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Abstract: Mini-drones can be used for a variety of tasks, such as weather monitoring, package
delivery, search and rescue, and recreation. Their uses are mostly restricted to outside locations with
access to the Global Positioning System (GPS) and/or similar systems since their usefulness, safety,
and performance substantially rely on ubiquitously accurate positioning and navigation. Indoor lo-
calization is getting better, thanks to technologies like Visual Simultaneous Localization and Mapping
(V-SLAM). However, more advancements are still required for mini-drone navigation applications
with greater safety standards. In this research, a novel method for enhancing indoor mini-drone
localization performance is proposed. By merging Oriented Rotated Brief SLAM (ORB-SLAM2), Semi-
Direct Monocular Visual Odometry (SVO), and an Adaptive Complementary Filter, the suggested
strategy improves V-SLAM approaches (ACF). The findings demonstrate that, when compared to
other widely-used indoor localization algorithms, the suggested methodology performs better at
estimating location under various situations (low light, low texture, and dynamic environments).
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1. Introduction

Mini-drones are employed for a variety of tasks, including search and rescue, smart
farming, and aerial mapping [1,2].They generally employ Global Navigation Satellite
Systems (GNSS) [3–5] like GLONASS, Galileo, and GPS, which are outside positioning
systems [6,7]. However, indoor use is not appropriate for these technologies. Additionally,
there are restrictions on the size of the payload and a weight maximum that must be met,
among other things, which make it difficult for autonomous mini-drones to navigate inside
of structures.

Mini-drones may also need quick processing power due to the drone’s speed, necessary
safety measures, and dynamic changes [8–10].

While standard V-SLAM approaches are used to overcome the aforementioned issues
in the literature [11–14], these techniques [15–17] are unable to manage changeable situa-
tions since they are mostly relevant for limited regions with distinct picture characteristics
and off-board processes with acceptable illumination.

This work suggests an improved V-SLAM method that enhances autonomous mini-
drone navigation in interior environments under a variety of situations, which can signifi-
cantly affect the accuracy of navigation. The suggested approach combines ORB-SLAM2
and SVO, two visual algorithms, using an ACF.

The novelty of the proposed approach consists in the integration of ORB-SLAM2 [18],
and SVO [19] algorithms with an ACF [20] which can improve the position estimation.
A mini-drone is custom-designed for the Gazebo simulator software to implement the
proposed approach. (see Fig.1).

The rest of the paper is organized as follows: Section (2) discusses the literature; Section
(3) provides a system overview; Section (5) describes the experimental work undertaken,
and Section (6) presents the conclusions.
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Figure 1. The customized ini-drone’s model was utilized for simulations and tests [51].

2. RELATED WORK

Taketomi et al. [21] examined the most recent V-SLAM algorithms from both a tech-
nical and historical standpoint in their study, which summarized the state-of-the-art in
this field. Researchers got to the conclusion that the usage of cameras and intensive data
processing causes V-SLAM algorithms to run slowly, and that a quick approach may be
employed to solve this problem. Recently released fast V-SLAM algorithms were compared
and categorized in [22–24], following are two V-SLAM examples, namely feature-based
approaches and direct methods.

2.1. Feature-based methods

Feature-based methods [25], such as ORB-SLAM, extract the important details from
each frame of the images, such as blobs and corners. The mapping and localization are
then accomplished using the positions of each feature in the current and previous frames.
Artal et al. provide some of the fastest algorithms with feature-based methods (Fig. 2) [18].

2.2. Direct methods

Direct methods [29], such as Large-Scale Direct SLAM (LSD-SLAM), employ the entire
amount of data in the image rather than just the features, giving it superior robustness
and accuracy compared to feature-based methods. However, compared to ORB-SLAM,
LSD-SLAM takes more computing work (Fig. 2). [32].

2.3. Recent works

Guanci et al. [33] present ORB-SLAM2, which is computationally less expensive than
ORB-SLAM, has good localization accuracy, and can operate in real-time without GPU
processing. The SVO algorithm, developed by Forster et al.[19] combines the benefits of
feature-based and direct techniques [19]. Additionally, researchers demonstrate in [26]
study that SVO is quicker than LSD-SLAM and ORB-SLAM. It cannot produce maps,
however, because: i) only the most recent 5–10 frames are accessible; ii) in-depth feature
estimate is lacking; and iii) it is frequently used in downward-looking cameras [26,34].

Using a previous motion, Loo et al. [35] attempted to repair the SVO flaws in order
to locate the features in the fast action. Prior picture features are used in the preceding
motion to calculate the current motion. As a result, they can be changed quickly, but
SVO still has issues in settings with subpar features in general. Furthermore, based on
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Figure 2. Feature-based methods Abstract visuals to highlight observations and exclude all extra-
neous data. In contrast, the suggested direct method maps and follows picture intensities directly
[47].

the characteristics of the ORB algorithm, ORB-SLAM can fix faults [30]. Additionally, it
performs well while creating maps, but ORB-SLAM struggles to locate features in dynamic
settings. Together, ORB-SLAM2 and SVO have qualities that allow them to function well in
a variety of situations and environments.

To take advantage of both of its benefits, SVO and ORB-SLAM2 are combined in the
unique V-SLAM approach that has been presented.

3. SYSTEM OVERVIEW

The system suggested in this paper for the mini-drone consists of two sections: V-
SLAM and control components (Fig. 3). Two algorithms are employed in parallel threads in
the V-SLAM component [51]. (Fig. 4). ORB-SLAM2 is utilized for localization and mapping,
while SVO calculates the mini-position. drone’s After extracting data from the ORB-SLAM2
and SVO algorithms, fusion data are extracted based on the weighted average. AFC mixes
the ORB-SLAM2 and SVO extracted data based on the error. And the algorithm with the
greater mistake rate utilizes a smaller proportion of the data [31,37]. The control section
uses a PID controller [40].

3.1. ORB-SLAM

This algorithm consists of three components (Fig. 4): tracking, local mapping and loop
closing, [34].

3.1.1. Tracking

Tracking is responsible for localizing the camera in each frame and determining
when to insert a new keyframe. If the tracking is lost (e.g., due to occlusions or sudden
movements), then matches with the local map points are found by reprojection, and the
camera pose is optimized with all matches once again. The tracking thread then determines
if a new keyframe should be placed [30,38].
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Figure 3. Control system and V-SLAM component [51].

3.1.2. Local mapping

The local mapping process adds keyframes and executes them locally to produce an
appropriate reconstruction in the camera pose’s surroundings. New correspondences for
mismatched ORB in the new keyframe are searched in related keyframes in the visibility
graph to triangulate new points. Based on the information obtained during tracking, a
stringent point culling strategy is implemented sometime after creation to maintain only
high-quality points. The local mapping is also in charge of removing obsolete keyframes
[30,49].

3.1.3. Loop closing

It is the task of determining whether or not a drone has returned to a previously
visited region after an arbitrary period of trip. If three consecutively compatible frames are
detected, the algorithm accepts the current keyframes as a loop candidate. We now have a
global graph map. [34].

3.2. SVO

Tracking and mapping are the two threads that make up SVO. The method is still
running in a parallel thread with SVO, mostly for mapping and localization on small
devices. The tracking thread employs a semi-direct approach of estimating relative posture,
whereas the mapping thread employs the depth filter [26,36,50].

3.3. SVO-ORB-SLAM

The solution described in our study employs two parallel threads (indicated in Fig.
4). The ACF is used by weighting the data in each algorithm (ORB and SVO) based on
error estimation according to the amount of features discovered at each frame by the FAST
corner-detection algorithm in SVO and the ORB feature-detection algorithm in ORB-SLAM.
However, before doing this estimation, the data must be synced with the timestamp. The
synchronized data is then merged within the ACF .
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Figure 4. The flowchart for SVO and ORB SLAM [51].

3.4. ACF

ACF was chosen as the basis for the data fusion of SVO and ORB-SLAM2 in this
investigation because it requires significantly less processing power than other methods,
such as the Kalman filter [48].

The ACF method was used: In two filters, Gl (low pass filter) and Gh (high pass filter),
where P̂ is the estimated position of drone in (5); to data fusion, need to estimate the error
based on the number of feature points in the frame of ORB-SLAM2 and SVO via (1). The
filters coefficient is α, Porb in (4) is the position the ORB-SLAM2 algorithm measures, and
Psvo in (3) is the SVO algorithm’s position.

Each algorithm has weight, α is the weight factor that in critical situations causes
ORB-SLAM2 and SVO algorithms’ data weight to change due to the position estimation
error, and ACF uses more data with a minor error. The coefficient α is calculated via (2), as
illustrated in Fig. 5. Each algorithm’s error is calculated based on how many feature points
are in each frame. αorb and αsvo satisfy the following two conditions. The filter uses both
algorithms; if the SVO’s error in finding image features is significant, in finding the features
in the images, the filter uses ORB-SLAM’s data. If the ORB-SLAM’s error in finding image
features is significant, the filter uses SVO’s data, as indicated in Fig. 6.

Error =
A − N

A
(1)

• A = Accepted feature points number.
• N = Number of feature points found.

α = 1 − Error (2)
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P̂svo = αsvo Psvo (3)

P̂orb = αorb Porb (4)

P̂ = GI P̂svo + Gh P̂orb (5)

Figure 5. Diagram of computational steps before combining algorithms [51].

Figure 6. a) use data from both algorithms; b) use ORB-SLAM’s data, and c) use SVO’s data.

3.5. Controller

V-SLAM algorithms have some drawbacks. One is the problem in initial localization
since they need the camera to move about one metre to detect the image’s features. While
it may not be very safe to have a one-metre error as it can cause a collision or crash,
controllers are expected to have higher command ability and stability. Thus, an initial
trajectory command is assigned to PD [41] for the initial state. That is, the initial setpoint
is set for the PD controller. In the next step, the PD controller output is the PI controller
setpoint [42]. In this part, the mini-drone begins flying autonomously. Moreover, the
mini-drone requires initial localization. In this part, PI uses optical follow [28] use bottom
camera, data based on velocity for position estimation. These are the steps for the first loop
for mini-drone control, after which the mini-drone can fly autonomously.

Another challenge in V-SLAM algorithms is the UAV vibration and turbulence, spe-
cially when the UAVs use downward-looking cameras and do not move on the x and y
axes. This vibration in the vehicle’s roll and pitch can cause changes in the x and y values,
leading the algorithm to assume that the robot is moving. This is a problem when the
robot is at a great height, and every slight vibration in the UAV creates a significant error.
Moreover, since SVO estimates the position with the camera below, we have to consider
this problem. In this regard, altitude is very important because, as indicated in Fig. 7, if we
have two drones moving the same distance but one is at a low altitude like in step 1, then
the other one is at a higher altitude like in step 2. The lower drone will see surface features
appear to move further, resulting in a higher value. We compensate for vehicle roll and
pitch changes.

As indicated in Fig. 7 the drone has rolled, changed degrees, but the flower has moved
from the centre of the camera’s view in step 2 to the edge of the view in step 3. The expected
change in sensor values can be calculated directly from the change in roll, and the pitch
gave the formula 6 and 7. We subtract these expected changes from the real values returned
by the sensor.
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Algorithm 1 SVO-ORB-SLAM algorithm

function SVO-ORB-SLAM(P̂, P̂svo, P̂orb, Porb, Psvo, αorb, αsvo)
Step 1: Capture the image from the cameras.
Step 2: Estimate the Porb and Psvo.
Step 3: Calculate the errors of Porb and Psvo based on number of features.
Step 3: Calculate the α for Porb and Psvo based on errors.
for Each image frame i do

Update the position of the P̂orb and P̂svo
Evaluate the fitness αi)
if αorb >= 0.5 and αsvo < 0.5 then

P̂ = P̂orb;
end if
if αsvo >= 0.5 and αorb < 0.5 then

P̂ = P̂svo;
end if
if αorb =αsvo then

P̂ = (P̂orb + P̂svo)/2;
end if

end for
return;

end function

Figure 7. Drone vibrations.

• FOV = Field of View
• Sv = Sensor value
• Srp = Sensor’s resolution in pixel
• Dm = Distance moved
• Xe = Expected X value
• a = Altitude
• n = Scalar
• r = Change in roll

Dm =
(Sv a)
(Srp n)

2.0 tan
(FOV)

(2.0)
. (6)

Xe =
(r Srp n)
(FOV)

. (7)
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4. Stimulation

All procedures are run in real-time to test the performance of SVO-ORB-SLAM. We ran
the simulations in Gazebo 11 and Rviz software on an Intel Core i7-4702MQ, 12 GB RAM,
and a 2 GB VGA GeForce GT 740M under the Robot Operating System (ROS) Melodic
Morenia version at Ubuntu 18.04 (Bionic).

As shown in Fig. 8, there are two windows, one of which is the window to the right
of the Gazebo environment and displays the viewing angle of the drone’s front camera.
The green spots inside this frame are picture characteristics discovered by the ORB-SLAM2
method. The Rviz environment is shown in the left window of Fig. 8. The green line inside
this window represents the mini-drone, drone’s while the white cloud points represent the
3D map generated by the ORB-SLAM2 algorithm.

Figure 8. The green points in the ORB-SLAM2 algorithm that represents the features and green line
represent the trajectory [51].

As shown in Fig. 9, the Gazebo environment in the right window displays the viewing
angle of the drone’s down camera. The green spots inside this window represent image
features discovered by the SVO algorithm. The Rviz environment is shown in the left
window of Fig.9, and the red line inside this window represents the mini-drone’s trajectory
as determined by the SVO algorithm.

The mini-drone is flying in the Gazebo (right window) and Rviz environments (left
window) in Fig. 10, demonstrating that the yellow line’s flying trajectory is the real
trajectory, while the red line is SVO’s estimate of the trajectory. Meanwhile, the green
line represents the trajectory estimate from ORB-SLAM2, and the blue line represents the
trajectory estimate from our suggested technique.

5. EXPERIMENTAL

We evaluated the mini-drone in three complicated scenarios to evaluate its perfor-
mance: (1) a low-light environment, (2) a low-texture environment, and (3) a dynamic
environment. Furthermore, we demonstrated that our suggested solution works very
rapidly and smoothly, even with poor hardware.
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Figure 9. The trajectory and features point in the SVO algorithm [51].

Figure 10. Simulation environment room in the Gazebo [51].

5.1. Low-light environment

Working in low-light situations is one of the most difficult issues in V-SLAM since
these approaches rely on data from pictures captured by the camera. V-SLAM feature-
detection algorithms perform differently at various brightness levels. Choosing the optimal
feature algorithm has always been difficult, but our suggested solution employs two feature
algorithms at the same time: the FAST algorithm in SVO and the ORB algorithm in ORB-
SLAM2. This advantage allows us to utilize our proposed localization method even in the
darkest conditions.
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Half of the mini-flight drone’s path was evaluated in natural light inside, as shown
in Fig. 11, section (a). SVO, ORB-SLAM2, and our localization approach all performed
admirably. Suddenly, we blocked the sun from the rest of the mini-flight drone’s path. As
shown in Fig. 11 section (b), The SVO has lost its position and cannot locate the drone, but
ORB-SLAM2 and our approach can provide an approximation of its position.

Figure 11. Drones under two different lighting conditions: (a) a bright room and (b) a dark room [51].

5.2. Low-texture environment

In feature-based approaches, textures, corners, and edges in the environment can
assist in locating the image’s features. When we observe more characteristics in the image,
localisation is improved, hence poor texture in the image is a significant issue for V-SLAM.

Our approach combines the two methods and the usage of front data with ORB-
SLAM2 and bottom data with SVO; even when the drone enters an area where the walls
are not visible to the camera, such as a huge salon, it can estimate its location using SVO.
When entering an area with a surface with few of textures, ORB-SLAM2 can estimate the
position. As shown in Fig. 12, in an area devoid of objects and walls, the mini-drone has a
low texture; the large surface also has a low texture, and the SVO missed the target location.
Our approach can estimate the location using ORB data.

5.3. Dynamic environment

One of the most difficult challenges that drones must always overcome is a dynamic
environment. In this situation, we demonstrate that localization works effectively with our
approach, despite the fact that moving objects and walls as well as changing maps.

As shown in Fig. 13 (a) before modifying the map and (b) after changing the map. We
made some changes to the map so that it would reflect that ORB-SLAM had failed to locate
the position indicated by the white circle. Despite this, the ACF automatically uses all of
the position data from SVO in order to estimate the position in order to prevent acquiring a
lost position.
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Figure 12. Test the mini-drone in a Low-texture environment [51].

Figure 13. (a) The dynamic environment, before the map was changed, and (b) the dynamic environ-
ment after the map was changed [51].

The results of a comparison between our suggested technique and SVO and ORB-
SLAM2 in terms of the average position error in an environment that is dynamic and has
low light and low texture are shown in Fig 14.

Our approach has an error rate of 15.2% on average across all situations, as shown in
Table 1. Comparatively, the ORB-SLAM2 method has an error rate of 32.3%, while the SVO
method has an error rate of 44.1%.
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Figure 14. Comparison of SVO, ORB-SLAM2 and SVO-ORB-SLAM algorithms [51].

Table 1. Average percentage error during the duration of a low-light, low-texture, and dynamic
environment [51].

Algorithms Average percentage error

SVO 44.1%
ORB-SLAM2 32.3%

SVO-ORB SLAM 15.2%

5.4. Processing

It is well known that the V-SLAM algorithms call for a significant amount of com-
putational power in order to operate in an effective manner. Due to the restricted area
available, this may be a difficulty for systems that have been shrunk down, such as small
drones. This piece makes use of ORB-SLAM2 and SVO, which are the two methods that
are currently recognized as being the quickest accessible options. Both of these methods
are broken down into much more specific steps as explained in the previous paragraphs.
Additionally, a suitable amount of labour has been included in the processing in order to
maintain a level of efficiency that may be regarded as adequate. As shown in Fig. 15, the
solution that is recommended makes use of just 23.3% of the total RAM that is available,
and the processing that it executes on the CPU cores is very smooth.

6. CONCLUSIONS

In this paper, we suggest an approach for mini-drones to use in environments where
GPS is unavailable, such as indoors. This strategy is called ORB-SVO SLAM and is based
on V-SLAM, it also has the benefits of SVO and ORB-SLAM2. An ACF provides fusion
data, which has a higher performance than SVO and ORB-SLAM2 despite having a lower
error rate overall. This error rate is 28.9 percent lower than SVO, and 17.1 percent lower
than ORB-SLAM2. The findings indicate that our strategy is applicable even in areas with a
limited amount of light and a low texture.
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(1).png

Figure 15. Computing process (Memory consumption in the blue rectangle and 8 processor cores in
the red rectangle) [51].
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