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Abstract: The dynamics of suspended sediment involves inherent non-linearity and complexity as
a result of the presence of both spatial variability of the basin characteristics and temporal climatic
patterns. As a result of this complexity, the conventional sediment rating curve (SRC) and other
empirical methods produce inaccurate predictions. Deep neural networks (DNNs) have emerged as
one of the advanced modelling techniques capable of addressing inherent non-linearity in hydro-
logical processes over the last few decades. DNN algorithms are used to perform predictive analysis
and investigate the interdependencies among the most pivotal water quantity and quality parame-
ters i.e., discharge, suspended sediment concentration (SSC), and turbidity. In this study, the Long
short-term memory (LSTM) algorithm of DNNs is used to model the discharge-suspended sediment
relationship for the Stony Clove Creek. The simulations were run using primary data on discharge,
SSC and turbidity. For the development of the DNN models and examining the effects of input
vectors, combinations of different input vectors (namely discharge, and SSC) for the current and
previous days are considered. Furthermore, a suitable modeling approach with an appropriate
model input structure is suggested based on model performance indices for the training and testing
phases. The performance of developed models is assessed using statistical indices such as root mean
square error (RMSE), mean absolute error (MAE), and coefficient of determination (R?). Statistically,
the performance of DNN-based models in simulating the daily SSC performed well with observed
sediment concentration series data. The study demonstrates the suitability of the DNN approach
for simulation and estimation of daily SSC, opening up new research avenues for applying hybrid
soft computing models in hydrology.
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1. Introduction

Sediment-laden rivers and streams pose significant environmental and economic
challenges [1]. The delivery of suspended sediment concentration (SSC) by a river has
significant implications for its channel morphology, material fluxes, geochemical cycling,
water quality, and the biotic and aquatic ecosystems that rely on the river. Furthermore,
fine sediment, which has been identified as an important vector for transporting nutrients
and contaminants, has a significant influence on river geomorphological and biological
processes [2]. Because of the potential effects on biotic and aquatic habitats, as well as
other land and water management processes, accurate estimation and long short-term
forecasting of sediment transported by rivers are critical [3]. Streamflow has been identi-
fied as the primary explanatory variable for SSC although it is not always directly related
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to SSC and that the relationship between the two is known to vary greatly [4-6]. As a
result, this variation is caused primarily by the complexity of the sediment concentration
transported hydrological phenomenon as a result of several ambiguous parameters such
as spatial variability of basin characteristics, river discharge patterns, and inherent non-
linearity in hydro-meteorological parameters [7]. Other considerations include sediment
availability, seasonality, and the location of the source within the watershed [8]. Signifi-
cant variation in SSC may also result from a hysteresis effect with streamflow. The varia-
tion in streamflow, which provides vital information for the timing and changes in sedi-
ment concentrations, has been widely used in the development of SSC prediction models.
Turbidity, SSC, and TSS are inextricably linked because they are all measures of sus-
pended sediment in streams [1].

Physical models are built on simplified partial differential equations of flow and sed-
iment. The models also rely on some unrealistic simplifying assumptions for flow and
empirical relationships for rainfall and flow erosive effects [9]. These are extremely com-
plex and sophisticated models, with some components representing physical processes.
According to previous studies these models theoretically consider the effects of spatial
variation in catchment properties as well as the uneven distribution of precipitation and
evapotranspiration [10,11]. Process-oriented distributed models are impractical because
most of the variables (for example, precipitation) are not currently measurable for much
of the world. They have numerous drawbacks [12]. Because analytical methods make sim-
ple assumptions, numerical modeling is more applicable than analytical modeling [13].
However, in some cases, numerical studies of river-suspended sediment transport in ac-
tual conditions are impossible [14]. As a result, the feasibility of data-driven models as
alternative methodologies for predicting SSC is commonly used. Data-driven (DD) mod-
els have an advantage over deterministic models in that they require fewer data and are
better suited for forecasting. Kisi, 2012 argued that the ambiguity surrounding the internal
structure of DD models was analogous to a 'black box' approach developed through a
trial-and-error process. Despite their black-box nature, DD models are adaptable when it
comes to capturing the nonlinearity of streamflow-sediment yield processes [9].

Deep Neural Network (DNN) has emerged as a popular DD modeling technique due
to its ability to self-adapt, recognize patterns, and capture complex non-linear behavior
between input and output parameters [15]. There are numerous examples of successful
Deep Neural Networks (DNN) applications in the field of water resources engineering.
These include the prediction of variables such as sediment load [16-22], river flows [23-
28], runoff [29-33], flood frequency analysis [34,35], flood forecasting [36,37] and stream-
flow data infilling procedures [38,39].

Joshi et al., 2016 used different combinations of input vectors (i.e., discharge, sedi-
ment, and stage) to develop a robust network model structure for simulating the dis-
charge-sediment and stage-discharge-sediment relationships provide a more accurate es-
timate of SSC for the Bhagirathi River [3]. The results of developed DNN model simula-
tions were compared with the traditional conventional sediment rating curve (SRC)
method in their study, and performance was tested using statistical parameters. In terms
of the selected performance indices, DNN models outperformed the SRC method in sim-
ulating the daily SSC. These findings corroborate researchers' claims, such as Cigizoglu
and Kisi, 2005, about using the feed-forward back propagation (FFBP) algorithm, sedi-
ment concentration, and streamflow data as inputs for daily or monthly SSC estimation
and forecasting [40—42]. However, it has been reported that not enough studies have been
conducted to evaluate the best performance of training algorithms within DNN modeling
techniques [15]. This justification emphasizes the significance of training algorithm per-
formance evaluation, as selecting an appropriate algorithm is as important as network
architecture and geometry. The use of the neural network regression model in this study
will aid in the introduction of a mechanism for integrating predictive models into the
cloud platform, ultimately benefiting the research community.

This study aims to demystify the relationships between SSC and river discharge for
the Stony Clove Creek using deep neural network algorithms in line with the above
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submissions. The specific objectives of the study are to analyze the hidden patterns in the
distribution of river discharge, SSC, and turbidity series; to evaluate the performance of
long short-term memory (LSTM) algorithms in predicting SSC in river flow; and perform
sensitivity analysis and construct predictive models to forecast the discharge, SSC/turbid-
ity relationship.

2. Materials and Methods

2.1. Study Location and Data Source

The Stony Clove Creek watershed is located in the central Catskill Mountain region
of southeast New York State (Figure 1). The latitude and longitude of the study site are
42°07'40.6" N, 74°15'47.7" W with the coordinate system “North American Datum of 1983”,
Greene County, NY, Hydrologic Unit 02020006, on the right bank at the downstream side
of bridge on Janssen Road in Lanesville. It has a 23.96 km? drainage area and the datum
of gage is 390.14 m above NAVD of 1988, from the topographic map. The Stony Clove
Creek flows from its headwaters at Notch Lake to its confluence with the Esopus Creek in
the village of Phoenicia. Annual stream discharge within this part of North America gen-
erally peaks during spring snowmelt, but large rainstorms can cause rapid increases in
discharge of local streams throughout the year due to the steep slopes and thin soils of the
Catskill Mountains.

The Stony Clove Creek is a tributary of the Esopus Creek, eventually emptying into
the Ashokan Reservoir, which supplies approximately 10% of NYC’s drinking water
(GCSWCD) [43]. The geology of the Catskill Mountains exerts a clear influence on the
landscape, valley and stream channel morphology. The U.S. Geological Survey maintains
a streamflow-gauging station on Stony Clove Creek (Gauge 1362336) that provides a con-
tinuous discharge record, SSC, and turbidity.
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Figure 1. Study Location showing streamflow-gauging station on Stony Clove Creek.

The entire workflow of the Exploratory Data Analysis (EDA) and LSTM prediction
tasks are divided into three distinct stages. In the first step, data collection from the USGS
web portal, an exploratory analysis of the water quality variables, and feature engineering
to transform the data for training/testing the LSTM algorithm is conducted. Variables are
listed in Table 1. Activities in the first step are categorized as the transformer. After in-
vestigating the dataset and performing data transformation on the variables, LSTM neural
network is trained using the data prepared in the first step to perform predictive analysis.
LSTM neural networks regression model is assessed using several error matrices (e.g.,
Root Mean Square Error (RMSE), mean absolute error (MAE), and coefficient of determi-
nation (R?)). These activities are categorized as an estimator. The LSTM algorithm is tuned
and optimized by altering the hyperparameters to reduce the errors in the prediction and
achieve satisfactory performance. In the third step namely the evaluator, the model is de-
ployed to predict the SSC/Turbidity for a new set of target variables. Model performance
is further improved through iterative incorporation and validation of the input variables.
The LSTM workflow of predicting the GSI performance indicator is illustrated in Figure
2.
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Figure 2. Pipeline of EDA and LSTM prediction tasks shows how the activities are linked from data
pre-processing to model deployment. The steps are further classified into three groups: transformer,
estimator, and evaluator.

In the first step of the workflow in Figure 2 the time series of the discharge, SSC, and
turbidity variables are retrieved from the USGS National Water Information System: Web
Interface [44,45]. The range of the time series data for all the variables was different due
to the various recorded duration. The range of the data used in this research is from
2/3/2020 to 9/30/2021, with observed data of about 19 months. The time-series data has 15
minutes interval between each recording. Historically, the extreme values for maximum
and minimum discharges for the recorded period are equal to 48.14 m3/s on Dec. 25, 2020,
and 0.045 m3/s on Oct. 22, 23, 2017, Sept. 23, 25, 28, 29, 30, Oct. 1, 2, 2019, respectively.

Table 1. List of the variables used for EDA and predictive analysis with LSTM model.

SW Parameters Unit Descriptions
Suspended Sediment Con- mg/L The ratio of the dry weight of the sediment in a water-
centration sediment mixture (obtained from a stream or other

body of water) to the total weight of the mixture.

Turbidity NTU Water quality parameter that refers to how clear the
water is
Discharge md/s Quantity of stream flow

2.2. Multivariate Exploratory Data Analysis

A detailed Exploratory Data Analysis (EDA) is performed in Figure 2 activity 2 to
understand the attributes and characteristics of the multivariate dataset. Exploratory Data
Analysis (EDA) is a critical step in performing preliminary data investigations to obtain
satisfactory LSTM model performance. Multiple visual techniques and numerical indices
are used to investigate the internal temporal distribution of all three variables of dis-
charge, SSC, and turbidity. EDA is the process of performing an initial investigation of
input variables to understand the hidden pattern of the variables' distribution. EDA is
further subdivided into activities. They are known as descriptive statistics, detecting out-
liers/extreme values, and normality check. Descriptive statistics is an excellent method for
determining the distribution of the values of input variables based on the number of data
points, mean, standard deviation, percentiles, interquartile range, and range. Table 2 dis-
plays full multivariate descriptive statistics. Histograms with density plots are used as a
visual representation of normality in the variables, and Pearson's coefficient of skewness
(PCS) is used as a numerical indicator of skewness.
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Table 2. Descriptive Statistics of the water quantity and quality variables.

Count Mean Std Min 25% 50% 75% Max

Turbidity 57201 6.04 26.19 0.00 1.40 2.40 4.20 1310
SSC 57230 15.52 212.93 0.00 2.90 4.80 8.20 19400
Discharge 58051 0.77 1.59 0.00 0.24 0.46 0.83 48.14

Numerical interpolation is used to make the dataset consistent by filling missing val-
ues with the linear method between the first and last available observation for each non-
value duration in the dataset. From the total of about 57000 historical observations, 850,
821, and 959 missing values are replaced with interpolations for turbidity, SSC, and dis-
charge, respectively.

Figure 3 depicts a visual representation of the distribution of the input variables, in-
dicating that the overall non-normality is high. All variables exhibit significant non-nor-
mality and skewness. Pearson's Correlation Coefficient (PCS) values of turbidity and SSC
related to discharge and skewness of all three variables are indicated in Figure 3 as a nu-
merical measure of non-normality/skewness.
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Figure 3. Distribution of the values of input variables, turbidity (a), SSC (b), and discharge (c)using
histogram and density plot. The legend of each plot shows the skewness values.

Figure 4 illustrates that the linear connection between turbidity and discharge varia-
bles is higher than the linear relationship between SSC and discharge values. Lower val-
ues of the linear coefficients to delineate the overall non-linearity among several variables
is high. The direction of the linear relationships is found to be positive in both turbidity
and SSC with more weight on turbidity relative to discharge.
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Figure 4. Bivariate correlation coefficients among the input variables represented by the correlation
heatmap.

2.3. Feature Engineering

Following a successful preliminary investigation of the dataset using EDA, Feature
Engineering (FE) is performed. Without a successful FE, the LSTM method may not pro-
duce satisfactory results with minimal error. Without a successful examination of the da-
taset, adequate optimization via iterative gradient descent cannot be achieved. As a result,
extensive feature engineering is performed to transform the variables best suited for the
LSTM learning algorithm. In this study, FE is used to perform imputation, data transfor-
mation, data standardization, and dataset segmentation into training, testing, and valida-
tion sets. Imputation is used to fill in the null values to make the entire dataset consistent.
Sensor malfunctions resulted in null values or observations in every series.

These cells in the dataset are imputed with the values of the blank cell's nearest neigh-
bors. However, due to the reduction in dataset size caused by the exclusion of observa-
tions, it is used in this study. Following successful imputation with variable median val-
ues, the distribution of the variable series is visually and numerically checked to confirm
normality. The Pearson Coefficient of Skewness (PCR) is used to assess the normality of
the variables. Because the distribution of discharge and water level values is highly
skewed to the left, indicating a significant non-normality, neural network regression al-
gorithms without appropriate data transformation do not contribute to satisfactory out-
comes with good optimization.

Data normalization is a process of preparing the values of each variable for further
analysis and implementing the DNN algorithm. The normalization process includes
rescaling all the variables to the values that have the mean of zero and variance one. All
the input variables’ distribution are then converted to the bell-shaped normal distribution
curve. As the variable considered in this study is the continuous independent variable,
the normalization of the variable is crucial for training/testing the neural network algo-
rithm.

All the values in the discharge series are normalized to prepare the training dataset
for the LSTM model (Equation Error! Reference source not found.).

X _ X = Xoin (Equation Er-
nerm Xmax - Xmin
ror! Reference
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source not
found.)

X denotes the variable of interest (e.g., discharge, turbidity, and SSC) and subscript
norm, max and min represent the normalized variable, maximum and minimum value of
the values of the variable. The entire normalized variable series is divided into two sec-
tions i.e., a training set that is used to train the model and a testing set that is used to
evaluate the model. In this study the training and testing sets consist of 70 percent and 30
percent of the dataset, which is 58021, 38681, and 19340 number of observations, training
observations, testing observations points.

2.4. Long Short-term Memory (LSTM) Recurrent Neural

In deep learning forecasting, where variables depend on prior historical knowledge
throughout the data series, LSTM has proven to be a particularly popular technique for
handling time series data. The long-term correlations and relationships between the vari-
ables can be recognized by utilizing LSTM. Because of the decaying error backflow, recur-
rent backpropagation requires a significant amount of computational time and effort to
learn to store long-term information. Hence, the concept of the vanishing gradient prob-
lem in recognizing long-term dependency of Recurrent Neural Network (RNN) was in-
troduced [42,46]. The main element of processing and retaining long-term information is
LSTM feedback connections, and this characteristic distinguishes it from the conventional
feedforward neural network. Both long-term memory (c[t-1]) and short-term memory
(h[t-1]) are processed in a typical LSTM algorithm through the utilization of multiple gates
to filter the information. For an unchanged flow of gradients, forget and update gates up-
date the memory cell state. Three gates i.e., input gate ig, forgot gate fs, output gate og and
cell state handle the information flow by writing, deleting, preserving past information,
and reading respectively (Figure 5). As a result, LSTM can memorize data at various lead
times, making it suited for time series prediction inside a specific window. In forget gate,
long-term information enters and passes through a filtration where unnecessary infor-
mation is discarded. The forget gate filters out unnecessary data by using the sigmoid
activation function where the range of the function is 0 (gate close) and 1 (gate open).
Input gate filter and quantify the significance of new data coming as input to the cell.
Similar to the forget fate, input gates use binary activation functions to filter out infor-
mation and control the flow of both long- and short-term information. The output gates
regulate the value of the upcoming hidden state which is a function of the information on
previous inputs.
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Figure 5. Schematic representation of an LSTM architecture.

In this research, a neural network with one LSTM hidden unit accompanied by a
dense layer connecting the LSTM target output at the last time-step (t-1) to a single output
neuron with non-linear activation function. The LSTM model was trained using the deep
learning library, Keras in Python, the ReLU activation function, and the RMSE, MAE,
and R? function [47-50]. To predict the discharge variable of a time-step in the future e.g.,
daily/weekly, values of the variables at the previous time-steps are used. Hyperparame-
ters are tuned to maximize the performance of the LSTM model through an iterative trial-
and-error approach. In this study, Keras, a python library that offers a space search for
machine learning algorithms is used to find the best combination of the hyperparameters
[51]. Considered hyperparameter of the LSTM algorithm in this study is the size of epoch
and batch and number of neurons.

2.5. Time-series dataset

The initial dataset has 15-minutes interval for all the variables and the time-series
analysis by LSTM conducted on 15-minutes for prediction. Among three variables in the
dataset, turbidity and SSC were utilized in discharge prediction. To study the sensitivity
of discharge prediction to SSC alone, in the first round of analysis (scenario one), only SSC
was considered in discharge prediction as well as observed discharge values. In the sec-
ond round of analysis (scenario two) both turbidity and SSC were considered in the pre-
diction of discharge variable. The resultant prediction can indicate the importance and
sensitivity of prediction based on the resolution of the input data. The discharge values
were predicted by only SSC variables for the first round of models. The second round of
model consists of SSC and turbidity as the features utilized to predict discharge. The com-
parison between these two scenarios demystifies the improvement of discharge prediction
considering turbidity as a second feature added to SSC in further section.

2.6. Model Evaluation using Loss Functions

In the model evaluation step in the activity 5 in Figure 2, the performance of the
LSTM model is evaluated using the top three standard error matrices e.g., RMSE, MAE,
and R2 Error matrices provide numeric values as the model performance indicator by
comparing the observed and predicted values. The RMSE value is used to evaluate the
LSTM model in showing the model performance improvement. The RMSE as a function
is more sensitive to significant errors as the squared term multiplies greater errors
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exponentially more than smaller ones. The lowest RMSE score corresponds to the best
predictive accuracy. The better the model fits the data, the closer the R? value is to 1.

3. Results and Discussion

This LSTM neural network is used to predict the multivariate turbidity, SSC, and
discharge variables based on the previous time series data. Several lead time durations
selected for both time-series dataset (15-minutes and daily dataset). The prediction values
of 1,2,3,4,5, 6, and 7 lead time chosen for both scenarios with the fixed time lag of 30
previous steps to be consistent with various LSTM models. Predicted values are compared
to the observed dataset to quantify the error matrices. The RMSE, MAE, and R? functions
are used to estimate the error from the predicted discharge, SSC, and turbidity variables.
The model performance is improved by an increase in the number of epochs. Error matri-
ces are obtained through multiple models runs to demonstrate the linkage between the
model performance and the lead times.

3.1. Predicted and Observed Water Quantity and Quality variables

The output from the LSTM algorithm is compared to the observed values of the dis-
charge, SCC, and turbidity variables through visual representation in Figure 6. Both the
observed and predicted values of the discharge variable are plotted for the entire time
series against the number of observations (data points). The overall distribution of the
predicted values of discharge variable is approximately identical to the observed data
providing a satisfactory performance of the LSTM algorithm. Three error metrics recorded
for all variables and full-time series showed that LSTM performed well in case of both
train/test sets. In Figure 6, the green portion of the plot illustrates the training portion of
the dataset whereas the red portion shows the testing portion, and dashed lines with blue
color show the observed data.
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3.2. Model Evaluation Matrices and Improvement

The performance of the LSTM neural network is evaluated using three error matrices
e.g.,, RMSE, MAE, and R2. The performance of the model was also evaluated and improved
by increasing the number of iterations i.e., epoch in the neural network. The value of MAE
is observed with an increase in the number of epochs in Figure 7, where MAE value is the
indicator of the model performance. The number of epochs is increased up to 250 to eval-
uate the performance variation. The RMSE and MAE values are found to decrease from
120.25 and 42.14 to 110.48 and 25.40, respectively by increasing the epoch number from 50
to 100 for discharge prediction based on only SSC variable (scenario one), which indicates
satisfactory performance in the LSTM algorithm. Furthermore, the RMSE and MAE value
is found to decrease from 9.40 and 3.44 to 8.94 and 3.17, respectively by increasing the
epoch number from 50 to 100 for discharge prediction based on both turbidity and SSC
variable (scenario two), which indicates satisfactory performance in the LSTM algorithm.
On the other hand, the increase in epoch number from 100 to 250 revealed the opposite
trend, when discharge predictions for both scenarios are considered. In the case of the first
scenario, the RMSE and MAE values increased to 110.81 and 34.67 respectively. Taking
into consideration scenario two, there was an increase in RMSE value to 9.18 and a de-
crease in MAE value to 2.62.

The model performance increases significantly from the very beginning of the iteration
for both the train and test scenarios. The trend of a decrease in the RMSE values reaches a
near-steady state after 20 epochs. A local decrease in the performance i.e., an increase in
the RMSE value can be seen after 20 epochs. Furthermore, the performance variation with
the change in the lead time considering the error metrics for both scenarios studied. The
comparative study results for RMSE, MAE, and R? are represented in Figure 8 and Figure
9.
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(d) (e) (f)

Figure 7. The increase in the number of epochs for the train and test set, discharge prediction con-
sidering SSC for, 50 (a), 100 (b), and 250 (c) epoch numbers, and discharge prediction considering
both turbidity and SSC for, 50 (d), 100 (e), and 250 (f) epoch numbers.

Lead time of 7 120.26 42.14 0.94
Lead time of 6 150.98 54.16 0.91
Lead time of 5 92.09 28.70 0.97
Lead time of 4 87.83 19.93 0.97
Lead time of 3 98.33 35.56 0.96
Lead time of 2 72.65 32.70 0.98
Lead time of 1 112.20 47.55 0.95
250.00 200.00 150.00 100.00 50.00 0.00

RMSE MAE ®mR2

Figure 8. Model performance evaluation for the entire time series of scenario one.

Lead time of 7 9.40 3.44 0.922
Lead time of 6 9.74 3.73 0.92
Lead time of 5 8.15 1.68 0.94
Lead time of 4 7.44 2.34 0.95
Lead time of 3 5.63 2.06 0.97
Lead time of 2 5.66 2.31 0.97
Lead time of 1 3.53 1.64 0.99
15.00 10.00 5.00 0.00

RMSE MAE ®R2
Figure 9. Model performance evaluation for the entire time series of scenario two.

Error matrices e.g.,, RMSE, MAE, and R? are documented for several lead times. Lead
times are pivotal parameters of LSTM algorithm towards model performance. Lead time
values are for each step forward in time series. So, the lead time of 1 equal to 15-minutes
and the lead time of 4 equals to 1-hour. The values of RMSE and MAE increases with the
increase in the lead times whereas the R? decreases showing the degradation in the model
performance with an increase in the lead times for the second scenario. There was much
variation in the increasing and decreasing trend of the RMSE, MAE, and R? in the first
scenario which made it harder to distinguish the lead time importance in the prediction
of discharge variable only based on SSC. Therefore, the selection of the lead times should
be based on the model performance and necessity. An R? value of 1 denotes a perfect fit
between the observed and predicted values, with no error in LSTM prediction. The R2
value for all models is within the range of 0.91-0.99, establishing an overall satisfactory
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performance from LSTM model prediction. The best prediction with minimum error is
associated with a discharge prediction based on both turbidity and SSC at a lead time of
1, with a corresponding R? value of 0.99.

4. Conclusion

Many rivers are potential sources of SSC; therefore, an accurate estimate of sediment
concentration is critical in understanding its relationship with water discharge for water
resource planning and management. In this study, DNN algorithms are used to perform
predictive analysis and investigate the interdependencies among the most pivotal water
quantity and quality parameters i.e., discharge, SSC, and turbidity for the Stony Clove
Creek. For simulation, primary data of discharge, SSC, and turbidity for the period from
2/3/2020 to 9/30/2021 are used. Combinations of various input vectors (namely SSC, dis-
charge, and turbidity) are considered for model development and examining the effects
of input vectors.

Consequently, a viable modelling strategy with acceptable model input structure is
proposed for simulation of SSC based on several model performance indices. The LSTM
technique was used to execute different model experiments in this study with two main
scenarios to study the feature importance of SSC and turbidity. 15-minutes times-series
values of discharge, SSC, and turbidity were utilized as input, and model simulations
were run using a distinct set of input combinations. RMSE, MAE, and R? were used to test
the performance of the LSTM model simulations.

In general, hysteresis generated by LSTM simulations captures nonlinear dynamics,
generalize the structure of the entire data set, and perform well with observed sediment
concentration series data. As a result, the study suggests that using soft computing tech-
niques such as LSTM technique can provide precise estimates of SSC. The study shows
that the LSTM neural network regression techniques are highly effective for simulating
and predicting multivariate time series.

As a result, the study opens up new research avenues for enhancing other DNN al-
gorithms and hybrid soft computing techniques for short-/long-term prediction of SSCs
in water discharge. This research will be especially useful in managing water resources
projects in both upstream and downstream areas of the southeast New York region in
terms of sediment flux.
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