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Abstract: Musculoskeletal models (MSKMs) are used to estimate the muscle and joint forces 10

involved in human locomotion, often associated with the onset of degenerative musculoskeletal pa- 11

thologies (e.g. osteoarthritis). Subject-specific MSKMs offer more accurate predictions than their 12

scaled-generic counterparts. This accuracy is achieved through time-consuming personalisation of 13

models and manual tuning procedures that suffers from potential repeatability errors, hence limit- 14

ing the wider application of this modelling approach. In this work we have developed a methodol- 15

ogy for identifying and ranking the muscles that are more important to the determination of the 16

joint forces, thus producing reduced but still accurate representation of the musculoskeletal system 17

in shorter timeframes. The methodology hinges on Sobol's sensitivity analysis (SSA) for ranking the 18

muscle importance. The thousands of data points required for SSA are generated using Gaussian 19

Process emulators, a Bayesian technique to infer the input-output relationship between nonlinear 20

models from a limited number of observations. Results show that there is a pool of muscles whose 21

personalisation has little effects on the model predictions. Furthermore, joint forces in subject ge- 22

neric and subject generic models are influenced by different set of muscles, suggesting the existence 23

of a model specific component of the sensitivity analysis. 24

Keywords: statistical modelling; statistical emulators; sensitivity analysis; Gaussian Process; Sobol; 25

musculoskeletal model 26

27

1. Introduction 28

Musculoskeletal models (MSKMs) are a commonly adopted solution to estimate bio- 29

mechanical parameters otherwise not directly measurable, to predict the outcome of in- 30

terventions, to inform rehabilitation planning, or to test complex scientific hypothesis 31

within clinical context [1-3]. MSKMs can be divided into two main categories: generic, 32

and subject specific. Generic models are constructed by scaling a reference model using 33

anthropometric measures [1, 4], while subject-specific models rely on medical images and 34

their segmentation for the personalisation of anatomical features and input parameters 35

[5-8]. They are known to provide accurate estimates of specific biomechanical quantities 36

for an individual [8, 9]. Amongst these quantities, individual muscle forces and joint con- 37

tact forces (JCFs) are of particular interest in the assessment of joint loading and have been 38
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linked to the onset and progression of degenerative diseases of the musculoskeletal sys- 39

tem (i.e., juvenile idiopathic arthritis [3] and osteoarthritis [10, 11]. 40

The creation of a subject-specific model is a time-consuming and operator-dependent 41

process, which limits the applicability of imaging-based MSK modelling protocols. Over- 42

coming this limitations would widen their usability across the biomechanical community, 43

and ultimately in the clinical practice. Sensitivity studies can identify the parameters that 44

influence models’ output and inform strategies that guide limit model personalisation and 45

pre-processing time to the minimum while still guaranteeing the accuracy of the predic- 46

tions [12]. 47

Several studies reported differences in model outputs when using MRI-based or ge- 48

neric anatomy [10, 13, 14], different joint types and degrees of freedom [15-17], or different 49

muscle parameters and geometry [6, 7, 12]. With regards to muscle parameters in partic- 50

ular, the use of models with different characteristics may lead to contrasting findings or 51

results that are not directly comparable and hence raises the question whether a more 52

comprehensive study should include different types of models and participants to test 53

model- and subject-dependency of model sensitivity. Navacchia and co-workers [18] con- 54

ducted a sensitivity study combining several layers of input uncertainties and compared 55

results across three participants to test subject-dependency. However, they based the anal- 56

ysis on a generic model and used a Monte Carlo approach relying on a limited number of 57

simulations. In fact, to test the sensitivity of a model with N input parameters O(1000*N) 58

model evaluations are typically required [19], a task that can prove prohibitive even for 59

relatively small models. Statistical emulators such as Gaussian Process (GPs) can emulate 60

the input-output relationship of complex nonlinear systems using only a limited number 61

of simulator runs as training points, in the order of O(N) [20]. The lower computational 62

effort required thus makes them ideal for generating the points needed to assess the in- 63

fluence of complex MSKM model parameters on the output of interest, and to represent 64

virtual populations with a much reduced computational effort, and while preserving out- 65

put accuracy [21]. GPs have been adopted in several fields of research, spanning from 66

prediction of scalar values in cardiac electrophysiology [22], to time series in finance [23] 67

and weather forecast [24]. Applications in the musculoskeletal domain are still rare and 68

focus on the estimation of muscle activation from surface electromyography signals [25] 69

or on learning tasks in robotics [26].  70

Existing sensitivity studies conducted on MSKMs reported that tendon slack length 71

and optimal fibre length are amongst the most important parameters for characterising 72

muscle behaviour and influencing JCFs, followed by maximal isometric force (Fmax) and 73

others [12, 18, 27]. However, tendon slack length can only be characterised through ca- 74

daveric studies, and optimal fibre length is still not easily measurable unless using ad hoc 75

imaging protocols [8], which limits the possibility of performing extensive and quantita- 76

tive evaluation of their role. On the contrary, Fmax of a muscle, which is the maximal force 77

that a muscle can express, can be easily estimated from MRI as a function of muscle cross- 78

sectional area [28], measured through muscle segmentation. 79
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In this work we hypothesise that, given a distribution of muscle Fmax, it is possible to 80

use GPs for emulating the waveforms of JCFs resulting from generic and subject-specific 81

MSKMs, and that they can be used to efficiently conduct comprehensive sensitivity anal- 82

ysis (SA) and investigate potential model-dependency of SA. Furthermore, we make the 83

hypothesis that SA can inform model reduction strategies leading to minimisation of mod- 84

elling time and costs. We aim to rank the muscles of the lower limb according to their 85

importance in contribution to the determination of hip, knee, and ankle JCFs during a 86

walking task. Results show that GPs can predict JCFs with high accuracy, and that 87

through SA it is possible to identify the muscles that contribute more to the determination 88

of the JCFs. Reduced models developed according to the proposed model reduction strat- 89

egy present low errors when compared to their fully personalised counterparts. 90

91

2. Materials and Methods 92

This study, whose workflow is depicted in Figure 1, has three main parts: the mech- 93

anistic model development part (data collection, generation of MSKMs and dynamic sim- 94

ulation), the statistical emulation part (emulation and sensitivity analysis of MSKMs), and 95

the model reduction part.  96

97

Figure 1. Workflow of the study. From top left clockwise, (A1) literature Gait2392 model is scaled 98

in OpenSim using a static standing trial to obtain a scaled-generic model (SGM ) while (A2) MRI 99

segmentation is used to generate a subject-specific model; (B) literature Fmax values from 29 lower- 100

limb muscles are used to estimate distributions of Fmax across a virtual population (n=200); (C) 101

joint contact forces (JCF) are estimated for hip, knee and ankle and input to the Gaussian Process 102

emulator (GP) together with associated Fmax values for training and validation; (D) JCF waveforms 103

are emulated (n=30K) to conduct (E) a Sobol’s sensitivity analysis, whose results are then used to 104

inform model reduction strategy; (E1) Pearson’s correlation between JCF and Fmax of most 105
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influential muscles is assessed; (F) reduced model is compared, through RMSD and absolute max- 106

imum difference, to nominal fully-personalised model based. 107

108

2.1 Mechanistic modelling 109

2.1.1 Input data and baseline musculoskeletal models 110

This study used legacy data collected from post-menopausal women (UK EPSRC 111

Multisim Study approved by the Health Research Authority of East of England and Cam- 112

bridgeshire and Hertfordshire Research Ethics Committee, reference 16/EE/0049) [29, 30]. 113

We selected a representative participant (74.6 y, 56.8 kg, 163.5 cm, BMI = 21.2) for whom 114

3D gait analysis data (marker trajectories and ground reaction forces) and MRI were avail- 115

able (full details of experimental data are described in [30]. Two different baseline monol- 116

ateral MSKMs were built, one scaled-generic and one subject-specific. Each model in- 117

cluded four body segments (pelvis, femur, tibia, foot) articulated by an ideal ball-and- 118

socket joint for the hip, and two ideal hinges, one for the knee and one for the ankle and 119

43 lower-limb muscles. However, they differed for how the joint axes were defined and 120

for the values of Fmax assigned to the individual muscles. The details of the two models are 121

as follow:  122

● Scaled-generic model (SGM). Marker-based scaling of a literature model 123

(Gait2392, [1]) allowed to obtain a scaled generic model of the participant’s limb. Scaling 124

was performed according to best practice recommendation [31] using a static standing 125

trial and the OpenSim Scaling Tool [32]. Muscle Fmax was linearly scaled [32] from 126

Gait2392 default values based on participant’s body mass. 127

● Subject-specific model (SSM). MRI segmentation enabled the generation of a 128

subject-specific model with personalised bone geometries and segment inertia [7] and 129

joint axes determined via morphological fitting to the articular surface of the segmented 130

bone geometries. The same set of muscles included in SGM was included in SSM but their 131

origin, insertion and via points were personalised based on the MRI. In SSM, muscle 132

length parameters were linearly scaled from Gait2392 values in order to maintain their 133

ratio to musculotendon length. Fmax of 29 lower-limb muscles was personalised using 134

MRI-segmented muscle volume available from the online free repository associated to a 135

study by Montefiori  and colleagues [30], comprising of eleven older women (including 136

the participant used in this study) enrolled as part of the above-mentioned Multisim pro- 137

ject [cite repos]. Fmax of the remaining 14 muscles (not available in the above-mentioned 138

repository as deemed as not-repeatably measurable) were linearly scaled from Gait2392 139

values based on body mass of the participant. 140

2.1.2 Virtual population 141

Four hundred models (200 variations of SGM and 200 variations of SSM) were gen- 142

erated to build a virtual population of individuals. Mean and standard deviation values 143

of the Fmax of the considered muscles were calculated from the cohort values reported by 144

Montefiori et al. 2020 [30] and used to generate normal distributions of Fmax that were 145

considered representative of a virtual population of older women. Independent random 146

sampling of each muscle Fmax distribution allowed to determine 200 sets of 29 muscle Fmax 147
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that were then used to characterise muscle properties of each model. The number of sam- 148

pling points was based on a convergence study and was chosen to ensure less than 10% 149

error in the normalised overlap of the resulting JCF curve bands. 150

151

2.1.3 Dynamic simulations and data analysis 152

Hip, knee, and ankle joint angles and moments were computed from the baseline 153

models (SGM and SSM) using the OpenSim 3.3 [32] Inverse Kinematics and Inverse Dy- 154

namics Tools relying on the MATLAB API (v9.1, R2021b, Mathworks, USA). OpenSim 155

recommended good practices [31] were followed. Two-hundred runs of Static Optimisa- 156

tion (where the sum of muscle activations squared was minimised) and Joint Reaction 157

Analysis [33] enabled the estimate of individual muscle forces and associated JCFs norms 158

for each virtual case. Ideal moment generators (reserve actuators), providing joint torque 159

when muscle forces could not balance the external moments, were included for each de- 160

gree of freedom, but made unfavourable to recruit by assigning them a unitary maximum 161

force. Range of JCFs obtained with the 200 simulations were quantified and maximum 162

percentage variation with respect to peak baseline values were calculated.  163

164

2.2 Statistical modelling 165

2.2.1 Gaussian Process Emulator 166

The 200 sets of 29 Fmax served as input for a GP (built using the GPy Python3 library 167

[34]), which was trained to output the corresponding hip, knee, and ankle JCFs. To avoid 168

ill conditioning of the emulator, both inputs and outputs were normalised prior to train- 169

ing. One emulator (zero mean, kernel: squared exponential plus Matern52) was trained 170

for each joint of both SGM and SSM. Following standard practice in the field of GP, the 171

performance of the emulator was assessed on the validation dataset through the mean 172

average percentage error (MAPE), defined as: 173

𝑀𝐴𝑃𝐸 =  
100%

𝑁𝑣

1

𝑦𝑠̅

∑|𝑦𝑠
𝑛 − 𝑦𝑒

𝑛|

𝑁𝑣

𝑛=1

174

where 𝑦𝑠
𝑛 and 𝑦𝑒

𝑛 are the 𝑛-th run of the simulator and emulator respectively, 𝑦𝑠̅ 175

is the time average of the simulator output, and 𝑁𝑣 is the number of points in the valida- 176

tion dataset [35, 36]. Following a convergence study, the size of the training dataset which 177

provided a low emulation error (MAPE<3%) while identified the computational cost was 178

chosen to be 50 points.  179

180

2.3 Model reduction 181

2.3.1 Sobol’s sensitivity analysis 182

In order to assess the model-dependency of SA, a global Sobol’s sensitivity analysis 183

[37] was performed independently on SGM and SSM. This allowed to evaluate the contri- 184

bution of individual muscle Fmax variations to overall variations in the output JCFs. SA 185

decomposes the output variance and ranks the contribution of individual inputs by mean 186

of the Sobol’s indices, real numbers ranging from 0 to 1, with 1 signifying that the entire 187
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variability of the output can be ascribed to the variation of a single input. The Saltelli al- 188

gorithm [19] was used to sample the input parameter space and generate 30720 virtual 189

subjects. For each virtual subject, the values of each Fmax were sampled from a normal 190

distribution with mean and standard deviation derived from the measured distributions. 191

The number of virtual subjects was chosen to guarantee convergence of the Sobol’s algo- 192

rithm, which was implemented through the SALib Python library [38]. The trained GPs 193

were used to predict the hip, knee, and ankle JCF waveforms for each virtual subject.  194

Sobol’s indices ascribe fractions of the output variance to variations of individual 195

outputs, but do not account for the size of the output variance. To account for this a new 196

metric, VRSI (variance renormalised Sobol’s indices), was defined in order to normalise 197

the Sobol’s indices based on the size of the output variance:  198

𝑉𝑅𝑆𝐼𝑖𝑡 =
𝑆𝑖𝑡 ∗ 𝑉𝑡

∑ 𝑆𝑖𝑡 ∗ 𝑉𝑡𝑖

199

where 𝑆𝑖𝑡  is the Sobol index of input i with the JCF at time t, and 𝑉𝑡 is the variance 200

of the JCF at time t. By means of this normalisation process, we deemed as less important 201

those inputs that showed high Sobol’s index in a region of the gait cycle where the output 202

variance was small.  203

A further analysis was conducted on the SSM data using the emulated dataset and 204

the VRSI values. Pearson’s Product-Moment correlation (alpha = 0.05) was calculated be- 205

tween the input Fmax and the peak values of JCF only for those muscles presenting a VRSI 206

above 0.1 at the peaks. Significant correlations, with either moderate (|R|>0.5 ⁠) or strong 207

( ⁠|R|>0.7 ⁠) correlation coefficient, were presented and discussed.  208

209

2.3.2 Muscle ranking 210

A reduced MSKM model was defined as a model having a reduced number of per- 211

sonalised muscle Fmax, selected according to a ranking strategy based on the muscles con- 212

tribution to the determination of total JCF. Similarly to previous SA studies [35, 36], a 213

threshold of VRSI = 0.1 was set to identify the muscles that required personalisation. For 214

each of the 100 frames of the gait cycle, the muscles that showed VRSI ≥ 0.1 for at least one 215

of the JCFs were identified and ranked based on the number of time frames where they 216

were deemed as influential. This allowed to reduce the number of muscles (m = 0 to 29) 217

for which Fmax needs to be personalised to those with the highest ranking. Variations of 218

SSM (referred to as SSMm) were generated by decreasing m according to the above strat- 219

egy: SSM29 was equivalent to SSM (all 29 Fmax were personalised) while SSM0 had Fmax 220

linearly scaled from literature values (model Gait2392) [1]. 221

JCFs for SSM and SSMm of the virtual subjects were then predicted with the emulator. 222

To assess the extent to which reduced models could be used as a surrogate for SSM, we 223

computed the maximum absolute difference (Δmax) as well as the root mean square de- 224

viation (RMSD) between the JCF of joint J estimated with SSMm and SSM over time T 225

according to the following equations, respectively: 226

∆max𝑚
𝐽 = max(|𝐽𝐶𝐹𝑆𝑆𝑀

𝐽 − 𝐽𝐶𝐹𝑆𝑆𝑀𝑚

𝐽 |) 227
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𝑅𝑀𝑆𝐷𝑚
𝐽 = √

∑ (𝐽𝐶𝐹𝑆𝑆𝑀
𝐽 − 𝐽𝐶𝐹𝑆𝑆𝑀𝑚

𝐽 )2𝑇
𝑡=1

𝑇
228

3. Results 229

3.1 Mechanistic simulations 230

The simulation of 200 variations of the baseline SGM and SSM led to the JCF curves 231

plotted in Figure 2. JCFs from the baseline models always laid within the range obtained 232

from the 200 variations of each model. Sampling of Fmax led to variations of JCFs up to 0.8 233

BW, 1.1 BW, and 1.7 BW with SGM and up to 1.4 BW, 1.2 BW, and 2.1 BW with SSM for 234

hip, knee, and ankle, respectively. These always occurred during late stance peak and 235

corresponded to 21%, 33%, and 20% (SGM) and to 38%, 104%, and 59% (SSM) of baseline 236

value for hip, knee, and ankle, respectively. 237

238

 239

Figure 2. Two hundred JCF curves obtained by sampling Fmax distribution (black lines) and baseline curve 240

(red line) obtained with SGM (top row) and SSM (bottom row); dashed vertical line indicates toe-off. 241

242

3.2 Sobol’s sensitivity analysis 243

Overall, the sets of muscles whose Fmax had a large contribution to the determination 244

of JCFs were different between SSM and SGM, as shown by the VRSIs of hip, knee, and 245

ankle (heatmap in Figure 3). SGM had more muscles with VRSI ≥ 0.1 compared to SSM. 246

Gracilis appeared to be influential for most of the stance on SGM’s hip JCF (VRSI>=0.1 for 247

36% of the entire gait cycle, with peak value 0.6), with non-negligible contributions also 248

to the knee JCF (VRSI>=0.1 for 16% of the gait cycle, with peak value 0.4). On the contrary, 249

it was not influential in the determination of SSM’s JCFs. Similar behaviour was observed 250

also for Tensor Fasciae Latae, Adductor Magnus 1, Sartorius, and Semimembranosus. 251

SSM’s hip JCF was mainly influenced by Gluteus Medius 1 and Gastrocnemius Medialis, 252

while the determination of knee JCF was mostly influenced by Gluteus Medius 1, 253
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Gastrocnemius Medialis and Rectus Femoris. VRSIs tended to be low in the ankle joint 254

because of the small variance of the input JCF across the virtual population. In the peak 255

region of ankle JCF, the muscles showing the largest influence were Tibialis Posterior and 256

Vastus Lateralis in SGM, and Soleus and Rectus Femoris in SSM. 257

258

 259

Figure 3. (A) VRSI heatmaps for JCFs of hip (left column), knee (central column) and ankle (right column). 260

Results from generic model SGM are shown in top row, those from personalised SSM are in the bottom one. 261

The x-axis represents the percentage of gait cycle, while the muscles are listed on the y-axis. Darker colours 262

signify higher influence of the muscle on a specific time point. (B) Significant moderate (|R|>0.5 ⁠) or strong 263

( ⁠|R|>0.7⁠) correlations between muscle Fmax and joint peak forces. For hip and knee, Peak 1 refers to loading 264

acceptance phase of gait and Peak 2 refers to push off phase, while ankle Peak corresponds to push off phase. 265

266

Correlation analysis confirmed the results of the sensitivity analysis (scatter plots in 267

Figure 3). The Fmax of Gluteus Medius 1 had a moderate positive correlation (R=0.577) with 268

Peak 1 of hip force, and a negative correlation with Peak 1 and Peak 2 of knee force (R=- 269

0.714; R=-0.508, strong and moderate, respectively). The Fmax of Gastrocnemius medialis 270

had a strong negative correlation (R=-0.755) with Peak 1 of hip force and had a moderate 271

positive correlation (R=0.681) with Peak 2 of knee force. The Fmax of Soleus had a moderate 272

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2022                   doi:10.20944/preprints202211.0428.v1

https://doi.org/10.20944/preprints202211.0428.v1


9 of 17 

negative correlation (R=-0.691) with ankle peak force. All reported correlations had a p 273

value below 0.001. 274

275

3.3 Model reduction 276

Of the 29 muscles in SSM, Gluteus Medius 1 was the most influential (Figure 4): with 277

VRSI ≥ 0.1 for more than 40% of the gait cycle this muscle was the first to be personalised. 278

Gastrocnemius Medialis, Rectus Femoris and Tensor Fasciae Latae followed, being influ- 279

ential for 19%, 16% and 10% of gait cycle, respectively. Semimembranosus and Iliacus 280

were influential for 9% of the gait cycle, Soleus for 8%, Iliacus for 6%, while Tibialis Ante- 281

rior, Biceps Femoris Longus, Tibialis Posterior were influential for less than 5% of the cycle. 282

The remaining nineteen muscles never reached the threshold of VRSI = 0.1 and thus were 283

not deemed as influential, and therefore their Fmax was never personalised. 284

285

286

Figure 4. Percentage of gait cycle where VRSI ≥ 0.1 for the muscles included in the analysis. The chosen model 287

reduction strategy prioritises the personalisation of muscles at the top of the plot, where VRSI is above 0.1 for 288

a larger percentage of gait cycle. 289

290

RMSDs between JCFs estimated with SSM and SSMm (reported as a function of m in 291

Figure 5) were overall very small (below 0.1 BW). The highest RMSD values were found 292

at the knee joint when low degrees of personalisation were employed (RMSD = 0.08 BW, 293

against 0.05 BW for both hip and ankle), and decreased when more muscles were person- 294

alised. The same trend was observed for hip and ankle. Eventually, the deviation between 295

the reduced models and SSM reached zero when all the muscles in SSMm were personal- 296

ised. 297

298
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299

Figure 5. RMSD (left) and max (right) between fully-personalised model SSM and reduced models SSMm, 300

as a function of the number of personalised muscles. 301

302

Similarly to RMSD, Δmax between SSM and SSMm’s JCFs were always small (up to 303

0.2 BW). A value of 0.2 BW of difference was found at the knee when no muscles were 304

personalised. This dropped to 0.07 BW with the personalisation of 9 muscles. Similarly, 305

hip Δmax dropped from 0.14 BW to 0.06. At the ankle joint the behaviour was more com- 306

plex, with an initial reduction in Δmax followed by a steep increase first, and then a final 307

decrease. 308

309

4. Discussion 310

This study proposes a methodology for comprehensive sensitivity analyses of 311

MSKMs’ outputs to changing model parameters such as bone geometry, joint type and 312

degrees of freedom, muscle parameters and geometry at the same time. This can offer a 313

clearer insight into the model response and which input parameters must be personalised. 314

To test the methodology, the feasibility of using GPs to emulate the JCF prediction of 315

lower-limb MSK models was investigated, under the hypothesis that a trained GP could 316

be used to identify the muscles whose Fmax is most influential to the estimate of JCFs. No- 317

tably, the methodology presented in this study has the potential to be applied to any input 318

parameters given their statistical distributions.  319

In the first part of the study, we obtained JCF curves from 200 sets of OpenSim sim- 320

ulations (both for scaled-generic and subject-specific models) while varying Fmax of 29 limb 321

muscles by 21 ± 6%, based on literature measurements [30]. Resulting simulated curves 322

were overall similar in shape to literature reference curves obtained from MSKMs [7, 17, 323

18]. When comparing scaled-generic and subject-specific models, some qualitative differ- 324

ences were found between the scaled-generic and the subject-specific models. SGM had 325

higher late stance peaks (for all joints) and higher knee early stance peak, while SSM had 326

higher hip early stance peak. These were likely associated to differences in the definition 327

of the joint axes, leading to different joint kinematics and associated actuation strategies 328

as already hypothesised in previous literature [13, 16, 39]. As a consequence of changing 329

Fmax, we found variations up to 104% of baseline values (knee joint of SSM). The peak JCF 330

of hip and knee corresponding to the push off phase of gait was particularly affected by 331

the variations of Fmax, in line with previous findings [7, 18].  332
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The sensitivity analysis was performed on data points that were artificially generated 333

by the emulator, whose validation is of paramount importance to the credibility of the SA 334

and the consequent model reduction strategy. In our case the emulator proved able to 335

capture the entire variability in JCFs of the validation dataset using only 50 training points. 336

The excellent behaviour on a validation dataset three times larger than the training one, 337

clearly shows that the emulator training has been effective, and the risk of overfitting has 338

been averted [40]. When applied to SSM and SGM this sensitivity analysis identified two 339

distinct sets of muscles whose Fmax contribute to the determination of total JCFs. This was 340

likely due to the above-mentioned differences in joint definition and in the values as- 341

signed to Fmax, leading to different actuation strategies. This also confirmed the existence 342

of a component of model-dependency in SA outcomes, as hypothesised in previous liter- 343

ature [13, 18], and showed that different sets of muscle Fmax are influential in determining 344

total JCFs when using generic-scaled or subject-specific models as a template for the gen- 345

eration of virtual populations. Therefore, ad hoc sensitivity analyses should be conducted 346

whenever developing a new model. The results from this study support the idea that, 347

because of their computationally expensive nature, such sensitivity studies will benefit 348

from the adoption of statistical emulators to produce Sobol points. Conducting this anal- 349

ysis using deterministic OpenSim would have required 30000 model evaluations each for 350

SGM and SSM. With the typical processing times of 30 seconds per simulations this would 351

amount to more than 20 days of continuous computing on single core machines. Con- 352

versely, the 50 simulations each for SGM and SSM needed to train the emulator could be 353

run in only 25 minutes, a speedup of 1200%. 354

Overall, the SA found a correspondence between the muscles deemed as influential 355

for a certain joint and the real anatomical and functional role of those muscles. For what 356

concern SSM, we found a strong dependence of hip JCF on Gluteus Medius Fmax, particu- 357

larly in the determination of push off peak (also referred to as Peak 2), with a moderate 358

correlation between these parameters. A recently published study showed that the hip 359

loading is significantly affected by modifications in the strength of Gluteus Medius [6, 29]. 360

However, in our study Gluteus Medius’ Fmax had an even larger effect on the resulting 361

knee JCF, particularly on load acceptance peak force (Peak 1), where we also observed a 362

strong negative correlation between the parameters. This can be ascribed to the strict re- 363

lationship between hip and knee movement and hypothetical crosstalk due to the limited 364

knee motion (1 degree of freedom) that is compensated at the hip level through non-sag- 365

ittal motion [15]. Knee JCF was also dependent on Tensor Fasciae Latae, Rectus Femoris 366

and Gastrocnemius Medialis Fmax, with the latter having a significant positive correlation 367

with push off peak force. In a previous similar study focussing on the knee joint, Navac- 368

chia et al. [18] also found that Gluteus Medius and Gastrocnemius Medialis are major 369

players in the determination of peak contact forces. Interestingly, the correlation coeffi- 370

cients between pennation angle and peak knee JCF reported by them match the R values 371

obtained here for the correlation between peak knee JCF and Fmax but have opposite sign 372

The pennation angle appears, through its cosine, in the theoretical definition of Fmax [41]. 373

While this parameter is not explicitly present in our model, it is possible that the 374
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generation of the virtual population for SA drew samples from the parameter space whose 375

effect was equivalent to the sampling of the pennation angle, thus partially explaining the 376

similar correlations observed. However, further refinement of the input space are needed 377

to clarify this aspect. Lastly, Tibialis Posterior and Anterior and Soleus Fmax had an impact 378

on the determination of ankle JCF, with a strong negative correlation between the Fmax of 379

soleus and ankle peak force. Interestingly, some unexpected relationships were found too, 380

such as the effect of Gastrocnemius Medialis on the hip or the Rectus Femoris on the ankle. 381

They are likely due to higher order interactions, which cause the effect of one muscle to 382

depend on the value of other muscles’ Fmax. This hypothesis should be further investigated 383

in future studies by reducing the number of variables in the sensitivity analysis.  384

In the case of SGM, hip and knee JCFs were particularly sensitive to the Fmax of Tensor 385

Fasciae Latae, Sartorius, Rectus Femoris and Gracilis. These muscles do indeed play a role 386

in the actuation of hip and knee joints, particularly in the sagittal and frontal plane. Inter- 387

estingly, previous sensitivity studies either ignored the role of Gracilis [12, 18] or found 388

its effect negligible towards the estimate of knee JCF [27]. Our results showed a dominant 389

effect of this muscle, particularly on the knee and can be explained by the input Fmax values 390

associated to Gracilis, which varied by over 35% (second largest variation amongst the 391

analysed muscles) according to literature measurements [30]. This figure was measured 392

over a small cohort of eleven older women and therefore may not be representative of a 393

larger young mixed-gender population. Nonetheless, it offers a meaningful insight on the 394

dynamic behaviour of subject specific MSKMs. 395

Overall, full personalisation of muscle Fmax led to minimal improvement of JCF esti- 396

mates compared to a reduced model (where we only personalised a reduced set of Fmax). 397

In fact, initial peak difference was small, in the order of 0.2 BW, and dropped below 0.1 398

BW at the hip and knee by just personalising 9 muscles. We observed a localised increase 399

in ankle Δmax and, to a minor extent, in ankle RMSD. They were both caused by a de- 400

crease in the performance of the emulated models in late swing. This occurred with the 401

personalisation of Biceps Femoris long head and Tibialis Anterior, which are indeed in- 402

fluential in late swing. Higher order interaction with other muscles are likely to be respon- 403

sible for this localised small degradation in emulator performance. 404

This study had some limitations associated to the input dataset. First, the patterns 405

observed in this analysis were specific to the dataset used in this study. In fact, MRI-based 406

Fmax values for the participant were similar to the values obtained by scaling generic Fmax. 407

A different dataset, with MRI-based Fmax that deviate more from scaled values, would have 408

probably led to larger discrepancies between a fully-personalised and a reduced models 409

(as suggested by the width of the JCF bands obtained when simulating a virtual popula- 410

tion, Figure 2). This hypothesis suggests a component of subject-specificity in the sensi- 411

tivity of JCFs to Fmax values. This was also previously observed by Navacchia et al. in [18] 412

when comparing sensitivity outcomes obtained from MSKMs built from three different 413

participants. Despite some inter-subject differences, they also observed significant simi- 414

larities across participants. A GP-based study including a larger number of participants 415
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could allow the identification of a common set of influential muscles and lead to the gen- 416

eralisation of a model reduction strategy. 417

Second, we investigated the effect of a single input parameter, and the variation of 418

muscle Fmax was not complemented with a corresponding anatomical variation in muscle 419

path (i.e. leading to an increased moment arm when increasing cross-sectional area) or 420

other muscle parameters. It is known from the literature that, amongst others, tendon 421

slack length and optimal fibre length can significantly influence the output of a MSKM, 422

but these parameters are not measurable in-vivo, and often left to default values even 423

when subject-specific models are developed. This can lead to unphysiological muscle ac- 424

tivations and saturations resulting in non-acceptable values of JCF. We did not discard 425

these results but instead included them in the training and validation dataset. Training 426

the emulator to identify unphysiological muscle activations and associated JCF wave- 427

forms could be used as an optimisation strategy for model tuning and identification of 428

acceptable values for Fmax, in line with what previously proposed for musculotendon 429

length parameters [7]. Second, MSK simulations of virtual subjects, and consequently the 430

generation of training points for the emulator, relied on a single kinematic trial, whereas 431

different configuration of Fmax are likely to result in different kinematics and ground reac- 432

tion force. When additional gait data are not available, adversarial neural network [42] 433

could help in generating artificial walking trials. When kinematics trials are available, ei- 434

ther measured or synthetic, they can be incorporated within the model by adding further 435

dimensions to the input parameter space of the emulator. To minimise the known prob- 436

lems that GPs show when scaled to large datasets [21], the Fourier components of the joint 437

kinematics can be used rather than the entire waveforms.  438

The strategy for muscle personalisation adopted in this study was based on the eval- 439

uation of muscle VRSI on the three joints separately, prioritising muscles with high influ- 440

ence over prolonged periods of time. This led to joints having muscles personalised that 441

are not directly relevant to them and caused occasional higher order interactions between 442

muscle Fmax with the effect of locally increasing the RMSD. Nevertheless, the results stem- 443

ming from this approach proved in agreement with the literature on MSKMs [6, 7, 18, 29] 444

and the physiology and anatomy of the musculoskeletal system. Alternative personalisa- 445

tion strategies could be explored, for example deriving the order of personalisation as the 446

solution of an optimisation problem which aims at minimising an objective function 447

which accounts for the differences in the outputs between the reduced model and the 448

fully-personalised one. In the model presented here, the discrepancies between reduced 449

and fully-personalised models were extremely low both in terms of RMSD and max, thus 450

corroborating the choice of the personalisation order. 451

In conclusion, the emulator-based approach for sensitivity analysis and model reduc- 452

tion presented in this study gives results consistent with the existing literature and sug- 453

gests that Fmax may be not as relevant as other parameters in determining the dynamic 454

behaviour of personalised MSKM when investigating gait in elderly women. While pur- 455

suing a high degree of personalisation of the models leads to more accurate and reliable 456

outputs, cost- and time-related concerns suggest that an appropriate level of 457
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personalisation should be decided according to the question of interest, resolution of data, 458

and other constraints. This study offers, for one subject, a method for estimating which 459

muscles’ Fmax to personalise and according to which order, proving a way of improving 460

model accuracy with relatively low effort.  461
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