Supplementary Information

Optimal icosahedral copper-based bimetallic clusters for the selective electrocatalytic CO₂ conversion to one carbon products

Azeem Ghulam Nabi, *1,2,3,5 Aman ur Rehman^{2,4}, Akhtar Hussain, ⁵ Gregory A. Chass ^{1,6,7} and Devis Di Tommaso, *1

¹ Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom

² Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad, Pakistan

³ Department of Physics, University of Gujrat, Jalalpur Jattan Road, Gujrat, Pakistan

⁴ Department of Nuclear Engineering, Pakistan Institute of Engineering & Applied Sciences, P.O. Nilore, Is-lamabad, 45650, Pakistan

⁵Theoretical Physics Division, Pakistan Institute of Nuclear Engineering & Technology (PINSTECH), Islamabad, Pakistan

⁶ Department of Chemistry, McMaster University, Hamilton, Ontario, L8S 4L8, Canada

⁷ Faculty of Land and Food Systems, The University of British Columbia, Vancouver BC, V6T1Z4, Canada

TABLE S1. The energies (E), zero-point energies (ZPE), and entropies (S) of $H_2(g)$, $CO_2(g)$ and CO(g), and H_2O . The entropies of $H_2(g)$, $CO_2(g)$ and CO(g) were calculated at 1 atm. The entropy of $H_2O(g=l)$ was calculated at 0.035 atm, which corresponds to the vapor pressure of liquid water.

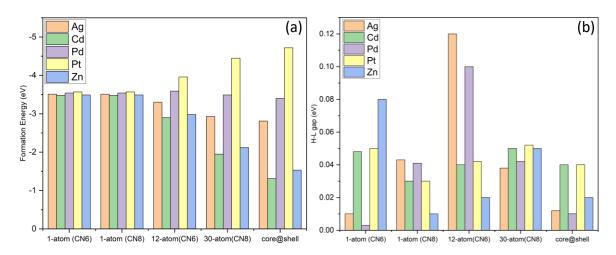

Gas Phase	E	ZPE	$C_p dT$	TS	ΔG
H ₂	-6.71	0.27	0.09	-0.41	-6.76
H ₂ O	-14.2	0.56	0.1	-0.65	-14.19
CO(g)	-14.43	0.13	0.09	-0.59	-14.8
CO ₂	-22.96	0.27	0.1	-0.65	-23.24

Table S2. The atomic, covalent and Van der Waals radii, the electronegativity difference, electronic configuration, and calculated value of segregation energies (in eV).

Atomic Symbol	Radius [Å] ^{[1][2]}						Segregation Energy (eV)	
	Atomic	Covalent	Van- der- Waals	ΔE _N (eV)	Electronic Configuration	CN6	CN8	
Cu	1.45	1.38	1.40	0.00	4s¹3d¹0			
Ag	1.65	1.53	1.72	0.03	$5s^{1}4d^{10}$	-1.46	-1.53	
Cd	1.61	1.48	1.58	0.21	$5s^24d^{10}$	-2.50	-2.60	
Pd	1.69	1.31	1.63	0.30	$4p^64d^{10}$	-0.46	-0.59	
Pt	1.77	1.28	1.75	0.38	5d ⁹ 6s ¹	-0.20	-0.38	
Zn	1.42	1.31	1.39	0.25	$4s^23d^{10}$	-0.57	-0.68	

^[1] S. Alvarez, "A cartography of the van der Waals territories," *Dalt. Trans.*, vol. 42, no. 24, pp. 8617–8636, 2013, doi: 10.1039/c3dt50599e.

^[2] B. Cordero et al., "Covalent radii revisited," J. Chem. Soc. Dalt. Trans., no. 21, pp. 2832–2838, 2008, doi: 10.1039/b801115j.

Figure S1. (a) The binding energy and **(b)** HOMO-LUMO (H-L) gap of Cu-M clusters with increasing doping concentration.

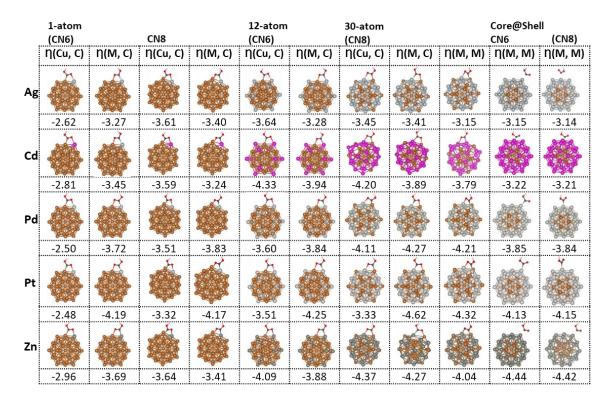
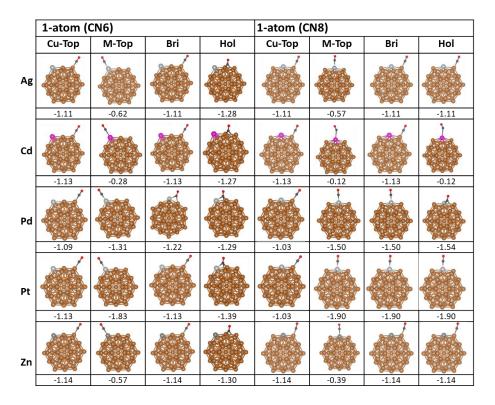



Figure S2. The structure and adsorption energies (in eV) of COOH adsorbed on the Cu-M clusters.

Figure S3. The structure and adsorption energies (in eV) of CO adsorbed on the Cu₅₄M clusters with CN6 and CN8 nano-catalysts.

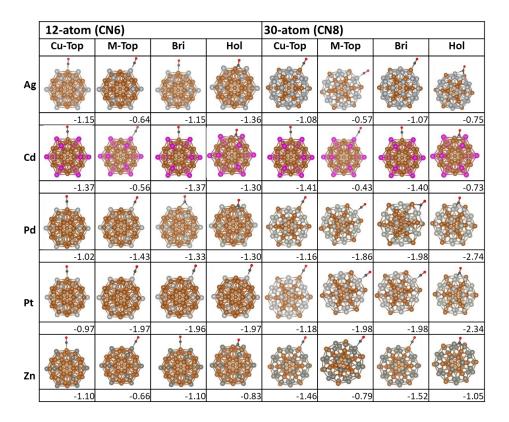


Figure S4. The structure and adsorption energies (in eV) of CO on the $Cu_{43}M_{12}$ and $Cu_{25}M_{30}$ clusters.

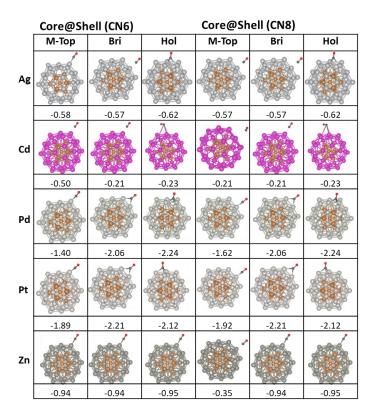
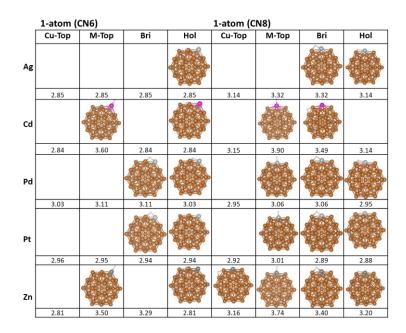



Figure S5. The structure and adsorption energies (in eV) of CO on the $Cu_{43}M_{12}$ and $Cu_{25}M_{30}$ clusters.

Figure S6. The structure and adsorption energies of H adsorbed on the $Cu_{43}M_{12}$ and $Cu_{25}M_{30}$ clusters at the Top, Hollow and Bridge positions.

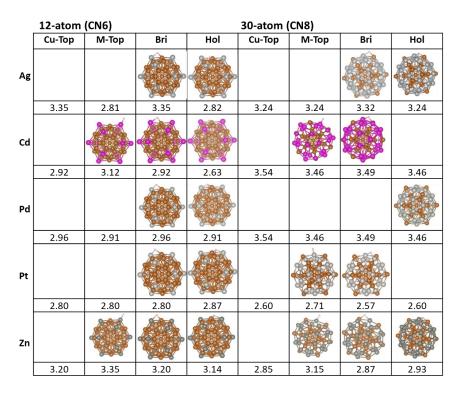
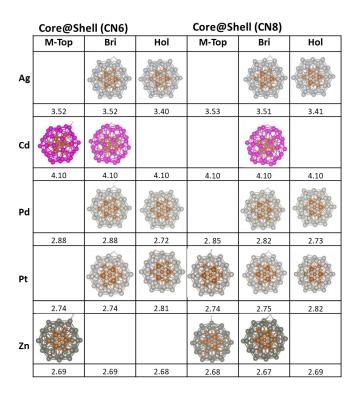



Figure S7. The structure and adsorption energies of H adsorbed on the $Cu_{43}M_{12}$ and $Cu_{25}M_{30}$ clusters at Top, Hollow and Bridge positions.

Figure S8. The structures and adsorption energies of H adsorbed on the core@shell clusters at Top, Hollow and Bridge positions.

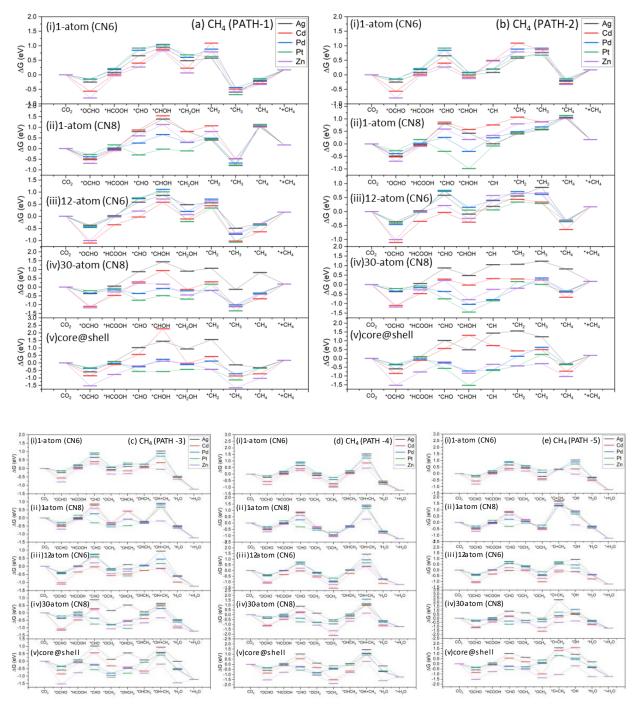


Figure S9. Gibbs free energy diagram for the CH₄ formation on CuM clusters along pathways 1 to 5: (1) $*CHO \rightarrow *CHOH \rightarrow *CH \rightarrow *CH_2 \rightarrow *CH_3 \rightarrow *+ CH_4$; (2) $*CHO \rightarrow *CHOH \rightarrow *CH_2OH \rightarrow *CH_2 \rightarrow *CH_3 \rightarrow *+ CH_4$; (3) $*CHO \rightarrow *OCH_2 \rightarrow *OHCH_3 \rightarrow *OH + CH_4 \rightarrow *+ H_2O$; (4) $*CHO \rightarrow *OCH_2 \rightarrow *OCH_3 \rightarrow *OHCH_3 \rightarrow *OH + CH_4 \rightarrow *+ H_2O$; (5) $*CHO \rightarrow *OCH_2 \rightarrow *OCH_3 \rightarrow *O+ CH_4 \rightarrow *OH \rightarrow *+ H_2O$.

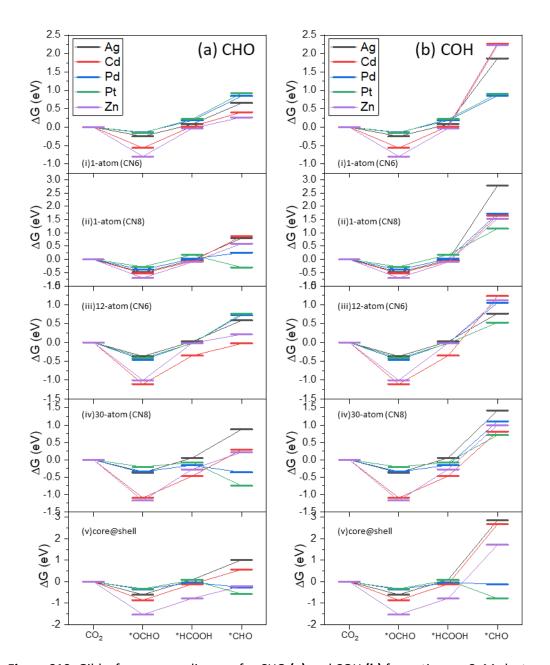


Figure S10. Gibbs free energy diagram for CHO (a) and COH (b) formation on CuM clusters.