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Abstract: The dynamics of suspended sediment involves inherent non-linearity and complexity as 

a result of the presence of both spatial variability of the basin characteristics and temporal climatic 

patterns. As a result of this complexity, the conventional sediment rating curve (SRC) and other 

empirical methods produce inaccurate predictions. Deep neural networks (DNNs) have emerged as 

one of the advanced modelling techniques capable of addressing inherent non-linearity in hydro-

logical processes over the last few decades. DNN algorithms are used to perform predictive analysis 

and investigate the interdependencies among the most pivotal water quantity and quality parame-

ters i.e., discharge, suspended sediment concentration (SSC), and turbidity. In this study, the Long 

short-term memory (LSTM) algorithm of DNNs is used to model the discharge-suspended sediment 

relationship for the Stony Clove Creek. The simulations were run using primary data on discharge, 

SSC and turbidity. For the development of the DNN models and examining the effects of input 

vectors, combinations of different input vectors (namely discharge, and SSC) for the current and 

previous days are considered. Furthermore, a suitable modeling approach with an appropriate 

model input structure is suggested based on model performance indices for the training and testing 

phases. The performance of developed models is assessed using statistical indices such as root mean 

square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). Statistically, 

the performance of DNN-based models in simulating the daily SSC performed well with observed 

sediment concentration series data. The study demonstrates the suitability of the DNN approach 

for simulation and estimation of daily SSC, opening up new research avenues for applying hybrid 

soft computing models in hydrology. 
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1. Introduction 

Sediment-laden rivers and streams pose significant environmental and economic 

challenges [1]. The delivery of suspended sediment concentration (SSC) by a river has 

significant implications for its channel morphology, material fluxes, geochemical cycling, 

water quality, and the biotic and aquatic ecosystems that rely on the river. Furthermore, 

fine sediment, which has been identified as an important vector for transporting nutrients 

and contaminants, has a significant influence on river geomorphological and biological 

processes [2]. Because of the potential effects on biotic and aquatic habitats, as well as 

other land and water management processes, accurate estimation and long short-term 

forecasting of sediment transported by rivers are critical [3]. Streamflow has been identi-

fied as the primary explanatory variable for SSC although it is not always directly related 
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to SSC and that the relationship between the two is known to vary greatly [4–6]. As a 

result, this variation is caused primarily by the complexity of the sediment concentration 

transported hydrological phenomenon as a result of several ambiguous parameters such 

as spatial variability of basin characteristics, river discharge patterns, and inherent non-

linearity in hydro-meteorological parameters [7]. Other considerations include sediment 

availability, seasonality, and the location of the source within the watershed [8]. Signifi-

cant variation in SSC may also result from a hysteresis effect with streamflow. The varia-

tion in streamflow, which provides vital information for the timing and changes in sedi-

ment concentrations, has been widely used in the development of SSC prediction models. 

Turbidity, SSC, and TSS are inextricably linked because they are all measures of sus-

pended sediment in streams [1]. 

Physical models are built on simplified partial differential equations of flow and sed-

iment. The models also rely on some unrealistic simplifying assumptions for flow and 

empirical relationships for rainfall and flow erosive effects [9]. These are extremely com-

plex and sophisticated models, with some components representing physical processes. 

According to previous studies these models theoretically consider the effects of spatial 

variation in catchment properties as well as the uneven distribution of precipitation and 

evapotranspiration [10,11]. Process-oriented distributed models are impractical because 

most of the variables (for example, precipitation) are not currently measurable for much 

of the world. They have numerous drawbacks [12]. Because analytical methods make sim-

ple assumptions, numerical modeling is more applicable than analytical modeling [13]. 

However, in some cases, numerical studies of river-suspended sediment transport in ac-

tual conditions are impossible [14]. As a result, the feasibility of data-driven models as 

alternative methodologies for predicting SSC is commonly used. Data-driven (DD) mod-

els have an advantage over deterministic models in that they require fewer data and are 

better suited for forecasting. Kisi, 2012 argued that the ambiguity surrounding the internal 

structure of DD models was analogous to a 'black box' approach developed through a 

trial-and-error process. Despite their black-box nature, DD models are adaptable when it 

comes to capturing the nonlinearity of streamflow-sediment yield processes [9]. 

Deep Neural Network (DNN) has emerged as a popular DD modeling technique due 

to its ability to self-adapt, recognize patterns, and capture complex non-linear behavior 

between input and output parameters [15]. There are numerous examples of successful 

Deep Neural Networks (DNN) applications in the field of water resources engineering. 

These include the prediction of variables such as sediment load [16–22], river flows [23–

28], runoff [29–33], flood frequency analysis [34,35], flood forecasting [36,37] and stream-

flow data infilling procedures [38,39]. 

Joshi et al., 2016 used different combinations of input vectors (i.e., discharge, sedi-

ment, and stage) to develop a robust network model structure for simulating the dis-

charge-sediment and stage-discharge-sediment relationships provide a more accurate es-

timate of SSC for the Bhagirathi River [3]. The results of developed DNN model simula-

tions were compared with the traditional conventional sediment rating curve (SRC) 

method in their study, and performance was tested using statistical parameters. In terms 

of the selected performance indices, DNN models outperformed the SRC method in sim-

ulating the daily SSC. These findings corroborate researchers' claims, such as Cigizoglu 

and Kisi, 2005, about using the feed-forward back propagation (FFBP) algorithm, sedi-

ment concentration, and streamflow data as inputs for daily or monthly SSC estimation 

and forecasting [40–42]. However, it has been reported that not enough studies have been 

conducted to evaluate the best performance of training algorithms within DNN modeling 

techniques [15]. This justification emphasizes the significance of training algorithm per-

formance evaluation, as selecting an appropriate algorithm is as important as network 

architecture and geometry. The use of the neural network regression model in this study 

will aid in the introduction of a mechanism for integrating predictive models into the 

cloud platform, ultimately benefiting the research community. 

This study aims to demystify the relationships between SSC and river discharge for 

the Stony Clove Creek using deep neural network algorithms in line with the above 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2022                   doi:10.20944/preprints202211.0437.v1

https://doi.org/10.20944/preprints202211.0437.v1


 

submissions. The specific objectives of the study are to analyze the hidden patterns in the 

distribution of river discharge, SSC, and turbidity series; to evaluate the performance of 

long short-term memory (LSTM) algorithms in predicting SSC in river flow; and perform 

sensitivity analysis and construct predictive models to forecast the discharge, SSC/turbid-

ity relationship. 

2. Materials and Methods 

2.1. Study Location and Data Source 

The Stony Clove Creek watershed is located in the central Catskill Mountain region 

of southeast New York State (Figure 1). The latitude and longitude of the study site are 

42°07'40.6" N, 74°15'47.7" W with the coordinate system “North American Datum of 1983”, 

Greene County, NY, Hydrologic Unit 02020006, on the right bank at the downstream side 

of bridge on Janssen Road in Lanesville. It has a 23.96 km2 drainage area and the datum 

of gage is 390.14 m above NAVD of 1988, from the topographic map. The Stony Clove 

Creek flows from its headwaters at Notch Lake to its confluence with the Esopus Creek in 

the village of Phoenicia. Annual stream discharge within this part of North America gen-

erally peaks during spring snowmelt, but large rainstorms can cause rapid increases in 

discharge of local streams throughout the year due to the steep slopes and thin soils of the 

Catskill Mountains.  

The Stony Clove Creek is a tributary of the Esopus Creek, eventually emptying into 

the Ashokan Reservoir, which supplies approximately 10% of NYC’s drinking water 

(GCSWCD) [43]. The geology of the Catskill Mountains exerts a clear influence on the 

landscape, valley and stream channel morphology. The U.S. Geological Survey maintains 

a streamflow-gauging station on Stony Clove Creek (Gauge 1362336) that provides a con-

tinuous discharge record, SSC, and turbidity. 
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Figure 1. Study Location showing streamflow-gauging station on Stony Clove Creek. 

The entire workflow of the Exploratory Data Analysis (EDA) and LSTM prediction 

tasks are divided into three distinct stages. In the first step, data collection from the USGS 

web portal, an exploratory analysis of the water quality variables, and feature engineering 

to transform the data for training/testing the LSTM algorithm is conducted. Variables are 

listed in Table 1. Activities in the first step are categorized as the transformer. After in-

vestigating the dataset and performing data transformation on the variables, LSTM neural 

network is trained using the data prepared in the first step to perform predictive analysis. 

LSTM neural networks regression model is assessed using several error matrices (e.g., 

Root Mean Square Error (RMSE), mean absolute error (MAE), and coefficient of determi-

nation (R2)). These activities are categorized as an estimator. The LSTM algorithm is tuned 

and optimized by altering the hyperparameters to reduce the errors in the prediction and 

achieve satisfactory performance. In the third step namely the evaluator, the model is de-

ployed to predict the SSC/Turbidity for a new set of target variables. Model performance 

is further improved through iterative incorporation and validation of the input variables. 

The LSTM workflow of predicting the GSI performance indicator is illustrated in Figure 

2. 
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Figure 2. Pipeline of EDA and LSTM prediction tasks shows how the activities are linked from data 

pre-processing to model deployment. The steps are further classified into three groups: transformer, 

estimator, and evaluator. 

In the first step of the workflow in Figure 2 the time series of the discharge, SSC, and 

turbidity variables are retrieved from the USGS National Water Information System: Web 

Interface [44,45]. The range of the time series data for all the variables was different due 

to the various recorded duration. The range of the data used in this research is from 

2/3/2020 to 9/30/2021, with observed data of about 19 months. The time-series data has 15 

minutes interval between each recording. Historically, the extreme values for maximum 

and minimum discharges for the recorded period are equal to 48.14 m³/s on Dec. 25, 2020, 

and 0.045 m³/s on Oct. 22, 23, 2017, Sept. 23, 25, 28, 29, 30, Oct. 1, 2, 2019, respectively. 

Table 1. List of the variables used for EDA and predictive analysis with LSTM model. 

SW Parameters Unit Descriptions 

Suspended Sediment Con-

centration  

mg/L The ratio of the dry weight of the sediment in a water-

sediment mixture (obtained from a stream or other 

body of water) to the total weight of the mixture. 

Turbidity NTU Water quality parameter that refers to how clear the 

water is 

Discharge m3/s Quantity of stream flow  

2.2. Multivariate Exploratory Data Analysis 

A detailed Exploratory Data Analysis (EDA) is performed in Figure 2 activity 2 to 

understand the attributes and characteristics of the multivariate dataset. Exploratory Data 

Analysis (EDA) is a critical step in performing preliminary data investigations to obtain 

satisfactory LSTM model performance. Multiple visual techniques and numerical indices 

are used to investigate the internal temporal distribution of all three variables of dis-

charge, SSC, and turbidity. EDA is the process of performing an initial investigation of 

input variables to understand the hidden pattern of the variables' distribution. EDA is 

further subdivided into activities. They are known as descriptive statistics, detecting out-

liers/extreme values, and normality check. Descriptive statistics is an excellent method for 

determining the distribution of the values of input variables based on the number of data 

points, mean, standard deviation, percentiles, interquartile range, and range. Table 2 dis-

plays full multivariate descriptive statistics. Histograms with density plots are used as a 

visual representation of normality in the variables, and Pearson's coefficient of skewness 

(PCS) is used as a numerical indicator of skewness.  
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Table 2. Descriptive Statistics of the water quantity and quality variables. 

 
Count Mean Std Min 25% 50% 75% Max 

Turbidity 57201 6.04 26.19 0.00 1.40 2.40 4.20 1310 

SSC 57230 15.52 212.93 0.00 2.90 4.80 8.20 19400 

Discharge 58051 0.77 1.59 0.00 0.24 0.46 0.83 48.14 

 

 

Numerical interpolation is used to make the dataset consistent by filling missing val-

ues with the linear method between the first and last available observation for each non-

value duration in the dataset. From the total of about 57000 historical observations, 850, 

821, and 959 missing values are replaced with interpolations for turbidity, SSC, and dis-

charge, respectively. 

Figure 3 depicts a visual representation of the distribution of the input variables, in-

dicating that the overall non-normality is high. All variables exhibit significant non-nor-

mality and skewness. Pearson's Correlation Coefficient (PCS) values of turbidity and SSC 

related to discharge and skewness of all three variables are indicated in Figure 3 as a nu-

merical measure of non-normality/skewness. 

 

   
(a) (b) (c) 

Figure 3. Distribution of the values of input variables, turbidity (a), SSC (b), and discharge (c)using 

histogram and density plot. The legend of each plot shows the skewness values. 

Figure 4 illustrates that the linear connection between turbidity and discharge varia-

bles is higher than the linear relationship between SSC and discharge values. Lower val-

ues of the linear coefficients to delineate the overall non-linearity among several variables 

is high. The direction of the linear relationships is found to be positive in both turbidity 

and SSC with more weight on turbidity relative to discharge. 
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Figure 4. Bivariate correlation coefficients among the input variables represented by the correlation 

heatmap. 

2.3. Feature Engineering  

Following a successful preliminary investigation of the dataset using EDA, Feature 

Engineering (FE) is performed. Without a successful FE, the LSTM method may not pro-

duce satisfactory results with minimal error. Without a successful examination of the da-

taset, adequate optimization via iterative gradient descent cannot be achieved. As a result, 

extensive feature engineering is performed to transform the variables best suited for the 

LSTM learning algorithm. In this study, FE is used to perform imputation, data transfor-

mation, data standardization, and dataset segmentation into training, testing, and valida-

tion sets. Imputation is used to fill in the null values to make the entire dataset consistent. 

Sensor malfunctions resulted in null values or observations in every series. 

These cells in the dataset are imputed with the values of the blank cell's nearest neigh-

bors. However, due to the reduction in dataset size caused by the exclusion of observa-

tions, it is used in this study. Following successful imputation with variable median val-

ues, the distribution of the variable series is visually and numerically checked to confirm 

normality. The Pearson Coefficient of Skewness (PCR) is used to assess the normality of 

the variables. Because the distribution of discharge and water level values is highly 

skewed to the left, indicating a significant non-normality, neural network regression al-

gorithms without appropriate data transformation do not contribute to satisfactory out-

comes with good optimization. 

Data normalization is a process of preparing the values of each variable for further 

analysis and implementing the DNN algorithm. The normalization process includes 

rescaling all the variables to the values that have the mean of zero and variance one. All 

the input variables’ distribution are then converted to the bell-shaped normal distribution 

curve. As the variable considered in this study is the continuous independent variable, 

the normalization of the variable is crucial for training/testing the neural network algo-

rithm.  

 

All the values in the discharge series are normalized to prepare the training dataset 

for the LSTM model (Equation Error! Reference source not found.). 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 
 (Equation Er-

ror! Reference 
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source not 

found.) 

 

 X denotes the variable of interest (e.g., discharge, turbidity, and SSC) and subscript 

norm, max and min represent the normalized variable, maximum and minimum value of 

the values of the variable. The entire normalized variable series is divided into two sec-

tions i.e., a training set that is used to train the model and a testing set that is used to 

evaluate the model. In this study the training and testing sets consist of 70 percent and 30 

percent of the dataset, which is 58021, 38681, and 19340 number of observations, training 

observations, testing observations points. 

 

2.4. Long Short-term Memory (LSTM) Recurrent Neural  

In deep learning forecasting, where variables depend on prior historical knowledge 

throughout the data series, LSTM has proven to be a particularly popular technique for 

handling time series data. The long-term correlations and relationships between the vari-

ables can be recognized by utilizing LSTM. Because of the decaying error backflow, recur-

rent backpropagation requires a significant amount of computational time and effort to 

learn to store long-term information. Hence, the concept of the vanishing gradient prob-

lem in recognizing long-term dependency of Recurrent Neural Network (RNN) was in-

troduced [42,46]. The main element of processing and retaining long-term information is 

LSTM feedback connections, and this characteristic distinguishes it from the conventional 

feedforward neural network. Both long-term memory (c[t-1]) and short-term memory 

(h[t-1]) are processed in a typical LSTM algorithm through the utilization of multiple gates 

to filter the information. For an unchanged flow of gradients, forget and update gates up-

date the memory cell state. Three gates i.e., input gate ig, forgot gate fg, output gate og and 

cell state handle the information flow by writing, deleting, preserving past information, 

and reading respectively (Figure 5). As a result, LSTM can memorize data at various lead 

times, making it suited for time series prediction inside a specific window. In forget gate, 

long-term information enters and passes through a filtration where unnecessary infor-

mation is discarded. The forget gate filters out unnecessary data by using the sigmoid 

activation function where the range of the function is 0 (gate close) and 1 (gate open). 

Input gate filter and quantify the significance of new data coming as input to the cell. 

Similar to the forget fate, input gates use binary activation functions to filter out infor-

mation and control the flow of both long- and short-term information. The output gates 

regulate the value of the upcoming hidden state which is a function of the information on 

previous inputs. 
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Figure 5. Schematic representation of an LSTM architecture. 

In this research, a neural network with one LSTM hidden unit accompanied by a 

dense layer connecting the LSTM target output at the last time-step (t-1) to a single output 

neuron with non-linear activation function. The LSTM model was trained using the deep 

learning library, Keras in Python, the ReLU activation function, and  the RMSE, MAE, 

and R2 function [47–50]. To predict the discharge variable of a time-step in the future e.g., 

daily/weekly, values of the variables at the previous time-steps are used. Hyperparame-

ters are tuned to maximize the performance of the LSTM model through an iterative trial-

and-error approach. In this study, Keras, a python library that offers a space search for 

machine learning algorithms is used to find the best combination of the hyperparameters 

[51]. Considered hyperparameter of the LSTM algorithm in this study is the size of epoch 

and batch and number of neurons.  

2.5. Time-series dataset 

The initial dataset has 15-minutes interval for all the variables and the time-series 

analysis by LSTM conducted on 15-minutes for prediction. Among three variables in the 

dataset, turbidity and SSC were utilized in discharge prediction. To study the sensitivity 

of discharge prediction to SSC alone, in the first round of analysis (scenario one), only SSC 

was considered in discharge prediction as well as observed discharge values. In the sec-

ond round of analysis (scenario two) both turbidity and SSC were considered in the pre-

diction of discharge variable. The resultant prediction can indicate the importance and 

sensitivity of prediction based on the resolution of the input data. The discharge values 

were predicted by only SSC variables for the first round of models. The second round of 

model consists of SSC and turbidity as the features utilized to predict discharge. The com-

parison between these two scenarios demystifies the improvement of discharge prediction 

considering turbidity as a second feature added to SSC in further section. 

 

2.6. Model Evaluation using Loss Functions 

In the model evaluation step in the activity 5 in Figure 2, the performance of the 

LSTM model is evaluated using the top three standard error matrices e.g., RMSE, MAE, 

and R2. Error matrices provide numeric values as the model performance indicator by 

comparing the observed and predicted values. The RMSE value is used to evaluate the 

LSTM model in showing the model performance improvement. The RMSE as a function 

is more sensitive to significant errors as the squared term multiplies greater errors 
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exponentially more than smaller ones. The lowest RMSE score corresponds to the best 

predictive accuracy. The better the model fits the data, the closer the R2 value is to 1.  

 

3. Results and Discussion 

This LSTM neural network is used to predict the multivariate turbidity, SSC, and 

discharge variables based on the previous time series data. Several lead time durations 

selected for both time-series dataset (15-minutes and daily dataset). The prediction values 

of 1, 2, 3, 4, 5, 6, and 7 lead time chosen for both scenarios with the fixed time lag of 30 

previous steps to be consistent with various LSTM models. Predicted values are compared 

to the observed dataset to quantify the error matrices. The RMSE, MAE, and R2 functions 

are used to estimate the error from the predicted discharge, SSC, and turbidity variables. 

The model performance is improved by an increase in the number of epochs. Error matri-

ces are obtained through multiple models runs to demonstrate the linkage between the 

model performance and the lead times.  

3.1. Predicted and Observed Water Quantity and Quality variables 

The output from the LSTM algorithm is compared to the observed values of the dis-

charge, SCC, and turbidity variables through visual representation in Figure 6. Both the 

observed and predicted values of the discharge variable are plotted for the entire time 

series against the number of observations (data points). The overall distribution of the 

predicted values of discharge variable is approximately identical to the observed data 

providing a satisfactory performance of the LSTM algorithm. Three error metrics recorded 

for all variables and full-time series showed that LSTM performed well in case of both 

train/test sets. In Figure 6, the green portion of the plot illustrates the training portion of 

the dataset whereas the red portion shows the testing portion, and dashed lines with blue 

color show the observed data. 

 

  
(a) (b) 

  
(c) (d) 
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Figure 6. Distribution of observed value from the gage records (dashed blue lines) and predicted 

values from LSTM model for the discharge variable, considering SSC, lead time of 1 (a), considering 

SSC, lead time of 7 (b), considering turbidity and SSC, lead time 

 

3.2. Model Evaluation Matrices and Improvement 

The performance of the LSTM neural network is evaluated using three error matrices 

e.g., RMSE, MAE, and R2. The performance of the model was also evaluated and improved 

by increasing the number of iterations i.e., epoch in the neural network. The value of MAE 

is observed with an increase in the number of epochs in Figure 7, where MAE value is the 

indicator of the model performance. The number of epochs is increased up to 250 to eval-

uate the performance variation. The RMSE and MAE values are found to decrease from 

120.25 and 42.14 to 110.48 and 25.40, respectively by increasing the epoch number from 50 

to 100 for discharge prediction based on only SSC variable (scenario one), which indicates 

satisfactory performance in the LSTM algorithm. Furthermore, the RMSE and MAE value 

is found to decrease from 9.40 and 3.44 to 8.94 and 3.17, respectively by increasing the 

epoch number from 50 to 100 for discharge prediction based on both turbidity and SSC 

variable (scenario two), which indicates satisfactory performance in the LSTM algorithm. 

On the other hand, the increase in epoch number from 100 to 250 revealed the opposite 

trend, when discharge predictions for both scenarios are considered. In the case of the first 

scenario, the RMSE and MAE values increased to 110.81 and 34.67 respectively. Taking 

into consideration scenario two, there was an increase in RMSE value to 9.18 and a de-

crease in MAE value to 2.62. 

The model performance increases significantly from the very beginning of the iteration 

for both the train and test scenarios. The trend of a decrease in the RMSE values reaches a 

near-steady state after 20 epochs. A local decrease in the performance i.e., an increase in 

the RMSE value can be seen after 20 epochs. Furthermore, the performance variation with 

the change in the lead time considering the error metrics for both scenarios studied. The 

comparative study results for RMSE, MAE, and R2 are represented in Figure 8 and Figure 

9. 

 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 7. The increase in the number of epochs for the train and test set, discharge prediction con-

sidering SSC for, 50 (a), 100 (b), and 250 (c) epoch numbers, and discharge prediction considering 

both turbidity and SSC for, 50 (d), 100 (e), and 250 (f) epoch numbers. 

 

Figure 8. Model performance evaluation for the entire time series of scenario one. 

 

 

Figure 9. Model performance evaluation for the entire time series of scenario two. 

Error matrices e.g., RMSE, MAE, and R2 are documented for several lead times. Lead 

times are pivotal parameters of LSTM algorithm towards model performance. Lead time 

values are for each step forward in time series. So, the lead time of 1 equal to 15-minutes 

and the lead time of 4 equals to 1-hour. The values of RMSE and MAE increases with the 

increase in the lead times whereas the R2 decreases showing the degradation in the model 

performance with an increase in the lead times for the second scenario. There was much 

variation in the increasing and decreasing trend of the RMSE, MAE, and R2 in the first 

scenario which made it harder to distinguish the lead time importance in the prediction 

of discharge variable only based on SSC. Therefore, the selection of the lead times should 

be based on the model performance and necessity. An R2 value of 1 denotes a perfect fit 

between the observed and predicted values, with no error in LSTM prediction. The R2 

value for all models is within the range of 0.91-0.99, establishing an overall satisfactory 
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performance from LSTM model prediction. The best prediction with minimum error is 

associated with a discharge prediction based on both turbidity and SSC at a lead time of 

1, with a corresponding R2 value of 0.99.  

 

 

4. Conclusion 

Many rivers are potential sources of SSC; therefore, an accurate estimate of sediment 

concentration is critical in understanding its relationship with water discharge for water 

resource planning and management. In this study, DNN algorithms are used to perform 

predictive analysis and investigate the interdependencies among the most pivotal water 

quantity and quality parameters i.e., discharge, SSC, and turbidity for the Stony Clove 

Creek. For simulation, primary data of discharge, SSC, and turbidity for the period from 

2/3/2020 to 9/30/2021 are used. Combinations of various input vectors (namely SSC, dis-

charge, and turbidity) are considered for model development and examining the effects 

of input vectors. 

Consequently, a viable modelling strategy with acceptable model input structure is 

proposed for simulation of SSC based on several model performance indices. The LSTM 

technique was used to execute different model experiments in this study with two main 

scenarios to study the feature importance of SSC and turbidity. 15-minutes times-series 

values of discharge, SSC, and turbidity were utilized as input, and model simulations 

were run using a distinct set of input combinations. RMSE, MAE, and R2 were used to test 

the performance of the LSTM model simulations.  

In general, hysteresis generated by LSTM simulations captures nonlinear dynamics, 

generalize the structure of the entire data set, and perform well with observed sediment 

concentration series data. As a result, the study suggests that using soft computing tech-

niques such as LSTM technique can provide precise estimates of SSC. The study shows 

that the LSTM neural network regression techniques are highly effective for simulating 

and predicting multivariate time series. 

As a result, the study opens up new research avenues for enhancing other DNN al-

gorithms and hybrid soft computing techniques for short-/long-term prediction of SSCs 

in water discharge. This research will be especially useful in managing water resources 

projects in both upstream and downstream areas of the southeast New York region in 

terms of sediment flux. 

 

 

Author Contributions: Conceptualization, W.A, M.K. and M.A.A.M; methodology, W.A, M.K. and 

M.A.A.M; software, M.K. and M.A.A.M; validation, W.A, M.K. and H.T.; formal analysis, M.K. and 

M.A.A.M; investigation, W.A. H.T.; resources, W.A, J.M. and M.K.; data curation, W.A and 

M.A.A.M; writing—original draft preparation, W.A, M.K., J.M. and M.A.A.M.; writing—review and 

editing, W.A, M.K., H.T. and H.S.; visualization, H.T. M.K.; supervision, H.T. and H.S.; project ad-

ministration, W.A. H.S.; funding acquisition, H.S.; All authors have read and agreed to the pub-

lished version of the manuscript. 

Funding: This research received no external funding.  

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: The code and data to reproduce our results is available at [52], 

https://github.com/MShivaKh/SuspendedSediment.git. 

Acknowledgments: This study was supported by the Computer Science program in the School of 

Computing and Analytics at Northern Kentucky University and the Civil Engineering department 

of University of Memphis. 

Conflicts of Interest: The authors declare no conflict of interest.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2022                   doi:10.20944/preprints202211.0437.v1

https://github.com/MShivaKh/SuspendedSediment.git
https://doi.org/10.20944/preprints202211.0437.v1


 

 

 

References 

1.  USGS Surface-Water Data for Minnesota Available online: https://waterdata.usgs.gov/mn/nwis/sw (accessed on 

17 November 2022). 

2.  Caroni, E.; Singh, V.P.; Ubertini, L. Rainfall-Runoff-Sediment Yield Relation by Stochastic Modelling. Hydrol. Sci. 

J. 1984, 29, 203–218, doi:10.1080/02626668409490934. 

3.  Joshi, R.; Kumar, K.; Adhikari, V.P.S. Modelling Suspended Sediment Concentration Using Artificial Neural Net-

works for Gangotri Glacier. Hydrol. Process. 2016, 30, 1354–1366, doi:10.1002/hyp.10723. 

4.  Tornes, L.H. Suspended Sediment in Minnesota Streams; Water-Resources Investigations Report; U.S. Geological Sur-

vey: St. Paul, MN, 1986; Vol. 85–4312;. 

5.  Tornes, L.H.; Brigham, M.E.; Lorenz, D.L. Nutrients, Suspended Sediment, and Pesticides in Streams in the Red River of 

the North Basin, Minnesota, North Dakota, and South Dakota, 1993-95; Water-Resources Investigations Report; U.S. 

Geological Survey: Mounds View, MN, 1997; Vol. 97–4053;. 

6.  Blanchard, R.A.; Ellison, C.A.; Galloway, J.M. Sediment Concentrations, Loads, and Particle-Size Distributions in 

the Red River of the North and Selected Tributaries near Fargo, North Dakota, during the 2010 Spring High-Flow 

Event. 36. 

7.  Fleming, G.; Harrison, A.; Fleming, J.; Kite, G.; Chitale, S.; Herbertson, J.; Collins, M. Discussion. Design Curves 

for Suspended Load Estimation. Proc. Inst. Civ. Eng. 1970, 46, 81–92, doi:10.1680/iicep.1970.6984. 

8.  Knighton, D. Fluvial Forms and Processes: A New Perspective; 2nd ed.; Routledge: London, 1998; ISBN 978-0-203-

78466-2. 

9.  Kisi, O. Modeling Discharge-Suspended Sediment Relationship Using Least Square Support Vector Machine. J. 

Hydrol. 2012, 456–457, 110–120, doi:10.1016/j.jhydrol.2012.06.019. 

10.  Wicks, J.M.; Bathurst, J.C. SHESED: A Physically Based, Distributed Erosion and Sediment Yield Component for 

the SHE Hydrological Modelling System. J. Hydrol. 1996, 175, 213–238, doi:10.1016/S0022-1694(96)80012-6. 

11.  Refsgaard, J.C. Parameterisation, Calibration and Validation of Distributed Hydrological Models. J. Hydrol. 1997, 

198, 69–97, doi:10.1016/S0022-1694(96)03329-X. 

12.  Tayfur, G.; Guldal, V. Artificial Neural Networks for Estimating Daily Total Suspended Sediment in Natural 

Streams. Hydrol. Res. 2006, 37, 69–79, doi:10.2166/nh.2006.0006. 

13.  Bor, A. Numerical Modeling of Unsteady and Non-Equilibrium Sediment Transport in Rivers | PDF | Fluid Dy-

namics | Water Resources Available online: https://www.scribd.com/document/143503869/t-000755 (accessed on 

17 November 2022). 

14.  Salih, S.Q.; Sharafati, A.; Khosravi, K.; Faris, H.; Kisi, O.; Tao, H.; Ali, M.; Yaseen, Z.M. River Suspended Sediment 

Load Prediction Based on River Discharge Information: Application of Newly Developed Data Mining Models. 

Hydrol. Sci. J. 2020, 65, 624–637, doi:10.1080/02626667.2019.1703186. 

15.  Mustafa, M.R.; Rezaur, R.B.; Saiedi, S.; Isa, M.H. River Suspended Sediment Prediction Using Various Multilayer 

Perceptron Neural Network Training Algorithms—A Case Study in Malaysia. Water Resour. Manag. 2012, 7, 1879–

1897, doi:10.1007/s11269-012-9992-5. 

16.  Kerem Cigizoglu, H.; Kisi, Ö. Methods to Improve the Neural Network Performance in Suspended Sediment Es-

timation. J. Hydrol. 2006, 317, 221–238, doi:10.1016/j.jhydrol.2005.05.019. 

17.  Alp, M.; Cigizoglu, H.K. Suspended Sediment Load Simulation by Two Artificial Neural Network Methods Using 

Hydrometeorological Data. Environ. Model. Softw. 2007, 22, 2–13, doi:10.1016/j.envsoft.2005.09.009. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2022                   doi:10.20944/preprints202211.0437.v1

https://doi.org/10.20944/preprints202211.0437.v1


 

18.  Kisi, Ö. Constructing Neural Network Sediment Estimation Models Using a Data-Driven Algorithm. Math. Com-

put. Simul. 2008, 79, 94–103, doi:10.1016/j.matcom.2007.10.005. 

19.  Jothiprakash, V.; Garg, V. Reservoir Sedimentation Estimation Using Artificial Neural Network. J. Hydrol. Eng. 

2009, 14, 1035–1040, doi:10.1061/(ASCE)HE.1943-5584.0000075. 

20.  Kisi, O.; Haktanir, T.; Ardiclioglu, M.; Ozturk, O.; Yalcin, E.; Uludag, S. Adaptive Neuro-Fuzzy Computing Tech-

nique for Suspended Sediment Estimation. Adv. Eng. Softw. 2009, 40, 438–444, doi:10.1016/j.advengsoft.2008.06.004. 

21.  Chou, W.-C. Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation. Water Resour. Manag. 

2010, 24, 2075–2090, doi:10.1007/s11269-009-9539-6. 

22.  Guven, A.; Kişi, Ö. Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-Coded Linear Ge-

netic Programming. Water Resour. Manag. 2011, 25, 691–704, doi:10.1007/s11269-010-9721-x. 

23.  Smith, J.; Eli, R.N. Neural-Network Models of Rainfall-Runoff Process. J. Water Resour. Plan. Manag. 1995, 121, 499–

508, doi:10.1061/(ASCE)0733-9496(1995)121:6(499). 

24.  Tawfik, M.; Ibrahim, A.; Fahmy, H. Hysteresis Sensitive Neural Network for Modeling Rating Curves. J. Comput. 

Civ. Eng. 1997, 11, 206–211, doi:10.1061/(ASCE)0887-3801(1997)11:3(206). 

25.  PANAGOULIA, D. Artificial Neural Networks and High and Low Flows in Various Climate Regimes. Hydrol. Sci. 

J. 2006, 51, 563–587, doi:10.1623/hysj.51.4.563. 

26.  Fernando, D.A.; Shamseldin, A.Y. Investigation of Internal Functioning of the Radial-Basis-Function Neural Net-

work River Flow Forecasting Models. J. Hydrol. Eng. 2009, 14, 286–292, doi:10.1061/(ASCE)1084-

0699(2009)14:3(286). 

27.  Edossa, D.C.; Babel, M.S. Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Man-

agement in the Awash River Basin, Ethiopia. Water Resour. Manag. 2011, 25, 1759–1773, doi:10.1007/s11269-010-

9773-y. 

28.  Kisi, O.; Nia, A.; Gosheh, M.; Tajabadi, M.; Ahmadi, A. Intermittent Streamflow Forecasting by Using Several Data 

Driven Techniques. Water Resour. Manag. Int. J. Publ. Eur. Water Resour. Assoc. EWRA 2012, 26, 457–474. 

29.  Shamseldin, A.Y. Application of a Neural Network Technique to Rainfall-Runoff Modelling. J. Hydrol. 1997, 199, 

272–294, doi:10.1016/S0022-1694(96)03330-6. 

30.  Jayawardena, A.W.; Fernando, D.A.K. Use of Radial Basis Function Type Artificial Neural Networks for Runoff 

Simulation. Comput.-Aided Civ. Infrastruct. Eng. 1998, 13, 91–99, doi:10.1111/0885-9507.00089. 

31.  Ju, Q.; Yu, Z.; Hao, Z.; Ou, G.; Zhao, J.; Liu, D. Division-Based Rainfall-Runoff Simulations with BP Neural Net-

works and Xinanjiang Model. Neurocomputing 2009, 72, 2873–2883, doi:10.1016/j.neucom.2008.12.032. 

32.  Bhadra, A.; Bandyopadhyay, A.; Singh, R.; Raghuwanshi, N.S. Rainfall-Runoff Modeling: Comparison of Two 

Approaches with Different Data Requirements. Water Resour. Manag. 2010, 24, 37–62, doi:10.1007/s11269-009-9436-

z. 

33.  Evsukoff, A.G.; Lima, B.S.L.P. de; Ebecken, N.F.F. Long-Term Runoff Modeling Using Rainfall Forecasts with Ap-

plication to the Iguaçu River Basin. Water Resour. Manag. 2011, 25, 963–985, doi:10.1007/s11269-010-9736-3. 

34.  Kordrostami, S.; Alim, M.A.; Karim, F.; Rahman, A. Regional Flood Frequency Analysis Using an Artificial Neural 

Network Model. Geosciences 2020, 10, 127, doi:10.3390/geosciences10040127. 

35.  Hall: Regional Flood Frequency Analysis Using Artificial... - Google Scholar Available online: 

https://scholar.google.com/scholar_lookup?title=Regional%20Flood%20Frequency%20Analysis%20Using%20Ar-

tificial%20Neural%20Networks&publication_year=1998&author=M.J.%20Hall&author=A.W.%20Minns (ac-

cessed on 17 November 2022). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2022                   doi:10.20944/preprints202211.0437.v1

https://doi.org/10.20944/preprints202211.0437.v1


 

36.  Karl, A.K.; Lohani, A.K. Development of Flood Forecasting System Using Statistical and ANN Techniques in the 

Downstream Catchment of Mahanadi Basin, India. J. Water Resour. Prot. 2010, 2, 880–887, 

doi:10.4236/jwarp.2010.210105. 

37.  Kar, A.K.; Winn, L.L.; Lohani, A.K.; Goel, N.K. Soft Computing–Based Workable Flood Forecasting Model for 

Ayeyarwady River Basin of Myanmar. J. Hydrol. Eng. 2012, 17, 807–822, doi:10.1061/(ASCE)HE.1943-5584.0000505. 

38.  Khalil, M.; Panu, U.S.; Lennox, W.C. Groups and Neural Networks Based Streamflow Data Infilling Procedures. 

J. Hydrol. 2001, 241, 153–176, doi:10.1016/S0022-1694(00)00332-2. 

39.  Mehedi, M.A.A.; Yazdan, M.M.S.; Ahad, M.T.; Akatu, W.; Kumar, R.; Rahman, A. Quantifying Small-Scale 

Hyporheic Streamlines and Resident Time under Gravel-Sand Streambed Using a Coupled HEC-RAS and MIN3P 

Model. Eng 2022, 3, 276–300, doi:10.3390/eng3020021. 

40.  Cigizoglu, H.K.; Kişi, Ö. Flow Prediction by Three Back Propagation Techniques Using K-Fold Partitioning of 

Neural Network Training Data. Hydrol. Res. 2005, 36, 49–64, doi:10.2166/nh.2005.0005. 

41.  Mehedi, M.A.A.; Khosravi, M.; Yazdan, M.M.S.; Shabanian, H. Exploring Temporal Dynamics of River Discharge 

Using Univariate Long Short-Term Memory (LSTM) Recurrent Neural Network at East Branch of Delaware River. 

Hydrology 2022, 9, 202, doi:10.3390/hydrology9110202. 

42.  Yazdan, M.M.S.; Khosravia, M.; Saki, S.; Mehedi, M.A.A. Forecasting Energy Consumption Time Series Using 

Recurrent Neural Network in Tensorflow 2022. 

43.  Home - Greene County Soil & Water Conservation District Available online: https://www.gcswcd.com/ (accessed 

on 17 November 2022). 

44.  STONY CLOVE CREEK BLW OX CLOVE AT CHICHESTER NY Available online: https://wa-

terdata.usgs.gov/monitoring-location/01362370/ (accessed on 17 November 2022). 

45.  USGS Surface-Water Historical Instantaneous Data for the Nation: Build Time Series Available online: https://wa-

terdata.usgs.gov/nwis/uv?referred_module=sw&search_criteria=search_station_nm&search_crite-

ria=search_site_no&search_criteria=site_tp_cd&submitted_form=introduction (accessed on 17 November 2022). 

46.  Khosravi, M.; Arif, S.B.; Ghaseminejad, A.; Tohidi, H.; Shabanian, H. Performance Evaluation of Machine Learning 

Regressors for Estimating Real Estate House Prices 2022. 

47.  Khosravi, M.; Tabasi, S.; Hossam Eldien, H.; Motahari, M.R.; Alizadeh, S.M. Evaluation and Prediction of the Rock 

Static and Dynamic Parameters. J. Appl. Geophys. 2022, 199, 104581, doi:10.1016/j.jappgeo.2022.104581. 

48.  Abdollahzadeh, M.; Khosravi, M.; Hajipour Khire Masjidi, B.; Samimi Behbahan, A.; Bagherzadeh, A.; Shahkar, 

A.; Tat Shahdost, F. Estimating the Density of Deep Eutectic Solvents Applying Supervised Machine Learning 

Techniques. Sci. Rep. 2022, 12, 4954, doi:10.1038/s41598-022-08842-5. 

49.  Karimi, M.; Khosravi, M.; Fathollahi, R.; Khandakar, A.; Vaferi, B. Determination of the Heat Capacity of Cellulosic 

Biosamples Employing Diverse Machine Learning Approaches. Energy Sci. Eng. n/a, doi:10.1002/ese3.1155. 

50.  Zhu, X.; Khosravi, M.; Vaferi, B.; Nait Amar, M.; Ghriga, M.A.; Mohammed, A.H. Application of Machine Learn-

ing Methods for Estimating and Comparing the Sulfur Dioxide Absorption Capacity of a Variety of Deep Eutectic 

Solvents. J. Clean. Prod. 2022, 363, 132465, doi:10.1016/j.jclepro.2022.132465. 

51.  Gupta, H.V.; Kling, H. On Typical Range, Sensitivity, and Normalization of Mean Squared Error and Nash-Sut-

cliffe Efficiency Type Metrics. Water Resour. Res. 2011, 47, doi:10.1029/2011WR010962. 

52.  SuspendedSediment/README.Md at Main · MShivaKh/SuspendedSediment Available online: 

https://github.com/MShivaKh/SuspendedSediment (accessed on 21 November 2022). 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2022                   doi:10.20944/preprints202211.0437.v1

https://doi.org/10.20944/preprints202211.0437.v1

