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I have trained in the way of strategy since my youth,
and at the age of thirteen I fought a duel for the first
time. My opponent was called Arima Kihei, a sword
adept of the Shinto ryu, and I defeated him. At the age
of sixteen I defeated a powerful adept by the name of
Tadashima Akiyama, who came from Tajima Province.
At the age of twenty-one I went up to Kyoto and
fought duels with several adepts of the sword from
famous schools, but I never lost.

Miyamoto Musashi, Go Rin No Sho

Abstract—Sword-duels are interesting, from a game-theoretical
perspective, as they correspond to sudden-death interactions
between players (i.e., defeat means removal from the game),
and where victory/defeat depend on not just skill, but also luck.
Analyzing probabilities of victory streaks, given a certain level of
self and others’ skill, is thus relevant for any application domain
that can be modeled in the same way.

This paper takes inspiration from Miyamoto Musashi, fa-
mously undefeated for 61 duels, and implements a Markov-
chain Monte-Carlo simulation approach to evaluate this scenario.
Results suggest that a 61 victory streak can be probabilistically
observed when skill level is roughly 6.5 times that of the average
duelist, and with 95% confidence when skill level is roughly 1000
times that of the average duelist.

More generally, this paper provides a method for determining
chances of victory streaks in game-theoretical sudden-death
encounters, when both ”skill” and ”luck” contribute to the
outcome of the encounter. Specific scenarios can be modeled
by modifying the utilized Markov chain and adjusting sampled
distributions as required.

I. INTRODUCTION

Miyamoto Musashi (1584 - 1645) [1] was a ronin that
was famously undefeated for 61 consecutive duels. Sword
duels are particularly interesting, from a game-theoretical
perspective, as they represent a combination of skill and luck
(i.e., randomness) [2]: a more skilled fighter is more likely to,
but not certain to, win a duel against a less skilled opponent.
In the case of duels to the death, each duelist (player) can
achieve a string of victories, greater than or equal to 0, before
being removed from the game.

This paper examines this scenario. Specifically, we show
how to mathematically model both skill and luck, and examine
how this game evolves computationally, using Monte-Carlo
methods [3]. Our set up allows us to examine two related
research questions:

Fig. 1. Musashi and Kojiro in battle (statue: Island of Ganryujima) [8]

1) Given an upper bound on skill, what is the expected
number of victories the highest skilled player can expect,
given that skill follows a normal distribution?

2) If skill were boundless, how skilled would the most
skilled player have to be, to achieve a given number
of victories (we examine 61, in honor of Musashi) with
95% confidence?

This scenario is relevant not just to sword duels, but
generally for any game with discrete competitions between
two players, where defeat means removal from the game.
”Skill” is equivalent to player properties in other settings
(e.g., money, fame, athleticism, expertise, medical precautions)
and ”luck” is equivalent to external variables (e.g., weather
conditions, stock market state). Example application scenarios
include financial endeavors where ”defeat” (e.g., failing to
purchase a commodity, obtain a bid) means irreparable loss
of capital [4]; social interactions where ”defeat” (e.g., failing
to woo a potential mate, perform some rite of passage) means
being shunned from the social circle [5]; government covert
intelligence where ”defeat” (e.g., failing to obtain sensitive
intelligence that falls into enemy hands) means irreparable loss
of life and/or sovereignty [6]; or pandemic prevention where
”defeat” (e.g., being infected by an airborne disease such as
COVID-19) may prove lethal [7]. Throughout the remainder
of this paper, we continue to use the sword duel analogy and
vocabulary.
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The remainder of this paper is organized as follows: Section
II describes our mathematical model. Section III describes
the implementation of the Monte-Carlo simulation. Section IV
presents our computational results, with Section V concluding
this paper. All code used in the experiments is open-source,
available here1.

II. THE MATHEMATICAL MODEL

A. Sword duels

Sword duels are discrete events. They happen sequentially,
and only between two duelists (we do not model 3 or more
duelist engaged in all-vs-all, nor N-vs-M engagements). A
duelist i has an associated skill Si. If a duelist i engages duelist
j in a duel, we model P (I), the probability that i wins the
duel, as:

P (I) =
Si

Si + Sj
(1)

Notice that P (I) + P (J) = 1, i.e., we assume draws are
not possible. This can be interpreted as: ”a duelist of skill
Si = k × Sj , k ∈ N will defeat duelists of skill Sj , k times
out of k + 1 duels”. Our model generates a random number,
sourced from a uniform distribution, to decide victory in duels,
thus modeling luck.

This probabilistic victory model is an assumption that can
of course be changed depending on the scenario; e.g., skill
can increase chances of victory in a quadratic or exponential
way, rather than in a linear way, but this model can be used
without loss of generality.

B. Duelists

Depending on which research question we are interested
in answering, we model duelists’ skill as either a two-sided
truncated normal distribution (skill has both a lower and upper
bound) or as a left-truncated (lower-tail) normal distribution
(skill has a lower bound, but no upper bound). I.e., we are
assuming that there is a lower bound on skill for someone
to engage in sword duels, denoted by S0, and potentially a
maximum skill level, denoted by Smax.

The probability density function (PDF) for skill S with
mean µ and variance σ2, left-truncated at S0 and right-
truncated at Smax, is given by:

f(S;µ, σ, S0, Smax) =
1

σ

φ(S−µσ )

Φ(Smax−µ
σ )− Φ(S0−µ

σ )
(2)

for S0 < S < Smax, and 0 otherwise, where:

φ(ξ) =
1√
2π

exp

(
−1

2
ξ2
)

(3)

is the probability density function of the standard normal
distribution and

Φ(x) =
1

2

(
1 + erf(x/

√
2)
)

(4)

1https://github.com/paulofrgarcia-cmkl/samurai survival statistics
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Fig. 2. The sword duelist’s state space as a Markov chain. Each duel updates
the player’s state according to victory (”V”) or defeat (”D”). V and D are
generated through a Monte-Carlo approach.

is its cumulative distribution function [9].
In the case of no upper bound on skill, the probability

density function for skill S is given by:

f(S;µ, σ, S0) =
1

σ

φ(S−µσ )

1− Φ(S0−µ
σ )

(5)

for S0 < S, and 0 otherwise, since

Φ
(∞−µ

σ

)
= 1, (6)

III. MONTE-CARLO SIMULATION METHODOLOGY

Our hypothetical Musashi is modeled as an extremely
simple Markov chain [10], depicted in Fig. 2. The duelist
begins in the ”alive” state. Every duel updates its state, in
function of victory or defeat, generated as per the Monte-
Carlo methods described below. More complex state spaces
and update functions can be implemented using the same
methodology.

A. Upper/lower-bounded skill

This method answers the research question ”Given an upper
bound on skill, what is the expected number of victories the
highest skilled player can expect, given that skill follows a
normal distribution?”.

To evaluate this question, we set up a Monte-Carlo simu-
lation where Musashi skill Si is heuristically fixed at 100. A
two-sided truncated normal distribution f(S;µ, σ, S0, Smax)
is sampled to generate opponent skill level. We set minimal
skill as 1, and mean as 100−1

2 , such that f(S; 49.5, σ, 1, 100).
Once an opponent skill level Sj has been generated, a duel
is performed, sampling a uniform distribution between 0 and
Si + Sj . If the result is less than or equal to Sj , defeat is
determined; else, victory is determined (this corresponds to
the probability in Equation 1).

For every evaluated value of σ2 (i.e, examining how the
variance affects the result), we perform 1000 iterations. From
those, we report the average number of victories, the minimum
number of victories that occurred 50% of the iterations,
the minimum number of victories that occurred 95% of the
iterations, and the highest observed number of victories. σ2 is
varied between 0 and µ, in increments of 0.1× µ.

B. Lower-bounded skill

If skill were boundless, how skilled would the most skilled
player have to be, to achieve a given number of victories (we
examine 61, in honor of Musashi) with 95% confidence?
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Fig. 3. Monte-Carlo simulation: depiction of 1 iteration, for given values of
distribution parameters (part of image reproduced from [12])

To evaluate this question, we set up a Monte-Carlo simu-
lation where Musashi skill is varied, with an initial value of
100. Mean is fixed at 49.5, so results can be compared with
the previous experiment. As before, σ2 is varied between 0
and µ, in increments of 0.1 × µ. For each value of σ2 and
Musashi skill, 1000 iterations are performed. For a given value
of σ2, Musashi skill is increased by 10, until 61 victories are
observed over 95% of the time. For each pair of σ2, Musashi
skill, we report the lowest skill level that obtained at least one
chain of length 61, the lowest skill level that obtained a chain
of length 61 over 95% of the time, and the average victories
at that skill level.

C. Implementation

The implemented Monte-Carlo simulation is depicted in Fig.
3. Distribution sampling is performed using the GNU Sci-
entific Library (GSL [11]). Noteworthy details: when normal
distributions are used, the associated Random Number Gener-
ators (RNGs) have to be re-initialized (in our implementation,
by re-seeding them) across iterations, to guarantee statistical
independence across results. Were RNGs not re-initialized,
results from one iteration could pollute results from subsequent
iterations; e.g., if sampled numbers from a normal distribution
happen to come from the lower part of the distribution in one
iteration, a subsequent iteration is more likely to sample from
the upper part of the distribution, without re-initialization (this
is not observed when sampling from a uniform distribution).
We use an extra (uniform) RNG to seed normal distributions
across iterations.

IV. RESULTS

Table I depicts results for the two-sided truncated normal
distribution experiment, i.e., with an upper bound on skill.

TABLE I
VICTORY RESULTS FOR FIXED MUSASHI SKILL, ASSUMING TWO-WAY

TRUNCATED NORMAL DISTRIBUTION.

σ2 Average guaranteed 50% guaranteed 95% Longest

4.95 2.017 1 0 15
9.90 1.988 1 0 19

14.85 2.047 1 0 16
19.80 2.100 1 0 16
24.75 1.962 1 0 17
29.70 1.899 1 0 15
34.65 1.901 1 0 18
39.60 1.755 1 0 20
44.55 1.787 1 0 22

For a range where the hypothetical Musashi is 100 times
as good as the least skilled duelist, and twice as good as the
average duelist, we observe that 1 victory can be observed
with 50% confidence, but no victories can be guaranteed with
95% confidence. On average, we win slightly less than 2 duels
in a row, with a highest observable streak of 22 victories.

Table II depicts results for the one-sided (left) truncated
normal distribution, i.e., with a lower, but not upper, bound
on skill.

TABLE II
VICTORY RESULTS FOR VARIED MUSASHI SKILL, ASSUMING ONE-WAY

TRUNCATED NORMAL DISTRIBUTION. S61 IS THE SKILL VALUE
CORRESPONDING TO AT LEAST ONE OBSERVED 61 VICTORY STREAK;
S95% IS THE SKILL VALUE FOR 61 VICTORIES WITH 95% CONFIDENCE.

σ2 S61 Average at S95% S95% Longest at S95%

4.95 260 975.9 48120 8997
9.90 330 988.3 50080 10454

14.85 290 950.6 51190 9618
19.80 260 1032.2 49600 10427
24.75 300 929.5 46040 8239
29.70 300 1003.5 52610 10115
34.65 400 998.9 59600 9638
39.60 360 1007.0 59070 9637
44.55 400 1046.8 60110 9542

We observe the first streak of 61 victories when the hypo-
thetical Musashi skill is, on average, 322.2; i.e., 322 times as
good as the weakest duelist, and roughly 6.5 times as good
as the average duelist. To obtain the same streak with 95%
confidence, the hypothetical Musashi skill must be 52935.5,
i.e., a thousand times better than the average duelist.

V. CONCLUSIONS

We have evaluated victory streak probabilities for sword
duel survival, using a Markov-chain Monte-Carlo simulation
approach. Results suggest that a 61 victory streak (chosen in
honor of Musashi’s victory streak) can be probabilistically
observed when skill level is roughly 6.5 times that of the
average duelist, and with 95% confidence when skill level is
roughly 1000 times that of the average duelist.
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More generally, this paper provides a method for determin-
ing chances of victory streaks in game-theoretical sudden-
death encounters, when both ”skill” and ”luck” contribute
to the outcome of the encounter. Specific scenarios can be
modeled by modifying the utilized Markov chain and adjusting
sampled distributions as required.

As a final remark: applying statistical probabilities to events
in the past is, at best, a subversion of the field and, at worst,
an epistemological challenge to the meaning of probability.
Thus, we do not attempt to answer this question, but we do
leave it for the reader to ponder, if they so desire: ”how good
was Miyamoto Musashi?”
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