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Simple Summary: ScRNA-seq is a powerful tool to investigate the cancer microenvironment, but 

the cost of analysing every scientific scenario is prohibitive. Fortunately, deconvolution of bulk 

RNA-seq data with scRNA-seq cell atlas reference datasets provides a cheaper strategy. In this 

study, we validated the feasibility of deciphering the microenvironment of liver cancer through the 

estimation of cell fractions with Cibersortx and scRNA-seq atlas reference datasets. Five cell types 

are associated with patient outcomes, showing that deconvolution is a useful method to characterise 

the tumour microenvironment. 

Abstract: Liver cancers give rise to a heavy burden of health care worldwide. Understanding the 

tumour microenvironment (TME) underpins the development of precision therapy. Single-cell RNA 

sequencing (scRNA-seq) technology has generated high-quality cell atlases of the TME, but its wider 

application faces enormous costs for various clinical circumstances. Fortunately, a variety of 

deconvolution algorithms can instead repurpose bulk RNA-seq data, alleviating the need for 

generating scRNA-seq datasets. In this study, we reviewed major public omics databases for 

relevance in this study and utilized 8 RNA-seq and 1 microarray datasets from clinical studies. To 

decipher the TME of liver cancer, we estimated the fractions of liver cell components by 

deconvoluting the samples with Cibersortx using three reference scRNA-seq atlases. We also 

confirmed that Cibersortx can accurately deconvolute cell types/subtypes of interest. Compared 

with non-tumorous liver, liver cancers showed multiple decreased cell types forming normal liver 

microarchitecture, as well as elevated cell types involved in fibrogenesis, abnormal angiogenesis 

and disturbed immune responses. Survival analysis shows that the fractions of five cell 

types/subtypes significantly correlated with patient outcomes, indicating potential therapeutic 

targets. Therefore, deconvolution of bulk RNA-seq data with scRNA-seq atlas references can be a 

useful tool to help understand the TME. 
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1. Introduction 

Liver cancer is one of the leading causes of cancer-related mortality worldwide, 

making up 4.7% of newly diagnosed cases but 8.2% of deaths [1]. Hepatocellular 

carcinoma (HCC) and cholangiocarcinoma (CCA), which are frequently tallied together, 

constitute the major burden of liver cancer [2]. With a 5-year survival of 18%, liver cancer 

ranks as the second most lethal cancer [3]. The poor prognosis of liver cancer is partially 
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due to the insufficiency of effective therapies. Surgical interventions yielded the best 

outcomes but are limited by high recurrence rates or an easy loss of an operative window. 

Liver transplantation achieved better long-term survival but is hampered by an 

inadequate supply of donor organs [4,5]. Systematic non-specific chemotherapy resulted 

in disappointing results for both HCC and CCA [5,6]. Innovative agents targeting 

angiogenesis [7,8], fibrogenesis [9], and regulation of immune responses [10,11]. have 

shown the potential to improve outcomes. Such advances suggest that a shift from a 

cancer-centric to a tumour microenvironment (TME)-centric perspective is required in the 

future development of precision therapy [12,13]. 

Single-cell sequencing (scRNA-seq) technology delivers in-depth interrogation of the 

TME. The analysis of complex cancer tissues at a single cell level through scRNA-seq has 

brought insights into the heterogeneity and progression of cancer, as well as escape from 

immune surveillance, drug resistance and intercellular communication [14]. However, 

scRNA-seq technology is expensive, requires specific tissue collection methods, and can 

be difficult to implement. The cheaper and more common bulk RNA-seq studies make up 

the largest body of work in this area, filling public repositories, including flagship projects 

such as The Cancer Genome Atlas (TCGA) and its resulting resource the Pan-Cancer Atlas 

[15]. To make the most out of these available datasets, numerous algorithms have been 

proposed that enhance the informativeness of bulk transcriptome analysis using reference 

scRNA-seq data. Machine learning is the major approach of such methodologies. For 

example, stemness indices within the Pan-Cancer Atlas were estimated with the 

Progenitor Cell Biology Consortium datasets and one-class logistic regression [16]. 

Another group of deconvolution algorithms focus on the profiling of cell fractions of the 

bulk transcriptomic data, such as MuSiC [17] and Cibersortx [18]. Meanwhile, emerging 

scRNA-seq atlases (e.g., Human Cell Atlas) provide high-quality references, allowing 

accurate deconvolution of bulk RNA-seq data in increasingly wider contexts (e.g., 

profiling of TME for head and neck cancers [19]). 

In this study, we reviewed major omics databases and selected ten studies that 

compared transcriptomes between HCC/CCA and normal liver. The cell fractions of 

tumour and non-tumour tissues were estimated with Cibersortx and three scRNA-seq 

reference atlases. The included studies contain two cohort studies of HCC, allowing us to 

investigate the clinical implications of TME abnormalities through survival analysis and 

gene set enrichment analysis (GSEA) [20]. We determined that the TMEs of liver cancer 

lack multiple cell types (e.g., hepatocytes) that normally form the liver microarchitecture, 

and instead are enriched with components involved in fibrogenesis, abnormal 

angiogenesis and irregular immune activities. Among all the cell types/subtypes in the 

HCC TME, hepatocytes and mature B cells are positively correlated with patient 

outcomes, while cholangiocytes, bi-potent stem cells, plasma B cells and regulatory T (Treg) 

cells correlate with negative outcomes. 

2. Materials and Methods 

2.1. Data Obtainment 

We searched three public omics databases – the Gene Expression Omnibus (GEO), 

The Cancer Genome Atlas (TCGA), and the International Cancer Genome Consortium 

(ICGC) – for studies engaging on liver cancers. Inclusion criteria were: (1) histologically 

identified sample series from human tissues in clinical studies (including cohort studies 

and case review series); (2) Whole transcriptomes by microarray or RNA-seq; (3) with 

non-tumorous or normal liver tissues as controls (for comparison) or follow-up 

information (for interrogation of clinical outcomes); (4) studies covering two major liver 

cancers (HCC and CCA) were included and all other studies were excluded, i.e., 

metastatic liver cancers and non-malignant hyperplasia (e.g., hemangioma). Finally, ten 

curated datasets (nine RNA-seq and one microarray) were selected for this study (Table 

S1). 
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2.2. Preprocessing of Microarray Data 

Microarray studies with raw data (.CEL files) in GEO database were obtained via R 

package SCAN.UPC [21] which provides one-step preprocessing through empirical 

correction of major bias (GC content-related). This normalization method for microarray 

datasets has been proven to be reliable for downstream analysis [22]. All gene names were 

translated into HGNC symbol with R package BioMart [23]. Duplication of features in 

expression matrices were collapsed by MaxMean strategy [24]. 

2.3. Preprocessing of RNA-seq Data 

TCGA-LIHC was obtained via UCSCXenaTools [25] and datasets in ICGC were 

obtained via the official web portal [26]. Expression matrices of other studies from the 

GEO database were retrieved according to the authors’ instructions. All datasets recruited 

in this study have been listed in Supporting Information. All gene names were translated 

to HGNC symbol with R package BioMart [23]. Duplication of features in expression 

matrices was removed with summation method [24]. 

2.4. Deconvolution of Cell Types with Cibersortx and Three Atlases 

Three single-cell RNA-seq datasets were used in this study: (1) GSE115469 (Normal 

Liver), (2) GSE146409 (TME-Stroma), and (3) GSE156337 (TME-Immune). GSE115469 is a 

liver subset of Human Cell Atlas [26]. GSE146409 contains the TME of liver cancer (HCC 

and CCA), including malignant cells [27]. GSE156337 contains the HCC 

microenvironment, without malignant cells [28]. This dataset identified high-quality 

immune cells. 

All expression matrices were normalized to 10,000 counts/cell and packed into an 

H5AD file with authors’ annotation as metadata for subsequent estimations. Both the 

signature matrix of scRNA-seq datasets and the expression matrix of bulk RNA-seq 

datasets were transformed into tab-delimited tables. The signature matrices of reference 

scRNA-seq were built with the Cibersortx protocol for “scRNA-seq” (“S”). Deconvolution 

was performed with the “Impute Cell Fractions” module. In validation experiments, batch 

correction was disabled in within-study validation and activated in “S” mode (with single 

cell expression matrix as reference) in cross-study validation (two groups of validation 

experiments will be described below). In the estimation of real clinical data, batch 

correction was enabled in “S” mode for RNA-seq datasets and “B” mode (with single cell 

expression matrix collapsed into bulk matrix before used as reference) for microarray 

datasets. All other Cibersortx parameters were the default configurations [18]. 

Cibersortx fails when the cell type tree of the reference atlas is complicated (e.g., > 10 

cell types). In this situation, collapsing some branches of the cell type tree would complete 

the calculation [18]. In our study, for example, when we used the Normal Liver atlas, the 

cell type tree was divided into two groups (immune and non-immune groups). Similarly, 

the TME-Stroma atlas was divided into three groups (mesenchymal, vasculature and 

immune groups), and the TME-Immune was divided into two groups (immune and non-

immune groups) (All cell type trees are shown in Figure S1). To evaluate the influence of 

adjusting the cell type tree, we performed a group of validation experiments in which cell 

subtypes in the Normal Liver atlas were collapsed (such that macrophage = inflammatory 

macrophage + non-inflammatory macrophage, T cell = alpha-beta T cell + gamma-delta T 

cell, B cell = mature B cell + plasma B cell, and LSEC = periportal LSEC + central venous 

LSEC). To increase the matching in cross-study experiments (described below), the cell-

type trees of the other two atlases were also adjusted (for TME-Stroma atlas, let 

macrophage = scar-associated macrophage + Kupffer cell + tissue macrophage, and for 

TME-Immune atlas, let T cell = CD4+ T cell + CD8+ T cell + Treg cell). 

2.5. Accuracy and Robustness of Cell Fraction Estimation 

The accuracy and robustness of deconvolution with Cibersortx were tested in two 

groups of experiments: intra-study validation and cross-study validation. In intra-study 
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validation experiments, the signature matrix of scRNA-seq and the pseudobulk for testing 

were generated from the same scRNA-seq atlas. The advantage of this method is a full 

coverage of all cell types/subtypes. In cross-study validation experiments, the signature 

matrix of scRNA-seq and the pseudobulk dataset were generated from different atlases. 

Pseudobulk datasets were generated using the random module of NumPy in the 

following procedure: the expression of the scRNA-seq atlas was separated into two 

groups, cell type of interest and all the remaining cell type/subtypes collapsed into a single 

group labeled as “others”; 10% of cells in each group were selected using Choice function 

of NumPy, then two representative expression vectors (�) were generated by calculating 

the mean value of each gene; a random number � (between 0 and 100) was generated by 

Uniform function of NumPy; finally, the expression vector of the pseudobulk sample was 

generated by ��������� × � + ������� × (100 − �). � was used as benchmarking target. 

Two parameters were used to evaluate the accuracy of Cibersortx estimation, (1) 

Pearson correlation coefficient (PCC) between predefined proportions (�) and estimated 

fractions (�′); (2) mean absolute error (MAE =1 �⁄ ∑ |�′� − ��|�
��� , � = 1, . . . , �) and direction 

(overestimation or underestimation). 

2.6. Survival analysis, Statistics and Data Visualization 

To demonstrate the added value of our deconvolution analysis, we investigated the 

survival impact of estimated cell fractions on two HCC cohorts (TCGA-LIHC, GSE14520). 

The patient cohort was first ordered based on descending order of estimated level of each 

cell fraction and then separated into high- and low-level groups. All separation 

possibilities (from 1:n-1 to n-1:1) have been tested with log-rank tests. The one with the 

lowest P-value in log-rank test was selected as the optimized separation. If all the P-values 

were above 0.05, the cohort was equally separated into two groups (median-point 

separation). 

Survival lengths were transformed into months and observed events (labeled as “1”) 

were transformed into ‘True’ (Boolean value, according to the requirement of Scikit-

Survival [29]). Kaplan-Meier (K-M) curves were then fitted with Scikit-Survival [29] and 

plotted with the Step function of Matplotlib. The log-rank test was calculated with 

Lifelines [30]. All boxplots of this study were generated with MatPlotLib. 

GSEA was performed with GSEApy. The input gene list for GSEA was the marker 

genes selected by Cibersortx for the cell types. Our study shows a demonstration with 

“WikiPathway 2021 – Human” as the reference. GSEApy allows dozens of different 

libraries, and we provide scripts in our GitHub repository. 

For better reproducibility, all the analysis scripts incluing preprocessing have been 

shared with GitHub (https://github.com/ErasmusMC-Bioinformatics/OIO_Shaoshi). 

3. Results 

3.1. Cibersortx Estimation of Cell Fraction 

In this study, we aim to decipher the TME of liver cancer by estimating the cell 

fractions in transcriptomes. This requires an accurate and robust model, in addition to 

well-annotated single-cell atlases. We adopted a state-of-the-art deconvolution algorithm 

(Cibersortx) and three scRNA-seq atlases (Normal Liver, TME-Stroma and TME-

Immune). These atlases describe more than 20 cell types or subtypes. Figure 1A outlines 

the workflow of this study, and the cell-type trees of the three atlases are outlined in 

Figure S1. 

We first performed intra-study validation experiments to test whether all of the 

identified cell types from each atlas, can be accurately deconvoluted with Cibersortx for 

each pseudobulk dataset generated by the same atlas (Figure 1). In this validation mode, 

most cells achieved ideal PCCs (Figure S2A,3-4). The PCCs compare the relationship 

between predefined cell fractions in generated pseudobulk samples and estimated values 

by Cibersortx. However, MAEs vary between different cell types (Table S2, Figure S5). 

To evaluate the effect of merging some cell types, we did a group of tests by combining 
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the major subtypes in Normal Liver atlas (Figure S2B). Both panels in Figure 1B show the 

result of intra-study validation with Normal Liver atlas. Although both experiments show 

high levels of PCCs, subtle differences in accuracy exist. For example, after merging eight 

cell subtypes into four major cell types, the PCC of hepatocyte increases (0.979 vs. 0.992, 

Table S2, the same the following), cholangiocyte decreases (0.9915 vs. 0.9844), and hepatic 

stellate cell (HSC) decreases (0.9901 vs. 0.986). 

Although Cibersortx allows “partial deconvolution”, in which the samples may 

contain cell type/subtypes not present in the reference atlas, we performed a group of 

cross-study validation experiments to assess this impact. The results of these experiments 

demonstrate that the PCC between presets and prediction remain high (Figure 1E, Figure 

S5) whilst the MAEs vary significantly between cell types (Table S2). Our study suggests 

that Cibersortx normally guarantees high levels of PCCs but MAEs vary when using 

partial deconvolution method. Thus, we adopted a protocol in all subsequent analysis 

such that if a cell type (e.g., hepatocytes) is present in multiple atlases, the one with the 

best performances in both intra-study and cross-study validation experiments was chosen 

as the reference for real clinical data. 

3.2. Difference of Cell Fraction between Tumour and Non-Tumor Liver Tissue 

To determine the difference in cell fraction between tumour and non-tumour tissues, 

we compared seven RNA-seq datasets which provide paired tissues collected from 

HCC/CCA cohort studies or case review studies. LIRI-JP is an RNA-seq study which 

includes primary liver cancer, secondary liver cancer from stomach, colon, and prostate, 

etc., with adjacent non-tumorous liver tissues as controls. GSE119336 is an RNA-seq study 

comparing CCA and non-tumour liver. The other five RNA-seq studies compare HCC 

and non-tumour liver tissues. Three of these studies included cases with HBV infection as 

the risk factor. 

The three atlases provide more than 20 cell types, allowing a panoramic view of 

TMEs. All of these cell types can be largely divided into three groups: (1) cell types 

underpinning the fundamental physiology of liver, e.g., hepatocytes, cholangiocytes; (2) 

cell types participating in the pathological evolution of cancer formation, e.g., HSCs, 

LVECts; (3) immune cells. Results of related cell types are described in the following 

groups. 

3.2.1. Hepatocytes and Cholangiocytes 

These two cell types constitute the major functional units of liver – liver lobule and 

bile ducts [26]. As both the Normal Liver and TME-Immune atlases have hepatocytes, we 

made a comparison of results by deconvolution with two different atlases for the same 

dataset. Figure 2A-B show the results of deconvolution for the same datasets with 

different atlases. Compared with the results determined with the TME-immune atlas, 

deconvolution with the Normal atlas returned higher levels of hepatocytes for some 

datasets (such as GSE119336) and lower levels for others (such as GSE94660). However, 

both experiments arrived at the same result whereby the decrease of hepatocytes and 

elevation of cholangiocytes are common in liver cancer. Similarly, Figure S6D generated 

by deconvolution with TME-Stroma resulted in the same conclusion. Compared with 

HCC, the decrease of hepatocytes in CCA is more significant (Figure 2A-B). 

3.2.2. Fibrogenesis 

HSCs are tissue-specific equivalents of pericytes, and pericytes can be rarely detected 

in normal liver [27,31]. Fibroblasts proliferate following the activation of HSCs. Compared 

with non-tumorous tissues, a decrease of HSCs and an elevation of pericytes can be seen 

in liver cancers. CAFs are rarely detected in normal liver and are more often seen in liver 

cancers. The opposite alterations between HSCs and pericytes/CAFs suggest active 

fibrogenesis in tumours (Figure 2D-F). 
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3.2.3. Vasculature 

Liver sinusoidal endothelial cells (LSECs) form the wall of hepatic sinusoids and 

participate in immune responses. Vascular smooth muscle cells (vSMCs) are also key 

components of blood vessels. Tumour liver vascular endothelial cells (LVECts) are 

variants of normal LVECs [27]. Decreased LSECs, vSMCs, and LVECs can be seen in 

cancerous tissues, while the elevation of LVECt can be observed in liver cancers (Figure 

3A-D). These results suggest the emergence of abnormal angiogenesis. 

3.2.4. Immune Cells 

T cells. In the three atlases, five subsets of T cells were identified: T cells with alpha-

beta (αβ) TCR chains or gamma-delta (γδ) chains (Normal Liver atlas) [26]; CD4+ (helper), 

CD8+ (cytotoxic) T cells, and Treg cells (TME-Immune atlas) [28]. We observed obvious 

elevations of αβ T cells but no clear alterations of γδ T cells in liver cancers. CD4+ T cells 

rise sharply in CCA while CD8+ T cells elevate moderately in HCC. Finally, Treg cells are 

rarely detected in normal livers whereas elevations are common in liver cancers. Treg cells 

have been recognized as a suppressor of tumour immune responses. Liver cancers also 

show high levels of overall T cells (CD4++CD8++Treg cells). (Figure 4A-F). 

B cells. The Normal Liver atlas identified two subtypes of B cells, mature B cells 

(antigen inexperienced) and plasma B cells (antigen secreting) [26]. Variation of mature B 

cells doesn’t show a direct association with liver cancers. Plasma B cells were rarely 

detected in normal liver, but were widely detected in liver cancers (Figure 5A-B). 

Macrophages. The Normal Liver atlas contained inflammatory and non-

inflammatory macrophages [26]. The TME-Stroma atlas separated Kupffer cells, tissue 

monocytes (TMs), and scar-associated macrophages (SAMs) [27]. SAMs are often 

recruited in the process of liver fibrosis [27,32]. We observed elevations of inflammatory 

macrophages and SAMs in liver cancers. No obvious differences in Kupffer cells, TMs and 

non-inflammatory macrophages were seen (Figure 5C-F). 

Dendritic cells. As the quintessential antigen-presenting cell, the dendritic cell (DC) 

is another hot research interest for the potential of immunotherapy. The TME-Stroma atlas 

was used to estimate conventional DC1 and DC2 (cDC1 and cDC2) cell types [27,33]. 

Deconvolution suggests that cDC1 cells are elevated in liver cancers while cDC2 cells are 

not (Figure 6A-B). 

In summary, liver cancers show higher levels of overall immune cells, involving both 

the innate (monocyte-macrophages) and adaptive branches (T, B cells), as well as auxiliary 

components (dendritic cells). Meanwhile, suppressive components such as Treg cells can 

also be observed, suggesting the disordered responses in tumours. 

3.2.5. Bi-potent Stem Cells and Proliferative Cells 

This group involves two cell types which can proliferate and differentiate. Bi-potent 

stem cells (from TME-Immune atlas) were named for their potential to differentiate into 

both hepatocytes and cholangiocytes [28]. Proliferating cells were identified in TME-

Stroma atlas and elevation of these two cell types (HCC and CCA) was common in 

tumours [26]. Bi-potent cells were rare in normal livers and their elevation in CCA is 

prominent (Figure 6C-D). 

3.2.6. Other Cell Types 

These three atlases also identified some immune cell types which exist in the liver 

with a relatively low abundance. TME-Immune identified a cluster of natural killer (NK) 

cells (a key component of the innate immune branch) and a cluster of myeloid cells (the 

liver-resident precursors of monocytes-macrophages) [28]. The Normal Liver atlas 

isolated a cluster of NK-like cells, which may be an ambiguous mixture of natural killer T 

(NKT) cells and NK cells [26]. Different atlases may have some cell types/subtypes with 

the same labels. However, calculated signature matrices suggest that they have different 
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scopes, e.g., HSCs in Normal Liver atlas, Figure 2D, vs. HSCs in TME-Stroma atlas, Figure 

S6A). 

3.3. Cell Fraction of HCC TME Correlates with Clinical Outcome 

Finally, we investigated whether cellular alteration affects clinical outcome of HCC 

through survival analysis. In public repositories, TCGA-LIHC is the highest-cited cohort 

of a liver cancer study, with well-annotated follow-up information and substantial sample 

size (370 HCC patients). TCGA-LIHC is a pooled study of five cohorts with mixed risk 

factors. Available survival analyses include overall survival (OS) and disease-free survival 

(DFS) [34]. 

The distributions of estimated cell fractions show two typical shapes, “Sigmoid” or 

“Exponential” (Figure 7C, F). Using an optimization strategy (lowest log-rank test p-

value), the patient cohort was typically separated at inflection points, although this 

separation may fail in cases of negative results or meaningless grouping (e.g., separating 

1 case into a group). In these circumstances, we used the median-point strategy to finish 

complete K-M curves (Figure 7, Figure S7-12). 

Among all the estimated cell types, hepatocytes and bi-potent cells show a prominent 

impact on patients' outcomes. The estimated fractions of hepatocytes show an S-shaped 

distribution. The optimization strategy (lowest log-rank test p-value) separates the cohort 

at a close-to-median point in OS analysis, and at an inflection point for DFS analysis 

(Figure 7C). High fractions of hepatocytes are associated with longer OS and DFS (Figure 

7A-B). Estimated fractions of Bi-potent cells show exponential distribution. The 

optimization strategy isolated a subset with the cell fractions close to zero (Figure 7F). 

Those with high fractions of bi-potent cells show both lower OS and DFS (Figure 7D-E). 

GSE14520 is a study which recruited more than 200 HBV-related HCC cases and 

provides both OS and DFS information [35,36]. Its transcriptomic tests are based on 

microarray platforms, which may provide less accuracy than RNA-seq. In our study, rare 

cell types were not often detected in the deconvolution of microarray data. However, 

given the subtle difference of study protocol, it still provided alternative evidence about 

the impact of cell fractions on patients’ outcomes. A compilation of the survival analyses 

for GSE14520 is available in Figure S10-12, with a summary in Table S3. Consistent and 

significant results for both OS and DFS in the two cohorts include: hepatocyte (positive), 

cholangiocyte (negative), bi-potent stem cell (negative), Mature B cell (positive), Plasma B 

cell (negative), and Treg cell (negative). 

The mathematical essence of Cibersortx is the quantification of signature gene 

expression of a cell type in a tissue context [18]. The generated signature matrices by 

Cibersortx may provide useful information for further analysis, e.g., pathway activities. 

These analyses may reveal clues for development of precision therapy. GSEA varies 

depending on the selection of the reference library. Figure S13 is an example using the 

signatures from the three atlases generated by Cibersortx with the library “WikiPathway 

2021 – Human” as the source of pathway definitions. All Signature matrices and scripts 

have been shared online (see GitHub address). 
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Figure 1. A. A general workflow of deciphering tumour microenvironment. Cibersortx estimates 

the cell fraction with scRNA-seq atlas and bulk RNA-seq/microarray data. Three expression 

matrices of scRNA-seq study were used as reference atlases. Through estimation of the fractions of 

more 20 cell types/subtypes, biological events could be inferred. B-D. Performances of Cibersortx 

deconvolution in intra-study validation experiments. E. Performances of Cibersortx deconvolution 

in cross-study validation experiments. The title of each panel indicates which reference atlas has 

been used in the deconvolution, two ticks on the bottom indicate which dataset has been used to 

generate the pseudobulk samples. 
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Figure 2. A-B. A comparison of hepatocytes estimation by Cibersortx with two different atlases. 

Subtle differences of cell fractions can be seen between two experiments, but they arrived at the 

same conclusion that hepatocytes decrease in cancerous tissue. In CCAs, this phenomenon is more 

prominent. C. Estimation of cholangiocytes. Elevation of cholangiocytes can be widely seen in 

cancerous tissues. D-F. Estimation of hepatic stellate cells (HSCs), pericytes and cancer-associated 

fibroblasts (CAFs). These three cell types are key components participating the fibrogenesis of liver 

cancer. HSCs are liver-specific pericytes, and often activated in liver cancer. Pericytes (broad sense) 

can be hardly detected in normal liver but widely present in liver cancer. CAFs are uniquely 

characterized fibroblasts in cancer. They can be hardly detected in normal liver but common in 

cancerous tissues. 
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Figure 3. Estimation of liver sinusoidal endothelial cells (LSECs), vascular smooth muscle cells 

(vSMCs), liver vascular endothelial cells (LVECs) and tumour LVECs (LVECts). These four cell 

types/subtypes are key components of blood vessels in both normal and cancerous livers. Decreases 

of normal structural blocks (LSECs, vSMCs) and abnormal angiogenesis (LVECts) can be seen in 

liver cancers. Not all the differences are statistically significant. Those pairs with P<0.05 have been 

labeled. 
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Figure 4. A-E. Estimation of T cells. Alpha-beta (αβ) T cells and gamma-delta (γδ) T cells are from 

Normal Liver atlas. CD4+/CD8+ T cells and regulatory T (Treg) cells are from TME-Immune atlas. 

Overlap of cell type trees may exist between the two atlases. Obvious elevations of αβ T cells and 

obscure changes of γδ T cells can be seen in liver cancers. CD4+ T cells rise prominently in CCAs 

and CD8+ T cells moderately in HCCs. F. Estimation of overall T cells. Higher activities of T cells can 

be seen in liver cancers. 
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Figure 5. A-B. Estimation of B cells. Plasma B cells can be rarely detected in normal livers but 

common in liver cancers. C-F. Estimation of macrophages. The Normal Liver atlas separates 

macrophages into the inflammatory and non-inflammatory subtypes. The TME-Stroma atlas 

identified Kupffer cells, scar-associated macrophages (SAMs) and tissue macropahges (TMs, Figure 

S6E). Overlap of cell type trees may exist between the two atlases. Increase of inflammatory 

macrophages can be seen in liver cancers. SAMs are a pathological variant of macrophages and 

participate in the process of liver fibrosis. Their elevation can be seen in liver cancers. 
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Figure 6. A-B. Estimation of conventional dendritic cells (cDCs). Elevations of cDC1s can be seen in 

liver cancers. C-D. Estimation of two types of proliferative cells. Bi-potent stem cells are a group of 

late-stage pluripotent cells with potential to differentiate into hepatocytes and cholangiocytes. The 

TME-Stroma atlas did not clarify the exact characteristics of proliferating cells. Its signature genes 

suggest its pluripotent origin. Elevations of these two cell types can be seen in liver cancers. E-F. 

Estimation of natural killer (NK) cells and myeloid cells. NK cells belong to innate immune branch 

and myeloid cells are the hematopoiesis-originated immune branch. Deconvolution of these two 

cell types shows altered activities in liver cancers but no direct association can be drawn. 
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Figure 7. Impact of cell fractions on patients’ survivals. A-B. Impact of hepatocyte fraction. High-

level hepatocytes show both longer OS and DFS lengths. D-E. Impact of bi-potent cell fraction. High-

level bi-potent cells show lower OS and DFS lengths. C, F. Cutting thresholds of overall survival 

(OS) and disease-free survival (DFS) analysis after optimization. The fraction of hepatocytes and bi-

potent cells show two typical types of distribution. Hepatocyte fractions have a sigmoid-shaped 

curve and the cutting points are at an inflection point of the curve. Bi-potent cell fractions show an 

exponential distribution (Y-axis has been log-transformed for better visualization) and cutting 

points extract one group with estimated fractions close to zero. 
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4. Discussion 

Deconvolution algorithm attracts high interest for it allows the estimation of cell 

fractions with scRNA-seq atlases. Cibersortx and MuSiC are two state-of-the-art 

algorithms in benchmarking studies. Cibersortx was adopted in this study for its easy 

reproducibility while implementation with MuSiC involves R scripting and manual 

selection of markers. Cibersortx first constructs a representative profile and signature 

matrix for a given scRNA-seq atlas. In practice, the atlases with too many cell types often 

overdrive Cibersortx, leading to the failure of calculation. According to the official 

guidance of Cibersortx, an adjustment of cell labelling of the atlas is then warranted [18]. 

We performed a set of experiments with the Normal Liver in intra-study validation group, 

to determine the influence of this adjustment of cell type labelling. We found that 

collapsing the branches of LSEC, T/B cells and macrophages resulted in slightly different 

PCCs but did not substantially impact the accuracy of deconvolution. In our practice, we 

split the atlases into several groups to ensure that the deconvolution with Cibersortx ran 

to completion. In the estimation of cell types in one group, all cells of the other group were 

combined and labelled as “other”. 

Another salient advantage of Cibersortx is the partial deconvolution feature which is 

applied when the tissue contexts of atlases and bulk RNA-seq data are not necessarily 

identical [18]. This situation is widely present in applications with clinical data. Two main 

factors influence the differences between atlases: emerging new cell types/subtypes and 

transforming cell states. Diseased livers often contain newly generated cell types, such as 

fibroblasts in cirrhosis, infiltrated lymphocytes in viral hepatitis, or malignant cells in liver 

cancer, etc. Moreover, diseases can also shift the cell states, such as in the activation of 

HSCs or T/B cells. To validate the reliability of partial deconvolution by Cibersortx, we 

performed a set of cross-study validation experiments. Due to the limitation of available 

data, our validation did not cover the full spectrum of cell types found in liver. In these 

limited in silico experiments, we determined that partial deconvolution guarantees high-

level PCCs but that MAEs vary between different cell types. 

Cibersortx estimates cell fractions through quantifying the abundance of signature 

genes, which warrants careful consideration when interpreting the results. Cell fractions 

can be defined in diverse ways. In conventional histological studies, cell proportion has 

been calculated by volume, cell number, or mass, etc [37]. The prediction of Cibersortx 

seems to be close to the definition of “fraction by cell number”. However, the expression 

of signature genes varies between cells, tissues, individuals, and the different disease 

states, leading to an ambiguity of the concept “fraction”. This gap becomes prominent in 

situations where the biomedical conditions of the reference scRNA-seq atlases and the 

bulk RNA-seq samples are different (necessitating “partial deconvolution”). In addition, 

cell clusters between atlases with the same label may not be identical. In our study, we 

preserved all the signature matrices generated by Cibersortx for better comparison. 

Therefore, we recommend taking into account all of these factors when interpreting the 

biomedical implications of the deconvoluted results. [18]. 

Liver cancer is the second most lethal cancer due to the difficulty of early diagnosis 

and the lack of efficient therapies. Potent therapeutic strategies are often hampered by the 

accompanying components in the TME [4], most notably, the CAFs and Treg cells. CAFs 

are believed to interfere with immune responses, providing local stiff niches that shelter 

tumour-initiating cells and low permeability barriers that impede the delivery of tumour-

eradicating chemicals [9]. Treg cells are a suppressive subpopulation of immune cells, 

leading to tolerance of malignancy. Treg cells function through PD-1/PD-L1 pathway and 

a blockade of this communication results in the resurrection of immune responses in a 

minor group of patients. Further studies show that the therapeutic efficiency of a PD1 

inhibitor depends on the interaction between the TME and other immune components 

(e.g., CD8+ T cells) [38,39]. Our study shows elevations of both CAFs and Treg cells in 

cancerous tissues, and a negative impact of Treg cells on patient outcomes. These findings 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 November 2022                   doi:10.20944/preprints202211.0344.v1

https://doi.org/10.20944/preprints202211.0344.v1


 

 

are consistent with present literatures, suggesting the feasibility of deconvolution with 

scRNA-seq atlases as a data mining tool to reveal clues towards precision therapy. 

The exact mechanism of liver cancer formation remains partially understood. 

EpCAM+ cells were proposed as a tumour-initiating component in HCC development 

[40]. EpCAM expression has been found in fetal liver, hepatic progenitor cells, and 

carcinoma cells, etc., but not in mature hepatocytes [41]. In our study, EpCAM was 

selected by Cibersortx as a signature gene for cholangiocytes (Normal Liver atlas), 

proliferating cells (TME-Stroma), and bi-potent stem cells (TME-Immune). Survival 

analysis suggests a negative impact of bi-potent stem cells on patient outcomes, providing 

alternative clinical evidence for the tumour-initiating hypothesis of EpCAM+ cells. 

Although the interpretation of these findings warrants careful consideration, our study 

demonstrates that deconvolution can also help understand the mechanism of cancer 

formation. 

5. Conclusions 

In this study, we decipher the TME of liver cancer by estimating the cell fractions of 

a sample given a transcriptome. By estimating more than 20 cell types/subtypes within 

bulk RNA-seq data using three atlases and Cibersortx, we found disruption of normal 

liver architecture, abnormal fibrogenesis and angiogenesis, as well as disturbed immune 

responses in HCC and CCA. Survival analysis demonstrated that five cell types/subtypes 

highly correlated with patient outcomes. 

Deconvolution algorithm and emerging scRNA-seq atlases allow the decomposition 

of bulk RNA-seq data into cell-type fractions. By linking the cell fractions of samples and 

clinical follow-up information, we provide an innovative approach for the discovery of 

potential therapeutic targets. In the future, with the advent of more high-quality scRNA-

seq atlases, deconvolution could be a powerful data mining tool to uncover the intricate 

nature of the TME of liver cancer, and reveal valuable information in the vast amount of 

available transcriptomic data. 
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Supplementary Materials: Figure S1: Cell type trees of Normal Liver atlas, TME-Stroma atlas and 

TME-Immune atlas; Figure S2: In silico experiments of Cibersortx estimation (Normal Liver atlas, 

intra-study validation mode). A1-13, cell type tree was defined by the authors; B1-10, cell subtypes 

were combined into major cell types; Figure S3: In silico experiments of Cibersortx estimation (TME-

Stroma atlas, intra-study validation mode); Figure S4: In silico experiments of Cibersortx estimation 

(TME-Immune atlas, intra-study validation mode); Figure S5: In silico experiments of Cibersortx 

estimation (cross-study validation experiments); Figure S6: Deconvolution output of all the 

remaining cell type/subtypes not shown in the maintext; Figure S7: Impact of cell fraction on patient 

outcomes (TCGA-LIHC, Normal Liver atlas); Figure S8: Impact of cell fraction on patient outcomes 

(TCGA-LIHC, TME-Stroma atlas); Figure S9: Impact of cell fraction on patient outcomes (TCGA-

LIHC, TME-Immune atlas); Figure S10: Impact of cell fraction on patient outcomes (GSE14520, 

Normal Liver atlas); Figure S11: Impact of cell fraction on patient outcomes (GSE14520, TME-

Stroma atlas); Figure S12: Impact of cell fraction on patient outcomes (GSE14520, TME-Immune 

atlas); Figure S13: Gene set enrichment analysis of Cibersortx identified signature genes for the three 

atlases. Table S1: Summary of recruited studies; Table S2: Summary of in silico validation 

experiments; Table S3: Summary of survival analysis. 
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