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Abstract: Viral infections cause metabolic dysregulation in the infected organism. The present study 
used metabolomics techniques and machine learning algorithms to retrospectively analyze the al-
terations of a broad panel of metabolites in the serum and urine of a cohort of 126 patients hospital-
ized with COVID-19. Results were compared with those of 50 healthy subjects and 45 COVID-19 
negative patients but with bacterial infectious diseases. Metabolites were analyzed by gas chroma-
tography coupled to quadrupole time-of-flight mass spectrometry. The main metabolites altered in 
the sera of COVID-19 patients were those of pentose glucuronate interconversion, ascorbate and 
fructose metabolism, nucleotide sugars, and nucleotide and amino acid metabolism. Alterations in 
serum maltose, mannonic acid, xylitol, or glyceric acid metabolites segregated positive patients 
from the control group with high diagnostic accuracy, while succinic acid segregated positive pa-
tients from those with other disparate infectious diseases. Increased lauric acid concentrations were 
associated with severity of infection and death. Urine analyses could not discriminate between 
groups. Targeted metabolomics and machine learning algorithms facilitated the exploration of the 
metabolic alterations underlying COVID-19 infection, and to identify potential biomarkers for the 
diagnosis and prognosis of the disease. 
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1. Introduction 
Despite the lower pathogenicity of the Omicron variant, and the advances in vaccina-

tion in Western societies, the COVID-19 pandemic remains a global threat [1]. The total 
number of cases have risen from 300 million to more than 600 million worldwide between 
January and September 2022, and deaths have increased from approximately 5.5 million 
to 6.5 million. In addition, large sections of the population have not yet been vaccinated 
in low-income countries due to economic and logistical problems. Expert epidemiologists 
have opined that SARS-CoV-2 will continue to spread globally for many years to come 
[2]. Therefore, pursuit of lines of research includes the mechanisms-of-action of SARS-
CoV-2, the effects the infection has on the host's metabolism, the search for biomarkers for 
the diagnosis and prognosis of infection as well as the monitoring of disease evolution. 

 Viral infections cause major metabolic disturbances in the infected organism. Viruses 
need the host's metabolic machinery for the synthesis of their own nucleic acids, proteins, 
lipids, and carbohydrates, and to obtain energy for viral replication [3]. In addition, they 
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produce a strong viral immunological reaction, and may influence the gut host microbi-
ome [4]. Metabolic dysregulation has been reported in patients infected with Zika, Den-
gue, Chikungunya, respiratory syncytial virus, SARS-CoV-1, and SARS-CoV-2 [5-8]. Con-
versely, the presence of chronic diseases of metabolic origin can influence viral infection. 
Indeed, patients with type II diabetes mellitus, cardiovascular disease, obesity, or cancers 
are at increased risk of developing severe COVID-19 [9,10]. Metabolomic studies are being 
widely used to seek holistic understanding of pathological processes since it enables sim-
ultaneous analyses of hundreds, or thousands, of analytes in very limited volumes of bi-
ological sample. The interpretation of the metabolic data generated through machine 
learning algorithms provide insight into the disease. The most relevant metabolic altera-
tions are identified as are their interactions, as are the possible biomarkers and therapeutic 
targets [11]. Studies comparing the plasma metabolome of COVID-19-positive patients vs. 
healthy subjects have already been reported [12-14]. However, information on the speci-
ficity of the observed metabolic changes is scarce. For example, few studies have ad-
dressed the question of whether variations in circulating levels of the identified species 
are characteristic of COVID-19 infection or whether they may also be seen in other infec-
tious, or inflammatory, diseases [15].  

The present study used semi-directed metabolomics techniques and machine learn-
ing algorithms to analyze the concentrations of a broad panel of metabolites in the serum 
and urine of patients with COVID-19. The results were compared with those of healthy 
subjects, and patients with bacterial infectious diseases. Our aims were to evaluate the 
relationships between the alterations measured with the severity of the disease and 
comorbidities, and to identify potential biomarkers. 

2. Materials and Methods 
2.1. Study design and participants 

We conducted a post-hoc retrospective cohort study in 126 patients hospitalized for 
COVID-19 between March and October 2020 in Hospital Universitari de Sant Joan. Inclu-
sion criteria were: ≥18 years of age and to have a positive PCR result for COVID-19 ob-
tained within 24 h before the samples for the study were drawn. The exclusion criteria 
were: having a life expectancy ≤ 24 hours, impaired liver function, or pregnancy. We also 
tested samples from 45 COVID-19 negative patients hospitalized for bacterial infections. 
These samples, collected before the pandemic, belonged to a previous prospective study 
in patients with urinary catheter-related infection [16]. For the purposes of the present 
study, we selected a subgroup with an age and sex distribution to match, as closely as 
possible, the COVID-19 positive patients. As a control group, we analyzed samples from 
50 healthy volunteers who had no clinical or biochemical evidence of diabetes, cancer, 
renal failure, liver disease, or neurological disorders [17]. A serum sample was obtained 
from all participants and a urine sample from COVID positive and COVID negative pa-
tients. Urine from healthy volunteers were not available. All samples were stored in our 
Biobank at -80 °C until the time of analyses. We recorded clinical and demographic data 
and calculated the McCabe score as an index of disease severity [18], and the Charlson 
index to categorize patients' comorbidities [19]. This study was approved by the Comitè 
d'Etica i Investigació en Medicaments (Institutional Review Committee) of the Institut 
d'Investigació Sanitària Pere Virgili (CEIM Resolution 040/2018, modified on April 16, 
2020). 
2.2. Targeted metabolomics 

In all serum and urine samples we measured the concentrations of molecules in-
volved in the metabolism of amino acids, carbohydrates, cofactors, lipids, nucleotides, 
secondary metabolites, and xenobiotics. Metabolites were extracted, derivatized, and an-
alyzed by gas chromatography coupled to quadrupole time-of-flight mass spectrometry, 
as previously reported in detail [20]. Data from serum and urine metabolites are expressed 
as µM and ISRR/mmol creatinine, respectively. 
2.3. Statistical analyses 
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Statistical significance of changes in metabolite concentrations was determined by 
the Wilcoxon rank-sum test followed by appropriate false-discovery rate (FDR q<0.05) 
correction by the Benjamini-Hochberg method. All data from bar plots are shown as 
means and standard deviations. Some data are depicted with volcano plots and illustrate 
the representation of all measured metabolites, showing the mean log2 (fold change). A 
p-value below 0.05 was considered statistically significant. The Jupyter Notebook was 
used to create volcano plots, while dimensionality reduction techniques developed ma-
chine learning classifier algorithms to stratify the study groups. 
2.4. Dimensionality reduction and heatmap analysis 

Linear discriminant analysis (LDA) was used as a supervised method to reduce the 
dimension of the metabolomic dataset to focus on the different characteristics between 
groups. Moreover, heatmaps were employed to visualize the significant alterations be-
tween groups. 
2.5. Machine learning analysis 

Metabolomic structured and labeled datasets were analyzed with a gradient boost 
machine (GBM) classifier algorithm to find metabolites with the capacity to stratify among 
groups. First, the GBM algorithm was trained with 80 percent of the dataset, and then, the 
algorithm was tested with the remaining 20 percent rest of the dataset. Receiver operating 
characteristic (ROC) curves were employed to provide the performance of the classifica-
tion model, and the quality of the model prediction was estimated by measuring the area 
under the ROC curve (AUROC). The Shapley Additive exPlanation (SHAP) method was 
used to identify and select the variables with the higher predictive values of each model. 
This method is a way of determining the contribution (termed SHAP value) of each vari-
able to model outputs. The variables are classified according to their relative importance. 
We depicted the SHAP summary plots of the top 5 variables of the chosen prediction 
model. In plots, the further the value of a variable deviates from zero, the more impact it 
has on the model output. The scikit-learn package was used to develop tools for predictive 
data analysis [21]. 

3. Results 
3.1. Comparisons between the serum metabolic signatures of the different groups of participants 

The LDA was able to separate completely the metabolic signatures of COVID-19 pos-
itive and negative patients from the control group, and of COVID-19 positive patients 
from those with bacterial infections (Figure 1A). These results suggest that some metabolic 
alterations can be specific to COVID-19. Figure 1B shows the magnitude of change in the 
different metabolic pathways. When patients (either positive or negative) were compared 
with the control group, we observed an increase in the concentrations of metabolites re-
lated to carbohydrate metabolism pathways, such as pentose phosphate, pentose and glu-
curonate interconversion, nucleotide sugars, and ascorbate and aldarate. The metabolism 
of amino acids was also altered, with increasing or decreasing metabolites involved in 
cysteine, methionine, alanine, aspartate, glycine, serine, phenylalanine, tryptophane, ty-
rosine, valine, and leucine biosynthesis. Conversely, when we compared COVID-19 pos-
itive against negative patients, we observed that positive patients had higher concentra-
tions of metabolites involved in the pentose and glucuronate pathway and cysteine and 
methionine biosynthesis, while showing lower concentrations of metabolites involved in 
glycolysis, tricarboxylic acid cycle together with purine, pyrimidine, and phenylalanine 
biosynthesis. 
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Figure 1. Serum metabolic signature in COVID-19 positive, negative patients and healthy volun-
teers. (A) Linear discriminant analysis showed a complete separation between groups. (B) Repre-
sentation of the measured metabolites, showing the mean log2 (fold change). These graphs indicate, 
on the abscissa, the log2 fold change of the different metabolites between the two groups being are 
compared. The magnitude of change and the p-value are taken into account to construct the graphs. 
For example, a positive log2 fold change of 2 indicates a 4-fold increase in a given variable in one 
group versus another. Serum data were transformed to molar percentage, and then the false-dis-
covery rate (FDR q<0.05) was calculated. Each metabolite was represented in sky-blue (significant 
decrease), blue (significant increase), and white (non-significant) dots. p-values < 0.05 were consid-
ered significant (Wilcoxon-rank sum test). OXPHOS: oxidative phosphorylation; TCA: tricarboxylic 
acid cycle. 

3.2. Clinical characteristics associated with changes in the serum metabolome 
We studied the impact of comorbidities and factors related to disease severity on the 

concentrations of metabolites in patients with COVID-19 (Figure 2). Patients with cancer 
had lower levels of molecules associated with the carbohydrate, amino acid, and xenobi-
otic metabolism. Patients with type 2 diabetes mellitus showed lower levels of S-adeno-
sylhomocysteine. Moreover, we found that patients with chronic lung disease, neurolog-
ical diseases, and respiratory distress showed higher levels of metabolites involved in the 
metabolism of amino acids and carbohydrates. Patients with cardiovascular disease 
showed lower levels of metabolites associated with the metabolism of amino acids, carbo-
hydrates and lipids, and increased metabolites associated with the metabolism of nucleo-
tides and energy metabolism. Finally, we observed that patients admitted to the Intensive 
Care Unit showed decreased levels of metabolites related to carbohydrate metabolism, 
such as d-xylitol, maltose, and fructose, and increased levels of metabolites involved in 
amino acid and lipid metabolism, such as glycine, betaine, and dodecanoic (lauric) acid. 
Patients who died had higher concentrations of lauric acid than surviving patients. 
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Figure 2. Influence of clinical characteristics on serum metabolome in COVID-19-positive patients. 
Volcano plots of clinical characteristics where significant metabolites were found are identified, and 
colored according to metabolite categories: Metabolism of amino acids, carbohydrates, energy, li-
pids, nucleotides, and xenobiotics. Serum data were transformed to molar percentage, and then the 
false-discovery rate (FDR q<0.05) was calculated. P values < 0.05 were considered significant (Wil-
coxon-rank sum test). CKD: chronic kidney disease; CLUD: chronic lung disease; CND: chronic neu-
rological disease; CVD: cardiovascular disease; T2DM: type 2 diabetes mellitus; ICU: intensive care 
unit. 

3.3. Comparisons between the urine metabolic signatures of COVID-19 positive and negative 
patients 

LDA showed a high degree of overlap in the metabolic signatures of both groups 
(Figure 3A). The main alterations were produced in the biosynthesis of secondary metab-
olites and nucleotide metabolism, which decreased and increased respectively in positive 
patients compared to the negative patients (Figure 3B). Other alterations included pentose 
glucuronate interconversion, nucleotide sugars, ascorbate, and several amino acids (Fig-
ure 3C). Overall, the changes observed in urine reflected, to some extent, those found in 
serum, but the differences were much smaller and did not allow for segregation between 
groups. 
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Figure 3. Urinary metabolic signature in COVID-19 positive and negative patients. (A) Linear dis-
criminant analysis showed a considerable degree of overlapping between groups. (B) Variations in 
the metabolite group levels in COVID-19 positive and negative patients. (C) Representation of all 
measured metabolites, showing the mean log2 (fold change). These graphs indicate on the abscissa 
axis the log2 fold change of the different metabolites between the two groups being are compared. 
The magnitude of change and the p-value are taken into account to construct the graphs. For exam-
ple, a positive log2 fold change of 2 indicates a 4-fold increase in a given variable in one group versus 
another. Urine data were transformed to molar percentage, and then the false-discovery rate (FDR 
q<0.05) was calculated. Each metabolite was represented in sky-blue (significant decrease), blue (sig-
nificant increase), and white (non-significant) dots. p-values < 0.05 were considered significant (Wil-
coxon-rank sum test). Bar plots represent means and standard deviations. TCA: tricarboxylic acid 
cycle. 
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3.4.  Machine learning potential identified in COVID-19 biomarkers in serum, but not in urine 
The GBM algorithm identified as maltose, glyceric acid, mannonic acid, xylitol, and 

erythronic acid as the metabolites with the highest capacity to discriminate COVID-19 
positive patients from the control group (Figure 4A). These parameters were increased in 
positive patients except for glyceric acid, which was decreased. In contrast, when we com-
pared COVID-19 negative patients with the control group, we found that the top five me-
tabolites were phosphoric, mannonic, galacturonic, erythronic, and malic acids, all of 
which increased in COVID-19 negative patients, except for phosphoric acid, which de-
creased (Figure 4B). The algorithm was also employed to identify metabolites able to dis-
criminate between COVID-19 positive and negative patients, and found that serum suc-
cinate had a high diagnostic accuracy and ability to segregate both groups (Figure 4C). 
This parameter was decreased in COVID-19 patients. In contrast, none of the urinary pa-
rameters was able to distinguish between positive and negative patients (Figure 4D). 
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Figure 4. Machine learning shows the utility of serum, but not urine, in the diagnosis of COVID-19. 
SHapley Additive exPlanations (SHAP). Summary plots of the gradient boosting machine shows 
the top 5 metabolites discriminating between the different categories (left panels). The model accu-
racy was estimated by receiver operating characteristics plots, and the areas under the curve (AU-
ROC) were calculated (right panels). The type of variation (increase or decrease) is shown in 
heatmaps (bottom panels). (A) Serum metabolites, COVID-19 positive patients vs. control group. 
(B) Serum metabolites, COVID-19 negative patients vs. control group. (C) Serum metabolites, 
COVID-19 positive vs. negative patients. (D) Urinary metabolites, COVID-19 positive vs. negative 
patients. 

4. Discussion 
We observed striking differences between the metabolic signatures of healthy sub-

jects, COVID-19 positive patients, and COVID-19 negative patients.  The main metabolic 
pathways altered in the sera of COVID-19 patients were pentose glucuronate interconver-
sion, ascorbate and fructose metabolism, nucleotide sugar pathway, as well as nucleotide 
and amino acid metabolism. Further machine learning identified several individual pa-
rameters that distinguished positive from negative COVID-19 patients, and control sub-
jects. These results suggest a profound alteration of pathways related to energy metabo-
lism, and the synthesis of nucleotides and amino acids. These pathways are closely related 
and have numerous interactions between them (Figure 5). 
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Figure 5. Simplified scheme showing the alterations in the metabolic pathways studied when 
COVID-19 positive patients are compared with the control group (A) and with COVID-19 negative 
patients (B). Red color highlights uncreased metabolites, while blue color shows decreased metab-
olites. 3PG: 3-phosphoglycerate; α-KG: α-Ketoglutarate; Cit: Citrate; E-4-P: Erythrose-4-phosphate; 
F1,6P: Fructose-1,6-biphosphate; F6P: Fructose-6-phosphate; Fum: Fumarate; G3P: Gln: Glutamine; 
Glyceraldehyde-3-phosphate; LA: Lactate; Mal: Malate; OAA: Oxaloacetate; PYR: Pyruvate; Ri-5-P: 
Ribulose-5-phosphate; S-7-P: Sedoheptulose-7-phosphate; Suc: Succinate; X-5-P: Xylulose-5-phos-
phate;  

Overall, our results suggest an activation of the glycolytic cascade and an increase in 
glucose-6-phosphate concentrations; a metabolite that serves as a branching point be-
tween glycolysis, pentose phosphate pathway, pentose and glucuronate interconversion 
[22]. Viral infections redirect the metabolism of host cells to promote the synthesis of new 
viral particles. One of the key enzymes of viral replication is RNA-dependent RNA poly-
merase, which acts through the nucleotide addition cycle composed of multiple functional 
states involving conformational changes of both protein and nucleotides [23]. Viral tran-
scription obtains energy and substrates for the synthesis of structural particles from boost-
ing aerobic glycolysis and the pentose phosphate pathway [24]. The stimulation of aerobic 
glycolysis leads to an increase in the activity of hexokinase, the rate-limiting enzyme of 
glycolysis, and favoring the stimulation of the pentose phosphate pathway. The role of 
hexokinase is to convert glucose into glucose-6-phosphate, which is subsequently oxi-
dized by glucose-6-phosphate dehydrogenase (G6PD) in the pentose phosphate pathway 
to synthesize ribose-5-phosphate, required for nucleic acid synthesis, sugar phosphate 
precursors that are necessary for the synthesis of amino acids, and NADPH (Figure 5) 
[25,26]. Many viruses including the influenza virus, hepatitis C virus, and HIV-1 can up-
regulate the pentose phosphate pathway [27,28], and our results agree with the recent 
suggestion that SARS-CoV-2 may do the same [29]. 

Of all these metabolic pathways, the most clearly representative of COVID-19 posi-
tive patients is that of pentose and glucuronate interconversion, which shows a great in-
crease relative to negative patients, and the control group. This is a detoxification pathway 
in which d-glucuronic acid binds to hydroxyl, or amino groups of toxic substances under 
the catalysis of UDP-glucuronosyltransferase to increase water solubility and allow their 
release within bile, or urine [30]. Our results are novel in that very little has been been 
published on the alterations in this pathway in COVID-19 patients. However, recent stud-
ies have linked an increase in the pentose glucuronate interconversion with alterations in 
the microbiome of patients with mouth infections [31,32]. Further, pharmacological stud-
ies have reported that the effects of some anti-inflammatory agents are mediated through 
the modulation of this metabolic pathway in humans and experimental animals [33,34]. 

We sought to assess if there were differences in metabolite levels in COVID-19 pa-
tients based on their comorbidities, and their severity. In our opinion, the most relevant 
results were those referring to the severity of the disease. Volcano plots showed that pa-
tients who required intensive care and those who died, had had higher serum concentra-
tions of lauric acid. Ingested lauric acid from oils is transformed by the human body into 
laurate-monoglyceride that inactivates lipid-coated viruses by binding to the viral enve-
lope, thereby preventing the attachment and entry into the host cells [35,36]. Evidence has 
also been reported suggesting that this compound disintegrates the viral envelope and 
kills the virus [37]. Our results, therefore, may seem counterintuitive, since we have ob-
served that the most severe patients had higher concentrations of lauric acid. One possible 
explanation is that this compound does not exert this virucidal function when it is not 
bound to glycerol. In this case, higher concentrations of free lauric acid could be associated 
with lower concentrations of laurate-monoglyceride. Another explanation is that the lev-
els of lauric acid are increased to synthesize more laurate monoglyceride in order to try to 
counteract the viral infection. In any case, this opens an interesting line of research on the 
relationships between lauric acid and the severity of COVID-19. In addition, patients who 
needed intensive care had lower xylitol concentrations than those who did not. Xylitol is 
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a product of pentose and glucoronate interconversion pathway and has inflammatory, 
antiglycemic, antiviral, and antibacterial properties in lung infections [38]. Xylitol has 
been reported to decrease the concentration of salts in the airway surface liquid lining the 
interior of the lungs, improving the antibody activity [38]. An in vitro study showed that 
this compound has anti-inflammatory properties. Xylitol-treated macrophages had 10 
times less adhesion capacity than control subjects and lower levels of cell adhesion mole-
cules; important because cell adhesion is a crucial step in the pulmonary inflammatory 
response [39]. Reports have highlighted that the dietetic administration of xylitol reduces 
the viral load in mice infected with the human respiratory syncytial virus [40] or the in-
fluenza A virus infection [41]. 

In our study, the application of artificial intelligence algorithms helped distinguish 
the individual metabolites that have the greatest ability to discriminate between the dif-
ferent study groups, and help identify potential biomarkers. An increase in maltose con-
centrations was the alteration with the best ability to discriminate between patients with 
COVID-19 and the control group. A decrease in succinate was the metabolite with the best 
ability to discriminate between positive and negative COVID-19 patients. Xylitol, glyceric, 
mannonic, and erythronic acids had similar power of discrimination as maltose. These 
results are not easy to explain. Maltose, mannonic and erythronic acids are products of 
plant metabolism and, although they are ingested in the diet, they are not synthesized in 
relevant amounts by the human body. Perhaps the explanation of why these metabolites 
have altered concentrations is related to the effects of infection on the gut microbiota. In-
deed, the existence of a gut-lung axis has been postulated, with implications in human 
pathology,  and that are reflected in changes in the circulating concentrations of metabo-
lites [42]. Dysbiosis in gut microbiota is associated with lung disorders and respiratory 
infections [43]. Depletion of certain bacteria within the gut microbiota due to antibiotic 
intake influence lung diseases [44] and conversely, changes in lung microbes influence the 
composition of gut microbiota [45]. Several studies reported that changes in the serum 
levels of maltose, mannose, succinic acid, and erythronic acid are associated with changes 
in gastrointestinal microbiome [46-50]. Moreover, a recent multi-omics study showed 
multiple gut microbe-metabolite-cytokine interrelationships in COVID-19 [51]. Of note is 
that changes in the microbiome have been associated with alterations in the levels of pen-
tose glucuronate interconversion metabolites [52-54]. 

5. Conclusions 
Irrespective of the cause of these metabolic alterations, we have identified several 

potential biomarkers of COVID-19. Alterations in serum maltose, mannonic acid, xylitol, 
or glyceric acid segregate positive patients from the control group with high diagnostic 
accuracy, while succinic acid segregates positive patients from those with infectious dis-
eases of other origin. These parameters therefore could be good markers for the diagnosis 
of COVID-19. Conversely, an increase in the concentration of lauric acid could be a marker 
for the prognosis of the disease. Since urine samples are relatively easy to obtain, labora-
tory measurements could be made in order to identify urinary biomarkers. However, alt-
hough the changes in serum concentrations of metabolites are reflected in the urine, they 
are small and do not provide us with effective indices for the nuanced evaluation of the 
disease. Semi-targeted metabolomics interpreted using machine learning algorithms has 
allowed us to delve into the metabolic alterations underlying COVID-19 and identify po-
tential biomarkers for its diagnosis and prognosis. Our results open the possibility of new 
research on treatment against SARS CoV2, such as the use of xylitol and lauric acid.. 
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