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Abstract: Genome-scale metabolic models (GEMs) play an important role in the phenotype predic-

tion of microorganisms, and their accuracy can be further improved by integrating other types of 

biological data such as enzyme concentrations and kinetic coefficients. Enzyme-constrained models 

(ecModels) have been constructed for several species and were successfully applied to increase the 

production of commodity chemicals. However, there was still no genome-scale ecModel for the im-

portant model organism Bacillus subtilis prior to this study. Here, we integrated enzyme kinetic and 

proteomic data to construct the first genome-scale ecModel of B. subtilis (ecBSU1) using the ECMpy 

workflow. We first used ecBSU1 to simulate overflow metabolism and explore the trade-off between 

biomass yield and enzyme usage efficiency. Then, we simulated the growth rate on eight previously 

published substrates and found that the simulation results of ecBSU1 were in good agreement with 

the literature. Finally, we identified target genes that enhance the yield of commodity chemicals 

using ecBSU1, most of which were consistent with the experimental data, and some of which may 

be potential novel targets for metabolic engineering. This work demonstrates that the integration of 

enzymatic constraints is an effective method to improve the performance of GEMs. The ecModel 

can predict overflow metabolism more precisely and can be used for the identification of target 

genes to guide the rational design of microbial cell factories. 
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1. Introduction 

Bacillus subtilis is a model organism of choice for the industrial production of various 

valuable compounds, such as biopolymers and proteins, due to its excellent capacity for 

protein secretion, good growth characteristics, distinct endogenous metabolism, and ro-

bustness in industrial fermentation [1]. Genome-scale metabolic network models (GEMs) 

of B. subtilis have been successfully applied to guide the production of riboflavin [2], iso-

butanol [2], 2,3-butanediol [3], and 3-hydroxypropionic acid [4]. The first B. subtilis GEM 

was published in 2008 [5], and several models were subsequently reported [2, 6-8], which 

were updated in terms of reactions, metabolites and genes. The iBsu1147 model con-

structed by our team [2] has the highest number of reactions, metabolites and genes of all 

models reported to date (Fig.  S1). However, GEMs only consider stoichiometric con-

straints, making them unable to reflect the true state of the cell and locate kinetic bottle-

necks limiting the flux through specific product synthesis pathways.  

By contrast, enzyme-constrained models (ecModels) introduce enzyme kinetic infor-

mation into a GEM, thus reflecting the protein resource limitation faced during cell 

growth, enabling them to identify the rate-limiting enzymes in the pathway and further 
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guide rational metabolic engineering. As a consequence, ecModels have been successfully 

applied to guide the production of L-lysine [9], poly-glutamic acid [10], heme [11] and 

recombinant proteins [12]. Currently, three methods exist to automate the construction of 

ecModels, including GECKO [13], AutoPACMEN [14] and ECMpy [15]. GECKO is the 

earliest automated approach for the introduction of protein resource constraints into 

GEMs, which introduces average enzyme saturation coefficients and enzyme usage con-

straints from proteomic data [13]. However, GECKO adds many pseudo-metabolites rep-

resenting enzymes, significantly increasing the complexity and scale of the model. In-

spired by GECKO, Bekiaris et al. developed the AutoPACMEN  automated workflow for 

the construction of ecModels, which introduces only one pseudo-reaction and pseudo-

metabolite [14]. Recently, we developed the simplified Python-based workflow ECMpy, 

which allows the construction of an ecModel by directly adding a total enzyme amount 

constraint into a GEM [15]. Recently, ecModels have been constructed for several species, 

including Escherichia coli [9, 12, 15], Saccharomyces cerevisiae [13], Aspergillus niger [16], 

Corynebacterium glutamicum [17] and B. subtilis [10]. The first ecModel for B. subtilis 

(ec_iYO844) only integrated enzyme kinetic parameters for 17 reactions located in the cen-

tral carbon metabolism using the GECKO method, but this model allowed more accurate 

prediction of the flux distribution and growth rate of wild-type and single-gene/operon 

deletion strains compared to the GEM [10]. 

In this study, we first systematically updated the iBsu1147 model through GPR up-

date, biomass reaction standardization, etc., after which we established a comprehensive 

collection of parameters that affect the prediction accuracy of the ecModel (e.g., the en-

zyme kinetics data and quantitative information on enzyme subunit composition), and 

constructed the first genome-scale ecModel of B. subtilis (ecBSU1), using an updated 

ECMpy workflow [17]. Subsequently, we used ecBSU1 to accurately predict the growth 

rate of B. subtilis on different carbon sources, simulate the overflow metabolism, and ex-

plain the trade-off between biomass yield and enzyme usage efficiency. Finally, we pre-

dicted the target genes of B. subtilis for enhancing the production of industrial chemicals 

(e.g., riboflavin, menaquinone 7, and acetoin, etc.), and the predictions were in good 

agreement with the literature. 

2. Methods 

2.1. Model update 

The model iBsu1147, which has the most reactions and genes, was selected as the 

initial model for the integration of enzymatic constraints. Since the iBsu1147 model was 

released in 2013, we performed quality control on the model, covering substrate utiliza-

tion, redox balance, energy balance, biomass reaction standardization, and mass balance. 

Our previous results shown that the kcat and molecular weight (MW) of an enzyme affect 

the prediction accuracy of the ecModel [15]. For example, the correctness of the EC num-

ber affects the correctness of the corresponding kcat, and the GPR relationship affects the 

accuracy of MW calculation. Accordingly, we systematically corrected the EC number and 

GPR relationships. We used the GPRuler tool [18] and protein homology similarity to un-

cover the potential GPR errors present in the reaction (see [17] for details). To meet the 

requirements of AutoPACMEN processes for metabolic network format input, we con-

verted most of the KEGG IDs and ModelSEED [19] IDs (both metabolites and reactions) 

into BiGG [20] IDs. Finally, we named the modified model iBsu1147R (Revised iBsu1147). 

2.2. Data acquisition 

The molecular weight (MW) of each enzyme was downloaded from the UniProt da-

tabase according to the gene ID, and the quantitative subunit information was obtained 

by parsing the 'Interaction information' in UniProt [17]. For example, P39119 is described 

in UniProt as a 'homodimer', so its subunit number is 2 (all corresponding information is 

listed in Table S1). The kcat values were obtained from the BRENDA [21] and SABIO-RK 

[22] databases according to the EC numbers using AutoPACMEN. B. subtilis protein 
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abundance data were obtained from the PAXdb [23] database, and enzyme mass fraction 

was calculated according to Eq. 1: 

� = ∑ �����
�_���
��� ∑ �����

�_���
����                                       (1) 

where �� and �� represented the abundance of the i-th protein (p_num represents proteins 

expressed in the model) and j-th protein (g_num represents proteins expressed in the 

whole proteome).  

  

2.3. Construction of ecBSU1 

The enzyme-constrained model was constructed based on iBsu1147R following the 

ECMpy workflow and named ecBSU1 (Fig. 1). Firstly, we divided reversible reactions in 

iBsu1147R into pairs of irreversible reactions, and split reactions catalyzed by multiple iso-

enzymes into different reactions (append num in reaction ID, e.g., GLCpts_num1), so that 

each reaction only has one corresponding enzyme. Then, we calculated the MW of each 

enzyme. For reactions catalyzed by enzyme complexes, we used the total sum of proteins 

in the complex (�� = ∑ �� ∗ ���
�
��� , where m is the number of different subunits in the 

enzyme complex and Nj is the number of jth subunits in the complex). Finally, a new en-

zymatic constraint (∑
��∗���

��∗����,�

�
��� ≤ ���� ∗ �) was introduced into the model, where ptot, f, 

and �� represent the total protein fraction in B. subtilis, the mass fraction of enzymes, and 

the saturation coefficient of the i-th enzyme, respectively (see [15] for details).  

 

Figure 1. Workflow for the construction of ecBSU1. 

2.4. Calibration of enzyme kinetic parameters 

To improve the agreement of model predictions with experimental data, the enzyme-

constrained model required further adjustment of the original kcat values, analogous to 

GECKO, AutoPACMEN and ECMpy. In this work, we calculated the reaction enzyme 

cost (see [15] for details) to identify potential reactions that need correction, based on the 

largest enzyme cost. For enzymes that require calibration, we modified the reaction kcat to 

the maximal corresponding kcat in the BRENDA and SABIO-RK databases. We reiterated 

the above correction until the growth rate reached a reasonable steady state, as described 

in GECKO 2.0 [24]. 
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2.5. Phenotype phase plane (PhPP) analysis 

Different rates of substrate uptake and oxygen supply affect the cellular metabolic 

phenotype, leading to different maximal growth rates. We performed PhPP analysis on 

iBsu1147R and ecBSU1 as described in the literature [16] to obtain a global view of how 

optimal growth rates are affected by varying glucose and oxygen uptake rates. To imple-

ment the PhPP analysis, the reaction fluxes of oxygen and glucose were respectively var-

ied in the range of 0-50 mmol/gDW/h and 0-15 mmol/gDW/h, after which pFBA calcula-

tions were performed with biomass maximization as the objective. 

2.6. Prediction of  growth rates on different carbon sources 

To evaluate the ability of ecBSU1 to predict phenotypes, we simulated the growth 

rate of B. subtilis on 8 different carbon sources, and compared the prediction results of 

iBsu1147R and ecBSU1 with reported values [25]. Then, the model and experimental re-

sults were used to calculate the estimation error of the growth rate and normalized flux 

error (see [15] for detail). 

2.7. Simulation of overflow metabolism  

We explored the overflow metabolism of the B. subtilis using ecBSU1 by setting the 

substrate uptake rate on a gradient of 0 to 10 mmol/gDW/h and solving for pFBA to max-

imize the biomass. To further explain the metabolic overflow phenomenon, we analyzed 

the biomass yield, enzyme usage efficiency, reaction enzyme cost, energy synthesis en-

zyme cost, and oxidative phosphorylation ratio (proportion of glucose used for the oxida-

tive phosphorylation pathway to total glucose) (see [15, 26] for details). 

2.8. Prediction of metabolic engineering targets  

Compared to GEMs, ecModels can calculate enzyme costs in addition to reaction 

fluxes, which is useful for identifying key enzymes in the pathway [9]. In this work, we 

analyzed the enzyme cost of each reaction to identify kinetic bottleneck reactions (the re-

actions with the largest enzyme cost) (Eq. 2) by setting glucose as the substrate, the prod-

uct as the objective, and the low bound of biomass reaction as 10% of the maximal growth 

rate, as described in the literature [9]. Finally, we selected the Top 15 reactions with the 

highest enzyme cost as potential metabolic engineering targets. 

������ ����� =
��∗���

��∗����,�
                                               (2) 

3. Results 

3.1. GPR correction of iBsu1147 

EC numbers affect the extraction and assignment of kcat data in the workflow, ulti-

mately affecting the prediction accuracy of the ecModel. Consequently, we replaced the 

old EC numbers in the model based on BRENDA, updating a total of 38 reactions (Table 

S2). MW is also an important factor affecting the prediction accuracy of ecModels. Two 

major factors influence the final MW of the enzyme assigned to a specific reaction: 

whether the protein is composed of subunits (GPR relationship) and the number of each 

subunit. We systematically corrected the GPR relationships in the model by referring to 

the methods used in CGL1 (GPRuler tool and protein homology similarity) [17]. We first 

identified 146 reactions containing protein complex information using the GPRuler tool, 

80 of which were consistent with the model. For the remaining 66 reactions in the model 

that contained “and” relationships, we performed a manual check using the UniProt, 

KEGG, and BioCyc databases, and found that 27 reactions were correct in the model, 6 

reactions were correct in the GPRuler tool, and the remaining 33 reactions were incorrect 

in both (Table S3). For example, the GPR relationship of the ribose ABC transport system 

is ‘BSU35930 and BSU35940 and BSU35950 and BSU35960’ in the model, but the GPRuler 

tool did not include ‘BSU35930’. By searching UniProt, we found that ‘BSU35930’ encodes 
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D-ribose pyranase, which catalyzes the interconversion of beta-pyran and beta-furan 

forms of D-ribose, indicating that the result of GPRuler tool is correct. In addition, when 

verifying the results of the GPRuler tool, some reactions in the model were modified based 

on the annotation information of the proteins in the databases, including the deletion of 7 

reactions (e.g., PDHbr and AKGDb), the addition of 4 new reactions (e.g., AKGDH and 

FCLT3), and the modification of GPR relationships for 5 reactions (e.g., RBFSb and 

26DPAi). 

We also observed that there were 58 reactions in the model for which the “and” rela-

tionships were not identified by the GPRuler tool, and only 9 reactions had more than 25% 

similarity (Table S4). By searching the database, we found that 7 reactions needed to be 

corrected, 3 of which needed to be changed from “or” to “and” relationships, and 4 in 

which the proteins needed to be replaced (Table S4). For example, the GPR relationship 

for NADH-dependent butanol dehydrogenase (BTS) is ‘BSU31360 and BSU31370’, which 

has 74% sequence similarity. By further searching the BioCyc database for verification, we 

found that the protein encoded by BSU31370 is a bifunctional enzyme that catalyzes two 

reactions (NADPH-dependent furan aldehyde reductase and NADPH-dependent buta-

nol dehydrogenase), whereas the protein encoded by BSU31360 catalyzes only the 

NADPH-dependent butanol dehydrogenase reaction. They are more likely to be two iso-

enzymes, and therefore the correct GPR relationship for BTS should be ‘BSU31360 or 

BSU31370’. Finally, 1736 reactions, 1459 metabolites, and 1155 genes were included in 

iBsu1147R. 

3.2. Other modifications of iBsu1147 

After running quality control of the iBsu1147R model in terms of substrate utilization, 

redox balance, energy balance, biomass reaction standardization, and mass balance, we 

found that all these aspects led to abnormalities in the metabolic pathways generated by 

the simulation. The boundary of 6 reactions was modified in terms of substrate utilization 

(e.g., EX_chor_e and MALt2r). For example, experiments have shown that B. subtilis can 

grow using malate [25], so the upper and lower boundaries of the malate transport reac-

tion (MALt2r) in the model should not be 0. From a reducing power perspective, we mod-

ified the catalytic orientation of 4 reactions (e.g., NODOx and P5CR) based on BioCyc [27] 

to avoid pathway calculation errors. For example, P5CR (1pyr5c_c + h_c + nadph_c –> 

nadp_c + pro__L_c) is reversible in the model, but a search by BioCyc revealed that the 

reaction acts as the final step of the L-proline synthesis pathway I, which is unidirectional. 

In addition, the catalytic orientations of 3 respiratory chain-related reactions were also 

modified (e.g., CYOR3m and CYTB_B2). In total, 13 reactions in the model were corrected 

for the boundaries (Table S5).  

In addition, the molar mass of biomass and its components (e.g., proteins, nucleic 

acids, etc.) was 1 g/mmol, and deviations from this value will result in errors in the calcu-

lated specific growth rate. Using the BiomassMW algorithm [28], we examined the bio-

mass equation of the iBsu1147R model and found that the original molecular mass of the 

biomass was 1.025 g/mmol, and H+ was missing in the right side of the biomass equation 

(the coefficient was 105) produced by the hydrolysis of ATP for growth-associated mainte-

nance energy. After correction, the molar mass of the biomass became 0.92 g/mmol. Sub-

sequently, we examined the precursor metabolites and found that the molar masses of 

protein, DNA, and RNA were 0.86 g/mmol, 0.95 g/mmol, and 0.95 g/mmol, respectively. 

We normalized the coefficients so that the molar masses of all components were 1 g/mmol, 

and the molar masses of the biomass also became 1 g/mmol. The details of all the modified 

reactions are listed in Table S6. 

Finally, we found that iBsu1147R contains different IDs for metabolites and reactions, 

including KEGG IDs and ModelSEED IDs. To meet the input requirements of AutoPAC-

MEN, we converted the KEGG IDs of 1007 metabolites and 785 reactions, as well as the 

ModelSEED IDs of 265 metabolites and 542 reactions into BiGG IDs. In addition, we kept 

the original IDs for reactions and metabolites that were not included in the BiGG database.  
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3.3. Basic information of ecBSU1 

We used AutoPACMEN to match 2331 kcat values (439 were obtained by filling) for 

3307 reactions (splitting of reversible reactions and isozymes), accounting for 70.5% of the 

total reactions and 76.4% excluding exchange reactions. In total, 1892 reactions were cata-

lyzed by enzymes with 549 different EC numbers, among which oxidoreductases and 

transferases accounted for the majority (Fig. 2A, inner ring). These kcat values spanned 9 

orders of magnitude, with a median value of 46.17 s-1 (Fig. 2B). In total, the molecular 

weights for 1155 enzymes were obtained from UniProt based on the corresponding gene 

IDs, covering 3 orders of magnitude, with a median value of 50.41 kDa (Fig. 2C). The en-

zyme mass fraction f was calculated from the proteomic data in the PAXdb. For B. subtilis, 

we chose the dataset “B. subtilis-Whole organism (Integrated)” with the highest measure-

ment coverage and evaluation score, and calculated f=0.588 g enzyme/g protein according 

to Eq. 1. Finally, the initial B. subtilis ecModel (ecBSU1) contained 1155 genes, 1459 metab-

olites, 3307 reactions, and 2331 enzyme kinetic parameters, with a total enzyme bound of 

0.165 g enzymes/gDW. 

 

Figure 2. Basic information of ecBSU1. (A) Enzyme classification. The outer ring indicates that there 

were 1892 reactions with enzyme kinetic data, which can be divided into seven categories. The inner 

ring indicates that these reactions included 549 kinds of enzymes according to the corresponding 

EC numbers, which can also be divided into seven categories. (B) Cumulative distribution of kcat 

values. (C) Cumulative distribution of molecular weights. 

3.4. Correction of enzyme kinetic parameters to overcome model over-constraint 

Over-constraint in the initial ecModel is normal due to some reactions with abnormal 

kcat values (usually too low), as was reported for ecYeast7 [13], eciML1515 [9], eciJB1325 

[16] and eciJO1366 [29], which all needed kcat correction. We found that the maximal 

growth rate calculated by ecBSU1 with glucose as substrate was 0.092 h-1 (Fig. 3A), which 

was significantly lower than the experimental value of 0.59 h-1 [25]. To overcome this over-

constraint, we modified the kcat values of the reactions with the largest enzyme cost to the 

corresponding maximal kcat values in BRENDA and SABIO-RK. After modifying 28 reac-

tions (Table S7), the maximal growth rate on glucose reached 0.612 h-1 (Fig. 3B), which was 

consistent with the experimental observations. However, the growth rate predicted by 

iBsu1147R increased linearly with increasing carbon source consumption (Fig. 3C), which 
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is unrealistic. In addition, PhPP analysis showed that the solution space of ecBSU1 was 

significantly reduced compared with the metabolic network model (Figs. 3B and C). These 

results demonstrated that incorporating enzymological constraints into a GEM can reduce 

the flux solution space and enable the model to simulate a more realistic cellular pheno-

type. 

 

Figure 3. The solution space of iBsu1147R and ecBSU1. Changes in the maximal growth rate with 

the increase of glucose and oxygen uptake rates in ecBSU1 before kcat correction (A), ecBSU1 after 

kcat correction (B), and iBsu1147R (C). 

3.5. Simulation of overflow metabolism 

Enzyme-constrained models have been used to simulate overflow metabolism in S. 

cerevisiae [13, 30], C. glutamicum [17],  and E. coli [15]. It has been reported in the literature 

that B. subtilis exhibits overflow metabolism in the presence of excess glucose [31]. We 

explored the phenomenon of overflow metabolism in B. subtilis using ecBSU1, and the 

simulation results showed that at a high glucose uptake rate of 8 mmol/gDW/h, B. subtilis 

was indeed able to engage metabolic overflow into acetate at high glucose uptake rate 

(Fig. 4A). By contrast, in iBsu1147R, glucose increased linearly with the growth rate and 

could not simulate the phenomenon of overflow metabolism (Fig. 4A). We then calculated 

the energy synthesis enzyme cost and oxidative phosphorylation ratio to explore the path-

way adjustment strategy of overflow metabolism in B. subtilis. The simulation results in-

dicated that at high growth rates, the acetate-producing fermentation pathway was acti-

vated to maintain growth due to its low enzyme cost in comparison with the energetically 

efficient respiratory oxidative phosphorylation pathway (Table S8 and Fig. 4B). 

To further explain the metabolic overflow phenomenon, we analyzed the biomass 

yield and enzyme usage efficiency at different glucose uptake rates. As shown in Fig. 4C, 

there was a clear trade-off between yield and enzyme usage efficiency, so that the meta-

bolic processes could be divided into a substrate-limited stage, overflow switching stage, 

and overflow stage. At the substrate-limited stage, the glucose uptake rate was low (less 

than 2.5 mmol/gDW/h) and did not reach the constraint of protein resources, resulting in 

a substrate uptake rate proportional to the growth rate. At the overflow switching phase 

(between 2.5 and 8 mmol/gDW/h), the cells redistributed the metabolic fluxes toward 

pathways with high enzyme usage efficiency but low biomass yield. Finally, overflow 

metabolism occurred in the overflow stage (greater than 8 mmol/gDW/h). That means at 

a high glucose uptake rate (8 mmol/gDW/h), B. subtilis needs to activate a fermentation 

pathway with low energy production efficiency but high enzyme efficiency to maintain 

growth, resulting in the overflow to acetate (Figs. 4A-C).  
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Figure 4. Simulation of overflow metabolism. (A) Comparison of in silico overflow between 

iBsu1147R and ecBSU1. (B) Enzyme cost of energy metabolism and oxidative phosphorylation ratio. 

(C) Trade-off phenomenon simulated by ecBSU1. 

3.6. Enzyme-constrained integration improved the phenotype prediction  

To further test the enzyme-constrained model, we simulated the growth rates of B. 

subtilis on 8 different carbon sources reported in the literature [25], and compared the pre-

diction results of iBsu1147R and ecBSU1 (Table S9). As shown in Figs. 5A and B, the pre-

dicted growth rates of ecBSU1 were lower than those of iBsu1147R due to the introduction 

of enzymatic constraints. Especially for the two experiments using malate alone or malate 

and glucose as substrates, the prediction results of iBsu1147R were unreasonably higher 

than the experimental results (Fig. 5A). By contrast, the predicted rates of ecBSU1 were 

closer to the experimental values (Figs. 5B and C). For all other carbon sources, the pre-

diction results of ecBSU1 were also similar to or better than those from iBsu1147R. Moreo-

ver, we identified errors in some reactions of ec_iYO844 (the first ecModel for B. subtilis), 

as 17 reactions with kcat values were unidirectional, resulting in its ability to simulate 

growth using only glucose as a substrate (Fig. S2). 

Further in-depth analysis using the ecModel revealed that the addition of the enzyme 

kinetic constraint information allowed ecModel to simulate the overflow of by-products 

from cells at high substrate concentrations. For example, the ecBSU1 results showed that 

it severe overflow metabolism would occur when utilizing malate at 26.51 mmol gDW-1 h-

1, producing 16.39 mmol gDW-1 h-1 of acetate, thus predicting a biomass growth rate (0.618 

h-1) close to the experimental value [32]. However, although the growth rate was predicted 

accurately, the overflow products were different from the experimental results (9.50 mmol 

gDW-1 h-1 acetate and 3.93 mmol gDW-1 h-1 pyruvate). The difference in overflow products 

is mainly due to the limitations of the current ecModel, as the optimization process of the 

model only supports the pathway that generates the lowest enzyme cost, so that the cur-

rent ecModel will only generate one overflow product. 
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Figure 5. Predicted B. subtilis growth rates on different carbon sources using iBsu1147R (A) and ec-

BSU1 (B). C. Distribution of prediction errors of internal fluxes from iBsu1147R and ecBSU1. 

3.7. The enzyme-constrained model predicted target genes for improving the production of 

chemicals 

GEMs play a guiding role in predicting metabolic engineering targets. In this work, 

we predicted potential target genes for the synthesis of several important chemicals (e.g., 

riboflavin, menaquinone 7, acetoin, etc.) in B. subtilis based on the enzyme cost of reac-

tions. We selected 10 products for analysis from 51 commercial chemicals produced using 

the B. subtilis platform summarized in the literature [33]. The products were classified ac-

cording to the need to introduce exogenous reactions, and the location of the precursor in 

the central metabolic pathway (Fig. 6A). We set glucose as the substrate and fixed the 

growth rate at 0.06 h-1 (10% of the maximum) and performed reaction enzyme cost calcu-

lations with each of these 10 products as the objective function, respectively. Subse-

quently, a literature search was performed to validate the top 15 reactions in terms of en-

zyme cost in each pathway. 

We found that most of the predicted potential targets for the 10 products have been 

reported in the literature (Fig. 6B, Table S10). Among them, riboflavin and menaquinone 

7 covered the most targets, with more than half of the predicted 15 potential targets (9 and 

8, respectively) having been reported in the literature (Fig. 6B). Notably, enzymes with 

the highest enzyme cost in the synthetic pathways of riboflavin and uridine are GTP cy-

clohydrolase II (encoded by ribA, ru5p__D_c --> db4p_c + for_c + h_c) and car-

bamoylphosphate synthetase (encoded by pyrAA and pyrAB, 2.0 atp_c + gln__L_c + h2o_c 

+ hco3_c --> 2.0 adp_c + cbp_c + glu__L_c + h_c + pi_c), respectively (Table S9). Experi-

ments have been performed to show that both enzymes are rate-limiting enzymes for their 

respective products [34-36]. For example, studies on a riboflavin production strain of B. 

subtilis showed that the insertion of an additional copy of ribA led to improved riboflavin 

titers and yields on glucose of up to 25% [34]. In addition, Wang et al. released the feed-

back inhibition of carbamoylphosphate synthetase encoded by pyrAB, leading to a 245% 

increase of uridine production, whereby the conversion of glucose to uridine increased by 

10.5%, while overexpression of the pyr operon increased the production of uridine by a 

further 31% [35].  For 5-methyltetrahydrofolate, GTP cyclohydrolase 1 (encoded by folE, 

gtp_c + h2o_c --> ahdt_c + for_c + h_c) caralyzes a limiting step for the synthesis of the 

important precursor dihydrofolate (DHF), and co-overexpression of folC, pabB, folE, and 

yciA resulted in an additional 66.8-fold improvement of the 5-methyltetrahydrofolate titer, 

which reached 960.27 μg/L [37]. Therefore, we can speculate that the reactions with the 
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highest enzyme cost in the pathways of several other products (e.g., PanB for surfactin, 

Pyc for poly-γ-glutamic acid, MenD for menaquinone 7, etc.) are likely to be bottleneck 

reactions and potential targets for metabolic engineering.   

 

Figure 6. Predicted metabolic engineering targets for improving the synthesis of the indicated prod-

ucts in B. subtilis. (A) The synthesis pathways of 10 products in B. subtilis. (B) Prediction of targets 

for the synthesis of the 10 products in B. subtilis using ecBSU1. Targets that have been reported in 

the literature are marked in yellow, and those that require multiple genes to act together are marked 

with ''--''. 

4. Discussion 

During the construction of traditional GEMs, not much attention is paid to whether 

the GPR relationship is "and" or "or", but the correctness of these two relationships directly 

affects the simulation accuracy of ecModels. In this study, we systematically examined 

and corrected the GPR relationships in iBSU1147 by combining the GPRuler tool and pro-

tein homology. In addition, we systematically updated the EC numbers, carbon source 

utilization pathways, biomass reactions, mass balance, energy balance, and redox balance 

in the iBsu1147 model. This quality checking and correction process has far-reaching im-

plications for improving the quality of GEMs and the construction of high-quality ecMod-

els. 

Using iBsu1147R, we constructed ecBSU1 based on the ECMpy approach, in which 

2331 of 3307 reactions were integrated with enzyme constraints according to 
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AutoPACMEN, and the kcat coverage reached 76.4% after excluding 254 exchange reac-

tions. The coverage of enzyme parameters was much higher than in ec_iYO844, which 

integrated only 17 reactions (1.67% of the total number of reactions) located in the central 

carbon metabolism with the addition of kcat values. However, enzyme kinetic data is 

sparse, and measured turnover rates are normally available for only a small fraction of 

metabolic reactions even in well-studied organisms [38]. Therefore, even though we cov-

ered the kcat data for most of the reactions in the model, only 163 reactions had kcat values 

derived from B. subtilis.  

Due to the diversity and incomplete coverage of enzyme parameters in the database, 

the initial ecModel was over-constrained, but it was able to accurately predict cellular 

phenotypes after kcat correction for 28 reactions. The ecBSU1 corrects the problem that the 

growth rate of GEMs increases indefinitely with the increase of the carbon source utiliza-

tion rate. Then, ecBSU1 and iBsu1147R were respectively used to simulate the growth rate 

of B. subtilis on different substrates, and the results showed that the accuracy of ecBSU1 

was much better than that of iBsu1147R at the high growth rate stage with enzyme con-

straints. In addition, the overflow metabolism of B. subtilis was explored using ecBSU1, 

which showed a physiological state of overflow metabolism in the presence of excess sub-

strates, and demonstrated a trade-off between biomass yield and enzyme usage efficiency. 

Thus, ecBSU1 can be used to guide the rational design of microbial cell factories from 

a new perspective. The simulation results of GEMs usually only contain reaction fluxes, 

which cannot distinguish the physiological characteristics of each reaction. By contrast, 

ecBSU1 combines the kinetic characteristics of each reaction based on fluxes, thus demon-

strating the enzyme consumption of each reaction, which can assist us to locate the kinetic 

bottlenecks of different metabolic states. We simulated the enzyme consumption of B. sub-

tilis for the synthesis of several commercial chemicals, and the reactions with the highest 

enzyme consumption were identified as metabolic engineering targets, which was in good 

agreement with the literature. This provides a new strategy and theoretical basis for met-

abolic engineering. 

Currently, ecBSU1 has a typical limitation also found in other ecModels, as the im-

plementation of the enzyme abundance constraint is highly dependent on precise kinetic 

parameters and abundance data for each enzyme [14], both of which are often inadequate. 

Although AutoPACMEN and GECKO adopt automated strategies to supplement the 

missing data by fuzzy matching to similar reactions or organisms (based on the EC num-

ber and substrate), this can cause model predictions to deviate significantly from experi-

mental observations [39]. Machine learning or deep learning tools are valuable for uncov-

ering global trends of enzyme kinetics and physiological diversity, which can further elu-

cidate the details of a large-scale ecModel [40, 41]. In addition, the integration of enzyme 

constraints greatly improves the predictive power of GEMs and brings the model predic-

tions closer to the experimental measurements, but the biological system is too complex 

and to be fully described by enzymatic constraints alone. Therefore, it is necessary to in-

tegrate more biological data into novel composite constraints, which can include data on 

thermodynamics [42, 43] and regulatory networks [44]. 

5. Conclusions 

This work integrated enzymatic constraints into the GEM of B. subtilis on a genome-

wide scale, which significantly improved its metabolic phenotype prediction ability. The 

resulting model can be used to explain metabolic overflow phenomena and predict met-

abolic engineering targets for the synthesis of commercial chemicals in B. subtilis. This 

study has guiding significance for the rational design of microbial cell factories and pro-

vides an important integrated metabolic network model of B. subtilis. Finally, it also offers 

insights for the improvement of GEMs of other strains, so that the role of such models in 

the development of synthetic biology can be broadened in the future. 

Supplementary Materials: Figure S1: Model development of B. subtilis; Figure S2: Growth rates of 

B. subtilis on different carbon sources predicted using ec_iYO844; Table S1: Correspondence 
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between subunit descriptions and subunit numbers in UniProt; Table S2:  EC number modification; 

Table S3: GPR modifications based on the GPRuler tool; Table S4: GPR modification based on ho-

mology; Table S5: Modification of reaction boundaries; Table S6: Biomass reaction standardization 

and mass balance using BiomassMW; Table S7: Reactions for kcat calibration; Table S8: Enzyme cost 

of energy metabolism; Table S9: Growth rates on different carbon sources predicted using iBsu1147R 

and ecBSU1; Table S10: Target prediction based on enzyme cost. 
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