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Abstract

Precise binding affinity predictions are essential for structure-based drug discovery (SBDD).
Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is
overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a
promising therapeutic option for several types of cancer. Here, we conducted computational
modeling of FAK targeting inhibitors using 3-dimensional structure-activity relationship (3D-
QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP)
methods. The structure-activity relationship (SAR) studies between the physicochemical
descriptors and inhibitory activities of the chemical compounds were performed with reasonable
statistical accuracy using COMFA and CoMSIA. These are two well-known 3D-QSAR methods
based on the principle of supervised machine learning (ML). Essential information regarding
residue-specific binding interactions was determined using the MD and MM-PB/GBSA methods.
Finally, physics-based relative binding free energy (AAGRgE:) values of analogous ligands were
estimated using the alchemical FEP simulation. An acceptable agreement was observed between
the experimental and computed relative binding free energies. The overall results using ML and
physics-based hybrid approaches could be useful for the rational optimization of accessible lead
compounds with similar scaffolds targeting the FAK receptor.

Keywords: Focal adhesion kinase, 3D-QSAR, Molecular Dynamics, MM-PB/GBSA, Free
energy perturbation

1. Introduction

Overexpression of the FAK receptor is known for its pivotal role in cell division,
proliferation, migration, adhesion, and angiogenesis through its enzymatic activities in
different types of cancer progression in humans[1]. FAK, also known as protein tyrosine
kinase 2 (PTK2), comprises an N-terminal four-point-one, ezrin, radixin, moesin (FERM)
domain, a catalytic kinase domain, and a C-terminal domain (Fig 1)[2]. The FERM
domain is further divided into smaller subdomains (F1, F2, and F3), directly bound to the
intercellular part of the transmembrane receptor proteins and the binding site for the
growth factor receptors, C-Met, p53, and mouse double minute 2 (MDM2) proteins[3].
The highly conserved kinase domain (residue 300-650) participates in the catalytic
activity. On the other hand, the C-terminal domain comprises a focal adhesion targeting
(FAT) domain and two proline-rich region (PPR) motifs. There are six tyrosine residues
as phosphorylation sites (Y397, Y407, Y576, Y577, Y861, and Y925) that are located
throughout the FAK receptor and have been identified as critical phosphorylation sites
upon binding to signaling proteins[4, 5].

ATP-competitive inhibitors targeting the kinase domain are promising therapeutic
interventions for several types of cancers, and many are currently being studied in
advanced clinical trials. However, throughout the lead optimization process, there was a
persistent dilemma between selectivity and efficacy, demanding more collaborative
efforts using computational modeling and medicinal chemistry[6].
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Because the binding of inhibitor compounds to target receptors involves contributions of
entropy and enthalpy, biophysical and biochemical methods are frequently used to
determine binding affinity. However, these procedures are costly, time-consuming, and
limited to technical challenges. On the contrary, with the advent of CPU, GPU resources
and improved force fields, computational methods have shown dramatic improvement in
determining the binding affinity between biomolecules[7, 8]. Methods such as molecular
docking, molecular dynamics, MM-PBSA binding free energy, umbrella sampling, free
energy perturbation (FEP), and thermodynamic integration (T1) have been developed and
effectively used for binding affinity assessment in kinase drug design[9].

In our current work, we conducted the molecular modeling study by taking 125
analogous compounds as FAK inhibitors, which exhibited a wide spectrum of inhibitory
activities [10-14]. These compounds are ATP-competitive inhibitors with high structural
similarity to TAE226 or TAE molecule. Therefore, the compounds were expected to
interact with FAK in a similar manner to TAE226 (PDB: 4D58 and 2JKK)[15, 16]. We
developed CoMFA and CoMSIA, two well-known 3D-QSAR methods, to establish the
structure-activity relationship of the compounds in the dataset. Unlike 2D-QSAR, 3D-
QSAR includes quantum chemical descriptors, unique molecular scaffolds, substituent
constants, surface and volume descriptors, and autocorrelation descriptors. This provides
richer information and better reflects the non-bonded interaction properties between the
receptor and ligands. Additionally, the key structural features of the inhibitors were
graphically represented as contour polyhedrons in descriptive color schemes, which are
useful for designing new chemical compounds by scaffold hopping or molecular probing.
The SAR investigation study was integrated with the residue-specific binding energy
profile from the MM-PB/GBSA analysis. The relative binding affinity calculation for a
congeneric series of small molecules has gained popularity for lead optimization in the
pharmaceutical industry and institutional laboratories over the last decade. We calculated

the relative binding free energy (AAGRgE:) values by taking 12 compounds and then

correlated them with their relative experimental binding free energy (AAGEx:2) values.

2. Methodology
2.1. Structure preparation

The bis-anilino pyrimidine (BI19)/TAE226 bound FAK complex with the resolution of
1.95 A was retrieved from the RCSB PDB database (PDB ID 4D58). The
crystallographic water molecules and ions were removed, and the missing atoms, side
chains, and loops were modeled using the web version of MODELLER in Chimera-1.15,
according to our previous studies[17, 18]. SYBYL was used to perform the necessary
naming and atom index adjustment of the TAE226 molecule so that it was compatible
with the AMBER forcefield during the all-atom MD simulation.
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2.2.  MD simulation and binding energy calculation

The all-atom MD simulation of the protein-ligand complex was conducted by
GROMACS version: 2019.5 [19], using the Amber ff03 force field, according to earlier
studies[20, 21]. TAE226 or C36 was parameterized using ACEPYPE[22], where atom
types were assigned as GAFF types and AM1-BCC partial charge model. The complex
was solvated and ionized according to the procedures described in the previous study.
Following that, the system was carried out for Minimization, NVT, NPT, and 100 ns of
MD production simulations. In the NVT and NPT simulations, a modified Berendsen
thermostat and barostat were employed to achieve the 300 K temperature and 1 bar of
pressure, respectively. The backbone of protein and the heave atoms of the ligands are
restrained during the NVT and NPT ensembles, while they were omitted during the
production run. The built-in ‘gmx rms’ function was used to calculate the RMSD of the
protein and ligand respectively[23]. The MM-GBSA binding energy (AGping), as well as
the entropy term (TAS) between the protein and ligand, was computed using the
gmx_MMPBSA[24] package, as described here[25]. The binding energy (AGping)
obtained from the MM-PB/GBSA calculation can be expressed as follows:

AGping = AGeom — (AGprot + AGig) (1)

where AGcom, AGprot, and AGy g represent the total free energies of complex, protein,
and ligand separately, respectively in the solvent.

2.3. Dataset preparation and molecular modeling

A total of 125 compounds were acquired from previously published literature and their
inhibitory activity (ICso) values were translated to -loglCso (plCso). Compound C36 is
already available as bis-anilino pyrimidine (BI9) or TAE226 in high-resolution co-
crystallized form bound with FAK (PDB ID 4D58). Besides we employed the MD
ensemble to obtain a fully equilibrated protein-ligand structure complex. Therefore, the
last frame of C36 from the MD trajectory was considered to be a biological 3D
conformer and represented template molecules of the dataset. Based on the template
molecule, the rest of the compounds were sketched, minimized, and assigned Gasteiger-
Huckel partial charges in SYBYL, as described here[26].

2.4. Development of 3D-QSAR models

The compounds were aligned to the common core using the template molecule (C36) as a
reference. The compounds were then classified into low, medium, and high activity
classes, and the test set compounds were chosen at random from each class to achieve a
final training vs. test set ratio of 3:1. CoMFA and CoMSIA were used to develop 3D-
QSAR models. In both methods, the chemical descriptor fields were calculated in a 3D
cubic box with a grid spacing of 1 A. At each grid intersection, a hybridized sp® carbon
atom with a +1 charge was assigned to compute the steric (S) and electrostatic (E) fields.
In CoMSIA, an additional three fields, namely, hydrophobic (H), H-bond acceptor (A),
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and H-bond donor (D), with a Gaussian function. The partial least squares (PLS) method
was used to assess the statistical correlation between the chemical descriptors and
inhibitory activities in the CoMFA and CoMSIA models. Leave-one-out and no cross-
validation methods were applied to obtain the cross-validation squared correlation
coefficient (g% and the no cross-validation squared correlation coefficient (r?) by taking
the training set compounds, followed by predicting the plCso of every compound in the
dataset including the test set compounds. The external validation or predictivity of the
QSAR models was determined by calculating the predictive squared correlation
coefficient or r%yeq values. Additional parameters such as k or k’, r3 or r’(z)  |rg — r'y | r2,
or r'z, , Qf1 Qf2, Qfs, and Q2. were also considered for the reliability of the model
according to these studies[27, 28]. The applicability domain (AD) of the developed
CoMFA and CoMSIA models was evaluated using a distance-based Williams plot
according to this study[29]. The field distributions of the descriptors were vividly
represented as descriptive colored contours, suggesting favorable and unfavorable
chemical substitutions that could increase the inhibitory potency of the lead compounds.

2.5. Relative binding energy calculation

According to this study[30], the relative binding free energy was computed by GENESIS
1.7.1[31] using the hybrid topology approach with the CHARMM36[32] force field.
Briefly, C36 and C70 were selected as state-A molecules. On the other hand, compounds
C28, C38, C45, C64, C73, C76, C80, C83, C89, and C114 were selected as state-B
molecules. These compounds were randomly selected from the dataset based on their
variable inhibitory activities. The hybrid ligand’s structure, topology, parameters, and
input files were generated using CHARMM-GUI[33]. The maximum common
substructure (MCS) was applied for overlapping ligands to determine the minimal
perturbated atoms between the paired ligands. If such a state-A to state-B mutation is not
feasible for a certain ligand, the CGenFFv1.x algorithm discards it automatically and is
not considered further. For the simulation setup, two end-state systems were generated
for each paired ligand, i.e., the ligand in the solvent and the ligand in the complex. The
systems were neutralized and ionized with 0.15 M NaCl counterion. Thereafter,
minimization, NVT, and NPT simulations were performed to remove the bad contacts,
gradually increasing the temperature from 0.1 K to 300 K and pressure to 1 bar with
applying the restraint. Following that, a long 10 ns second NPT simulation was
performed without position restraint. Thereafter, the A-exchange FEP simulations were
performed. Twelve A windows were used to sequentially transform the interactions from
state-A to state-B with the surroundings, in which six coupling parameters were used.
Finally, the free energy differences were estimated using the Bennett acceptance ratio
(BAR) method. The relative binding free energy (AAGRgE:) between the paired ligands
was calculated as the following:

AAGRpre = AGgom — AGLiE” (2)
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where AG255 and AG2;B represent the free energy changes upon the transformation of
state-A to state-B in the complex and isolated in solution, respectively.

3. Results and Discussion

3.1. MD simulation analysis and binding energy calculation

The protein-ligand RMSD curves for the 100 ns MD simulation are shown in Figure la.
Convergence was reached within the initial 5 ns interval, and thereafter both the ligand
and the protein maintained a stable plateau at the end of the production run. In the
original crystal structure, C36 was stabilized by forming two interatomic H-bonds (Hb-1
and Hb-2) with the keto and amide groups of C502. The H-bond distances were measured
through production simulation and were found to be between 2.7-3.5 A, validating the
overall stability of the ligand. Next, we calculated the ligand binding affinity using MM-
PB/GBSA end-state binding free energy calculation. The different binding energy (BE)
terms are shown in Figure 1b and Table S1. The van der Waals (VDW) and electrostatic
(Eev) terms each provided favorable ligand binding energy of -58.85 and -16.96 kcal/mol.
The polar (Ecs) and non-polar (Esurr) solvation terms are obtained as 29.54 and -6.49
kcal/mol. The ATOTAL and interaction entropy (-TAS) were obtained as -52.76 and 7.51
kcal/mol, respectively. The final binding energy (AGyi,q) Was estimated to be -45.25
kcal/mol by deducting the entropy term from ATOTAL. Accurate binding energy
contributions from active site residues are crucial for structure-guided inhibitor
optimization process. In our study, we identified that 1428, V436, V884, M499, L501,
C502, G505, L553, G563, D564, and L567 were present within the boundary of 4 A of
the ligand atoms and contributed the critical binding affinity to ligand (Table S2). This
information was further co-utilized in the 3D-QSAR study.
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Figure 1. MD simulation and MM-PB/GBSA binding energy calculation. (a) RMSD analysis of the
protein backbone and TAE during 100 ns of MD simulation. The distances of the two intermolecular H-
bonds (Hb-1 and Hb-2) with the keto and amide groups of C502 are shown during the MD run. (b)
Binding affinity calculation and residue-specific binding energy decomposition from the MM-PB/GBSA
calculation. (c) Residues within 4 A distance within the TAE ligand atoms, that contribute critical binding
energy to the ligand are shown in the stick representation.
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3.2. Statistical analysis of 3D-QSAR models

The receptor-based CoMFA and CoMSIA, two well-known 3D-QSAR models were
developed using 125 compounds. Compound C107 has non-specific bio-activity and was
discarded from the dataset during model building. The 2D structures and corresponding
plCso values of these compounds are listed in Table S3. Molecular alignment of the
compounds was done by superimposing the dataset compounds over the common core of
the average MD position of C36. The 3-D alignment of the compounds over C36 inside
the binding pocket is shown in Figure 2a. To develop a well-predictive model as well as
the model’s predictive ability, we split the dataset into a training set and test set
compounds by following a 3:1 ratio by employing random sampling methods according
to our previous studies[18, 23]. Briefly, the compounds were arranged into three mutually
exclusive non-overlapping groups i.e., high, medium, and low activity groups based on
their plCso values. Following that, a random draw was performed from each group in
such a way, so that the compounds had an equal chance to be selected in the test set
compounds. Using this method, four different training and test sets were developed for
the CoMFA study (SET-A to D), as shown in Table S4.

Statistical analyses of the CoMFA models are presented in Table 1. During the model
evaluation, we strictly followed the acceptance criterion for each parameter, specified in
the 'Threshold value column'. The g? and r? values for SET-A were 0.593 and 0.839,
respectively, at ONC of 5. For SET-B, the g? and r? values were 0.541 and 0.666 at ONC
of 2. The g2 and r? values of SET-C were 0.505 and 0.612 at ONC 2, while SET-D had ¢?
and r? values of 0.633 and 0.897 at ONC of 6. Higher g2 and r? values in combination
with low y? and RMSE values were considered for the internal validation of the proposed
model employing the training set compounds. SET-D had the highest g2 and r? with
satisfactory x> and RMSE values of 0.325 and 0.356, respectively, which were below the
threshold constraint, and was selected as the final CoOMFA model among the other
datasets. In addition to the above parameters, k or k>, r2or r's |r2 —r'2|,r2 or r'Z, were
also computed for internal validation and were found to be in good agreement with the
threshold parameters. However, QSAR models are unpredictable without external
validation using test set compounds that are not included in the training set during model

development. Similar to the internal validation, k or k’, r2 or r's,|r2 —r'é |,r2 or
r'2 parameters were considered to assess the external validation of the model. However,
the final selection was done by evaluating the predictive correlation coefficient or rj 4.
Overall, SET-D showed the highest r.q value (r7..q = 0.911,> 0.6) and was therefore

considered as the final CoMFA model.

2
pre

We employed the CoMSIA evaluation of SET-D since CoMSIA employed a more
comprehensive set of descriptor fields, such as hydrophobic (H), H-bond acceptor (A),
and H-bond donor (D), in addition to the steric (S) and electrostatic (E) fields of COMFA
in different permutation-combination processes (Table S5). The highest g? and r? values
were 0.656 and 0.862 at an ONC of 6. The other parameters, such as y?> and RMSE, r2, or
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r'2 followed the well-accepted statistical norms indicating good internal validation. In
addition, we obtained an r .4 0f 0.843, indicating excellent predictivity of the CoMSIA

model. The actual and predicted plCso values with the residuals are listed in Table S6,
and the PLS correlation plots from CoMFA and CoMSIA are shown in Figures 2b and
2c¢, respectively.

Overall, SET-D provided statistically significant COMFA and CoMSIA models with
strong internal and external validations, suggesting that both models can predict the
inhibitory potential of unknown chemicals with a similar scaffold. Next, we performed
the applicability domain (AD) analyses using data obtained from the 3D-QSAR study.
Unlike other ML-based methods, 3D-QSAR uses the least squares algorithm to correlate
the chemical descriptors and their inhibitory activity thus, QSAR applications are limited
but highly efficient for compounds with congeneric series of compounds. The
applicability domain is a distance-based graphical prediction method, that determines the
uncertainty in the predictability of compounds based on structural similarity. The AD
analysis of COMFA and CoMSIA using the Williams plot is depicted in Figures 2d and
2e in a square area of ¢ = £3, in which the standardized residuals of the training and test
set compounds are plotted against the leverage values. None of the compounds fell
outside the warning leverage (h*), indicating the reliability and robustness of both 3D-
QSAR models.

Table 1. Statistics of CoOMFA and CoMSIA models

Statistica CoMFA CoMsSI Statistica CoMFA CoMsI
| _ A Threshol | A Threshol
SET- SET- SET-D SET SET SET SET
paramete SET-B (SED) dvalues | paramete D SET-D  dvalues
A C -A -B -C
rs SET-D rs
0.633 0.656 099 097 100 100 1.011
q? 0.593 0.541 0.505 >05 K Test 0.85<k
4 9 9 7
ork’<
6 6 100 101 098 0.99 0.985
ONC 5 2 2 K’ Test 1.15
2 5 5 1
0.521 0.510 057 042 076 092 0.850
SEP 0.559 0.554 0.612 12 Test
8 2 7 2
0.897 0.862 049 037 073 0091 0.854
r? 0.839 0.666 0.643 >0.6 12 Test
4 7 5 5 )
=r
0.277 0.323 2 054 024 041 0.88 0.816
SEE 0.352 0.473 0.277 <<1 'y Test
0 0 7 6
r.2
91.48 gLo1 12582 89719 |_°r,z 004 013 031 002 0037
F-value 90.592 2 ol 8 <03
7 1 6 7 7
Test
0.934 0.940 r2-r2 0.14 010 031 0.00 -0.003
BS-r? 0.895 0.712 0.699 = Test
4 4 7 7
<01
0.017 0.016 r2_rf? 0.06 043 0.04 0.03 0.039
BS-SD 0.025 0.051 0.050 z Test
4 0 1 8
0.387 0.325 041 033 063 084 N/A rZ or
v 0.285 0.537 0.507 <1.0 2 Test
0 3 0 6 r'2 >
RMSE 0.333 0.437 0.430 0.382 0.356 <05 ' Tes 046 024 031 0. 0.694 0.5
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6 2 3 748
0.001  0.001 5 049 036 072 091  0.843
MAE 0.001 0001  0.001 ~0 Tpred
5 1 4 1
14.27 2374 15253  16.28 049 036 072 091 0843
RSS 24.554 Q%
5 8 5 1 4 1
>0.6
0.991 0.997 049 035 072 091 0842
K Train 0.996  1.003  0.998 0.85<k Q%,
3 3 3 0
ork’<
1.005  0.999 " 049 036 072 091  0.843
Krman 1000 0991 099 1.15 Q%,
5 1 4 1
, 0.667  0.718 . 075 065 081 095 0916
r? 1mn 0814 0665  0.597 e 2. o 5 ) 0
r'2ran 0785 0396 0467 0635  0.662 S(%) 471 470 469 394 187
2
Io 0041 0055 60.6  46.1
—To 0.028 0269  0.129 <0.3 E(%) 529 530 531
Train
23 2.53*10 0.245  0.167
Tz Train 0.029 0.071 H (%)
) <0.1
r2—rf?
— - Ttan 0063 0404 0273 0291 0231 A (%)
r2tein  0.706 0.663 0505 0.476 0.534 r2 or D (%) 35.2
0438 0477 ' >
r'Ztan 0644 0320 0373 05

g% squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard
error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; F-value: F-test
value; BS-r% Bootstrapping squared correlation coefficient; % chi-square value; RMSE: Root Mean
Square Error; MAE: mean absolute error; k: slope of the predicted vs. observed activity at zero intercepts;
k’: slope of the observed vs. predicted activity at zero intercepts; rj : squared correlation coefficient
between predicted and observed activity; r’ﬁ: squared correlation coefficient between predicted and
observed activity; rZ or r'3, : ra , r'a matrix; rj.q : predictive correlation coefficient;
Q%; Q%, Q%5 and Q%..: Q%4, Q%, Q%zand Q2. matrices. S: steric; E: electrostatic; H: Hydrophobic; A: H-
bond acceptor; D: H-bond donor.
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Figure 2. Molecular alignment of the dataset compounds, PLS plots, and applicability domain (AD)
analysis. (a) Molecular alignment of the dataset compounds with the common chemical core of C36
(TAE) inside the FAK binding cavity. (b) PLS correlation plots of CoMFA (SET-D) study. (c) PLS
correlation plots of the CoMSIA (SET-D) study. (d) and (e) Applicability domain analysis using the
distance-based Williams plot using the data obtained from the CoOMFA and CoMSIA models. The h* with
dotted lines in red signifies the warning leverage values in both plots.

3.3.

Contour map analysis

Following statistical validation, descriptive colored contour maps around the MD
structure of C36 were generated from the 3D-QSAR study. The compounds were well
aligned on the common core of the N-phenylpyrimidine-2-amine moiety inside the ATP
pocket (Figure 3a). In the CoOMFA analysis, the green and blue contours represent a
favorable position for steric and electropositive substitutions, whereas the yellow and red
contours did not favor those substitutions (Figures 3b and 3c)[34, 35]. In the steric
contour map, a green contour was observed near the Ry position of the anisole ring and
two green contours appeared around the Rz position of the morpholine ring, indicating
that the steric substitution would be preferable for these regions. A yellow contour at the
Rs position near residues D564, V436, and L567 indicates an unfavorable position for
bulky steric substitution. Consequently, residue D564 is the part of the DFG motif that
contributes -2.62 kcal/mol to ligand binding; thus, a bulky substitution at that position
could have the steric hindrance effect and may lead to a decrease in overall binding
affinity. Compounds C71, C72, C77, C79, C81, C82, and C84 had steric moieties
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adjacent to the green contours and exhibited inhibitory (pICsp) more than 9. In the
electrostatic contour map, a blue contour near N-methylbenzamide and two small red
contours near the morpholine ring indicated that positively charged groups would be
favorable and unfavorable in that chemical space. Very similar steric and electrostatic
contours appeared (Figures 3d and 3e) during the CoMSIA study, although an additional
blue contour was present in the ortho- position of the six-membered rings at R, overall
corroborating the CoMFA contours. In the CoMSIA H-bond donor contour, two purple
and two cyan contours appeared near R> and Rs, indicating the favorable and unfavorable
substitutions for the H-bond donor groups, which can increase the overall inhibitory
potential of C36. Figure 3f shows an SAR diagram based on the information obtained
from the 3D-QSAR analysis. Residues D564, V436, and L567 were proximal (< 4 A) to
the Rs position of N-methylbenzamide, and the critical binding energy decomposed to
C36. Furthermore, SAR analysis revealed that non-steric, H-bond donor, and
electropositive chemical groups could be advantageous substitutions at Rz in terms of
improving inhibitory effects. Therefore, this chemical space of C36 could serve as a
potential site for chemical modification to ameliorate the FAK binding affinity.
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Figure 3. Contour map analysis and structure activity relationship study from 3D-QSAR. (a) Steric
contour map and (b) Electrostatic contour map from CoMFA. (c), (d), and (e) are Steric, Electrostatic, and
H-bond (Hb) donor contour map from CoMSIA. (f) Implementation of the SAR diagram from CoMFA
and CoMSIA analysis by taking TAE (C36) as a reference.
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3.4. Relative binding affinity estimation

For relative binding estimation study, we randomly selected 12 compounds from the
dataset by varying the degree of inhibitory activity. The experimental binding energy
(AGgxp) Vvalues were deduced from the inhibitory activities of the selected compounds.
The partial charges and LJ parameters gradually changed during the alchemical
transformation of the ligand from state-A to state-B within the binding pocket in the FEP
simulation. These changes were made by implementing a hybrid topology from 0 to 1 in
twelve different A intermediate steps. Figure 4a shows the generalized thermodynamic
cycle of the relative binding free energy derivation scheme. In the earlier studies [36, 37],
we used an absolute binding free energy estimate in the modeling study of kinase
inhibitors and found a satisfactory correlation between the experimental and computed
binding free energies, despite the high numerical approximation. Since the entire ligand
needs to be perturbed (interactions off or on) corresponding to its surroundings, which
requires a large number of A intermediate states and simulation time. In contrast, only a
fraction of the chemical moiety is required to be perturbed to transition from state-A to
state-B in fewer A states. Compounds C36 and C70 were selected as state-A, while
compounds C28, C38, C45, C64, C73, C76, C80, C83, C89 and C114 were assigned as
state-B. The common and mismatched atoms are shown in black and red in Figure 4b,
respectively. A hybrid molecule was generated by superimposing the chemical structures
of two ligands. In this hybrid molecule, the common part was assigned as a single
topology or the same topology as the first ligand. The remaining hybrid molecules were
assigned a single-dual hybrid topology. During the FEP simulation, the dual topology
portion was changed (including the LJ parameters, partial charges, and bonds) using the
forcefield by 12 alter A scaling (Table S7). Each alter-A simulation was run for 1 ns in
triplicate to ensure sufficient sampling while overlapping the neighboring windows. In
this manner, a total of 72 ns simulation for a single alchemical transformation in complex
and isolated forms was performed.
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Figure 4. Overview of the FEP scheme and relative binding affinity estimation. (a) Thermodynamic
pathway of ligand transformation from State-A to State-B in aqueous and in complex form. The AAGRgE:
can be deduced from the free energy changes of both states in aqueous and complex systems. (b) Relative
binding energy calculation of the ligands through alchemical transformation. The mismatched atoms
between the ligand pairs, which need to be perturbated, are shown in red.
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Figure 5. FEP energy convergence plots of (a) C36 — C28, (b) C36 — C38, (¢) C36 — C64, (d) C36 —
C73, (e) C36 — C76, (f) C36 — C80, (g) C36 — C83, (h) C70 — C45, (i) C36 — C89, (j) C36 — C114
in complex and isolated form.

The results of the alchemical transformation by the FEP methods are shown in Figure 5,
as the free energy changes from state-A to state-B through the different A states in
complex and isolated forms. BAR methods were utilized to calculate the energy
differences between the neighboring A windows. In each graph, the total energy
difference between the initial (A=0) and final (A=1) stages of the ligands in the complex
and isolated forms correspond to AGA52 and AGE2B, respectively. From equation (2) we
derived the AAGREE: from each ligand transformation, which is summarized in Table 2.
The computed AAGRgE: of C36 — C28, C36 — (38, C36 — C73, C36 — C76, C36 —
C83, C36 — (€89, and C36 — C114 were found to be 2.94, 4.58, 2.64, -0.23, -0.97, -0.79
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and -2.86 kcal/mol with corresponding to their theoretical AAGEx:E of 1.44, 3.00, 0.93, -
1.43, -0.53, -0.60, and -1.29 kcal/mol, respectively, which is a good agreement between
experimental and computed relative binding affinity. However, the transformation of C36
— C64, C70 — C45, and C70 — C114 yielded a higher AAGRzE: approximation than the
AAGEZE values. In this case, we anticipated that increasing the number of iterations and A
sampling would reduce the mean statistical approximation. We determined Pearson’s
correlation coefficient using the computed values and their respective experimental
values in Figure S1. A Pearson’s R (Rrere) Was obtained as 0.82 and an R? of 0.68,
indicating the reasonable performance of the physics-based binding affinity calculation.
In addition, the correlation statistics can be expressed in a linear equation form:

AAGELE = 0.3345x AAGRE: — 0.4229 (3)

The above equation could be useful for FEP-based SAR investigation of TAE/C36
analogs as well as the prediction of AAGAL:S values with reasonable accuracy.

Table 2. Energy terms of Alchemical binding energy transformation from state-A to state-B

state-A (AGEXP) state-B (AGEXP) AAG[E?)?IP AGCOM AGLIG k-dependent AAGQEFBE

+SD +SD
C36 (-11.33) C28 (-9.89) 144  -1951 -2245 294
+0.87 £0.99
C38(-8.33) 3.00 -17.12 -21.77 458
+235 £141
C64 (-9.67) 166 -19.11 -1048 -8.63
326 295
C73 (-10.40) 093 -13.09 -15.73 2.64
+0.64 £2.06
C76 (-12.76) -143  -5420 -53.97 -0.23
+031 =*0.77
C80 (-14.03) -2.70  -3422 -28.88 -5.34
+0.13 £1.16
C83 (-11.86) -0.53  -48.29 -47.34 -0.97
+0.63 +0.58
C70 (-9.53) C45 (-9.50) 0.03  -19.44 -25.01 557
+1.02 +0.26
C89 (-10.13) -0.60 -2041 -19.62 -0.79
+032 £0.60
C114 (-10.82) -1.29  -49.62 -46.76 -2.86
+1.06 +3.29
AGgxp: experimental binding free energy; AAGERE: experimental relative binding free energy:;

AGconm: free energy changes in complex; AGyg: free energy changes isolated form; AAGRgE:: computed

relative binding free energy.
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Conclusion

In this study, we employed ML and physics-based hybrid modeling approach to study the
structure-activity relationship and binding mechanism of N-phenylpyrimidine-2-amine based
FAK inhibitors. As FAK is one of the most important regulators of growth factor receptor
signaling, its overexpression and concomitant drug resistance pose a major challenge to
chemists. From the molecular simulation, H-bond analysis and MM-PBSA binding energy
calculations were employed to assess the ligand stability, binding affinity, and per-residue
binding energy decomposition of the crystal ligand. Residues such as 1428, V436, V484, M499,
L501, C502, G505, L553, G563, D564, and L567 were identified as important BE contributing
residues to the ligand binding. Following that, the statistically reasonable COMFA and CoMSIA
models were developed and both showed excellent predictive capability. Descriptive colored
contour maps surrounding compound C36 illustrated that chemical substitutions along these
contours would more likely increase the inhibitory activity. This information can be further co-
utilized with the residue-specific binding energy profile to aid in molecular probing and ligand
design. Finally, we applied the alchemical FEP simulation by taking 12 different ligands to
estimate their relative binding affinity. An acceptable agreement was obtained between the
experimental relative binding energies and the computed relative binding energies. The
molecular modeling techniques employed here in different combinations could be useful for
further lead optimization in medicinal chemistry research.
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