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Abstract: The greater U.S. Midwest is on the leading edge of tick and tick-borne disease (TBD) ex-
pansion, and tick and TBD encroachment into Illinois is occurring from both the northern and the
southern regions. To assess historical and future habitat suitability of four ticks of medical concern
within the state, we fit individual and mean-weighted ensemble species distribution models for Ix-
odes scapularis, Amblyomma americanum, Dermacentor variabilis, and a newly invading species, Am-
blyomma maculatum using a variety of landscape and mean climate variables for the periods of 1970-
2000, 2041-2060, and 2061-2080. Ensemble models for the historical climate were consistent with
known distributions of each species but predicted the habitat suitability of A. maculatum to be much
greater throughout Illinois than what known distributions demonstrate. Proximity to wetlands and
water bodies was important in predicting both I. scapularis and A. americanum presence. A. ameri-
canum occurrence was highly dependent on increasing forest cover, while A. maculatum habitat was
more strongly predicted by open habitats. As the climate warmed, the expected distribution of all
species became more strongly impacted by precipitation and temperature variables, particularly
mean temperature of the wettest quarter and mean temperature of the driest quarter. By 2070, 1.
scapularis was expected to retract by as much as 60% from southern and central regions of the state
as compared to historical climate distribution but remained concentrated in the Chicago metropol-
itan area. A. americanum was predicted to initially expand across parts of east- and west-central Illi-
nois by 2050, but then largely retract in distribution to along rivers and water bodies by 2070. The
ranges of D. variabilis and A. maculatum, however, were predicted to contract in the 2050 climate
scenario, but then expand in the 2070 scenario. Predicting where ticks may invade and concentrate
as the climate changes will be important to anticipate, prevent, and treat TBD in Illinois.

Simple Summary: The variable landscape of Illinois creates a patchwork of tickborne disease risk
to humans and domestic animals that can be predicted in part based on climate and landscape fea-
tures. We fit individual and mean-weighted ensemble species distribution models for Ixodes scapu-
laris, Amblyomma americanum, Dermacentor variabilis, and a newly invading tick species, Amblyomma
maculatum using a variety of landscape and mean climate variables and identify numerous environ-
mental niche factors that are associated with presence of these vectors in current and future climate
scenarios within the state. As the environment changes over the coming decades, the distribution of
these tick species will change as they adapt to the increasing temperatures and precipitation altera-
tions. Knowing where ticks may concentrate will be important to anticipating, preventing, and treat-
ing tickborne disease.
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1. Introduction
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Ticks and their associated pathogens present a growing public and veterinary
health threat in the United States. Human-induced climate and landscape alterations are
driving increased prevalence of emerging tick-borne diseases (TBDs) (Diuk-Wasser et al.
2021) including bacterial, rickettsial, protozoal, and viral organisms (Savage et al. 2017;
Paddock and Goddard et al. 2015). These pathogen emergences are increasingly relevant
as the ranges (Raghavan et al. 2021; Molaei et al. 2022) and activity periods (Raghavan et
al. 2021) of native and invasive tick species (Paddock and Goddard 2015; Rochlin et al.
2019) shift, putting these vectors into greater contact with humans, companion animals,
and livestock. Economically, changes in tick and TBD ecology are triggering millions of
dollars in healthcare and livestock impacts (Hook et al. 2022).

Ticks are highly sensitive to and constrained by weather and climate variables
(Ogden et al. 2014; Bacon et al. 2021), as well as landscape features like vegetation and
land-use patterns that impact habitat fragmentation (Allan et al. 2003; Brownstein et al.
2005; Diuk-Wasser et al. 2021). In general, the questing and phenological activity,
development, and survival of common tick species of medical concern are directly
correlated with higher levels of humidity and warmer temperatures (Berger et al. 2014a;
b; Ogden et al. 2014; Ostfeld & Brunner 2015). However, these impacts are species-specific.
Ticks like Ixodes scapularis are highly susceptible to desiccation, whereas Amblyomma
americanum, Amblyomma maculatum, and Dermacentor variabilis are more tolerant of drier
conditions (Bacon et al. 2021; Rynkiewicz & Clay 2014). Greater tick density is often
associated with habitats that include uninterrupted forest cover (Heske 1995; Ferrell &
Brinkerhoff 2018), or even specific invasive types of landscape cover (Noden & Dubie
2017), but edge-effects and open-landscape can also foster high tick abundance depending
on species (Rynkiewicz & Clay 2014; Flenniken et al. 2022). These landcover and climate
relationships are critical to the landscape epidemiology of TBD because they generate the
microclimatic conditions that facilitate interactions among ticks and their hosts (Randolph
& Storey 1999; Diuk-Wasser et al. 2021).

The greater U.S. Midwest is on the leading edge of tick and TBD expansion.
Within the past decade, studies have documented the continued range movement of four
ticks of medical and veterinary concern in this region including the blacklegged tick
(Ixodes scapularis) (Rydzewski et al. 2011; Lockwood et al. 2018), lone star tick (Amblyomma
americanum) (Springer et al. 2014; Fowler et al. 2022), American dog tick (Dermacentor
variabilis) (Boorgula et al. 2020; Martin et al. 2022), and Gulf Coast tick (Amblyomma
maculatum) (Lockwood et al. 2018; Phillips et al. 2020; Alkishe & Petersen 2022; Flenniken
et al. 2022). These range expansions have corresponded with an increase in reported TBD
cases associated with these species including Lyme disease (Robinson et al. 2015),
ehrlichiosis (Johnson et al. 2015), tidewater fever (Phillips et al. 2020) and newly
documented Heartland virus (Tuten et al. 2020).

llinois is experiencing tick and TBD expansion in both the northern and the
southern regions (Springer et al. 2014; Sonenshine et al. 2018; Gilliam et al. 2020; Kopsco
et al. 2021). Concurrently, there has been a 10-fold increase in commonly reported TBD
cases among humans between 1999 and 2017 (IDPH 2017a, b; IDPH 2018; Lyons et al.

2021), including Lyme disease, Rocky Mountain spotted fever, ehrlichiosis, and
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anaplasmosis. Three distinct climate regions exist longitudinally across the state, with
clear impacts on tick species abundance (Bacon et al. 2021). As climate alterations impact
the various bioclimatic factors across these areas, it is important to predict how tick
distribution and TBD risk will potentially change across the state.

While there is debate about the specific impacts of extreme climate conditions on
ticks and TBDs in the future (Ogden et al. 2020), climate projection models can predict and
assess various current and future habitat and distribution scenarios. Species distribution
models (SDM) represent a suite of statistical and machine-learning methods for predicting
suitable species habitat ranges and niches based on known occurrence records and
various environmental variables. These strategies range from deterministic (e.g. logistic
regression) to stochastic (e.g. Bayesian regression trees) approaches, and utilize various
levels of model validation techniques. Given differences in model performance, using
SDM model ensembles may provide a more complete picture of the possibilities for tick
species range variation, and opportunities for public health and veterinary partners to
enact control and prevention measures where most needed (Lippi et al. 2021b; Kopsco et
al. 2022).

The objective of this study was to fit and evaluate current and future species
distribution models for each of the four tick species of major medical and veterinary
concern within Illinois, including Ixodes scapularis, Dermacentor variabilis, Amblyomma
americanum, and Amblyomma maculatum, and to evaluate habitat and climate variables
associated with their predicted occurrence. We expected that as the climate continues to
warm, regions in southern and central Illinois will become less hospitable for a desiccant-
sensitive species like Ixodes scapularis, but more habitable for the other three more
desiccant-tolerant species. This hypothesis would reflect a greater predicted species range
throughout the state for Dermacentor and Amblyomma species but would result in a
growing absence of suitable Ixodes scapularis habitat, except in the northernmost part of

the state.


https://doi.org/10.20944/preprints202211.0490.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 November 2022 d0i:10.20944/preprints202211.0490.v1

2. Materials and Methods

Tick Occurrence Data
We sourced presence-only tick occurrence records from several online, publicly
accessible databases and through active tick collections throughout Illinois. Databases

included Walter Reed Biosystematics Unit’'s VectorMap (http://vectormap.si.edu/), Global

Biodiversity Information Facility (GBIF; https://www.gbif.org/), Biodiversity Information
Serving Our Nation (BISON; https://bison.usgs.gov/). To be included in a model, all tick

occurrence data had to meet the following quality control criteria: be an observation from
no earlier than 1950, include two decimal places or more for at least one coordinate, and
have a coordinate inaccuracy of <20,000 m. Duplicate coordinates occurred often due to
data being deposited in multiple databases, so entries were compared and duplicate
coordinates were removed. Geolocations were cross-checked to ensure that records were
accurate to the field location. Remaining coordinates were then thinned to 1km distance
using the spThin package (Aiello-Lammens et al. 2015) to reduce the effect of sampling

bias on model predictions.

Environmental covariates

Bioclimatic variables (1-19) (Table 1) were sourced from the raster package
(Hijmans 2022) and downloaded at a resolution of 2.5 arcminutes (~4km). Current climate
models were fit using the historical data representing the average measurements from
1970-2000. Future climate models were fit with mean projections of these data at a 4km
resolution using Coupled Model Intercomparison Project phase 5 (CMIP5)/ACCESS 1-0
Representative Concentration Pathway (RCP) 8.5 for 2050 (average from 2041-2060) and
2070 (average from 2061- 2080). CMIP5’s ACCESS 1.0 model incorporates long-term
simulation data of the 20th century climate including solar, volcanic, stratospheric aerosol,
anthropogenic aerosol, emissions, and greenhouse gas concentrations (Lewis 2013). RCP
8.5 is a future climate scenario that describes the expected baseline high greenhouse gas
impact resulting from a lack of carbon emission mitigation policies (Riahi et al. 2011).

Due to the importance of white-tailed deer (Odocoileus wvirginianus) as
reproductive hosts for each of these four species, we included a raster of graded suitable
deer habitat within Illinois (USGS 2018). Landcover covariates (landcover class, percent
impervious surface, and percent tree canopy cover) from the National Land Cover
Database (NLCD) (Yang et al. 2018) were also included. The NLCD is a collection of land
cover imagery at 30m resolution that combines information from all years of land cover
change (2001-2016) across 16 classes of cover that include impervious land, cropland,
wetland, and various vegetation types, which were aggregated into seven more general
land cover categories (Water, Developed, Barren, Forest, Grass/Shrub, Cropland, and
Wetland). Land cover changed significantly across the United States between 2001-2016,
so an average of these land covers taken from every 2-3 years was used instead of data
from a single year. Elevation was sourced from the raster package (Hijmans 2022) derived
from Shuttle Radar Topography Mission (SRTM) National Elevation Dataset digital

elevation models (at a resolution of 1 and 1/3 arcseconds; USGS 2022).
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All covariates were cropped to the extent of the Illinois’ state borders (xmin: -91.5,
xmax: -87.5, ymin: 36.9, ymax: 42.5) and resampled to a resolution of four kilometers (2.5
arcseconds) to match the bioclimatic data set. Extracted covariate values were assessed for
collinearity for each species and period by assessing variance inflation factor. Any variable

with a v-step score of 10 or higher was excluded from that model due to collinearity.

Model fitting and evaluation

Models were fit using the sdm package (Naimi & Araujo 2016) in R version 4.1.3.
Regression and machine learning models for each species for the current climate were first
fit using the following individual methods: generalized linear models (GLM), generalized
additive models (GAM), Bayesian regression trees (BRT), classification and regression
trees (CART), MaxEnt, random forest (RF), multivariate adaptive regression splines
(MARS), and support vector machines (SVM). The number of randomly selected
background points were set at approximately the same number of presence points for each
species due to the mixed use of regression and machine learning techniques within the
modeling algorithm (Barbet-Massin et al. 2012). Cross-validation and bootstrap data
partitioning methods (with 30% test percentage) were used for each model type, with five
replicates for each method totaling five replicates per algorithm (30 total replicates per
species). Single model algorithms that were not 100% successful during replicate runs
were excluded from ensemble models. Models were evaluated using several performance
scores including threshold-dependent and threshold-independent methods: area under
the curve (AUC), true skill statistic (TSS), model deviance, and prevalence. Single models
demonstrating AUC > 0.75, and TSS > 0.40 were retained for mean-weighted ensemble
models (i.e. a two-step process that incorporates both within-model averaging and
between-model averaging). Cohen’s kappa was not used for single model evaluation due
to its overreliance on prevalence but was consulted to determine consistency in
predictions across models (Grimmett et al. 2020). AUC was not used alone to assess
prediction accuracy because of its poor ability to reliably assess presence-background
nature of the tick occurrence data (Allouche et al. 2006; Grimmett et al. 2020).
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Table 1. Descriptions and sources of each of the 19 bioclimatic variables (WorldClim) and other environmental predictor variables

(n=30) used in model fitting.

VARIABLE DESCRIPTION UNIT SOURCE*
BIO1 Annual Mean Temperature °C*100 WorldClim
Mean Diurnal Range
BIO2 °C*100 WorldClim
(Mean of monthly (max temp - min temp))

BIO3 Isothermality (BIO2/BIO7) (x100) % WorldClim
BIO4 Temperature Seasonality (standard deviation x100) °C WorldClim
BIO5 Max Temperature of Warmest Month °C*100 WorldClim
BIO6 Min Temperature of Coldest Month °C*100 WorldClim
BIO7 Temperature Annual Range (BIO5-BIO6) °C*100 WorldClim
BIOS8 Mean Temperature of Wettest Quarter °C*100 WorldClim
BIO9 Mean Temperature of Driest Quarter °C*100 WorldClim
BIO10 Mean Temperature of Warmest Quarter °C*100 WorldClim
BIO11 Mean Temperature of Coldest Quarter °C*100 WorldClim
BIO12 Annual Precipitation mm WorldClim
BIO13 Precipitation of Wettest Month mm WorldClim
BIO14 Precipitation of Driest Month mm WorldClim
BIO15 Precipitation Seasonality (Coefficient of Variation) mm WorldClim
BIO16 Precipitation of Wettest Quarter mm WorldClim
BIO17 Precipitation of Driest Quarter mm WorldClim
BIO18 Precipitation of Warmest Quarter mm WorldClim
BIO19 Precipitation of Coldest Quarter mm WorldClim

ELEVATION Height above sea level m USGS SRTM

DEER HABITAT Suitable white-tailed deer habitat esence/absence | USGS GAP Analysis
LANDCOVER Water bodies, tree canopy, developed, impervious,
% NLCD

TYPE barren, forest, grassland, cropland, wetland

*WorldClim  [http://www.worldclim.com], USGS SRTM [https://www.usgs.gov/centers/eros/science], USGS Gap

Analysis [https://gapanalysis.usgs.gov/apps/species-data-download/], NLCD [https://www.mrlc.gov/data/nlcd-2019-

land-cover-conus]

3. Results

3.1. Ixodes scapularis models

After duplicate records were removed and presence points thinned there

remained 62 known I. scapularis occurrence points across Illinois, and 70 background

points randomly generated. After assessing for multicollinearity amongst environmental

variables for the historical climate, seventeen predictor variables out of the 30 total

environmental covariates were removed from the dataset due to v-step scores greater than
10 (biol, bio2, bio4, bio5, bio6, bioll, biol2, biol4, biol5, biol6, biol7, biol8, biol9, percent
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developed land, percent forest canopy cover, percent white-tailed deer habitat, and
percent impervious cover). Retained in the historical climate correlate dataset for I
scapularis were bio3, bio7, bio8, bio9, biol0, biol3, elevation, percent water body coverage,
percent barren land, percent forest, percent grassland, percent cropland, and percent
wetland. Future climate scenarios exhibited different collinearity patterns. Sixteen highly
multicollinear variables (i.e. 2050: biol, bio2, bio5, bio6, bio7, biol0, bioll, biol2, biol3,
biol4, biol6, biol7, percent developed land, percent white-tailed deer habitat, percent
canopy cover, and percent impervious cover) were removed from both the 2050 and 2070
environmental variable set, and retained were: bio3, bio4, bio8, bio9, biol5, biols,
elevation, and percent water body cover, percent barren land, percent forest cover, percent
cropland, percent grassland, and percent wetland.

Single algorithm evaluation revealed RF to be the best fit model for predicting the
historical climate distribution of I. scapularis (Table 2). The landscape variables that most
strongly predicted occurrence of I. scapularis habitat across this model in the historical
climate were percentage cropland (16.6% relative contribution), percent wetland (15.1%),
and percent water body (11.1%). Climate variables all contributed less than 5% each.
Increasing presence of I. scapularis was predicted on landscapes that were more than at
least 1% barren land, while increasing percentages of other landscape types had negative
correlations with occurrence of I. scapularis, namely percent cover of cropland and
wetland (Fig. 1a). I. scapularis predicted occurrence rose but then dropped steeply from
over 88% to below 80% as mean temperatures rose in the warmest quarter (biol0) and as
annual temperature ranges (bio7) increased (Fig. 1b). However, increasing amounts of
precipitation in the wettest months (biol6) and increasing mean temperature in the
wettest quarter (bio8) were associated with a greater chance of I. scapularis occurrence in
the historical climate period (Fig. 1b).

The best fit single algorithm model for future predictions (both 2050 and 2070)
was RF (AUC = 0.82, correlation=0.55, TSS = 0.64, deviance = 1.08). Important
environmental variables changed in contribution to the likelihood of . scapularis presence
in these scenarios. Landcover categories percent water bodies (19.9% relative
contribution), percent wetland (17.2%) and percent cropland (14.6%) were the three most
important variables contributing to the landcover predictors for future I. scapularis
distribution in 2050 (S1a). Expected presence of I. scapularis dropped from 70% to below
60% as percent cropland rose above 50%. Both percent water bodies and wetland were
associated with high expected occurrence of I. scapularis. Precipitation of the warmest
quarter (mm; biol8) and temperature seasonality ((standard deviation x100); bio4) were
the two most important variables contributing to climate predictors of I. scapularis 2050
future distribution (S1b). As day-to-night temperature oscillations (bio3) increased by a
difference of 30%, and as the overall variation (i.e. standard deviation) in the annual
temperature (bio4) rose above 1000 the likelihood of I. scapularis presence was reduced
below 80%. Notably, expected presence of I. scapularis dropped precipitously for both the
mean temperature of the wettest (bio8) and driest (bio9) quarters as temperatures rose
(S1b). Precipitation of the warmest quarter needed to be at least 210mm for I. scapularis

occurrence to be expected at approximately 80% likelihood.
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In the 2070 climate scenario, percent cropland rose to nearly 30% relative
contribution to the model (29.4%), followed by percent wetland (13.6%), elevation (13.2%)
and percent water bodies (11.7%). No single climate variable was more contributory than
another in this scenario. Increased percentage of cropland continued to be negatively
associated with the presence of I. scapularis, dropping from just under 50% likelihood of
occurrence to approximately 30%. Elevation above 175m increased the likelihood of
occurrence to just under 40%. Percent water body and wetland land cover above 10% were
important in predicting stable occurrence of I. scapularis. The highest predicted likelihood
of I. scapularis was approximately 40% for climate predictors in the 2070 scenario, with
increasing seasonal variation in precipitation (biol5) and temperature (bio4) having the
largest negative impact on expected I. scapularis presence.

Best fit mean-weighted ensemble models for both historical and future climate
scenarios included the following algorithms: GLM, BRT, MaxEnt, RF, MARS, and SVM.
Within the historical climate the best fit ensemble models predicted that I. scapularis would
most likely be found within the Chicago metropolitan region along the northeastern
border of Lake Michigan, along riparian zones in western and central Illinois, and within
the forested region of east-central and southern Illinois (Fig. 2a). The tick was also
expected to be found scattered throughout pockets within the central portion of the state.
As the climate warmed in the 2050 (Fig. 2b) and 2070 (Fig. 2c) projection scenarios, the
likelihood of 1. scapularis presence throughout the central and southern tiers began to
recede and concentrate along rivers and waterbodies (2050), and then shifted to a greater
expectation of occurrence only in the Chicago metropolitan area and along select portions

of the Illinois and Sangamon Rivers (2070) (Fig. 3).
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Table 2. Mean best fit single model evaluation metrics for the predicted historic occurrence in Illinois of the four tick species modeled. Bolded

numbers denote the AUC/correlation/true skill statistic (TSS) score/deviance for the best fit model. Best fit Amblyomma maculatum models included

CART instead of BRT.
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*GLM = Generalized linear models; BRT = Bayesian regression trees; CART = classification and regression tree; MaxEnt = Maximum entropy; RF =

random forest; MARS = multivariate adaptive regression splines; SVM = support vector machines
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Table 3. Relative percent contribution of habitat suitability variables in best fit models for each tick species across the three climate scenarios.
Current climate models were fit using the historical data representing the average climate measurements from 1970-2000. Future climate models
were fit with mean projections of these data at a 4km resolution using Coupled Model Intercomparison Project phase 5 (CMIP5)/ACCESS 1-0
Representative Concentration Pathway (RCP) 8.5 for 2050 (average from 2041-2060) and 2070 (average from 2061- 2080). All landscape variables
represent percentage of that landcover, except for elevation which is measured in meters. The top three most important variables in the model

prediction are bolded for each period. Variables that were not included in a model due to collinearity are denoted with a dash.

Tick Species
Environmental Ixodes Amblyomma Dermacentor Amblyomma
Variable* scapularis americanum variabilis maculatum
Climate Scenario
Hist. | 2050 | 2070 | Hist. | 2050 | 2070 | Hist. | 2050 | 2070 | Hist. | 2050 | 2070
Barren 0.7 1.3 2.0 1.7 1.1 1.0 2.6 2.7 1.7 7.6 - 1.3
Canopy - - - - - - - - - 13.7 | 9.3 2.7
Cropland 16.6 | 13.0 | 29.4 - - - 603 | 68.9 | 444 | 38.1 | 34.0 -
Developed - - - 2.7 1.9 1.3 - - - - - 19.2
Elevation 2.6 2.8 13.2 24 1.7 4.8 3.7 3.0 5.6 10.9 9.1 6.8
Forest 1.4 0.5 = 6.2 5.5 4.6 3.8 10.9 4.0 = = =
Grassland 0.5 0.2 - 2.0 0.7 1.4 4.7 5.1 09 | 253 | 136 | 14.6
Water 111 | 204 | 11.7 3.6 13.0 4.7 29 52 29 = 12.3 2.1
Wetland 151 | 13.7 | 13.6 | 2.7 1.7 3.7 5.0 1.9 43 4.7 6.4 24
BI1IO2 - - - 0.7 - 0.7 3.4 - - - - -
BIO3 0.1 0.0 0.0 - 0.2 - - 2.3 9.1 - - -
BI04 - 0.9 1.0 - - 12.9 - 4.7 6.8 - - -
BIO6 - - - - - - - - 33.8 - - -
BIO7 1.5 = = = 4.8 = 17.2 = = = = =
BIOS8 0.8 1.0 0.6 1.5 0.8 - 3.6 20.5 | 253 - - -
BIO9 0.5 0.8 0.0 5.0 0.8 - 23 | 104 | 22.6 - - -
BIO10 1.6 - - 1.9 1.4 - 1.8 - - - - -
BIO13 0.8 - - - - - - - - - - -
BIO15 - 0.0 0.6 41 0.3 0.3 - 3.2 84 | 108 - 12.0
BIO16 = = = = = = = = = = 45.8 =
BI1O17 - - - - 3.7 2.2 - - - - 13.9 -
BIO18 = 0.2 0.2 1.5 3.6 0.7 7.8 13.2 | 155 7.1 = =
BIO19 - - - - - - - - - - - 1.9

* BIO1, BIOS5, BIO11, BIO12, BIO14, and white-tailed deer habitat were not included due to multicollinearity. BIO2 = Mean Diurnal Range (Mean of
monthly (max temp - min temp)), BIO3 = Isothermality (BIO2/BIO7) (x100), BIO4 = Temperature Seasonality (standard deviation x100), BIO6 =
Minimum Temperature of Coldest Month, BIO7 = Temperature Annual Range (BIO5-BIO6), BIO8 = Mean Temperature of Wettest Quarter, BIO9 =
Mean Temperature of Driest Quarter, BIO10 = Mean Temperature of Warmest Quarter, BIO13 = Precipitation of Wettest Month,
BIO15=Precipitation Seasonality (Coefficient of Variation) , BIO16 = Precipitation of Wettest Quarter, BIO17 = Precipitation of Driest Quarter,

BIO18 = Precipitation of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter
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Fig. 1. Mean a) landscape feature and b) climate variable response curves for predicted probabilities of I. scapularis habitat in the best fit model for
the historical climate. Landcover types are reported in percent coverage. Elevation is reported in meters. biol0 = mean temperature of warmest
quarter (°C*100); bio13 = precipitation of the wettest month (mm); bio3 = day-to-night temperature oscillation relative to summer-winter (annual)
oscillations (bio2/bio7) (x100); bio7 = temperature annual range (bio5-bio6); bio8= mean temperature of wettest quarter (°C*100); bio9 = mean

temperature of the driest quarter (°C*100).


https://doi.org/10.20944/preprints202211.0490.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 November 2022 d0i:10.20944/preprints202211.0490.v1

Lake
Michigan

Lake
Michigan

Lake
Michigan

a. Historical climate b. 2050 projected c. 2070 projected

: . N gt I |
Tick [ 1linois Lagooe ¢ ,75/%1'
S 5 V&V
Doclrence 23 US State A R
Probability v
Unfited =
0 100 200 Miles AU B
No data
0.25 ‘:] L L 1 L J Pacific | % Atlantic
Ocean  \\| Ocean
0 S vexi =2
0 150 300 Kilometers \ RN ) A

1ap credit:Esri, GEBCO, DeLorme

Fig. 2. a) Mean-weighted ensemble prediction of the probability of I. scapularis occurrence in Illinois under current historical climate conditions. b)
Mean-weighted ensemble of predicted probability of I. scapularis occurrence in Illinois in 2050 projected climate Representative Concentration
Pathway 8.5, ACCESS 1-0; average from 2041-2060). ¢) Mean-weighted ensemble of future predicted probability of I. scapularis occurrence in Illinois
in 2070 projected climate (Representative Concentration Pathway 8.5, ACCESS 1-0; average from 2061- 2080). Darker colors indicate higher likelihood

of tick presence.
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Fig. 3. Percent change in likelihood of I. scapularis occurrence between the historical climate and 2050 (left) and from 2050 to 2070 (right). Red shades
indicate reduced likelihood of occurrence (negative change), blue shades indicate increased likelihood of occurrence (positive change). The histogram

represents the number of pixels (y-axis) containing the binned percentage likelihood (x-axis) of I. scapularis suitable habitat across the map.

3.2 Amblyomma americanum models

After removing duplicate observations and occurrence points were thinned to 1km,
99 records of Amblyomma americanum were retained for modeling and 100 randomly
selected background points were generated. Seventeen variables were removed due to
multicollinearity (biol, bio3, bio4, bio5, bio6, bio7, bioll, biol2, biol3, biol4, biol6, biol7,
biol9, percent cropland, percent canopy, and percent impervious surface, and percent
white-tailed deer habitat). Retained for modeling of the historical climate were bio2, bio8,
bio9, bio10, biol5, biol8 and land cover categories elevation, percent water body coverage,
percent developed land, percent barren land, percent forest coverage, percent grassland,
and percent wetland.

Future climate scenarios exhibited different multicollinearity patterns. The
projected average climate for 2050 demonstrated collinearity issues with 15 variables (biol,
bio2, bio4, bio5, bio6, bioll, biol2, biol3, biol4, biol6, biol9, percent cropland, percent tree
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canopy, and percent impervious surface, and percent white-tailed deer habitat). Retained
for the 2050 modeling environmental variable set were bio3, bio7, bio8, bio9, biol0, biol5,
biol7, biol8, elevation, percent water body coverage, percent developed land, percent
barren land, percent forest, percent grassland, and percent wetland. In the 2070 climate
scenario, sixteen variables were removed due to collinearity issues (biol, bio3, bio5, bio6,
bio7, biol0, bioll, biol2, biol3, biol4, biol6, biol9, percent cropland, percent canopy,
percent impervious surface, and percent white-tailed deer habitat) and the final model
used the following: bio2, bio4, bio8, bio9, biol5, biol7, biol8, elevation, percent water body
landcover, percent developed land, percent barren land, percent forest, percent grassland,
and percent wetland.

Random forest was also the best fit single model algorithm for this species of the
six total included model algorithms (Table 2). The most important variables that predicted
occurrence of A. americanum habitat across this model for the historical climate were
percent forest coverage (6.2% variable contribution) and percent water bodies present in
the landscape (2.4%). Climate variables bio9 (5.0%), and biol5 (4.1%) were the most
important contributing climate variables to the historical climate prediction of A.
americanum distribution. As the percentage of forest cover increased, the likelihood of A.
americanum presence rose sharply from just over 50% likelihood of occurrence to near 75%
chance of occurrence (Fig. 4a). The historical climate scenario also demonstrated that A.
americanum is positively associated with grasslands, water bodies, and wetland landcovers
(Fig. 4a). The probability of their occurrence also increases with mean temperature in the
warmest quarters and in the driest quarters (Fig. 4b). Like I. scapularis, probability of
occurrence of A. americanum decreases sharply with increasing annual temperature
difference (Fig 4b).

The best fit single model for future predictions of A. americanum distribution was
RF (AUC = 0.82, correlation= 0.55, TSS = 0.56, deviance= 1.04). In the 2050 scenario, percent
water body landcover became the most important relative variable (13.0%) in predicting
occurrence of A. americanum, followed by percent forest cover (5.5%), and demonstrated an
increase in probability of presence by about 20% when percentage of the landcover type
reached 50% (S3a). A. americanum became increasingly dependent on precipitation in the
2050 scenario, with large increases in predicted occurrence as the amount of precipitation
rose during the driest quarter (biol7; S3b), and during the warmest quarter (biol8; S3b).

Best fit mean-weighted ensemble models for both current and future climate
scenarios included the following algorithms: GLM, BRT, MaxEnt, RF, MARS, and SVM.
Current A. americanum distribution was predicted to be concentrated in the southern-most
portion of the state where there is more contiguous forest habitat but also found along
riparian zones along the Illinois and Mississippi River systems, and on the outskirts of Lake
Michigan (Fig. 5a).

As the climate scenarios progress, habitat in Southern Illinois appears to be slightly
less hospitable to A. americanum as the central and northeastern Chicago metropolitan areas
increased in likelihood of occurrence (Fig. 5b, c). The change in habitat suitability is
reflected change in habitat suitability by 2050 initially demonstrates greater change of

occurrence of A. americanum in the west and east central regions of Illinois, as well as the
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suburbs of Chicago (Fig. 6). By 2070, the greatest change in habitat suitability occurs around
Chicago, the riparian zones along the Illinois River, and in southeastern Illinois, where the

locations appear to be more favorable for occurrence of A. americanum (Fig. 6).
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Fig. 4. Mean a) landscape feature and b) climate variable response curves for predicted probabilities of A. americanum occurrence in the best fit model
for the historical climate. Landcover classes are reported in percent coverage. Elevation is reported in meters. biol0 = mean temperature of the warmest
quarter (°C*100). biol5= precipitation seasonality (mm), biol8 = precipitation in the warmest quarter (mm), bio2 = mean diurnal range (mean of

monthly (max temp - min temp)) (°C*100), bio8 = mean temperature of wettest quarter (°C*100), bio9 = mean temperature of driest quarter (°C*100).
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Fig. 5. a) Mean-weighted ensemble prediction of the probability of A. americanum occurrence in Illinois under current climate conditions. b) Mean-
weighted ensemble of predicted probability of A. americanum occurrence in Illinois in 2050 projected climate Representative Concentration Pathway
8.5, ACCESS 1-0; average from 2041-2060). ¢) Mean-weighted ensemble of future predicted probability of A. americanum occurrence in Illinois in
2070 projected climate (Representative Concentration Pathway 8.5, ACCESS 1-0; average from 2061- 2080). Darker colors indicate higher likelihood

of tick presence.
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Fig. 6. Percent change in likelihood of A. americanum occurrence between the historical climate and 2050 (left) and from 2050 to 2070 (right). Red
shades indicate reduced likelihood of occurrence (negative change), blue shades indicate increased likelihood of occurrence (positive change). The

histogram represents the number of pixels (y-axis) containing the binned percentage likelihood (x-axis) of A. americanum suitable habitat across the

map.

3.3. Dermacentor variabilis models
After removing duplicate records and thinning observations, 290 records of D.

variabilis were retained for modeling and 300 randomly generated background points
were generated. Best fit models for the historical climate condition for D. wvariabilis
included bio2, bio7, bio8, bio9, biol0, biol8, elevation, percent water body coverage,
percent barren land, percent forest, percent grassland, percent cropland, and percent
wetland. Seventeen covariates (biol, bio3, bio4, bio5, bio6, biol1, bio12, bio13, bio14, biol5,
biol6, biol7, biol9, percent canopy cover, percent impervious surface, percent developed
landcover, and percent white-tailed deer habitat) were removed from consideration in the

historical climate model due to collinearity issues.
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Future climate scenarios included environmental variables bio3, bio4, bio8, bio9,
biol5, biol8, elevation, percent water cover, percent barren land, percent forest cover,
percent grassland, percent cropland, and percent wetland for the 2050 projected climate
scenario, and bio3, bio4, bio6, bio8, bio9, biol5, biol8, elevation, percent water body
landcover, percent barren land, percent forest cover, percent grassland, percent cropland,
and percent wetland cover for the 2070 projected climate. Seventeen variables (biol, bio2,
bio5, bio6, bio7, biol0, bioll, bio12, bio13, bio14, bio16, biol7, biol9, percent canopy cover,
percent developed land, percent impervious surface, and percent white-tailed deer habitat)
were removed from analysis for the 2050 scenario, and 16 covariates (biol, bio2, bio5, bio7,
biol0, bioll, biol2, biol3, biol4, biol6, biol7, biol9, percent canopy cover, percent
developed land, percent impervious surface, and percent white-tailed deer habitat) were
excluded from the 2070 projected climate scenario models due to collinearity issues.

Support vector machines was the best fit single model algorithm for predicting
the presence of D. variabilis within the historical climate (Table 2). Percent cropland was
the most important variable in predicting D. wvariabilis occurrence (60.3% relative
importance), followed by percent wetland (5.4%), percent grassland (4.6%), and percent
forest (3.8%) (Fig. 7a). Climate variables that contributed most to the model were the
annual temperature range (°C*100; bio7) (17.6% relative variable importance), and
precipitation of the warmest quarter (mm; bio18) (8.6%) (Fig. 7b).

For the 2050 climate projection, RF was the best fit model (AUC =0.81, correlation
=0.55, TSS =0.55, deviance =1.06). Percent cropland was again the most important variable
in predicting occurrence of D. variabilis (68.9% relative variable importance), followed by
percent forest cover (10.9%), percent water bodies (5.2%), and percent grassland (5.1%).
The mean temperature of the wettest quarter (°C*100) (bio8) was the most important
climate variable to predict distribution of D. variabilis in the 2050 scenario (20.5% relative
variable importance), followed by precipitation in the warmest quarter (mm) (13.2%;
biol8), and mean temperature of the driest quarter (10.4%; bio9). As the percentage of
cropland increased above 25%, the expected occurrence of D. variabilis declined from
nearly 90% to approximately 45% likelihood (S5a). Under the conditions expected in this
period, this species was more likely to be found in areas with more water bodies (up to
40% landcover) and expected between 70 and 80% likelihood within grassland (S5a).
Likelihood of finding this species decreased with increasing coverage of barren land and
wetland (S5a). Expected occurrence of D. variabilis initially increased to nearly 90%
likelihood as the mean temperature of the wettest quarter rose, but then dropped sharply
to 50% once the mean temperature reached 1.25°C (S5b). D. wvariabilis presence also
increased in likelihood with precipitation in the warmest quarter, but then began to wane
after 220mm (S5b). In the driest quarter, D. variabilis occurrence was positively associated
with increasing mean temperatures (S5b).

In the 2070 climate projection, D. variabilis distribution was best predicted by a RF
model (AUC=0.80, correlation = 0.52, TSS = 0.53, deviance = 1.09). Percent cropland (44.4%
relative importance) and elevation (5.6%) were the most impactful landscape predictors
of D. variabilis presence in this scenario. Climate variables were far more important in

determining the probability of D. variabilis occurrence in this scenario. Most impactful
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were the minimum temperature of the coldest month (°C*100) (bio6; 33.8%), mean
temperature of the wettest quarter (°C*100) (bio8; 25.3%), mean temperature of the driest
quarter (°C*100) (bio9; 22.6%), and precipitation in the warmest quarter (mm) (biol8;
15.5%). Similar response patterns are seen in the 2070 projected climate to the 2050 climate,
but with overall expected occurrence of D. variabilis, and more dramatic response to the
changing variables. Increasing percentage of cropland reduces the overall likelihood of D.
variabilis to 40% (S6a). The likelihood of D. variabilis was positively associated with
increasing mean minimum temperature in the coldest months (bio6) and precipitation in
the warmest quarter (S6b), but negatively associated with increasing mean temperature
in the wettest months (bio8), mean temperature of the driest quarter (bio9), and increasing
variation in both annual temperature (bio4) and precipitation (biol5) (S6b).

Best fit mean-weighted ensemble models for historical and future climate
scenarios included the following algorithms: GLM, BRT, MaxEnt, RF, MARS, and SVM.
Occurrence for D. wvariabilis under current climate conditions was predicted to be
distributed throughout the state, with concentrations of higher probability located within
southern Illinois, the Chicago metropolitan region, and along riparian zones (Fig. 8a). All
climate scenarios predict that probability of D. variabilis occurrence is generally resilient
in most habitats except cropland, but increasingly dependent on lower temperature and
higher precipitation as the climate shifts into the more extreme 2070 projections (Fig. 8b,
c). Along the northeastern border west of Rockford east central region of the state
encompassing Champaign-Urbana and Decatur are predicted to become increasingly
hospitable for D. variabilis as the southern tier becomes less likely to host this species due
to increasing temperatures in 2050 (Fig. 9). By 2070, favorable habitat suitability for D.
variabilis is expected to concentrate more broadly across the northern half of the state (Fig.
9).
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Fig. 7. Mean a) landscape feature and b) climate variable response curves for predicted probabilities of D. variabilis occurrence in the best fit model
(random forest) for the historical climate. Landcover types are reported in percent coverage. Elevation is reported in meters. biol0 = mean temperature
of the warmest quarter (°C*100), biol8 = precipitation in the warmest quarter (mm), bio2 = mean diurnal range (mean of monthly (max temp - min
temp)) (°C*100), bio7 = temperature annual range (BIO5-BIO6) (°C*100), bio8 = mean temperature of wettest quarter (°C*100), bio9 = mean temperature
of driest quarter (°C*100).
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Fig. 8. a) Mean-weighted ensemble prediction of the probability of D. variabilis occurrence in Illinois under historical climate conditions. b) Mean-
weighted ensemble of predicted probability of D. variabilis occurrence in Illinois in 2050 projected climate Representative Concentration Pathway 8.5,
ACCESS 1-0; average from 2041-2060). ¢) Mean-weighted ensemble of future predicted probability of D. variabilis occurrence in Illinois in 2070

projected climate (Representative Concentration Pathway 8.5, ACCESS 1-0; average from 2061- 2080). Darker colors indicate higher likelihood of tick

presence.
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Fig. 9. Percent change in likelihood of D. variabilis occurrence between the historical climate and 2050 (left) and from 2050 to 2070 (right). Red shades
indicate reduced likelihood of occurrence (negative change), blue shades indicate increased likelihood of occurrence (positive change). The histogram

represents the number of pixels (y-axis) containing the binned percentage likelihood (x-axis) of D. variabilis suitable habitat across the map.

3.4. Amblyomma maculatum models
Fifteen records of A. maculatum were retained for modeling after removing

duplicates and thinning, and were combined with 20 randomly selected background points.
A total of twenty-one environmental correlates (biol, bio2, bio3, bio4, bio5, bio6, bio7, bio8,
bio9, bio10, bioll, bio12, biol3, biol4, biol6, biol7, biol9, percent white-tailed deer habitat,
percent developed land, percent forest, and percent impervious surface) were removed
due to multicollinearity. Remaining predictors in the historical climate model for A.
maculatum were biol5, biol8, elevation, percent water body landcover, percent barren land,
percent grassland, percent cropland, percent wetland, and percent tree canopy cover. The
2050 climate scenario included biol6, biol7, elevation, percent water body landcover,
percent barren landscape, percent grassland, percent cropland, percent wetland, and
percent canopy cover. Twenty-one variables (biol, bio2, bio3, bio4, bio5, bio6, bio7, bio8,
bio9, bio10, bioll, bio12, biol3, bio14, biol5, bio18, biol9, percent white-tailed deer habitat,
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percent developed land, percent forest, and percent impervious surface) were removed
due to collinearity. The 2070 scenario included biol5, biol9, elevation, percent water body
landcover, percent developed land, percent barren land, percent grassland, percent
wetland, and percent canopy cover. Removed due to collinearity were biol, bio2, bio3, bio4,
bio5, bio6, bio7, bio8, bio9, biol0, bioll, biol2, biol3, biol4, biol6, biol7, biol8, percent
white-tailed deer habitat, percent cropland, percent forest, and percent impervious surface.

Support vector machines was the best fit model to predict the historical
distribution of A. maculatum (Table 2). Percent grassland (34.4% relative importance),
percent cropland (22.4%), percent tree canopy cover (17.0%), and percent water body cover
(12.2%) were the most important landscape variables in predicting probable locations of A.
maculatum. Occurrence of this tick species was expected in open landscapes, and was
positively correlated with increasing percentages of grassland, and negatively correlated
with canopy cover and cropland (Fig. 10a). Proximity to waterbodies and wetlands also
increased the probability of A. maculatum occurrence in the historical climate (Fig. 10a).
Variation in precipitation as well as total precipitation in the warmest quarter initially was
associated with an increase in likelihood of A. maculatum occurrence, but then likelihood
decreased with increasing precipitation beyond a particular point (Fig. 10b).

Occurrence of A. maculatum in the 2050 climate scenario was best modelled by
CART (AUC = 0.89, correlation = 0.71, TSS = 0.62, deviance = 0.69). Percent grassland,
cropland, and canopy remained the most important variables for the model (18.4%, 16.3%,
and 10.3% relative importance respectively). Probability of A. maculatum occurrence
increased with increasing percentage of barren landcover and water bodies, but decreased
in response to increasing percentage of cropland, elevation, grassland, and wetlands (S7a).
Precipitation of the wettest quarter (mm; biol6) was associated with a gradual decrease in
likelihood of A. maculatum occurrence during this time period, and precipitation of the
driest quarter (mm; biol7) was associated with a small increase in probability of occurrence
(S7b). Under the 2070 climate scenario, RF was the best fit model (AUC=0.71, correlation =
0.37, TSS = 0.61, deviance = 1.23) to describe the predicted occurrence of A. maculatum. In
this climate, percent developed land and percent grassland were the most important
landscape variables (19.9% and 14.8% relative importance respectively). Precipitation
seasonality (mm; biol5) was also a driving climate variable in the prediction of A.
maculatum distribution (12.3% relative variable importance). Within these conditions, A.
maculatum was predicted (between 40 and 50% likelihood) to be associated with barren
landscapes, but also within habitats containing roughly 20% tree canopy. Occurrence of
this tick species was also expected in areas with 10-20% water bodies and wetlands. A.
maculatum was less likely to be expected in habitats that were more than 10% grassland or
above 200m elevation (S8a). As the variation in precipitation across seasons (biol5)
increased above 27mm, the likelihood of A. maculatum occurrence decreased sharply from
roughly 63% likelihood to below 45% probability. Increasing precipitation of the coldest
quarter (biol9) was associated with a small increase in A. maculatum occurrence probability
between 150mm and 200mm, but then decreased below 40% (S8b).

These model predictions suggest that A. maculatum has wide distribution potential

throughout Illinois in the historical climate scenario. It is most likely to be able to survive
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in open barren landscapes that are close to water sources and wetlands, placing the most
probable distribution predictions along the Mississippi River, Illinois River, and around
the Chicago metropolitan area on the banks of Lake Michigan. Scattered pockets of higher
probability throughout the state correspond with areas that are devoid of dense (greater
than 50% coverage) tree canopy, or areas that are more than 50% cropland (Fig. 11a). In the
2050 (Fig. 11b) and 2070 (Fig. 11c) climate prediction ensemble models projected that A.
maculatum distribution would reduce overall, with covariates only predicting likelihood of
tick occurrence as high as 60%. During these scenarios, A. maculatum was generally more
prevalent in areas with less than 50% canopy cover and up to 50% water bodies (S7a; S8a).
In 2050, the distribution of A. maculatum was predicted to be more highly concentrated in
the west-central part of the state, as well as near rivers and the floodplains of water bodies
(Fig. 11b). The predictions for A. maculatum distribution in the 2070 scenario appear to
change drastically, with higher likelihood of occurrence throughout the central portion of
the state — including in areas with a high percentage of cropland — and less strongly
associated with water bodies and wetlands (Fig. 11c). However, since cropland was
removed as a variable in this model due to high collinearity, it may have skewed this
prediction. Change over time shows a southwest to northeastern shift in suitable habitat
across the state, with a dramatic increase of likelihood of occurrence of A. maculatum in the

Chicago metropolitan region by 2070 (Fig. 12).
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map.

4. Discussion

This investigation applied numerous species distribution modeling techniques to
examine the historically predicted distribution of four ticks of medical concern in Illinois,
and the estimated future habitat suitability based on two climate scenarios. With the
exception of A. maculatum, our results support known (Jobe et al. 2007; Rydzewki et al.
2012; Gilliam et al. 2020) and predicted (Guerra et al. 2001; Lippi et al. 2021a; Alkishe et al.
2021; Flenniken et al. 2022) habitat ranges for these species within the state and attempted
to identify environmental factors that will contribute to continued or altered suitability

distributions in potential future climate conditions.
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The best fit individual models to describe these historical and future habitat
suitability scenarios were random forest and support vector machines. Random forest is
a specific type of classification/regression tree (CART) ensemble and recursive
partitioning method that can handle highly dimensional data with accuracy and is
resistant to overfitting due to its randomized splitting and sampling procedure of the
training data (Strobl et al. 2009). However, Valavi et al. (2021) note that RF prediction can
be negatively impacted when using presence-background data like the tick data used in
this investigation due to class imbalance and overlap. This occurs when there is a small
sample of presence points, and the background points are sampled in a way that does not
allow for enough discrimination in the predictors of presence and background location
(Valavi et al. 2021). Support vector machines are another machine learning algorithm that
utilize kernel function for mapping presences amidst complex correlational data and are
useful because they do not require data to be independent (Drake et al. 2006; Valavi et al.
2022). To prevent biasing the outcomes as best as we could we applied mean weights,
approximate equal sampling of the presence and the background data and used down-
sampling by way of cross-validation (Valavi et al. 2021). The best performing models were
consistently the mean-weighted ensembles, which is an outcome supported by previous
research (Valavi et al. 2022).

Our models support and expand upon previous work on habitat suitability for
ticks in Illinois. Records of county-level establishment, passive surveillance, and
ecological niche modeling demonstrate expansion of I. scapularis across the state (Eisen et
al. 2016; Kopsco et al. 2021; Alkishe et al. 2021; Wikel 2022), however our expectation that
as the climate continues to warm, regions in southern and central Illinois will become less
hospitable for a desiccant-sensitive species like I. scapularis, was supported. Our models
predicted that I. scapularis will be confined to more northern regions in the state, and
within habitats that provide more protective cover (e.g. upland forest) and moisture
availability, e.g. along riparian zones of the Sangamon, Rock, and Illinois Rivers, as well
as in forested areas and edge surrounding Lake Shelbyville, and Upper Peoria Lake.
Shawnee National Forest is also expected to remain suitable through 2070, although we
predicted between 0.50 and 0.75 chance of occurrence in that scenario.

We observed the potential continued future suitability of habitat for I. scapularis
located in high population centers like Cook, DuPage, McHenry, and Lake Counties
outside Chicago. Borrelia burgdorferi-infected I. scapularis have been collected from high-
access areas within these locations going back decades (Jobe et al. 2007; Rydzewski et al.
2011). Guerra et al. (2002) identified positive associations of I. scapularis with various soil
types (e.g. fertile alfisols, sand, and loam), deciduous and dry forests, and negative
associations with grasslands, acidic soils, conifer, and wet forests. At that time, highly
likely (>0.50) habitat suitability for I. scapularis was largely limited to areas within
Shawnee National Forest, and along the Illinois and Mississippi River and very few areas
of higher probability of presence (0.50-0.75) in the counties surrounding Chicago (Guerra
et al. 2002). We predicted greater suitability for I. scapularis throughout the central and
southern portions of the state than what was previously predicted or currently reported
by Illinois Department Public Health records (IDPH 2022). It is suspected that I. scapularis
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is not currently occupying a larger distribution within Illinois due to its complex ecology
(Kilpatrick et al. 2017; Diuk-Wasser et al. 2021; McBride et al. 2022). While our results
could suggest that the tick simply has not yet invaded these areas, they may also reflect
sampling limitations. Lyons et al. (2021) found few I. scapularis ticks during active
surveillance in southern Illinois, but the timing of this surveillance was not optimized to
the phenology of I. scapularis and passive surveillance efforts lacked coverage in many
areas of interest.

Levi et al. (2015) examined activity patterns of I. scapularis over 19 years and found
years with warmer temperatures in the summer and fall were associated with a three-
week acceleration in the phenology of nymphal and larval ticks as compared to years with
lower temperatures. Model predictions suggest up to a two-week average earlier activity
period for larvae and nymphs if 2050 warming predictions hold (Levi et al. 2015), which
provide additional opportunity for overlap with humans and domestic animals. Given
that the risk of acquiring a tickborne illness like Lyme disease is heavily dependent on not
only the enzootic cycle of disease, but also on human behavior, our predictions can help
identify areas of Illinois to concentrate additional surveillance efforts to more accurately
quantify that acarological risk. Predicted A. americanum habitat for the historical climate
closely matches reported occurrence within Illinois (IDPH 2022). Currently this species is
most abundant in the southern portion of the state but is becoming increasingly more
common in the north (Ma et al. 2021; Rochlin et al. 2022; Fowler et al. 2022). A.
americanum’s aggressive host seeking and non-specific host preferences create an optimal
dispersal scenario which allow this tick to travel long distances on meso-mammals and
deer, as well as birds (Goddard and Varella-Stokes 2009).

However, D. variabilis and A. americanum were also found to be constrained by
the 2070 climate scenarios in similar habitats but were more likely to occur throughout
more of the forested southern portion of the state, like previous research (Oliveira et al.
2017). A. maculatum was the only tick predicted to continue to expand throughout the state
as the temperatures rose more extremely into the 2070 climate. Of greatest concern for
public health is the increasing likelihood of these additional vector tick species near the
higher population centers along the Illinois River and surrounding Chicago. We have
found that few medical professionals in northern areas in Illinois were familiar with the
risk of ehrlichiosis within the state (Carson 2022), despite 422 cases between 2011 and 2021
(IDPH 2022). This is likely due to the current abundance of A. americanum being higher in
the southern portion of the state and is likely to delay diagnosis and treatment of
pathogens vectored by these less-studied tick species. Both Bayles et al. (2013) and Soucy
& de Urioste-Stone (2020) also found that adoption of effective tick prevention measures,
such as tick checks, was associated with perceived risk of tick bites. As actual risk of tick
exposure changes due to shifting tick habitat and abundance, public and professional
awareness must be addressed through dynamic communication efforts.

We focused on more extreme expectations for future climate scenarios to capture
a likely “worst case scenario” for future tickborne disease risk, mainly because the entirety
of Illinois is expected to be within a projected “extreme heat belt” with heat index

temperatures exceeding 125 degrees Fahrenheit for at least one day by 2053 (First Street


https://doi.org/10.20944/preprints202211.0490.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 November 2022 d0i:10.20944/preprints202211.0490.v1

Foundation 2022). Broader studies that have examined potential tick niche expansion and
retraction under future scenarios have found similar results for these species regardless
of the global circulation model chosen. Ma et al. (2022) explored the impact of several
shared socioeconomic pathways through 2100 and predicted all of Illinois to be highly
suitable for A. americanum during all scenarios ranging from least impactful to most
impactful. These projections combine climate model data with policy to best capture a
likely outcome for climate change. Employing ecological niche models with RCP 4.5 and
RCP 8.5 predicted a similar suitability outcome for A. americanum in North America
(Raghavan et al. 2016, 2019), as did a study by Boorgula et al. (2020) which predicted
moderate to high suitability for D. variabilis throughout the state continued through both
RCP 4.5 and RCP 8.5 scenarios. While Flenniken et al. (2022) did not examine future
projections of A. maculatum, they found that under current climate conditions the expected
ecological niche for this species is much greater than its current distribution, suggesting
the potential for expansion north and east. By focusing on Illinois alone, we were able to
apply a more fine-scale environmental niche prediction for each of these four tick species
within the RCP 4.5 and 8.5 scenarios.

We recognize several limitations in our investigation. It is important to note that
species distribution modelling is often subject to confounding due to the
phenomenological approach to predicting tick distributions. Spurious correlations can be
assumed without additional mechanistic understanding of the relationships among ticks
and these environmental predictors at a smaller scale (Ostfeld & Brunner 2015). We
attempted to control for this, in part, by including known white-tailed deer habitat, but
this variable was removed due to collinearity issues with other environmental correlates.
Previous work also demonstrated that for certain species, like I. scapularis, tick presence
varied despite host availability, suggesting a more influential role of abiotic variables
(Guerra et al. 2002). While the inclusion of other forest-level habitat variables likely
replaced the need for specific deer habitat, we consider it a limitation given the need for
and importance of considering reproductive host species in habitat models. However, in
the case of the Lyme bacteria (Borrelia burgdorferi) recent evidence may suggest that overall
tickborne disease hazard risk posed by the positive association between deer density and
nymphal tick density is cancelled out through opposing forces of both amplification and
dilution since deer are not a competent reservoir for the bacteria (Gandy et al. 2022).

Our environmental correlates included climate variables that change according to
proposed scenarios, but the landcover predictors did not include estimates of variability.
As landcover predictors did not change over time, our model results therefore assume
that the changes in climate do not change the percentage of cropland or other landcover
types throughout the state. ESRI landscape change predictions for 2050 in Illinois included
an expected gain of over 821,000 acres of cropland throughout the state, a gain of over
503,000 acres of developed or impervious surface, and losses of deciduous forest (743,000
acres), grassland (380,000 acres), and wetland (39,224 acres) (ESRI Landcover 2050).
Future modeling work should include these predictions to improve upon static landscape
assumptions. Further, the historical climate and landscape variables were slightly

mismatched (climate was a mean from 1970-2000, whereas the landscape mean ranged
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from 2001-2016). These differences could potentially impact the model accuracy. We did
not incorporate soil types or profiles (Guerra et al. 2002) into the models which also may
have impacted the predictions due to their ability to harbor and control microclimates and
habitats that can impact tick survival. However, since only certain vegetation is expected
to grow according to various soil profiles (Guerra et al. 2002), we assumed that vegetation
was enough of a proxy for these models.

Booth (2022) reported that certain combined temperature and precipitation
bioclimatic variables can be unreliable in species distribution modeling depending on
proximity to the equator due to discontinuities in interpolation and can result in extreme
differences over short distances. In the United States, specifically, mean temperature of
the warmest quarter (bio8), and mean temperature of the driest quarter (bio9)
demonstrated anomalies in the south and southeastern regions of the country (Booth 2022).
These discontinuities were like others that occurred globally near the equator. These
anomalies should not have impacted our results because of Illinois” distance from the
equator, but mention is warranted since these variables were important in our models.

Sampling bias consideration is important with occurrence data and may have
influence potentially seen in response curves of I. scapularis in the historical climate.
Previous research (Diuk-Wasser et al. 2021) showed an increasing likelihood of presence
of I. scapularis in uninterrupted forest, whereas our results demonstrate a large decline in
the likelihood of 1. scapularis occurrence with increasing percentage of forest cover. This
could reflect a lack of data points collected from deeper within forests (i.e. collections
intentionally performed in easily accessible places because this is where the disease
transmission risk is), or that this species spends more time in edge environments within
Illinois. The sampling method (drag versus CO2 trap versus small animal capture) is also
important to consider when assessing bias. Rynkiewicz et al. (2014) reported that I.
scapularis was mainly found collected from small mammals while A. americanum and D.
variabilis were able to be collected using cloth drag and CO2 protocols. Records of I
scapularis in Illinois may therefore be underrepresented, as most sampling in the state has
used the cloth drag approach.

The very small data set for A. maculatum may have contributed to projected future
results suggesting a lack of A. maculatum in landscapes that it is known to thrive in, like
grasslands, or future projections associating the tick with croplands. Specifically, the
sample size may have impacted the accuracy of the random forest/CART predictions per
class overlap as previously stated (Valavi et al. 2021). Reevaluation of this tick’s expected

distribution as more data become available is necessary.

5. Conclusions

The variable landscape of Illinois creates a patchwork of risk to humans and
domestic animals that can be predicted based on climate and landscape features. As the
climate changes over the coming decades, the distribution of these tick species will change
as it adapts to the increasing temperatures. Knowing where ticks may concentrate will be

important to anticipating, preventing, and treating tickborne disease.
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