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Abstract 

Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). 

Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is 

overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a 

promising therapeutic option for several types of cancer. Here, we conducted computational 

modeling of FAK targeting inhibitors using 3-dimensional structure-activity relationship (3D-

QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP) 

methods. The structure-activity relationship (SAR) studies between the physicochemical 

descriptors and inhibitory activities of the chemical compounds were performed with reasonable 

statistical accuracy using CoMFA and CoMSIA. These are two well-known 3D-QSAR methods 

based on the principle of supervised machine learning (ML). Essential information regarding 

residue-specific binding interactions was determined using the MD and MM-PB/GBSA methods. 

Finally, physics-based relative binding free energy (∆∆GRBFE
A→B ) values of analogous ligands were 

estimated using the alchemical FEP simulation. An acceptable agreement was observed between 

the experimental and computed relative binding free energies. The overall results using ML and 

physics-based hybrid approaches could be useful for the rational optimization of accessible lead 

compounds with similar scaffolds targeting the FAK receptor. 

Keywords: Focal adhesion kinase, 3D-QSAR, Molecular Dynamics, MM-PB/GBSA, Free 

energy perturbation 

1. Introduction 
Overexpression of the FAK receptor is known for its pivotal role in cell division, 

proliferation, migration, adhesion, and angiogenesis through its enzymatic activities in 

different types of cancer progression in humans[1]. FAK, also known as protein tyrosine 

kinase 2 (PTK2), comprises an N-terminal four-point-one, ezrin, radixin, moesin (FERM) 

domain, a catalytic kinase domain, and a C-terminal domain (Fig 1)[2]. The FERM 

domain is further divided into smaller subdomains (F1, F2, and F3), directly bound to the 

intercellular part of the transmembrane receptor proteins and the binding site for the 

growth factor receptors, C-Met, p53, and mouse double minute 2 (MDM2) proteins[3]. 

The highly conserved kinase domain (residue 300-650) participates in the catalytic 

activity. On the other hand, the C-terminal domain comprises a focal adhesion targeting 

(FAT) domain and two proline-rich region (PPR) motifs. There are six tyrosine residues 

as phosphorylation sites (Y397, Y407, Y576, Y577, Y861, and Y925) that are located 

throughout the FAK receptor and have been identified as critical phosphorylation sites 

upon binding to signaling proteins[4, 5].  

 ATP-competitive inhibitors targeting the kinase domain are promising therapeutic 

interventions for several types of cancers, and many are currently being studied in 

advanced clinical trials. However, throughout the lead optimization process, there was a 

persistent dilemma between selectivity and efficacy, demanding more collaborative 

efforts using computational modeling and medicinal chemistry[6].  
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Because the binding of inhibitor compounds to target receptors involves contributions of 

entropy and enthalpy, biophysical and biochemical methods are frequently used to 

determine binding affinity. However, these procedures are costly, time-consuming, and 

limited to technical challenges. On the contrary, with the advent of CPU, GPU resources 

and improved force fields, computational methods have shown dramatic improvement in 

determining the binding affinity between biomolecules[7, 8]. Methods such as molecular 

docking, molecular dynamics, MM-PBSA binding free energy, umbrella sampling, free 

energy perturbation (FEP), and thermodynamic integration (TI) have been developed and 

effectively used for binding affinity assessment in kinase drug design[9].  

In our current work, we conducted the molecular modeling study by taking 125 

analogous compounds as FAK inhibitors, which exhibited a wide spectrum of inhibitory 

activities [10-14]. These compounds are ATP-competitive inhibitors with high structural 

similarity to TAE226 or TAE molecule. Therefore, the compounds were expected to 

interact with FAK in a similar manner to TAE226 (PDB: 4D58 and 2JKK)[15, 16]. We 

developed CoMFA and CoMSIA, two well-known 3D-QSAR methods, to establish the 

structure-activity relationship of the compounds in the dataset. Unlike 2D-QSAR, 3D-

QSAR includes quantum chemical descriptors, unique molecular scaffolds, substituent 

constants, surface and volume descriptors, and autocorrelation descriptors. This provides 

richer information and better reflects the non-bonded interaction properties between the 

receptor and ligands. Additionally, the key structural features of the inhibitors were 

graphically represented as contour polyhedrons in descriptive color schemes, which are 

useful for designing new chemical compounds by scaffold hopping or molecular probing. 

The SAR investigation study was integrated with the residue-specific binding energy 

profile from the MM-PB/GBSA analysis. The relative binding affinity calculation for a 

congeneric series of small molecules has gained popularity for lead optimization in the 

pharmaceutical industry and institutional laboratories over the last decade. We calculated 

the relative binding free energy (∆∆GRBFE
A→B ) values by taking 12 compounds and then 

correlated them with their relative experimental binding free energy (∆∆GEXP
A→B) values. 

 

2. Methodology 

2.1. Structure preparation 

The bis-anilino pyrimidine (BI9)/TAE226 bound FAK complex with the resolution of 

1.95 Å was retrieved from the RCSB PDB database (PDB ID 4D58). The 

crystallographic water molecules and ions were removed, and the missing atoms, side 

chains, and loops were modeled using the web version of MODELLER in Chimera-1.15, 

according to our previous studies[17, 18]. SYBYL was used to perform the necessary 

naming and atom index adjustment of the TAE226 molecule so that it was compatible 

with the AMBER forcefield during the all-atom MD simulation.  
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2.2. MD simulation and binding energy calculation 

The all-atom MD simulation of the protein-ligand complex was conducted by 

GROMACS version: 2019.5 [19], using the Amber ff03 force field, according to earlier 

studies[20, 21]. TAE226 or C36 was parameterized using ACEPYPE[22], where atom 

types were assigned as GAFF types and AM1-BCC partial charge model. The complex 

was solvated and ionized according to the procedures described in the previous study. 

Following that, the system was carried out for Minimization, NVT, NPT, and 100 ns of 

MD production simulations. In the NVT and NPT simulations, a modified Berendsen 

thermostat and barostat were employed to achieve the 300 K temperature and 1 bar of 

pressure, respectively. The backbone of protein and the heave atoms of the ligands are 

restrained during the NVT and NPT ensembles, while they were omitted during the 

production run. The built-in ‘gmx rms’ function was used to calculate the RMSD of the 

protein and ligand respectively[23]. The MM-GBSA binding energy (ΔGbind), as well as 

the entropy term (TΔS) between the protein and ligand, was computed using the 

gmx_MMPBSA[24] package, as described here[25]. The binding energy ( ΔGbind ) 

obtained from the MM-PB/GBSA calculation can be expressed as follows:  

ΔGbind = ΔGCOM − (ΔGPROT + ΔGLIG) (1) 

where ΔGCOM, ΔGPROT, and ΔGLIG represent the total free energies of complex, protein, 

and ligand separately, respectively in the solvent. 

2.3. Dataset preparation and molecular modeling 

A total of 125 compounds were acquired from previously published literature and their 

inhibitory activity (IC50) values were translated to -logIC50 (pIC50). Compound C36 is 

already available as bis-anilino pyrimidine (BI9) or TAE226 in high-resolution co-

crystallized form bound with FAK (PDB ID 4D58). Besides we employed the MD 

ensemble to obtain a fully equilibrated protein-ligand structure complex. Therefore, the 

last frame of C36 from the MD trajectory was considered to be a biological 3D 

conformer and represented template molecules of the dataset. Based on the template 

molecule, the rest of the compounds were sketched, minimized, and assigned Gasteiger-

Hückel partial charges in SYBYL, as described here[26].  

2.4. Development of 3D-QSAR models 

The compounds were aligned to the common core using the template molecule (C36) as a 

reference. The compounds were then classified into low, medium, and high activity 

classes, and the test set compounds were chosen at random from each class to achieve a 

final training vs. test set ratio of 3:1. CoMFA and CoMSIA were used to develop 3D-

QSAR models. In both methods, the chemical descriptor fields were calculated in a 3D 

cubic box with a grid spacing of 1 Å. At each grid intersection, a hybridized sp3 carbon 

atom with a +1 charge was assigned to compute the steric (S) and electrostatic (E) fields. 

In CoMSIA, an additional three fields, namely, hydrophobic (H), H-bond acceptor (A), 
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and H-bond donor (D), with a Gaussian function. The partial least squares (PLS) method 

was used to assess the statistical correlation between the chemical descriptors and 

inhibitory activities in the CoMFA and CoMSIA models. Leave-one-out and no cross-

validation methods were applied to obtain the cross-validation squared correlation 

coefficient (q2) and the no cross-validation squared correlation coefficient (r2) by taking 

the training set compounds, followed by predicting the pIC50 of every compound in the 

dataset including the test set compounds. The external validation or predictivity of the 

QSAR models was determined by calculating the predictive squared correlation 

coefficient or r2
pred values. Additional parameters such as k or k’, r0

2 or r′
0
2 

, |r0
2 − r′

0
2 

|, rm
2  

or r′m
2  , QF1,

2  QF2
2 , QF3

2 , and Qccc
2 were also considered for the reliability of the model 

according to these studies[27, 28]. The applicability domain (AD) of the developed 

CoMFA and CoMSIA models was evaluated using a distance-based Williams plot 

according to this study[29]. The field distributions of the descriptors were vividly 

represented as descriptive colored contours, suggesting favorable and unfavorable 

chemical substitutions that could increase the inhibitory potency of the lead compounds. 

2.5. Relative binding energy calculation 

According to this study[30], the relative binding free energy was computed by GENESIS 

1.7.1[31] using the hybrid topology approach with the CHARMM36[32] force field. 

Briefly, C36 and C70 were selected as state-A molecules. On the other hand, compounds 

C28, C38, C45, C64, C73, C76, C80, C83, C89, and C114 were selected as state-B 

molecules. These compounds were randomly selected from the dataset based on their 

variable inhibitory activities. The hybrid ligand’s structure, topology, parameters, and 

input files were generated using CHARMM-GUI[33]. The maximum common 

substructure (MCS) was applied for overlapping ligands to determine the minimal 

perturbated atoms between the paired ligands. If such a state-A to state-B mutation is not 

feasible for a certain ligand, the CGenFFv1.x algorithm discards it automatically and is 

not considered further. For the simulation setup, two end-state systems were generated 

for each paired ligand, i.e., the ligand in the solvent and the ligand in the complex. The 

systems were neutralized and ionized with 0.15 M NaCl counterion. Thereafter, 

minimization, NVT, and NPT simulations were performed to remove the bad contacts, 

gradually increasing the temperature from 0.1 K to 300 K and pressure to 1 bar with 

applying the restraint. Following that, a long 10 ns second NPT simulation was 

performed without position restraint. Thereafter, the λ-exchange FEP simulations were 

performed. Twelve λ windows were used to sequentially transform the interactions from 

state-A to state-B with the surroundings, in which six coupling parameters were used. 

Finally, the free energy differences were estimated using the Bennett acceptance ratio 

(BAR) method. The relative binding free energy (∆∆GRBFE
A→B ) between the paired ligands 

was calculated as the following: 

∆∆GRBFE
A→B =  ∆GCOM

A→B −  ∆GLIG
A→B (2) 
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where ∆GCOM
A→B and ∆GLIG

A→B represent the free energy changes upon the transformation of 

state-A to state-B in the complex and isolated in solution, respectively. 

3. Results and Discussion 

3.1. MD simulation analysis and binding energy calculation 

The protein-ligand RMSD curves for the 100 ns MD simulation are shown in Figure 1a. 

Convergence was reached within the initial 5 ns interval, and thereafter both the ligand 

and the protein maintained a stable plateau at the end of the production run. In the 

original crystal structure, C36 was stabilized by forming two interatomic H-bonds (Hb-1 

and Hb-2) with the keto and amide groups of C502. The H-bond distances were measured 

through production simulation and were found to be between 2.7-3.5 Å, validating the 

overall stability of the ligand. Next, we calculated the ligand binding affinity using MM-

PB/GBSA end-state binding free energy calculation. The different binding energy (BE) 

terms are shown in Figure 1b and Table S1. The van der Waals (VDW) and electrostatic 

(EEL) terms each provided favorable ligand binding energy of -58.85 and -16.96 kcal/mol. 

The polar (EGB) and non-polar (ESURF) solvation terms are obtained as 29.54 and -6.49 

kcal/mol. The ΔTOTAL and interaction entropy (-TΔS) were obtained as -52.76 and 7.51 

kcal/mol, respectively. The final binding energy (ΔGbind) was estimated to be -45.25 

kcal/mol by deducting the entropy term from ΔTOTAL. Accurate binding energy 

contributions from active site residues are crucial for structure-guided inhibitor 

optimization process. In our study, we identified that I428, V436, V884, M499, L501, 

C502, G505, L553, G563, D564, and L567 were present within the boundary of 4 Å of 

the ligand atoms and contributed the critical binding affinity to ligand (Table S2). This 

information was further co-utilized in the 3D-QSAR study. 

 

Figure 1. MD simulation and MM-PB/GBSA binding energy calculation. (a) RMSD analysis of the 

protein backbone and TAE during 100 ns of MD simulation. The distances of the two intermolecular H-

bonds (Hb-1 and Hb-2) with the keto and amide groups of C502 are shown during the MD run. (b) 

Binding affinity calculation and residue-specific binding energy decomposition from the MM-PB/GBSA 

calculation. (c) Residues within 4 Å distance within the TAE ligand atoms, that contribute critical binding 

energy to the ligand are shown in the stick representation.   
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3.2. Statistical analysis of 3D-QSAR models 

The receptor-based CoMFA and CoMSIA, two well-known 3D-QSAR models were 

developed using 125 compounds. Compound C107 has non-specific bio-activity and was 

discarded from the dataset during model building. The 2D structures and corresponding 

pIC50 values of these compounds are listed in Table S3. Molecular alignment of the 

compounds was done by superimposing the dataset compounds over the common core of 

the average MD position of C36. The 3-D alignment of the compounds over C36 inside 

the binding pocket is shown in Figure 2a.  To develop a well-predictive model as well as 

the model’s predictive ability, we split the dataset into a training set and test set 

compounds by following a 3:1 ratio by employing random sampling methods according 

to our previous studies[18, 23]. Briefly, the compounds were arranged into three mutually 

exclusive non-overlapping groups i.e., high, medium, and low activity groups based on 

their pIC50 values. Following that, a random draw was performed from each group in 

such a way, so that the compounds had an equal chance to be selected in the test set 

compounds. Using this method, four different training and test sets were developed for 

the CoMFA study (SET-A to D), as shown in Table S4.  

Statistical analyses of the CoMFA models are presented in Table 1. During the model 

evaluation, we strictly followed the acceptance criterion for each parameter, specified in 

the 'Threshold value column'. The q2 and r2 values for SET-A were 0.593 and 0.839, 

respectively, at ONC of 5. For SET-B, the q2 and r2 values were 0.541 and 0.666 at ONC 

of 2. The q2 and r2 values of SET-C were 0.505 and 0.612 at ONC 2, while SET-D had q2 

and r2 values of 0.633 and 0.897 at ONC of 6. Higher q2 and r2 values in combination 

with low χ2 and RMSE values were considered for the internal validation of the proposed 

model employing the training set compounds. SET-D had the highest q2 and r2 with 

satisfactory χ2 and RMSE values of 0.325 and 0.356, respectively, which were below the 

threshold constraint, and was selected as the final CoMFA model among the other 

datasets. In addition to the above parameters, k or k’, r0
2 or r′

0
2 

, |r0
2 − r′

0
2 

|, rm
2  or r′m

2 
 were 

also computed for internal validation and were found to be in good agreement with the 

threshold parameters. However, QSAR models are unpredictable without external 

validation using test set compounds that are not included in the training set during model 

development. Similar to the internal validation, k or k’, r0
2 or r′

0
2 

, |r0
2 − r′

0

2 
|, rm

2  or 

r′m
2  parameters were considered to assess the external validation of the model. However, 

the final selection was done by evaluating the predictive correlation coefficient or rpred
2 . 

Overall, SET-D showed the highest rpred
2  value (rpred

2 = 0.911, > 0.6) and was therefore 

considered as the final CoMFA model. 

We employed the CoMSIA evaluation of SET-D since CoMSIA employed a more 

comprehensive set of descriptor fields, such as hydrophobic (H), H-bond acceptor (A), 

and H-bond donor (D), in addition to the steric (S) and electrostatic (E) fields of CoMFA 

in different permutation-combination processes (Table S5). The highest q2 and r2 values 

were 0.656 and 0.862 at an ONC of 6. The other parameters, such as χ2 and RMSE, rm
2  or 
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r′m
2  followed the well-accepted statistical norms indicating good internal validation. In 

addition, we obtained an rpred
2  of 0.843, indicating excellent predictivity of the CoMSIA 

model. The actual and predicted pIC50 values with the residuals are listed in Table S6, 

and the PLS correlation plots from CoMFA and CoMSIA are shown in Figures 2b and 

2c, respectively.  

Overall, SET-D provided statistically significant CoMFA and CoMSIA models with 

strong internal and external validations, suggesting that both models can predict the 

inhibitory potential of unknown chemicals with a similar scaffold. Next, we performed 

the applicability domain (AD) analyses using data obtained from the 3D-QSAR study. 

Unlike other ML-based methods, 3D-QSAR uses the least squares algorithm to correlate 

the chemical descriptors and their inhibitory activity thus, QSAR applications are limited 

but highly efficient for compounds with congeneric series of compounds. The 

applicability domain is a distance-based graphical prediction method, that determines the 

uncertainty in the predictability of compounds based on structural similarity. The AD 

analysis of CoMFA and CoMSIA using the Williams plot is depicted in Figures 2d and 

2e in a square area of σ = ±3, in which the standardized residuals of the training and test 

set compounds are plotted against the leverage values. None of the compounds fell 

outside the warning leverage (h*), indicating the reliability and robustness of both 3D-

QSAR models. 

Table 1. Statistics of CoMFA and CoMSIA models 

Statistica

l  

paramete

rs 

CoMFA CoMSI

A 

(SED) 

SET-D 

Threshol

d values 

Statistica

l 

paramete

rs 

CoMFA CoMSI

A 

SET-D 

Threshol

d values 
SET-

A 
SET-B 

SET-

C 

SET-D 
SET

-A 

SET

-B 

SET

-C 

SET

-D 

q2 0.593 0.541 0.505 
0.633 0.656 

> 0.5 k Test 
0.99

4 

0.97

9 

1.00

9 

1.00

7 

1.011 
0.85 ≤ k 

or k’ ≤ 

1.15 ONC 5 2 2 
6 6 

 k’ Test 
1.00

2 

1.01

5 

0.98

5 

0.99

1 

0.985 

SEP 0.559 0.554 0.612 
0.521 0.510 

 r2
 Test 

0.57

8 

0.42

2 

0.76

7 

0.92

2 

0.850 
 

r2 0.839 0.666 0.643 
0.897 0.862 

> 0.6 r0
2 

 Test 
0.49

4 

0.37

7 

0.73

5 

0.91

5 

0.854 

≈ r2 

SEE 0.352 0.473 0.277 
0.277 0.323 

<< 1 r′
0
2 

 Test 
0.54

0 

0.24

0 

0.41

7 

0.88

6 

0.816 

F-value 
91.48

7 
90.592 

81.91

1 

125.82

2 

89.719 

 

|r0
2 

− r′
0
2 

| 

Test 

0.04

6 

0.13

7 

0.31

7 

0.02

8 

0.037 

< 0.3 

BS- r2 0.895 0.712 0.699 
0.934 0.940 

 
r2−r0

2

r2
 Test 

0.14

4 

0.10

4 

0.31

7 

0.00

7 

-0.003 

< 0.1 

BS-SD 0.025 0.051 0.050 
0.017 0.016 

 
r2−r0

′2

r2
 Test 

0.06

4 

0.43

0 

0.04

1 

0.03

8 

0.039 

χ2 0.285 0.537 0.507 
0.387 0.325 

< 1.0 rm
2 

  Test 
0.41

0 

0.33

3 

0.63

0 

0.84

6 

N/A rm
2 

  or 

r′m
2  > 

0.5 RMSE 0.333 0.437 0.430 0.382 0.356 < 0.5 r′m
2 

  Test 0.46 0.24 0.31 0. 0.694 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 November 2022                   doi:10.20944/preprints202211.0356.v1

https://doi.org/10.20944/preprints202211.0356.v1


6 2 3 748 

MAE 0.001 0.001 0.001 
0.001 0.001 

≈ 0 rpred
2  

0.49

5 

0.36

1 

0.72

4 

0.91

1 

0.843 

> 0.6 

RSS 
14.27

5 
24.554 

23.74

8 

15.253 16.28 
 QF1

2  
0.49

5 

0.36

1 

0.72

4 

0.91

1 

0.843 

k Train 0.996 1.003 0.998 
0.991 0.997 

0.85 ≤ k 

or k’ ≤ 

1.15 

QF2
2  

0.49

3 

0.35

3 

0.72

3 

0.91

0 

0.842 

k’ Train 1.000 0.991 0.996 
1.005 0.999 

QF3
2  

0.49

5 

0.36

1 

0.72

4 

0.91

1 

0.843 

r0
2 

 Train 0.814 0.665 0.597 
0.667 0.718 

≈ r2 
Qccc

2  
0.75

9 

0.65

5 

0.81

1 

0.95

0 

0.916 
 

r′
0
2 

 Train 0.785 0.396 0.467 0.635 0.662 S (%) 47.1 47.0 46.9 39.4 18.7  

|r0
2 

− r′
0
2 

| 

Train 

0.028 0.269 0.129 

0.041 0.055 

< 0.3 E (%) 52.9 53.0 53.1 

60.6 46.1 

 

r2−r0
2

r2   Train 0.029 
2.53*10

^-5 
0.071 

0.245 0.167 

< 0.1 
H (%)    

  
 

r2−r0
′2

r2   Train 0.063 0.404 0.273 0.291 0.231 A (%)       

rm
2 

 Train 0.706 0.663 0.505 0.476 0.534 rm
2 

  or 

r′m
2  > 

0.5 

D (%)     35.2  

r′m
2 

 Train 0.644 0.320 0.373 
0.438 0.477 

    
  

 

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard 

error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; F-value: F-test 

value; BS-r2: Bootstrapping squared correlation coefficient; χ2: chi-square value; RMSE: Root Mean 

Square Error; MAE: mean absolute error; k: slope of the predicted vs. observed activity at zero intercepts; 

k’: slope of the observed vs. predicted activity at zero intercepts; r0
2 : squared correlation coefficient 

between predicted and observed activity; r′
0
2 

: squared correlation coefficient between predicted and 

observed activity; rm
2  or r′m

2 : rm
2 , r′m

2  matrix; rpred
2 : predictive correlation coefficient;  

QF1
2 , QF2

2 , QF3
2 , and Qccc

2 : QF1
2 , QF2

2 , QF3
2 and Qccc

2  matrices. S: steric; E: electrostatic; H: Hydrophobic; A: H-

bond acceptor; D: H-bond donor. 
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Figure 2. Molecular alignment of the dataset compounds, PLS plots, and applicability domain (AD) 

analysis. (a) Molecular alignment of the dataset compounds with the common chemical core of C36 

(TAE) inside the FAK binding cavity. (b) PLS correlation plots of CoMFA (SET-D) study. (c) PLS 

correlation plots of the CoMSIA (SET-D) study. (d) and (e) Applicability domain analysis using the 

distance-based Williams plot using the data obtained from the CoMFA and CoMSIA models. The h* with 

dotted lines in red signifies the warning leverage values in both plots. 

3.3. Contour map analysis 

Following statistical validation, descriptive colored contour maps around the MD 

structure of C36 were generated from the 3D-QSAR study. The compounds were well 

aligned on the common core of the N-phenylpyrimidine-2-amine moiety inside the ATP 

pocket (Figure 3a). In the CoMFA analysis, the green and blue contours represent a 

favorable position for steric and electropositive substitutions, whereas the yellow and red 

contours did not favor those substitutions (Figures 3b and 3c)[34, 35]. In the steric 

contour map, a green contour was observed near the R1 position of the anisole ring and 

two green contours appeared around the R2 position of the morpholine ring, indicating 

that the steric substitution would be preferable for these regions. A yellow contour at the 

R3 position near residues D564, V436, and L567 indicates an unfavorable position for 

bulky steric substitution. Consequently, residue D564 is the part of the DFG motif that 

contributes -2.62 kcal/mol to ligand binding; thus, a bulky substitution at that position 

could have the steric hindrance effect and may lead to a decrease in overall binding 

affinity. Compounds C71, C72, C77, C79, C81, C82, and C84 had steric moieties 
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adjacent to the green contours and exhibited inhibitory (pIC50) more than 9. In the 

electrostatic contour map, a blue contour near N-methylbenzamide and two small red 

contours near the morpholine ring indicated that positively charged groups would be 

favorable and unfavorable in that chemical space. Very similar steric and electrostatic 

contours appeared (Figures 3d and 3e) during the CoMSIA study, although an additional 

blue contour was present in the ortho- position of the six-membered rings at R2, overall 

corroborating the CoMFA contours. In the CoMSIA H-bond donor contour, two purple 

and two cyan contours appeared near R2 and R3, indicating the favorable and unfavorable 

substitutions for the H-bond donor groups, which can increase the overall inhibitory 

potential of C36. Figure 3f shows an SAR diagram based on the information obtained 

from the 3D-QSAR analysis. Residues D564, V436, and L567 were proximal (< 4 Å) to 

the R3 position of N-methylbenzamide, and the critical binding energy decomposed to 

C36. Furthermore, SAR analysis revealed that non-steric, H-bond donor, and 

electropositive chemical groups could be advantageous substitutions at R3 in terms of 

improving inhibitory effects. Therefore, this chemical space of C36 could serve as a 

potential site for chemical modification to ameliorate the FAK binding affinity. 

Figure 3. Contour map analysis and structure activity relationship study from 3D-QSAR. (a) Steric 

contour map and (b) Electrostatic contour map from CoMFA. (c), (d), and (e) are Steric, Electrostatic, and 

H-bond (Hb) donor contour map from CoMSIA. (f) Implementation of the SAR diagram from CoMFA 

and CoMSIA analysis by taking TAE (C36) as a reference. 
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3.4. Relative binding affinity estimation 
For relative binding estimation study, we randomly selected 12 compounds from the 

dataset by varying the degree of inhibitory activity. The experimental binding energy 

(∆GEXP) values were deduced from the inhibitory activities of the selected compounds. 

The partial charges and LJ parameters gradually changed during the alchemical 

transformation of the ligand from state-A to state-B within the binding pocket in the FEP 

simulation. These changes were made by implementing a hybrid topology from 0 to 1 in 

twelve different λ intermediate steps. Figure 4a shows the generalized thermodynamic 

cycle of the relative binding free energy derivation scheme. In the earlier studies [36, 37], 

we used an absolute binding free energy estimate in the modeling study of kinase 

inhibitors and found a satisfactory correlation between the experimental and computed 

binding free energies, despite the high numerical approximation. Since the entire ligand 

needs to be perturbed (interactions off or on) corresponding to its surroundings, which 

requires a large number of λ intermediate states and simulation time. In contrast, only a 

fraction of the chemical moiety is required to be perturbed to transition from state-A to 

state-B in fewer λ states. Compounds C36 and C70 were selected as state-A, while 

compounds C28, C38, C45, C64, C73, C76, C80, C83, C89 and C114 were assigned as 

state-B. The common and mismatched atoms are shown in black and red in Figure 4b, 

respectively. A hybrid molecule was generated by superimposing the chemical structures 

of two ligands. In this hybrid molecule, the common part was assigned as a single 

topology or the same topology as the first ligand. The remaining hybrid molecules were 

assigned a single-dual hybrid topology. During the FEP simulation, the dual topology 

portion was changed (including the LJ parameters, partial charges, and bonds) using the 

forcefield by 12 alter λ scaling (Table S7). Each alter-λ simulation was run for 1 ns in 

triplicate to ensure sufficient sampling while overlapping the neighboring windows. In 

this manner, a total of 72 ns simulation for a single alchemical transformation in complex 

and isolated forms was performed.   
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Figure 4. Overview of the FEP scheme and relative binding affinity estimation. (a) Thermodynamic 

pathway of ligand transformation from State-A to State-B in aqueous and in complex form. The ∆∆GRBFE
A→B

 

can be deduced from the free energy changes of both states in aqueous and complex systems. (b) Relative 

binding energy calculation of the ligands through alchemical transformation. The mismatched atoms 

between the ligand pairs, which need to be perturbated, are shown in red. 

 

Figure 5. FEP energy convergence plots of (a) C36 → C28, (b) C36 → C38, (c) C36 → C64, (d) C36 → 

C73, (e) C36 → C76, (f) C36 → C80, (g) C36 → C83, (h) C70 → C45, (i) C36 → C89, (j) C36 → C114 

in complex and isolated form. 

The results of the alchemical transformation by the FEP methods are shown in Figure 5, 

as the free energy changes from state-A to state-B through the different λ states in 

complex and isolated forms. BAR methods were utilized to calculate the energy 

differences between the neighboring λ windows. In each graph, the total energy 

difference between the initial (λ=0) and final (λ=1) stages of the ligands in the complex 

and isolated forms correspond to ∆GCOM
A→B and ∆GLIG

A→B, respectively. From equation (2) we 

derived the ∆∆GRBFE
A→B  from each ligand transformation, which is summarized in Table 2. 

The computed ∆∆GRBFE
A→B  of C36 → C28, C36 → C38, C36 → C73, C36 → C76, C36 → 

C83, C36 → C89, and C36 → C114 were found to be 2.94, 4.58, 2.64, -0.23, -0.97, -0.79 
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and -2.86 kcal/mol with corresponding to their theoretical ∆∆GEXP
A→B of 1.44, 3.00, 0.93, -

1.43, -0.53, -0.60, and -1.29 kcal/mol, respectively, which is a good agreement between 

experimental and computed relative binding affinity. However, the transformation of C36 

→ C64, C70 → C45, and C70 → C114 yielded a higher ∆∆GRBFE
A→B  approximation than the 

∆∆GEXP
A→B values. In this case, we anticipated that increasing the number of iterations and λ 

sampling would reduce the mean statistical approximation. We determined Pearson’s 

correlation coefficient using the computed values and their respective experimental 

values in Figure S1. A Pearson’s R (RRBFE) was obtained as 0.82 and an R2 of 0.68, 

indicating the reasonable performance of the physics-based binding affinity calculation. 

In addition, the correlation statistics can be expressed in a linear equation form: 

∆∆GEXP
A→B = 0.3345× ∆∆GRBFE

A→B  – 0.4229 (3) 

The above equation could be useful for FEP-based SAR investigation of TAE/C36 

analogs as well as the prediction of ∆∆GEXP
A→B values with reasonable accuracy. 

 

Table 2. Energy terms of Alchemical binding energy transformation from state-A to state-B 

state-A (∆GEXP) state-B (∆GEXP) ∆∆GEXP
A→B ∆GCOM 

±SD 

∆GLIG 

±SD 
λ-dependent ∆∆GRBFE

A→B  

 

C36 (-11.33) C28 (-9.89) 1.44 -19.51 

± 0.87 

-22.45 

± 0.99 

2.94 

C38 (-8.33) 3.00 -17.12 

± 2.35 

-21.77 

± 1.41 

4.58 

C64 (-9.67) 1.66 -19.11 

±3.26 

-10.48 

±2.95 

-8.63 

C73 (-10.40) 0.93 -13.09 

± 0.64 

-15.73 

± 2.06 

2.64 

C76 (-12.76) -1.43 -54.20 

± 0.31 

-53.97 

± 0.77 

-0.23 

C80 (-14.03) -2.70 -34.22 

± 0.13 

-28.88 

± 1.16 

-5.34 

C83 (-11.86) -0.53 -48.29 

± 0.63 

-47.34 

± 0.58 

-0.97 

C70 (-9.53) C45 (-9.50) 0.03 -19.44 

± 1.02 

-25.01 

± 0.26 

5.57 

C89 (-10.13) -0.60 -20.41 

± 0.32 

-19.62 

± 0.60 

-0.79 

C114 (-10.82) -1.29 -49.62 

± 1.06 

-46.76 

± 3.29 

-2.86 

∆GEXP: experimental binding free energy; ∆∆GEXP
A→B: experimental relative binding free energy;  

∆GCOM: free energy changes in complex; ∆GLIG: free energy changes isolated form; ∆∆GRBFE
A→B : computed 

relative binding free energy. 
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Conclusion 
In this study, we employed ML and physics-based hybrid modeling approach to study the 

structure-activity relationship and binding mechanism of N-phenylpyrimidine-2-amine based 

FAK inhibitors. As FAK is one of the most important regulators of growth factor receptor 

signaling, its overexpression and concomitant drug resistance pose a major challenge to 

chemists. From the molecular simulation, H-bond analysis and MM-PBSA binding energy 

calculations were employed to assess the ligand stability, binding affinity, and per-residue 

binding energy decomposition of the crystal ligand. Residues such as I428, V436, V484, M499, 

L501, C502, G505, L553, G563, D564, and L567 were identified as important BE contributing 

residues to the ligand binding. Following that, the statistically reasonable CoMFA and CoMSIA 

models were developed and both showed excellent predictive capability. Descriptive colored 

contour maps surrounding compound C36 illustrated that chemical substitutions along these 

contours would more likely increase the inhibitory activity. This information can be further co-

utilized with the residue-specific binding energy profile to aid in molecular probing and ligand 

design. Finally, we applied the alchemical FEP simulation by taking 12 different ligands to 

estimate their relative binding affinity. An acceptable agreement was obtained between the 

experimental relative binding energies and the computed relative binding energies. The 

molecular modeling techniques employed here in different combinations could be useful for 

further lead optimization in medicinal chemistry research. 
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