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Abstract: The greater U.S. Midwest is on the leading edge of tick and tick-borne disease (TBD) ex-

pansion, and tick and TBD encroachment into Illinois is occurring from both the northern and the 

southern regions. To assess historical and future habitat suitability of four ticks of medical concern 

within the state, we fit individual and mean-weighted ensemble species distribution models for Ix-

odes scapularis, Amblyomma americanum, Dermacentor variabilis, and a newly invading species, Am-

blyomma maculatum using a variety of landscape and mean climate variables for the periods of 1970-

2000, 2041-2060, and 2061-2080. Ensemble models for the historical climate were consistent with 

known distributions of each species but predicted the habitat suitability of A. maculatum to be much 

greater throughout Illinois than what known distributions demonstrate. Proximity to wetlands and 

water bodies was important in predicting both I. scapularis and A. americanum presence. A. ameri-

canum occurrence was highly dependent on increasing forest cover, while A. maculatum habitat was 

more strongly predicted by open habitats. As the climate warmed, the expected distribution of all 

species became more strongly impacted by precipitation and temperature variables, particularly 

mean temperature of the wettest quarter and mean temperature of the driest quarter. By 2070, I. 

scapularis was expected to retract by as much as 60% from southern and central regions of the state 

as compared to historical climate distribution but remained concentrated in the Chicago metropol-

itan area. A. americanum was predicted to initially expand across parts of east- and west-central Illi-

nois by 2050, but then largely retract in distribution to along rivers and water bodies by 2070. The 

ranges of D. variabilis and A. maculatum, however, were predicted to contract in the 2050 climate 

scenario, but then expand in the 2070 scenario. Predicting where ticks may invade and concentrate 

as the climate changes will be important to anticipate, prevent, and treat TBD in Illinois. 

Simple Summary: The variable landscape of Illinois creates a patchwork of tickborne disease risk 

to humans and domestic animals that can be predicted in part based on climate and landscape fea-

tures. We fit individual and mean-weighted ensemble species distribution models for Ixodes scapu-

laris, Amblyomma americanum, Dermacentor variabilis, and a newly invading tick species, Amblyomma 

maculatum using a variety of landscape and mean climate variables and identify numerous environ-

mental niche factors that are associated with presence of these vectors in current and future climate 

scenarios within the state. As the environment changes over the coming decades, the distribution of 

these tick species will change as they adapt to the increasing temperatures and precipitation altera-

tions. Knowing where ticks may concentrate will be important to anticipating, preventing, and treat-

ing tickborne disease. 

 

Keywords: Ticks; species distribution models; habitat suitability models; Illinois; climate 

 

1. Introduction 

 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2022                   doi:10.20944/preprints202211.0490.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202211.0490.v1
http://creativecommons.org/licenses/by/4.0/


 

 

Ticks and their associated pathogens present a growing public and veterinary 

health threat in the United States. Human-induced climate and landscape alterations are 

driving increased prevalence of emerging tick-borne diseases (TBDs) (Diuk-Wasser et al. 

2021) including bacterial, rickettsial, protozoal, and viral organisms (Savage et al. 2017; 

Paddock and Goddard et al. 2015). These pathogen emergences are increasingly relevant 

as the ranges (Raghavan et al. 2021; Molaei et al. 2022) and activity periods (Raghavan et 

al. 2021) of native and invasive tick species (Paddock and Goddard 2015; Rochlin et al. 

2019) shift, putting these vectors into greater contact with humans, companion animals, 

and livestock. Economically, changes in tick and TBD ecology are triggering millions of 

dollars in healthcare and livestock impacts (Hook et al. 2022).  

Ticks are highly sensitive to and constrained by weather and climate variables 

(Ogden et al. 2014; Bacon et al. 2021), as well as landscape features like vegetation and 

land-use patterns that impact habitat fragmentation (Allan et al. 2003; Brownstein et al. 

2005; Diuk-Wasser et al. 2021). In general, the questing and phenological activity, 

development, and survival of common tick species of medical concern are directly 

correlated with higher levels of humidity and warmer temperatures (Berger et al. 2014a; 

b; Ogden et al. 2014; Ostfeld & Brunner 2015). However, these impacts are species-specific. 

Ticks like Ixodes scapularis are highly susceptible to desiccation, whereas Amblyomma 

americanum, Amblyomma maculatum, and Dermacentor variabilis are more tolerant of drier 

conditions (Bacon et al. 2021; Rynkiewicz & Clay 2014). Greater tick density is often 

associated with habitats that include uninterrupted forest cover (Heske 1995; Ferrell & 

Brinkerhoff 2018), or even specific invasive types of landscape cover (Noden & Dubie 

2017), but edge-effects and open-landscape can also foster high tick abundance depending 

on species (Rynkiewicz & Clay 2014; Flenniken et al. 2022). These landcover and climate 

relationships are critical to the landscape epidemiology of TBD because they generate the 

microclimatic conditions that facilitate interactions among ticks and their hosts (Randolph 

& Storey 1999; Diuk-Wasser et al. 2021).  

The greater U.S. Midwest is on the leading edge of tick and TBD expansion. 

Within the past decade, studies have documented the continued range movement of four 

ticks of medical and veterinary concern in this region including the blacklegged tick 

(Ixodes scapularis) (Rydzewski et al. 2011; Lockwood et al. 2018), lone star tick (Amblyomma 

americanum) (Springer et al. 2014; Fowler et al. 2022), American dog tick (Dermacentor 

variabilis) (Boorgula et al. 2020; Martin et al. 2022), and Gulf Coast tick (Amblyomma 

maculatum) (Lockwood et al. 2018; Phillips et al. 2020; Alkishe & Petersen 2022; Flenniken 

et al. 2022). These range expansions have corresponded with an increase in reported TBD 

cases associated with these species including Lyme disease (Robinson et al. 2015), 

ehrlichiosis (Johnson et al. 2015), tidewater fever (Phillips et al. 2020) and newly 

documented Heartland virus (Tuten et al. 2020).  

Illinois is experiencing tick and TBD expansion in both the northern and the 

southern regions (Springer et al. 2014; Sonenshine et al. 2018; Gilliam et al. 2020; Kopsco 

et al. 2021). Concurrently, there has been a 10-fold increase in commonly reported TBD 

cases among humans between 1999 and 2017 (IDPH 2017a, b; IDPH 2018; Lyons et al. 

2021), including Lyme disease, Rocky Mountain spotted fever, ehrlichiosis, and 
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anaplasmosis. Three distinct climate regions exist longitudinally across the state, with 

clear impacts on tick species abundance (Bacon et al. 2021). As climate alterations impact 

the various bioclimatic factors across these areas, it is important to predict how tick 

distribution and TBD risk will potentially change across the state. 

While there is debate about the specific impacts of extreme climate conditions on 

ticks and TBDs in the future (Ogden et al. 2020), climate projection models can predict and 

assess various current and future habitat and distribution scenarios. Species distribution 

models (SDM) represent a suite of statistical and machine-learning methods for predicting 

suitable species habitat ranges and niches based on known occurrence records and 

various environmental variables. These strategies range from deterministic (e.g. logistic 

regression) to stochastic (e.g. Bayesian regression trees) approaches, and utilize various 

levels of model validation techniques. Given differences in model performance, using 

SDM model ensembles may provide a more complete picture of the possibilities for tick 

species range variation, and opportunities for public health and veterinary partners to 

enact control and prevention measures where most needed (Lippi et al. 2021b; Kopsco et 

al. 2022).  

The objective of this study was to fit and evaluate current and future species 

distribution models for each of the four tick species of major medical and veterinary 

concern within Illinois, including Ixodes scapularis, Dermacentor variabilis, Amblyomma 

americanum, and Amblyomma maculatum, and to evaluate habitat and climate variables 

associated with their predicted occurrence. We expected that as the climate continues to 

warm, regions in southern and central Illinois will become less hospitable for a desiccant-

sensitive species like Ixodes scapularis, but more habitable for the other three more 

desiccant-tolerant species. This hypothesis would reflect a greater predicted species range 

throughout the state for Dermacentor and Amblyomma species but would result in a 

growing absence of suitable Ixodes scapularis habitat, except in the northernmost part of 

the state. 
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2. Materials and Methods 

Tick Occurrence Data 

We sourced presence-only tick occurrence records from several online, publicly 

accessible databases and through active tick collections throughout Illinois. Databases 

included Walter Reed Biosystematics Unit’s VectorMap (http://vectormap.si.edu/), Global 

Biodiversity Information Facility (GBIF; https://www.gbif.org/), Biodiversity Information 

Serving Our Nation (BISON; https://bison.usgs.gov/). To be included in a model, all tick 

occurrence data had to meet the following quality control criteria: be an observation from 

no earlier than 1950, include two decimal places or more for at least one coordinate, and 

have a coordinate inaccuracy of ≤20,000 m. Duplicate coordinates occurred often due to 

data being deposited in multiple databases, so entries were compared and duplicate 

coordinates were removed. Geolocations were cross-checked to ensure that records were 

accurate to the field location. Remaining coordinates were then thinned to 1km distance 

using the spThin package (Aiello-Lammens et al. 2015) to reduce the effect of sampling 

bias on model predictions. 

 

Environmental covariates 

Bioclimatic variables (1-19) (Table 1) were sourced from the raster package 

(Hijmans 2022) and downloaded at a resolution of 2.5 arcminutes (~4km). Current climate 

models were fit using the historical data representing the average measurements from 

1970-2000. Future climate models were fit with mean projections of these data at a 4km 

resolution using Coupled Model Intercomparison Project phase 5 (CMIP5)/ACCESS 1-0 

Representative Concentration Pathway (RCP) 8.5 for 2050 (average from 2041-2060) and 

2070 (average from 2061- 2080). CMIP5’s ACCESS 1.0 model incorporates long-term 

simulation data of the 20th century climate including solar, volcanic, stratospheric aerosol, 

anthropogenic aerosol, emissions, and greenhouse gas concentrations (Lewis 2013). RCP 

8.5 is a future climate scenario that describes the expected baseline high greenhouse gas 

impact resulting from a lack of carbon emission mitigation policies (Riahi et al. 2011).  

Due to the importance of white-tailed deer (Odocoileus virginianus) as 

reproductive hosts for each of these four species, we included a raster of graded suitable 

deer habitat within Illinois (USGS 2018). Landcover covariates (landcover class, percent 

impervious surface, and percent tree canopy cover) from the National Land Cover 

Database (NLCD) (Yang et al. 2018) were also included. The NLCD is a collection of land 

cover imagery at 30m resolution that combines information from all years of land cover 

change (2001-2016) across 16 classes of cover that include impervious land, cropland, 

wetland, and various vegetation types, which were aggregated into seven more general 

land cover categories (Water, Developed, Barren, Forest, Grass/Shrub, Cropland, and 

Wetland). Land cover changed significantly across the United States between 2001-2016, 

so an average of these land covers taken from every 2-3 years was used instead of data 

from a single year. Elevation was sourced from the raster package (Hijmans 2022) derived 

from Shuttle Radar Topography Mission (SRTM) National Elevation Dataset digital 

elevation models (at a resolution of 1 and 1/3 arcseconds; USGS 2022).  
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All covariates were cropped to the extent of the Illinois’ state borders (xmin: -91.5, 

xmax: -87.5, ymin: 36.9, ymax: 42.5) and resampled to a resolution of four kilometers (2.5 

arcseconds) to match the bioclimatic data set. Extracted covariate values were assessed for 

collinearity for each species and period by assessing variance inflation factor. Any variable 

with a v-step score of 10 or higher was excluded from that model due to collinearity.  

 

Model fitting and evaluation 

Models were fit using the sdm package (Naimi & Araujo 2016) in R version 4.1.3. 

Regression and machine learning models for each species for the current climate were first 

fit using the following individual methods: generalized linear models (GLM), generalized 

additive models (GAM), Bayesian regression trees (BRT), classification and regression 

trees (CART), MaxEnt, random forest (RF), multivariate adaptive regression splines 

(MARS), and support vector machines (SVM). The number of randomly selected 

background points were set at approximately the same number of presence points for each 

species due to the mixed use of regression and machine learning techniques within the 

modeling algorithm (Barbet-Massin et al. 2012). Cross-validation and bootstrap data 

partitioning methods (with 30% test percentage) were used for each model type, with five 

replicates for each method totaling five replicates per algorithm (30 total replicates per 

species). Single model algorithms that were not 100% successful during replicate runs 

were excluded from ensemble models. Models were evaluated using several performance 

scores including threshold-dependent and threshold-independent methods: area under 

the curve (AUC), true skill statistic (TSS), model deviance, and prevalence. Single models 

demonstrating AUC > 0.75, and TSS > 0.40 were retained for mean-weighted ensemble 

models (i.e. a two-step process that incorporates both within-model averaging and 

between-model averaging). Cohen’s kappa was not used for single model evaluation due 

to its overreliance on prevalence but was consulted to determine consistency in 

predictions across models (Grimmett et al. 2020). AUC was not used alone to assess 

prediction accuracy because of its poor ability to reliably assess presence-background 

nature of the tick occurrence data (Allouche et al. 2006; Grimmett et al. 2020).  
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Table 1. Descriptions and sources of each of the 19 bioclimatic variables (WorldClim) and other environmental predictor variables 

(n=30) used in model fitting. 

 

VARIABLE DESCRIPTION UNIT SOURCE* 

BIO1 Annual Mean Temperature °C*100 WorldClim 

BIO2 
Mean Diurnal Range 

(Mean of monthly (max temp - min temp)) 
°C*100 WorldClim 

BIO3 Isothermality (BIO2/BIO7) (×100) % WorldClim 

BIO4 Temperature Seasonality (standard deviation ×100) ° C WorldClim 

BIO5 Max Temperature of Warmest Month °C*100 WorldClim 

BIO6 Min Temperature of Coldest Month °C*100 WorldClim 

BIO7 Temperature Annual Range (BIO5-BIO6) °C*100 WorldClim 

BIO8 Mean Temperature of Wettest Quarter °C*100 WorldClim 

BIO9 Mean Temperature of Driest Quarter °C*100 WorldClim 

BIO10 Mean Temperature of Warmest Quarter °C*100 WorldClim 

BIO11 Mean Temperature of Coldest Quarter °C*100 WorldClim 

BIO12 Annual Precipitation mm WorldClim 

BIO13 Precipitation of Wettest Month mm WorldClim 

BIO14 Precipitation of Driest Month mm WorldClim 

BIO15 Precipitation Seasonality (Coefficient of Variation) mm WorldClim 

BIO16 Precipitation of Wettest Quarter mm WorldClim 

BIO17 Precipitation of Driest Quarter mm WorldClim 

BIO18 Precipitation of Warmest Quarter mm WorldClim 

BIO19 Precipitation of Coldest Quarter mm WorldClim 

ELEVATION Height above sea level m USGS SRTM 

DEER HABITAT Suitable white-tailed deer habitat presence/absence USGS GAP Analysis 

LANDCOVER 

TYPE 

Water bodies, tree canopy, developed, impervious, 

barren, forest, grassland, cropland, wetland 
% NLCD 

*WorldClim [http://www.worldclim.com], USGS SRTM [https://www.usgs.gov/centers/eros/science], USGS Gap 

Analysis [https://gapanalysis.usgs.gov/apps/species-data-download/], NLCD [https://www.mrlc.gov/data/nlcd-2019-

land-cover-conus] 

 

3. Results 

3.1. Ixodes scapularis models 

After duplicate records were removed and presence points thinned there 

remained 62 known I. scapularis occurrence points across Illinois, and 70 background 

points randomly generated. After assessing for multicollinearity amongst environmental 

variables for the historical climate, seventeen predictor variables out of the 30 total 

environmental covariates were removed from the dataset due to v-step scores greater than 

10 (bio1, bio2, bio4, bio5, bio6, bio11, bio12, bio14, bio15, bio16, bio17, bio18, bio19, percent 
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developed land, percent forest canopy cover, percent white-tailed deer habitat, and 

percent impervious cover). Retained in the historical climate correlate dataset for I. 

scapularis were bio3, bio7, bio8, bio9, bio10, bio13, elevation, percent water body coverage, 

percent barren land, percent forest, percent grassland, percent cropland, and percent 

wetland. Future climate scenarios exhibited different collinearity patterns. Sixteen highly 

multicollinear variables (i.e. 2050: bio1, bio2, bio5, bio6, bio7, bio10, bio11, bio12, bio13, 

bio14, bio16, bio17, percent developed land, percent white-tailed deer habitat, percent 

canopy cover, and percent impervious cover) were removed from both the 2050 and 2070 

environmental variable set, and retained were: bio3, bio4, bio8, bio9, bio15, bio18, 

elevation, and percent water body cover, percent barren land, percent forest cover, percent 

cropland, percent grassland, and percent wetland.  

Single algorithm evaluation revealed RF to be the best fit model for predicting the 

historical climate distribution of I. scapularis (Table 2). The landscape variables that most 

strongly predicted occurrence of I. scapularis habitat across this model in the historical 

climate were percentage cropland (16.6% relative contribution), percent wetland (15.1%), 

and percent water body (11.1%). Climate variables all contributed less than 5% each. 

Increasing presence of I. scapularis was predicted on landscapes that were more than at 

least 1% barren land, while increasing percentages of other landscape types had negative 

correlations with occurrence of I. scapularis, namely percent cover of cropland and 

wetland (Fig. 1a). I. scapularis predicted occurrence rose but then dropped steeply from 

over 88% to below 80% as mean temperatures rose in the warmest quarter (bio10) and as 

annual temperature ranges (bio7) increased (Fig. 1b). However, increasing amounts of 

precipitation in the wettest months (bio16) and increasing mean temperature in the 

wettest quarter (bio8) were associated with a greater chance of I. scapularis occurrence in 

the historical climate period (Fig. 1b).  

The best fit single algorithm model for future predictions (both 2050 and 2070) 

was RF (AUC = 0.82, correlation=0.55, TSS = 0.64, deviance = 1.08). Important 

environmental variables changed in contribution to the likelihood of I. scapularis presence 

in these scenarios. Landcover categories percent water bodies (19.9% relative 

contribution), percent wetland (17.2%) and percent cropland (14.6%) were the three most 

important variables contributing to the landcover predictors for future I. scapularis 

distribution in 2050 (S1a). Expected presence of I. scapularis dropped from 70% to below 

60% as percent cropland rose above 50%. Both percent water bodies and wetland were 

associated with high expected occurrence of I. scapularis. Precipitation of the warmest 

quarter (mm; bio18) and temperature seasonality ((standard deviation ×100); bio4) were 

the two most important variables contributing to climate predictors of I. scapularis 2050 

future distribution (S1b). As day-to-night temperature oscillations (bio3) increased by a 

difference of 30%, and as the overall variation (i.e. standard deviation) in the annual 

temperature (bio4) rose above 1000 the likelihood of I. scapularis presence was reduced 

below 80%. Notably, expected presence of I. scapularis dropped precipitously for both the 

mean temperature of the wettest (bio8) and driest (bio9) quarters as temperatures rose 

(S1b). Precipitation of the warmest quarter needed to be at least 210mm for I. scapularis 

occurrence to be expected at approximately 80% likelihood. 
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In the 2070 climate scenario, percent cropland rose to nearly 30% relative 

contribution to the model (29.4%), followed by percent wetland (13.6%), elevation (13.2%) 

and percent water bodies (11.7%). No single climate variable was more contributory than 

another in this scenario. Increased percentage of cropland continued to be negatively 

associated with the presence of I. scapularis, dropping from just under 50% likelihood of 

occurrence to approximately 30%. Elevation above 175m increased the likelihood of 

occurrence to just under 40%. Percent water body and wetland land cover above 10% were 

important in predicting stable occurrence of I. scapularis. The highest predicted likelihood 

of I. scapularis was approximately 40% for climate predictors in the 2070 scenario, with 

increasing seasonal variation in precipitation (bio15) and temperature (bio4) having the 

largest negative impact on expected I. scapularis presence. 

Best fit mean-weighted ensemble models for both historical and future climate 

scenarios included the following algorithms: GLM, BRT, MaxEnt, RF, MARS, and SVM. 

Within the historical climate the best fit ensemble models predicted that I. scapularis would 

most likely be found within the Chicago metropolitan region along the northeastern 

border of Lake Michigan, along riparian zones in western and central Illinois, and within 

the forested region of east-central and southern Illinois (Fig. 2a). The tick was also 

expected to be found scattered throughout pockets within the central portion of the state. 

As the climate warmed in the 2050 (Fig. 2b) and 2070 (Fig. 2c) projection scenarios, the 

likelihood of I. scapularis presence throughout the central and southern tiers began to 

recede and concentrate along rivers and waterbodies (2050), and then shifted to a greater 

expectation of occurrence only in the Chicago metropolitan area and along select portions 

of the Illinois and Sangamon Rivers (2070) (Fig. 3). 
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Table 2. Mean best fit single model evaluation metrics for the predicted historic occurrence in Illinois of the four tick species modeled. Bolded 

numbers denote the AUC/correlation/true skill statistic (TSS) score/deviance for the best fit model. Best fit Amblyomma maculatum models included 

CART instead of BRT. 

 

*GLM = Generalized linear models; BRT = Bayesian regression trees; CART = classification and regression tree; MaxEnt = Maximum entropy; RF = 

random forest; MARS = multivariate adaptive regression splines; SVM = support vector machines 
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Table 3. Relative percent contribution of habitat suitability variables in best fit models for each tick species across the three climate scenarios. 

Current climate models were fit using the historical data representing the average climate measurements from 1970-2000. Future climate models 

were fit with mean projections of these data at a 4km resolution using Coupled Model Intercomparison Project phase 5 (CMIP5)/ACCESS 1-0 

Representative Concentration Pathway (RCP) 8.5 for 2050 (average from 2041-2060) and 2070 (average from 2061- 2080). All landscape variables 

represent percentage of that landcover, except for elevation which is measured in meters. The top three most important variables in the model 

prediction are bolded for each period. Variables that were not included in a model due to collinearity are denoted with a dash. 

 

Environmental 

Variable* 

Tick Species 

Ixodes  

scapularis 

Amblyomma 

americanum 

Dermacentor 

variabilis 

Amblyomma 

maculatum 

Climate Scenario 

Hist. 2050 2070 Hist. 2050 2070 Hist. 2050 2070 Hist. 2050 2070 

Barren 0.7 1.3 2.0 1.7 1.1 1.0 2.6 2.7 1.7 7.6 - 1.3 

Canopy - - - - - - - - - 13.7 9.3 2.7 

Cropland 16.6 13.0 29.4 - - - 60.3 68.9 44.4 38.1 34.0 - 

Developed - - - 2.7 1.9 1.3 - - - - - 19.2 

Elevation 2.6 2.8 13.2 2.4 1.7 4.8 3.7 3.0 5.6 10.9 9.1 6.8 

Forest 1.4 0.5 - 6.2 5.5 4.6 3.8 10.9 4.0 - - - 

Grassland 0.5 0.2 - 2.0 0.7 1.4 4.7 5.1 0.9 25.3 13.6 14.6 

Water 11.1 20.4 11.7 3.6 13.0 4.7 2.9 5.2 2.9 - 12.3 2.1 

Wetland 15.1 13.7 13.6 2.7 1.7 3.7 5.0 1.9 4.3 4.7 6.4 2.4 

BIO2 - - - 0.7 - 0.7 3.4 - - - - - 

BIO3 0.1 0.0 0.0 - 0.2 - - 2.3 9.1 - - - 

BIO4 - 0.9 1.0 - - 12.9 - 4.7 6.8 - - - 

BIO6 - - - - - - - - 33.8 - - - 

BIO7 1.5 - - - 4.8 - 17.2 - - - - - 

BIO8 0.8 1.0 0.6 1.5 0.8 - 3.6 20.5 25.3 - - - 

BIO9 0.5 0.8 0.0 5.0 0.8 - 2.3 10.4 22.6 - - - 

BIO10 1.6 - - 1.9 1.4 - 1.8 - - - - - 

BIO13 0.8 - - - - - - - - - - - 

BIO15 - 0.0 0.6 4.1 0.3 0.3 - 3.2 8.4 10.8 - 12.0 

BIO16 - - - - - - - - - - 45.8 - 

BIO17 - - - - 3.7 2.2 - - - - 13.9 - 

BIO18 - 0.2 0.2 1.5 3.6 0.7 7.8 13.2 15.5 7.1 - - 

BIO19 - - - - - - - - - - - 1.9 

* BIO1, BIO5, BIO11, BIO12, BIO14, and white-tailed deer habitat were not included due to multicollinearity. BIO2 = Mean Diurnal Range (Mean of 

monthly (max temp - min temp)), BIO3 = Isothermality (BIO2/BIO7) (×100), BIO4 = Temperature Seasonality (standard deviation ×100), BIO6 = 

Minimum Temperature of Coldest Month, BIO7 = Temperature Annual Range (BIO5-BIO6), BIO8 = Mean Temperature of Wettest Quarter, BIO9 = 

Mean Temperature of Driest Quarter, BIO10 = Mean Temperature of Warmest Quarter, BIO13 = Precipitation of Wettest Month, 

BIO15=Precipitation Seasonality (Coefficient of Variation) , BIO16 =  Precipitation of Wettest Quarter, BIO17 = Precipitation of Driest Quarter, 

BIO18 =  Precipitation of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter   
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Fig. 1. Mean a) landscape feature and b) climate variable response curves for predicted probabilities of I. scapularis habitat in the best fit model for 

the historical climate. Landcover types are reported in percent coverage. Elevation is reported in meters. bio10 = mean temperature of warmest 

quarter (°C*100); bio13 = precipitation of the wettest month (mm); bio3 = day-to-night temperature oscillation relative to summer-winter (annual) 

oscillations (bio2/bio7) (x100); bio7 = temperature annual range (bio5-bio6); bio8= mean temperature of wettest quarter (°C*100); bio9 = mean 

temperature of the driest quarter (°C*100). 
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Fig. 2. a) Mean-weighted ensemble prediction of the probability of I. scapularis occurrence in Illinois under current historical climate conditions. b) 

Mean-weighted ensemble of predicted probability of I. scapularis occurrence in Illinois in 2050 projected climate Representative Concentration 

Pathway 8.5, ACCESS 1-0; average from 2041-2060). c) Mean-weighted ensemble of future predicted probability of I. scapularis occurrence in Illinois 

in 2070 projected climate (Representative Concentration Pathway 8.5, ACCESS 1-0; average from 2061- 2080). Darker colors indicate higher likelihood 

of tick presence. 
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Fig. 3. Percent change in likelihood of I. scapularis occurrence between the historical climate and 2050 (left) and from 2050 to 2070 (right). Red shades 

indicate reduced likelihood of occurrence (negative change), blue shades indicate increased likelihood of occurrence (positive change). The histogram 

represents the number of pixels (y-axis) containing the binned percentage likelihood (x-axis) of I. scapularis suitable habitat across the map.  

      

     3.2 Amblyomma americanum models 

After removing duplicate observations and occurrence points were thinned to 1km, 

99 records of Amblyomma americanum were retained for modeling and 100 randomly 

selected background points were generated. Seventeen variables were removed due to 

multicollinearity (bio1, bio3, bio4, bio5, bio6, bio7, bio11, bio12, bio13, bio14, bio16, bio17, 

bio19, percent cropland, percent canopy, and percent impervious surface, and percent 

white-tailed deer habitat). Retained for modeling of the historical climate were bio2, bio8, 

bio9, bio10, bio15, bio18 and land cover categories elevation, percent water body coverage, 

percent developed land, percent barren land, percent forest coverage, percent grassland, 

and percent wetland. 

Future climate scenarios exhibited different multicollinearity patterns. The 

projected average climate for 2050 demonstrated collinearity issues with 15 variables (bio1, 

bio2, bio4, bio5, bio6, bio11, bio12, bio13, bio14, bio16, bio19, percent cropland, percent tree 
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canopy, and percent impervious surface, and percent white-tailed deer habitat). Retained 

for the 2050 modeling environmental variable set were bio3, bio7, bio8, bio9, bio10, bio15, 

bio17, bio18, elevation, percent water body coverage, percent developed land, percent 

barren land, percent forest, percent grassland, and percent wetland. In the 2070 climate 

scenario, sixteen variables were removed due to collinearity issues (bio1, bio3, bio5, bio6, 

bio7, bio10, bio11, bio12, bio13, bio14, bio16, bio19, percent cropland, percent canopy, 

percent impervious surface, and percent white-tailed deer habitat) and the final model 

used the following: bio2, bio4, bio8, bio9, bio15, bio17, bio18, elevation, percent water body 

landcover, percent developed land, percent barren land, percent forest, percent grassland, 

and percent wetland. 

Random forest was also the best fit single model algorithm for this species of the 

six total included model algorithms (Table 2). The most important variables that predicted 

occurrence of A. americanum habitat across this model for the historical climate were 

percent forest coverage (6.2% variable contribution) and percent water bodies present in 

the landscape (2.4%). Climate variables bio9 (5.0%), and bio15 (4.1%) were the most 

important contributing climate variables to the historical climate prediction of A. 

americanum distribution. As the percentage of forest cover increased, the likelihood of A. 

americanum presence rose sharply from just over 50% likelihood of occurrence to near 75% 

chance of occurrence (Fig. 4a). The historical climate scenario also demonstrated that A. 

americanum is positively associated with grasslands, water bodies, and wetland landcovers 

(Fig. 4a). The probability of their occurrence also increases with mean temperature in the 

warmest quarters and in the driest quarters (Fig. 4b). Like I. scapularis, probability of 

occurrence of A. americanum decreases sharply with increasing annual temperature 

difference (Fig 4b). 

The best fit single model for future predictions of A. americanum distribution was 

RF (AUC = 0.82, correlation= 0.55, TSS = 0.56, deviance= 1.04). In the 2050 scenario, percent 

water body landcover became the most important relative variable (13.0%) in predicting 

occurrence of A. americanum, followed by percent forest cover (5.5%), and demonstrated an 

increase in probability of presence by about 20% when percentage of the landcover type 

reached 50% (S3a). A. americanum became increasingly dependent on precipitation in the 

2050 scenario, with large increases in predicted occurrence as the amount of precipitation 

rose during the driest quarter (bio17; S3b), and during the warmest quarter (bio18; S3b).  

Best fit mean-weighted ensemble models for both current and future climate 

scenarios included the following algorithms: GLM, BRT, MaxEnt, RF, MARS, and SVM. 

Current A. americanum distribution was predicted to be concentrated in the southern-most 

portion of the state where there is more contiguous forest habitat but also found along 

riparian zones along the Illinois and Mississippi River systems, and on the outskirts of Lake 

Michigan (Fig. 5a).  

As the climate scenarios progress, habitat in Southern Illinois appears to be slightly 

less hospitable to A. americanum as the central and northeastern Chicago metropolitan areas 

increased in likelihood of occurrence (Fig. 5b, c). The change in habitat suitability is 

reflected change in habitat suitability by 2050 initially demonstrates greater change of 

occurrence of A. americanum in the west and east central regions of Illinois, as well as the 
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suburbs of Chicago (Fig. 6). By 2070, the greatest change in habitat suitability occurs around 

Chicago, the riparian zones along the Illinois River, and in southeastern Illinois, where the 

locations appear to be more favorable for occurrence of A. americanum (Fig. 6). 
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Fig. 4. Mean a) landscape feature and b) climate variable response curves for predicted probabilities of A. americanum occurrence in the best fit model 

for the historical climate. Landcover classes are reported in percent coverage. Elevation is reported in meters. bio10 = mean temperature of the warmest 

quarter (°C*100). bio15= precipitation seasonality (mm), bio18 = precipitation in the warmest quarter (mm), bio2 = mean diurnal range (mean of 

monthly (max temp - min temp)) (°C*100), bio8 = mean temperature of wettest quarter (°C*100), bio9 = mean temperature of driest quarter (°C*100). 
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Fig. 5. a) Mean-weighted ensemble prediction of the probability of A. americanum occurrence in Illinois under current climate conditions. b) Mean-

weighted ensemble of predicted probability of A. americanum occurrence in Illinois in 2050 projected climate Representative Concentration Pathway 

8.5, ACCESS 1-0; average from 2041-2060). c) Mean-weighted ensemble of future predicted probability of A. americanum occurrence in Illinois in 

2070 projected climate (Representative Concentration Pathway 8.5, ACCESS 1-0; average from 2061- 2080). Darker colors indicate higher likelihood 

of tick presence. 
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Fig. 6. Percent change in likelihood of A. americanum occurrence between the historical climate and 2050 (left) and from 2050 to 2070 (right). Red 

shades indicate reduced likelihood of occurrence (negative change), blue shades indicate increased likelihood of occurrence (positive change). The 

histogram represents the number of pixels (y-axis) containing the binned percentage likelihood (x-axis) of A. americanum suitable habitat across the 

map. 

 

     3.3. Dermacentor variabilis models 

After removing duplicate records and thinning observations, 290 records of D. 

variabilis were retained for modeling and 300 randomly generated background points 

were generated. Best fit models for the historical climate condition for D. variabilis 

included bio2, bio7, bio8, bio9, bio10, bio18, elevation, percent water body coverage, 

percent barren land, percent forest, percent grassland, percent cropland, and percent 

wetland. Seventeen covariates (bio1, bio3, bio4, bio5, bio6, bio11, bio12, bio13, bio14, bio15, 

bio16, bio17, bio19, percent canopy cover, percent impervious surface, percent developed 

landcover, and percent white-tailed deer habitat) were removed from consideration in the 

historical climate model due to collinearity issues. 
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Future climate scenarios included environmental variables bio3, bio4, bio8, bio9, 

bio15, bio18, elevation, percent water cover, percent barren land, percent forest cover, 

percent grassland, percent cropland, and percent wetland for the 2050 projected climate 

scenario, and bio3, bio4, bio6, bio8, bio9, bio15, bio18, elevation, percent water body 

landcover, percent barren land, percent forest cover, percent grassland, percent cropland, 

and percent wetland cover for the 2070 projected climate. Seventeen variables (bio1, bio2, 

bio5, bio6, bio7, bio10, bio11, bio12, bio13, bio14, bio16, bio17, bio19, percent canopy cover, 

percent developed land, percent impervious surface, and percent white-tailed deer habitat) 

were removed from analysis for the 2050 scenario, and 16 covariates (bio1, bio2, bio5, bio7, 

bio10, bio11, bio12, bio13, bio14,  bio16, bio17, bio19, percent canopy cover, percent 

developed land, percent impervious surface, and percent white-tailed deer habitat) were 

excluded from the 2070 projected climate scenario models due to collinearity issues.  

Support vector machines was the best fit single model algorithm for predicting 

the presence of D. variabilis within the historical climate (Table 2). Percent cropland was 

the most important variable in predicting D. variabilis occurrence (60.3% relative 

importance), followed by percent wetland (5.4%), percent grassland (4.6%), and percent 

forest (3.8%) (Fig. 7a). Climate variables that contributed most to the model were the 

annual temperature range (°C*100; bio7) (17.6% relative variable importance), and 

precipitation of the warmest quarter (mm; bio18) (8.6%) (Fig. 7b).  

For the 2050 climate projection, RF was the best fit model (AUC =0.81, correlation 

=0.55, TSS =0.55, deviance =1.06). Percent cropland was again the most important variable 

in predicting occurrence of D. variabilis (68.9% relative variable importance), followed by 

percent forest cover (10.9%), percent water bodies (5.2%), and percent grassland (5.1%). 

The mean temperature of the wettest quarter (°C*100) (bio8) was the most important 

climate variable to predict distribution of D. variabilis in the 2050 scenario (20.5% relative 

variable importance), followed by precipitation in the warmest quarter (mm) (13.2%; 

bio18), and mean temperature of the driest quarter (10.4%; bio9). As the percentage of 

cropland increased above 25%, the expected occurrence of D. variabilis declined from 

nearly 90% to approximately 45% likelihood (S5a). Under the conditions expected in this 

period, this species was more likely to be found in areas with more water bodies (up to 

40% landcover) and expected between 70 and 80% likelihood within grassland (S5a). 

Likelihood of finding this species decreased with increasing coverage of barren land and 

wetland (S5a). Expected occurrence of D. variabilis initially increased to nearly 90% 

likelihood as the mean temperature of the wettest quarter rose, but then dropped sharply 

to 50% once the mean temperature reached 1.25°C (S5b). D. variabilis presence also 

increased in likelihood with precipitation in the warmest quarter, but then began to wane 

after 220mm (S5b). In the driest quarter, D. variabilis occurrence was positively associated 

with increasing mean temperatures (S5b). 

In the 2070 climate projection, D. variabilis distribution was best predicted by a RF 

model (AUC=0.80, correlation = 0.52, TSS = 0.53, deviance = 1.09). Percent cropland (44.4% 

relative importance) and elevation (5.6%) were the most impactful landscape predictors 

of D. variabilis presence in this scenario. Climate variables were far more important in 

determining the probability of D. variabilis occurrence in this scenario. Most impactful 
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were the minimum temperature of the coldest month (°C*100) (bio6; 33.8%), mean 

temperature of the wettest quarter (°C*100) (bio8; 25.3%), mean temperature of the driest 

quarter (°C*100) (bio9; 22.6%), and precipitation in the warmest quarter (mm) (bio18; 

15.5%). Similar response patterns are seen in the 2070 projected climate to the 2050 climate, 

but with overall expected occurrence of D. variabilis, and more dramatic response to the 

changing variables. Increasing percentage of cropland reduces the overall likelihood of D. 

variabilis to 40% (S6a). The likelihood of D. variabilis was positively associated with 

increasing mean minimum temperature in the coldest months (bio6) and precipitation in 

the warmest quarter (S6b), but negatively associated with increasing mean temperature 

in the wettest months (bio8), mean temperature of the driest quarter (bio9), and increasing 

variation in both annual temperature (bio4) and precipitation (bio15) (S6b).  

Best fit mean-weighted ensemble models for historical and future climate 

scenarios included the following algorithms: GLM, BRT, MaxEnt, RF, MARS, and SVM. 

Occurrence for D. variabilis under current climate conditions was predicted to be 

distributed throughout the state, with concentrations of higher probability located within 

southern Illinois, the Chicago metropolitan region, and along riparian zones (Fig. 8a). All 

climate scenarios predict that probability of D. variabilis occurrence is generally resilient 

in most habitats except cropland, but increasingly dependent on lower temperature and 

higher precipitation as the climate shifts into the more extreme 2070 projections (Fig. 8b, 

c). Along the northeastern border west of Rockford east central region of the state 

encompassing Champaign-Urbana and Decatur are predicted to become increasingly 

hospitable for D. variabilis as the southern tier becomes less likely to host this species due 

to increasing temperatures in 2050 (Fig. 9). By 2070, favorable habitat suitability for D. 

variabilis is expected to concentrate more broadly across the northern half of the state (Fig. 

9).  
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Fig. 7. Mean a) landscape feature and b) climate variable response curves for predicted probabilities of D. variabilis occurrence in the best fit model 

(random forest) for the historical climate. Landcover types are reported in percent coverage. Elevation is reported in meters. bio10 = mean temperature 

of the warmest quarter (°C*100), bio18 = precipitation in the warmest quarter (mm), bio2 = mean diurnal range (mean of monthly (max temp - min 

temp)) (°C*100), bio7 = temperature annual range (BIO5-BIO6) (°C*100), bio8 = mean temperature of wettest quarter (°C*100), bio9 = mean temperature 

of driest quarter (°C*100). 
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Fig. 8. a) Mean-weighted ensemble prediction of the probability of D. variabilis occurrence in Illinois under historical climate conditions. b) Mean-

weighted ensemble of predicted probability of D. variabilis occurrence in Illinois in 2050 projected climate Representative Concentration Pathway 8.5, 

ACCESS 1-0; average from 2041-2060). c) Mean-weighted ensemble of future predicted probability of D. variabilis occurrence in Illinois in 2070 

projected climate (Representative Concentration Pathway 8.5, ACCESS 1-0; average from 2061- 2080). Darker colors indicate higher likelihood of tick 

presence. 
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Fig. 9. Percent change in likelihood of D. variabilis occurrence between the historical climate and 2050 (left) and from 2050 to 2070 (right). Red shades 

indicate reduced likelihood of occurrence (negative change), blue shades indicate increased likelihood of occurrence (positive change). The histogram 

represents the number of pixels (y-axis) containing the binned percentage likelihood (x-axis) of D. variabilis suitable habitat across the map. 

 

     3.4. Amblyomma maculatum models 

Fifteen records of A. maculatum were retained for modeling after removing 

duplicates and thinning, and were combined with 20 randomly selected background points. 

A total of twenty-one environmental correlates (bio1, bio2, bio3, bio4, bio5, bio6, bio7, bio8, 

bio9, bio10, bio11, bio12, bio13, bio14, bio16, bio17, bio19, percent white-tailed deer habitat, 

percent developed land, percent forest, and percent impervious surface) were removed 

due to multicollinearity. Remaining predictors in the historical climate model for A. 

maculatum were bio15, bio18, elevation, percent water body landcover, percent barren land, 

percent grassland, percent cropland, percent wetland, and percent tree canopy cover. The 

2050 climate scenario included bio16, bio17, elevation, percent water body landcover, 

percent barren landscape, percent grassland, percent cropland, percent wetland, and 

percent canopy cover. Twenty-one variables (bio1, bio2, bio3, bio4, bio5, bio6, bio7, bio8, 

bio9, bio10, bio11, bio12, bio13, bio14, bio15, bio18, bio19, percent white-tailed deer habitat, 
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percent developed land, percent forest, and percent impervious surface) were removed 

due to collinearity. The 2070 scenario included bio15, bio19, elevation, percent water body 

landcover, percent developed land, percent barren land, percent grassland, percent 

wetland, and percent canopy cover. Removed due to collinearity were bio1, bio2, bio3, bio4, 

bio5, bio6, bio7, bio8, bio9, bio10, bio11, bio12, bio13, bio14, bio16, bio17, bio18, percent 

white-tailed deer habitat, percent cropland, percent forest, and percent impervious surface. 

Support vector machines was the best fit model to predict the historical 

distribution of A. maculatum (Table 2). Percent grassland (34.4% relative importance), 

percent cropland (22.4%), percent tree canopy cover (17.0%), and percent water body cover 

(12.2%) were the most important landscape variables in predicting probable locations of A. 

maculatum. Occurrence of this tick species was expected in open landscapes, and was 

positively correlated with increasing percentages of grassland, and negatively correlated 

with canopy cover and cropland (Fig. 10a). Proximity to waterbodies and wetlands also 

increased the probability of A. maculatum occurrence in the historical climate (Fig. 10a). 

Variation in precipitation as well as total precipitation in the warmest quarter initially was 

associated with an increase in likelihood of A. maculatum occurrence, but then likelihood 

decreased with increasing precipitation beyond a particular point (Fig. 10b).  

Occurrence of A. maculatum in the 2050 climate scenario was best modelled by 

CART (AUC = 0.89, correlation = 0.71, TSS = 0.62, deviance = 0.69). Percent grassland, 

cropland, and canopy remained the most important variables for the model (18.4%, 16.3%, 

and 10.3% relative importance respectively). Probability of A. maculatum occurrence 

increased with increasing percentage of barren landcover and water bodies, but decreased 

in response to increasing percentage of cropland, elevation, grassland, and wetlands (S7a). 

Precipitation of the wettest quarter (mm; bio16) was associated with a gradual decrease in 

likelihood of A. maculatum occurrence during this time period, and precipitation of the 

driest quarter (mm; bio17) was associated with a small increase in probability of occurrence 

(S7b). Under the 2070 climate scenario, RF was the best fit model (AUC=0.71, correlation = 

0.37, TSS = 0.61, deviance = 1.23) to describe the predicted occurrence of A. maculatum. In 

this climate, percent developed land and percent grassland were the most important 

landscape variables (19.9% and 14.8% relative importance respectively). Precipitation 

seasonality (mm; bio15) was also a driving climate variable in the prediction of A. 

maculatum distribution (12.3% relative variable importance). Within these conditions, A. 

maculatum was predicted (between 40 and 50% likelihood) to be associated with barren 

landscapes, but also within habitats containing roughly 20% tree canopy. Occurrence of 

this tick species was also expected in areas with 10-20% water bodies and wetlands. A. 

maculatum was less likely to be expected in habitats that were more than 10% grassland or 

above 200m elevation (S8a). As the variation in precipitation across seasons (bio15) 

increased above 27mm, the likelihood of A. maculatum occurrence decreased sharply from 

roughly 63% likelihood to below 45% probability. Increasing precipitation of the coldest 

quarter (bio19) was associated with a small increase in A. maculatum occurrence probability 

between 150mm and 200mm, but then decreased below 40% (S8b). 

These model predictions suggest that A. maculatum has wide distribution potential 

throughout Illinois in the historical climate scenario. It is most likely to be able to survive 
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in open barren landscapes that are close to water sources and wetlands, placing the most 

probable distribution predictions along the Mississippi River, Illinois River, and around 

the Chicago metropolitan area on the banks of Lake Michigan. Scattered pockets of higher 

probability throughout the state correspond with areas that are devoid of dense (greater 

than 50% coverage) tree canopy, or areas that are more than 50% cropland (Fig. 11a). In the 

2050 (Fig. 11b) and 2070 (Fig. 11c) climate prediction ensemble models projected that A. 

maculatum distribution would reduce overall, with covariates only predicting likelihood of 

tick occurrence as high as 60%. During these scenarios, A. maculatum was generally more 

prevalent in areas with less than 50% canopy cover and up to 50% water bodies (S7a; S8a). 

In 2050, the distribution of A. maculatum was predicted to be more highly concentrated in 

the west-central part of the state, as well as near rivers and the floodplains of water bodies 

(Fig. 11b). The predictions for A. maculatum distribution in the 2070 scenario appear to 

change drastically, with higher likelihood of occurrence throughout the central portion of 

the state – including in areas with a high percentage of cropland – and less strongly 

associated with water bodies and wetlands (Fig. 11c). However, since cropland was 

removed as a variable in this model due to high collinearity, it may have skewed this 

prediction. Change over time shows a southwest to northeastern shift in suitable habitat 

across the state, with a dramatic increase of likelihood of occurrence of A. maculatum in the 

Chicago metropolitan region by 2070 (Fig. 12). 
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Fig. 10. Mean a) landscape feature and b) climate variable response curves for predicted probabilities of A. maculatum occurrence in the best fit model 

(MaxEnt) for the historical climate. Landcover types are reported in percent coverage. Elevation is reported in meters. bio15= precipitation seasonality 

(mm), bio18 = precipitation in the warmest quarter (mm). 
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Fig. 11. a) Mean-weighted ensemble prediction of the probability of A. maculatum occurrence in Illinois under current climate conditions. b) Mean-

weighted ensemble of predicted probability of A. maculatum occurrence in Illinois in 2050 projected climate Representative Concentration Pathway 

8.5, ACCESS 1-0; average from 2041-2060). c) Mean-weighted ensemble of future predicted probability of A. maculatum occurrence in Illinois in 2070 

projected climate (Representative Concentration Pathway 8.5, ACCESS 1-0; average from 2061- 2080). Darker colors indicate higher likelihood of tick 

presence. 
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Fig. 12. Percent change in likelihood of A. maculatum occurrence between the historical climate and 2050 (left) and from 2050 to 2070 (right). Red 

shades indicate reduced likelihood of occurrence (negative change), blue shades indicate increased likelihood of occurrence (positive change). The 

histogram represents the number of pixels (y-axis) containing the binned percentage likelihood (x-axis) of A. maculatum suitable habitat across the 

map. 

 

4. Discussion 

This investigation applied numerous species distribution modeling techniques to 

examine the historically predicted distribution of four ticks of medical concern in Illinois, 

and the estimated future habitat suitability based on two climate scenarios. With the 

exception of A. maculatum, our results support known (Jobe et al. 2007; Rydzewki et al. 

2012; Gilliam et al. 2020) and predicted (Guerra et al. 2001; Lippi et al. 2021a; Alkishe et al. 

2021; Flenniken et al. 2022) habitat ranges for these species within the state and attempted 

to identify environmental factors that will contribute to continued or altered suitability 

distributions in potential future climate conditions.  
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The best fit individual models to describe these historical and future habitat 

suitability scenarios were random forest and support vector machines. Random forest is 

a specific type of classification/regression tree (CART) ensemble and recursive 

partitioning method that can handle highly dimensional data with accuracy and is 

resistant to overfitting due to its randomized splitting and sampling procedure of the 

training data (Strobl et al. 2009). However, Valavi et al. (2021) note that RF prediction can 

be negatively impacted when using presence-background data like the tick data used in 

this investigation due to class imbalance and overlap. This occurs when there is a small 

sample of presence points, and the background points are sampled in a way that does not 

allow for enough discrimination in the predictors of presence and background location 

(Valavi et al. 2021). Support vector machines are another machine learning algorithm that 

utilize kernel function for mapping presences amidst complex correlational data and are 

useful because they do not require data to be independent (Drake et al. 2006; Valavi et al. 

2022). To prevent biasing the outcomes as best as we could we applied mean weights, 

approximate equal sampling of the presence and the background data and used down-

sampling by way of cross-validation (Valavi et al. 2021). The best performing models were 

consistently the mean-weighted ensembles, which is an outcome supported by previous 

research (Valavi et al. 2022). 

Our models support and expand upon previous work on habitat suitability for 

ticks in Illinois. Records of county-level establishment, passive surveillance, and 

ecological niche modeling demonstrate expansion of I. scapularis across the state (Eisen et 

al. 2016; Kopsco et al. 2021; Alkishe et al. 2021; Wikel 2022), however our expectation that 

as the climate continues to warm, regions in southern and central Illinois will become less 

hospitable for a desiccant-sensitive species like I. scapularis, was supported. Our models 

predicted that I. scapularis will be confined to more northern regions in the state, and 

within habitats that provide more protective cover (e.g. upland forest) and moisture 

availability, e.g. along riparian zones of the Sangamon, Rock, and Illinois Rivers, as well 

as in forested areas and edge surrounding Lake Shelbyville, and Upper Peoria Lake. 

Shawnee National Forest is also expected to remain suitable through 2070, although we 

predicted between 0.50 and 0.75 chance of occurrence in that scenario.  

 We observed the potential continued future suitability of habitat for I. scapularis 

located in high population centers like Cook, DuPage, McHenry, and Lake Counties 

outside Chicago. Borrelia burgdorferi-infected I. scapularis have been collected from high-

access areas within these locations going back decades (Jobe et al. 2007; Rydzewski et al. 

2011). Guerra et al. (2002) identified positive associations of I. scapularis with various soil 

types (e.g. fertile alfisols, sand, and loam), deciduous and dry forests, and negative 

associations with grasslands, acidic soils, conifer, and wet forests. At that time, highly 

likely (>0.50) habitat suitability for I. scapularis was largely limited to areas within 

Shawnee National Forest, and along the Illinois and Mississippi River and very few areas 

of higher probability of presence (0.50-0.75) in the counties surrounding Chicago (Guerra 

et al. 2002). We predicted greater suitability for I. scapularis throughout the central and 

southern portions of the state than what was previously predicted or currently reported 

by Illinois Department Public Health records (IDPH 2022). It is suspected that I. scapularis 
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is not currently occupying a larger distribution within Illinois due to its complex ecology 

(Kilpatrick et al. 2017; Diuk-Wasser et al. 2021; McBride et al. 2022). While our results 

could suggest that the tick simply has not yet invaded these areas, they may also reflect 

sampling limitations. Lyons et al. (2021) found few I. scapularis ticks during active 

surveillance in southern Illinois, but the timing of this surveillance was not optimized to 

the phenology of I. scapularis and passive surveillance efforts lacked coverage in many 

areas of interest. 

Levi et al. (2015) examined activity patterns of I. scapularis over 19 years and found 

years with warmer temperatures in the summer and fall were associated with a three-

week acceleration in the phenology of nymphal and larval ticks as compared to years with 

lower temperatures. Model predictions suggest up to a two-week average earlier activity 

period for larvae and nymphs if 2050 warming predictions hold (Levi et al. 2015), which 

provide additional opportunity for overlap with humans and domestic animals. Given 

that the risk of acquiring a tickborne illness like Lyme disease is heavily dependent on not 

only the enzootic cycle of disease, but also on human behavior, our predictions can help 

identify areas of Illinois to concentrate additional surveillance efforts to more accurately 

quantify that acarological risk. Predicted A. americanum habitat for the historical climate 

closely matches reported occurrence within Illinois (IDPH 2022). Currently this species is 

most abundant in the southern portion of the state but is becoming increasingly more 

common in the north (Ma et al. 2021; Rochlin et al. 2022; Fowler et al. 2022). A. 

americanum’s aggressive host seeking and non-specific host preferences create an optimal 

dispersal scenario which allow this tick to travel long distances on meso-mammals and 

deer, as well as birds (Goddard and Varella-Stokes 2009).  

However, D. variabilis and A. americanum were also found to be constrained by 

the 2070 climate scenarios in similar habitats but were more likely to occur throughout 

more of the forested southern portion of the state, like previous research (Oliveira et al. 

2017). A. maculatum was the only tick predicted to continue to expand throughout the state 

as the temperatures rose more extremely into the 2070 climate. Of greatest concern for 

public health is the increasing likelihood of these additional vector tick species near the 

higher population centers along the Illinois River and surrounding Chicago. We have 

found that few medical professionals in northern areas in Illinois were familiar with the 

risk of ehrlichiosis within the state (Carson 2022), despite 422 cases between 2011 and 2021 

(IDPH 2022). This is likely due to the current abundance of A. americanum being higher in 

the southern portion of the state and is likely to delay diagnosis and treatment of 

pathogens vectored by these less-studied tick species. Both Bayles et al. (2013) and Soucy 

& de Urioste-Stone (2020) also found that adoption of effective tick prevention measures, 

such as tick checks, was associated with perceived risk of tick bites. As actual risk of tick 

exposure changes due to shifting tick habitat and abundance, public and professional 

awareness must be addressed through dynamic communication efforts. 

We focused on more extreme expectations for future climate scenarios to capture 

a likely “worst case scenario” for future tickborne disease risk, mainly because the entirety 

of Illinois is expected to be within a projected “extreme heat belt” with heat index 

temperatures exceeding 125 degrees Fahrenheit for at least one day by 2053 (First Street 
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Foundation 2022). Broader studies that have examined potential tick niche expansion and 

retraction under future scenarios have found similar results for these species regardless 

of the global circulation model chosen. Ma et al. (2022) explored the impact of several 

shared socioeconomic pathways through 2100 and predicted all of Illinois to be highly 

suitable for A. americanum during all scenarios ranging from least impactful to most 

impactful. These projections combine climate model data with policy to best capture a 

likely outcome for climate change. Employing ecological niche models with RCP 4.5 and 

RCP 8.5 predicted a similar suitability outcome for A. americanum in North America 

(Raghavan et al. 2016, 2019), as did a study by Boorgula et al. (2020) which predicted 

moderate to high suitability for D. variabilis throughout the state continued through both 

RCP 4.5 and RCP 8.5 scenarios. While Flenniken et al. (2022) did not examine future 

projections of A. maculatum, they found that under current climate conditions the expected 

ecological niche for this species is much greater than its current distribution, suggesting 

the potential for expansion north and east. By focusing on Illinois alone, we were able to 

apply a more fine-scale environmental niche prediction for each of these four tick species 

within the RCP 4.5 and 8.5 scenarios.  

We recognize several limitations in our investigation. It is important to note that 

species distribution modelling is often subject to confounding due to the 

phenomenological approach to predicting tick distributions. Spurious correlations can be 

assumed without additional mechanistic understanding of the relationships among ticks 

and these environmental predictors at a smaller scale (Ostfeld & Brunner 2015). We 

attempted to control for this, in part, by including known white-tailed deer habitat, but 

this variable was removed due to collinearity issues with other environmental correlates. 

Previous work also demonstrated that for certain species, like I. scapularis, tick presence 

varied despite host availability, suggesting a more influential role of abiotic variables 

(Guerra et al. 2002). While the inclusion of other forest-level habitat variables likely 

replaced the need for specific deer habitat, we consider it a limitation given the need for 

and importance of considering reproductive host species in habitat models. However, in 

the case of the Lyme bacteria (Borrelia burgdorferi) recent evidence may suggest that overall 

tickborne disease hazard risk posed by the positive association between deer density and 

nymphal tick density is cancelled out through opposing forces of both amplification and 

dilution since deer are not a competent reservoir for the bacteria (Gandy et al. 2022). 

Our environmental correlates included climate variables that change according to 

proposed scenarios, but the landcover predictors did not include estimates of variability. 

As landcover predictors did not change over time, our model results therefore assume 

that the changes in climate do not change the percentage of cropland or other landcover 

types throughout the state. ESRI landscape change predictions for 2050 in Illinois included 

an expected gain of over 821,000 acres of cropland throughout the state, a gain of over 

503,000 acres of developed or impervious surface, and losses of deciduous forest (743,000 

acres), grassland (380,000 acres), and wetland (39,224 acres) (ESRI Landcover 2050). 

Future modeling work should include these predictions to improve upon static landscape 

assumptions. Further, the historical climate and landscape variables were slightly 

mismatched (climate was a mean from 1970-2000, whereas the landscape mean ranged 
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from 2001-2016). These differences could potentially impact the model accuracy. We did 

not incorporate soil types or profiles (Guerra et al. 2002) into the models which also may 

have impacted the predictions due to their ability to harbor and control microclimates and 

habitats that can impact tick survival. However, since only certain vegetation is expected 

to grow according to various soil profiles (Guerra et al. 2002), we assumed that vegetation 

was enough of a proxy for these models. 

Booth (2022) reported that certain combined temperature and precipitation 

bioclimatic variables can be unreliable in species distribution modeling depending on 

proximity to the equator due to discontinuities in interpolation and can result in extreme 

differences over short distances. In the United States, specifically, mean temperature of 

the warmest quarter (bio8), and mean temperature of the driest quarter (bio9) 

demonstrated anomalies in the south and southeastern regions of the country (Booth 2022). 

These discontinuities were like others that occurred globally near the equator. These 

anomalies should not have impacted our results because of Illinois’ distance from the 

equator, but mention is warranted since these variables were important in our models. 

Sampling bias consideration is important with occurrence data and may have 

influence potentially seen in response curves of I. scapularis in the historical climate. 

Previous research (Diuk-Wasser et al. 2021) showed an increasing likelihood of presence 

of I. scapularis in uninterrupted forest, whereas our results demonstrate a large decline in 

the likelihood of I. scapularis occurrence with increasing percentage of forest cover. This 

could reflect a lack of data points collected from deeper within forests (i.e. collections 

intentionally performed in easily accessible places because this is where the disease 

transmission risk is), or that this species spends more time in edge environments within 

Illinois. The sampling method (drag versus CO2 trap versus small animal capture) is also 

important to consider when assessing bias. Rynkiewicz et al. (2014) reported that I. 

scapularis was mainly found collected from small mammals while A. americanum and D. 

variabilis were able to be collected using cloth drag and CO2 protocols. Records of I. 

scapularis in Illinois may therefore be underrepresented, as most sampling in the state has 

used the cloth drag approach. 

The very small data set for A. maculatum may have contributed to projected future 

results suggesting a lack of A. maculatum in landscapes that it is known to thrive in, like 

grasslands, or future projections associating the tick with croplands. Specifically, the 

sample size may have impacted the accuracy of the random forest/CART predictions per 

class overlap as previously stated (Valavi et al. 2021). Reevaluation of this tick’s expected 

distribution as more data become available is necessary. 

5. Conclusions 

The variable landscape of Illinois creates a patchwork of risk to humans and 

domestic animals that can be predicted based on climate and landscape features. As the 

climate changes over the coming decades, the distribution of these tick species will change 

as it adapts to the increasing temperatures. Knowing where ticks may concentrate will be 

important to anticipating, preventing, and treating tickborne disease.  
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