gramin >50% [30] 

Ni-doped SnO2 E. coli 60% [120] 

Al-Bi/SnO2 S. aureus and B. cereus 34 and 41 mm [121] 

 
6. Some important current studies: 

Inorganic metal-based nanoparticles are regarded as one of the most promising materials 
for a variety of scientific and industrial uses. Because of their superior features, ease availability, 
and low cost, SnO2 NPs have attracted a lot of interest. The SnO2 and SnO2 based materials have 
been used by different researchers in photocatalysis, SCs, and antibacterial activity as of the pre-
sent (year 2022). Xiao et al. [122] investigated the photocatalytic degradation of RhB using F-
doped SnO2. The RhB degraded at a rate of 92.9% in 25 min following a 5-hour solvent heat 
treatment with polyethylene glycol (PEG) surfactant and F-doped SnO2. Nazim et al. [123] have 
synthesised SnO2 NPs functionalized with gallic acid (SnO2/GA). Under ideal circumstances, the 
SnO2/GA was able to degrade citalopram by 88.4% in 1 hour under UV light. The pseudo-first 
order rate of citalopram degradation was tracked. Water samples taken after several cleaning 
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validation cycles of the citalopram manufacturing lines were effectively treated using the im-
proved technique. The SnO2/GA was examined for 3 cycles of reuse without noticeably losing 
activity. ZnO-SnO2 nanoparticles were used by Dugosz et al. [124] for the photodegradation of 
dye mixtures. For the degradation of MB, RB, TB, MO, and YQ, respectively, the dye removal 
efficiencies after 60 min were 76.4, 72.6, 62.4, 77.0, and 92.4%. When the photodegradation effi-
ciencies of ZnO-SnO2 were evaluated with binary and ternary dye mixes, they were comparable 
to those of the single mixtures, suggesting that this material may eventually be employed in 
commercial applications. Gao et al. [125] demonstrated a photocatalytic CO2 reduction. In this 
study, a unique defect engineering method was developed to produce SnxNb1xO2 by a sustaina-
ble hydrothermal method that significantly substitutes Nb into SnO2. When compared to a pure 
SnO2 sample, the SnxNb1xO2 solid solution sample performed much better in terms of photocata-
lytic CO2 reduction. Ramanathan and Murali [126] investigated the photocatalytic degradation 
behaviour of SnO2 NPs for MB, MO, RhB, and textile dyes under UV-Visible light radiation. The 
pseudo-first-order rate constants of four dyes were calculated from observation and measure-
ment. The removal efficiencies of various dyes were investigated, and it was found that MB had 
a larger efficiency (93%) than all other dyes. The maximum degradation was brought on within 
90 min by 30 mg/L tin oxide at pH 11. Oluwole and Olatunji [127] used a SnO2/g-C3N4 nanocom-
posite to investigate the photodegradation of tetracycline. In comparison to g-C3N4 and SnO2, 
which had degradation efficiencies of 40.9 % and 51.3 %, the degradation efficiencies of tetracy-
cline by 1 wt.%, 2 wt.%, 3 wt.%, and 5 wt.% of SnO2/g-C3N4 photocatalyst were 81.5%, 90.5%, 
95.9%, and 92.1%. Ag doped SnO2 for the photocatalytic degradation of MB dye was reported 
by Shittu et al. [128]. In comparison to undoped SnO2, the photocatalytic activity findings show 
that 1wt% of Ag/SnO2 has a superior photocatalytic performance of 97.63%.  

The use of SnO2/r-GO-based nanocomposite as electrode material for SCs was investigated 
by Joshi et al. [12]. At a current of 1 A/g, the maximum specific capacitance of the nanocomposite 
was observed to be 267.8 F/g. After 5000 GCD cycles, the SnO2/r-GO electrode material was also 
found to be highly stable. Effectiveness of quantum dot-based nanocomposite materials in elec-
trochemical energy storage systems was reported by Babu et al. [129]. In this work, nanocompo-
sites of SnO2 quantum dots and Au nanoparticles were used as an electrode material. The elec-
trode material showed good specific capacity of 87 mAh/g at 1 A/g. After 5000 GCD cycles, the 
electrode's columbic efficiency was determined to be 98%. Fe2O3/SnO2 nanocomposite was em-
ployed as an electrode material for SCs by Safari et al. [91]. In a three-electrode system, the 
Fe2O3/SnO2 electrode exhibited excellent cycling stability, with 92.8 % capacitance retention at a 
high current density of 10 A/g after 3000 cycles. The specific capacitance was found to be 562.3 
F/g at a current density of 1 A/g. Li et al. [130] investigated composites made of Sn/SnO2 and 
graphene/carbon nanofibers for high performance SCs. The electrode material exhibits a high 
specific capacitance of 1349 F/g at 1 A/g and a remarkable rate capability of 88.9% retention at 20 
A/g.  

Populus ciliate leaf extract was used by Din et al. [112] for the green synthesis of SnO2 NPs. 
S. pyogene, S. aureus, K. pneumoniae and E. coli used to observe the antibacterial properties of the 
SnO2 NPs using the agar well diffusion technique. S. pyogene and S. aureus are more resistant to 
SnO2 NPs than K. pneumoniae and E. coli. Preethi et al. [118] tested the antibacterial behaviour of 
Fe/SnO2 against E. coli using the colony count technique, and they found that the inhibition rates 
were 49, 65, 70, and 78% for pure, 0.01, 0.03, and 0.05 M, respectively. Anuja et al. [121] studied 
the antibacterial activity of Al-Bi co-doped/SnO2 and found the zone of inhibition in the range of 
20 to 36 mm against S. aureus, 25 to 34 against B. cereus and 30 to 41 against E. Coli. Parameswari 
and Sakthivelu [131] studied the green synthesis of Co/Fe/SnO2 using leaf extract of Psidium 
guajava. The antibacterial activity of the Co/Fe/SnO2 was found to be higher than that of the con-
ventional antibiotic amoxicillin. Additionally, Co/Fe/SnO2 were found to be harmful to L929 cells 
following a 24-hour incubation period when utilised against breast cancer (MDA-MB-231) cell 
lines. 
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7. Conclusions: 

The applications of nanomaterials in different fields of science and technology have proven 
how nanotechnology can overcome the divide among physical and biological sciences. Nano-
materials are made up of nanoparticles, which are formed at the atomic or molecular level. The 
development of innovative, environmentally friendly, and functional nanoproducts is the main 
challenge in nanomaterials and technologies. Tin oxide nanoparticles (SnO2 NPs) have drawn 
considerable attention recently due to their fascinating properties. Water purification, batteries, 
SCs, antibacterial, and antioxidant, and other fields of study have all demonstrated the efficacy 
of SnO2 NPs. SnO2-based nanomaterials found numerous possibilities after the incorporation of 
components with different chemical compositions. We have addressed the basic characteristics, 
widespread uses, and in particular the photocatalytic degradation of organic pollutants, energy 
storage, and antibacterial activities in this article. SnO2 NPs and their composites have been 
found to be efficient photocatalysts, electrode materials, and antibacterial agents based on the 
study's overall findings. 
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