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Abstract: With the rapid development of the Internet of Things (IoT), there are dramatic increasing 1

number of devices in the network, which causes the challenge that only using infrastructure such 2

as based station cannot provide service with all devices with high quality. Therefore, due to their 3

flexibility and economy, unmanned aerial vehicles (UAV) are widely used to increase the performance 4

of IoT networks. UAVs can not only provide communication services for IoT devices in the absence of 5

a network, but they can also perform video surveillance, cargo transportation, pesticide spraying, and 6

other specialized tasks. However, due to the complexity of the scenario and the need for real-time 7

decision making, it is challenging to schedule UAVs in the network using traditional optimization 8

methods, and growing attention has focused on using AI to optimize UAVs in the network. In 9

this paper, we focus on the AI-enabled UAV optimization method in IoT networks and give a 10

comprehensive scope on what and how to use AI-enabled methods to increase the performance of 11

UAV-assisted IoT networks. Moreover, a brief analysis of the challenges of using AI methods in IoT 12

networks and some potential research directions are given. 13

Keywords: AI; UAV; IoT; mobile edge computing; reinforcement learning 14

1. Introduction 15

The Internet of Things (IoT), which consists of various sensors and lots of terminal 16

devices connected by Internet, is dedicated to interconnecting everything and driving the 17

industry. IoT is now widely used in various applications, such as environmental monitoring, 18

industrial manufacturing, telemedicine, and etc., which promotes and improves people’s 19

lives. By 2050, there will be more than 170 billion devices connected to the Internet 20

worldwide [1]. These hundreds of millions of devices will generate huge amounts of data 21

that needs to be exchanged through wireless networks, putting enormous pressure on 22

existing networks. Furthermore, since sensors and some terminals are limited by processing 23

capability, a mass of data should be sent to the cloud or the edge servers for processing and 24

analysis, preventing IoT devices from gaining value from collected data instantly and thus 25

limiting IoT development. 26

With its flexibility, UAV can be deployed quickly, providing additional network re- 27

sources to congested areas and remote areas without a network. Unmanned aerial vehicles 28

(UAVs) can form self-organizing networks and act as flying base stations or relay nodes 29

to provide network services and can be easily integrated into wireless communication 30

networks [2]. In addition, by carrying a variety of sensing devices, UAVs can accomplish 31

various tasks such as video surveillance, data collection, and cargo transportation, and 32

they are immune to most disasters. According to the service demand, UAV can be de- 33

ployed quickly with their high mobility and flexibility and it has been widely used in IoT 34

scenarios such as smart agriculture, disasters, and smart cities [3,4]. Especially in some 35
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special situations, such as natural disasters like earthquakes and mudslides and operations 36

in dangerous areas, UAVs can be rapidly deployed to complete tasks that are risky for 37

people and provide communication and information support for rescue teams. It can be 38

said that UAVs provide support for the applications of IoT and directs a promising research 39

for future IoT. However, inefficient UAV system management, including communication 40

resource management, energy management, and flight control, and energy limitations 41

result in short UAV working hours and low mission performance, which seriously restricts 42

the application of UAV for IoT applications. 43

Different from traditional optimization algorithms, AI is able to cope with complex, 44

dynamic environments, is already widely used for system optimization and decision 45

making, and is an important approach to further enhance the application of UAV in IoT. 46

Artificial intelligence (AI) has been a hotly discussed topic since its emergence. With its 47

powerful data processing and analysis capabilities, AI brings intelligence to devices and 48

drives change in countless industries [5]. AI not only analyzes the ground information 49

collected by IoT devices to help production and life, but also optimizes the performance of 50

UAV communication networks, improves the safety of UAV flights, and brings autonomous 51

decision-making capabilities to UAV [6]. Figure 1 shows the mainstream AI algorithms 52

and their classification. AI can be divided into two categories: machine learning (ML) 53

and non-machine learning (non-ML). ML is the method of obtaining models through 54

data analysis and using them to predict unknown data, and it includes deep learning 55

(DL) based on neural networks (NN), clustering algorithms such as k-means, decision 56

trees, support vector machine, and linear regression and logistic regression algorithms for 57

prediction. Among them, DL algorithms include models of deep neural networks such 58

as deep neural network (DNN), convolutional neural network (CNN), recurrent neural 59

network (RNN), generative adversarial network (GAN), and reinforcement learning (RL) 60

and deep reinforcement learning (DRL) that can adapt to dynamic environments and make 61

real-time decisions, such as Q-learning, deep Q-learning (DQN), deep deterministic policy 62

gradient (DDPG), etc. Non-ML algorithms include early algorithms and expert systems 63

based on semiotics and inference systems as well as heuristic algorithms such as genetic 64

algorithms (GA), greedy algorithms, ant colony algorithms, etc. However, the application 65

of AI needs adequate computing resource, which is lacking in UAVs. 66
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Figure 1. AI algorithms and classification.

Developed from cloud computing, mobile edge computing (MEC) brings computing 67

and storage resources to the edge of the network, enabling IoT data to be processed at 68

the edge of the network. It not only effectively relieves the pressure on the core network 69
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but also meets the needs of computing-intensive and delay-sensitive IoT devices, bringing 70

computing power support for the development of IoT [7]. However, in remote areas 71

with incomplete network construction and post-disaster areas with damaged terrestrial 72

network facilities, IoT services still face the huge challenge of not having access to networks. 73

Combining MEC and UAV is one possible solution. MEC server can provide computing 74

power support for the execution of AI algorithms to improve the performance of UAVs 75

and the ability of UAVs to provide services. UAVs can bring MEC services to areas lacking 76

terrestrial networks with their flexibility. UAV-assisted and enabled MEC architectures 77

have been studied in [8], where the UAV-assisted MEC architecture offloads the data to 78

remote MEC servers for execution, while the UAV-enabled MEC architecture is equipped 79

with an MEC server, which means that the tasks will be executed on the UAV. These two 80

architectures solve the problem of the limited computing power of UAV. However, the 81

UAV-enabled MEC architecture also carries the energy consumption of the MEC server, 82

which becomes another energy burden for the UAV. 83

UAV-assisted and enabled MEC architecture brings a solution to the problem of IoT 84

service stagnation in areas lacking terrestrial networks as well as network congestion. By en- 85

abling AI, the UAV-assisted and enabled MEC architecture is able to process large amounts 86

of IoT data at the edge of the network, meeting the demands of latency-sensitive tasks 87

while also improving the quality of service, energy efficiency, communication performance, 88

and security of UAVs. The joint use of MEC, AI, and UAV for IoT has a promising future. 89

However, the application process of AI still needs to consider the energy consumption 90

limitations of UAVs, the optimization of dynamic network environments, and the design 91

of lightweight AI algorithms to accommodate arithmetic limitations and meet latency 92

requirements. 93

Table 1. Comparison of reviews on UAV, IoT and AI.

Year Reference IoT UAV UAV-assisted IoT issues AI
Trajectory
Planning

Resoruce
Allocation

Energy
Efficiency Security Computing

Offloading

2016 [9] ✓ ✓ ✓ ✓
2018 [10] ✓ ✓ ✓ ✓
2020 [11] ✓ ✓
2020 [12] ✓ ✓ ✓ ✓ ✓
2019 [13] ✓ ✓ ✓ ✓ ✓
2020 [14] ✓ ✓ ✓ ✓
2021 [6] ✓ ✓ ✓ ✓ ✓
2020 [15] ✓ ✓ ✓
2021 [8] ✓ ✓ ✓ ✓ ✓ ✓ ✓

There have been a lot of reviews on UAV, IoT, and AI, which are summarized in 94

Table 1. The literature [9] provides a comprehensive survey of UAV communication and 95

related issues and investigates the potential of UAVs to provide IoT services. In addition 96

to the application of UAVs in the 5G and IoT domains, the literature [10] also focuses 97

on security issues and promising solutions associated with the inclusion of UAVs in the 98

IoT system. Similar to literature [9], the literature [11] summarizes the main technologies 99

of UAVs and the applications and challenges of UAV-assisted IoT. However, the three 100

aforementioned literatures focus on the application scenarios and related challenges of 101

UAV in IoT and do not pay attention to the application of AI in UAV-assisted IoT. The 102

literature [12] investigates the challenges faced when using non-terrestrial networks to 103

provide services for IoT and analyzes the benefits of enabling AI techniques, but does 104

not provide a comprehensive overview of the application scenarios for UAV-assisted IoT. 105

The literature [13] details the application of ML techniques for physical layer, resource 106

management, and network management in UAV-based communication. The literature 107

[14] investigates the application of AI to UAV network localization, dynamic trajectory 108

design, and resource allocation. The literature[6] deeply analyzes the ML, RL, and FL 109
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for UAV network enhancement and the future research directions. However, the above 110

three literatures do not analyze the application of UAV and AI in IoT. The literature [15] 111

discusses in depth the application of AI in UAV communication and focuses on UAV 112

communication protocols, technologies, and architectures as well as UAV-assisted IoT 113

application scenarios, but it does not summarize the tasks in UAV-assisted IoT and the 114

corresponding AI solutions. The literature [8] provides insight into the application of 115

UAV-enabled MEC in IoT and the application of ML to meet various constraints related to 116

latency, task offloading, energy requirements, and security. However, the literature neglects 117

the role of AI in UAV. Compared with the above literature, we have conducted a full and 118

complete investigation into the application of AI in UAV and UAV-assisted IoT scenarios as 119

well as the problems and solutions. 120

The structure of this review is shown in Figure 2. Chapter 2 discusses the problems in 121

UAV communication networks and the application of AI in UAV and UAV communication 122

networks. Chapter 3 describes the application scenarios of UAV-assisted IoT and the 123

application of AI in UAV-assisted IoT. Chapter 4 summarizes the important problems 124

in UAV-assisted IoT and the corresponding AI-based solutions. Chapter 5 analyzes the 125

challenges and potential solutions when applying AI to UAV and UAV-assisted IoT. Finally, 126

Chapter 6 concludes the paper. 127
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Figure 2. Organization of this article.

2. AI-Enabled Key Technology for UAV 128

There are some essential technologies to achieve high performance in UAV-assisted 129

networks, such as communication technologies, networking and routing technologies, and 130

UAV collision avoidance technologies. Communication technologies is used to increase the 131

data transmission rate between two directly linked devices, such as UAV-to-UAV link and 132

UAV-to-infrastructure link. Networking and routing technologies is used to decrease the 133

delay caused by the multi-hop relay. Collision avoidance technology enables UAVs to fly 134

without colliding, thus reducing the failure caused by UAV damage. The basic functions of 135

AI are data analysis and data prediction. After continuous development, AI has been widely 136

used in target detection, image recognition, speech recognition, natural language processing, 137

intelligent control, and autonomous driving and has achieved great success in industrial, 138

medical, and robotics fields. Applying AI to UAV can improve UAV communication quality 139

through data analysis and prediction capability, perceive environment through graphics 140

processing capability, and make UAV intelligent and autonomous through intelligent 141

control capability. 142
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2.1. AI for UAV Communication Technologies 143

Flying in the air, UAVs offer a high degree of flexibility, ease of deployment, top-down 144

coverage and immunity to natural disasters. Taking advantage of these benefits, UAVs are 145

being used as a complement to ground networks to provide additional communication 146

resources and are considered to be an important component of 6G networks. 147

Table 2. Comparison of common communication technologies for UAV.

Communication
technology Max data rate Latency Max range Energy A2A A2G

Bluetooth 2Mbps 3ms 60m Low(10mW) Yes No
ZigBee(802.15.4) 250kbps 20ms 100m Low(1mW) Yes No

LoRaWAN 50kbps >1s 15Km Medium(100mW) Yes Yes

WiMAX 75Mbps 50ms 50Km
Medium(UE-
200mW,BS-

20W)
Yes No

WiFi 500Mbps 50ms 250m Medium(100mW) Yes Yes

4G 1Gbps 50ms 12Km Medium(UE-
10mW,BS-50W) No Yes

5G 10Gbps 1ms 200m
High(UE-

400mW,BS-
3000W)

No Yes

6G 1Tbps 1ms worldwide – No Yes

Based on size, flight altitude and flight distance, UAV can be classified as small, 148

medium and large. There are two important metrics for UAV communication, battery 149

capacity and communication distance. Generally speaking, large UAVs have a larger 150

battery capacity, which means the UAV can fly longer distances and perform more tasks. 151

Moreover, large UAVs are generally designed for specific scenarios, such as military UAVs 152

and Facebook Aquila UAV that provide communication services. In contrast, small UAVs 153

have smaller battery capacities and need to be considered for their energy-constrained 154

nature during use. In UAV communication networks, there are usually two types of 155

wireless communication links, air-to-ground link (A2G) and air-to-air link (A2A). The 156

A2G communication link refers to the communication link from the UAV to the ground 157

equipment, including the UAV to ground station links and the UAV to ground users links. 158

The A2A communication link refers to the communication links between UAVs. The 159

UAV communication channel model considers the large-scale fading caused by path loss 160

and the small-scale fading caused by multipath interference. Compared with the A2A 161

channel, the A2G channel will produce larger shadow fading and small-scale fading [16]. 162

Moreover, considering the high mobility of the UAV, attention needs to be paid to Doppler 163

spread as well as the effect of aircraft shadowing [17]. Equipped with communication 164

protocols, UAVs can communicate with ground users and other UAVs. At present, the 165

communication protocols commonly used in UAVs are Bluetooth, ZigBee, LoRaWAN, 166

WiMAX, WiFi, 4G, 5G and 6G, all of which have different performance in terms of data rate, 167

delay, energy consumption, transmission distance, etc. For example, Bluetooth, ZigBee 168

and LoRaWAN are all low-power wireless communication technologies, and among these, 169

Bluetooth can achieve the best data rate and latency, ZigBee can achieve the lowest energy 170

consumption, and LoRaWAN has the longest communication distance. WiFi is a widely 171

used wireless fidelity technology based on the IEEE 802.11 standard, which includes two 172

different modes of operation: the infrastructure mode and the ad-hoc mode [18]. Thus, 173

Wi-Fi can be used for both A2A communication and A2G communication. The typical 174

Wi-Fi has a maximum coverage of 100 meters, adding with the directional enhanced 175

antenna and the automatic tracking communication platform, the coverage range can 176

extend to 500 meters [19]. As the most widely used mobile technology, 4G offers high 177

speed and low latency with a guaranteed long range of service. However, as the signal 178

frequency increases, 5G loses the ability to propagate signals over long distances while 179
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gaining improved performance in terms of data rate, bandwidth, and latency, and further 180

increases the energy consumption of devices. 6G aims to provide a globally ubiquitous 181

network service, which is not only an iteration of communication technologies, but also a 182

heterogeneous convergence of multiple networks and intelligent control of all networks. 183

Specific information about these communication technologies can be found in Table 2. 184

Considering the engineering requirements for data rate, delay, and energy consumption, 185

as well as the energy-constrained characteristics of UAVs, the appropriate A2A and A2G 186

communication technologies should be selected by combining the engineering requirements 187

and the characteristics of each communication technology. 188

In practical applications, there are often multiple signals in the air, with varying 189

degrees of interference between them. Besides, in some energy-constrained scenarios, 190

such as sensor networks in remote areas, the energy consumption of the system is further 191

limited. There has been a lot of research on AI to improve network performance. AI can 192

solve the signal interference problem well and also reduce network energy consumption, 193

guarantee network security, and improve network performance. The application of AI 194

in wireless communication technology is shown in Figure 3. In the following, we will 195

introduce in detail the application cases of AI in communication technologies to promote 196

UAV communication. 197

Eliminate 
Interference

Save Energy

Channel 
State 

Estimation

Physical 
Layer 

Optimization

Resource 
Allocation

Traffic 
Prediction

Security

Figure 3. Application of AI in wireless communication technology.

Bluetooth and ZigBee are low-power, low-cost, short-range wireless communication 198

technology based on IEEE 802.15.1 and IEEE 802.15.4, respectively. They can provide low 199

to medium data rate service for A2A and A2G links for ranges between 10 to 100 meters 200

[20]. The shared frequency bands between Bluetooth, Zigbee, WiFi, and other signals 201

cause unavoidable interference. To avoid interference, a supervised learning-based channel 202

quality evaluation algorithm is proposed in the literature [21] to predict channel quality, 203

where gated recursive units are used to extract interference information on each channel and 204

identify the top 20 channels for data transmission based on the past received signal strength 205

metrics of the channel. And a novel loss function combining classification loss and ranking 206

loss was proposed to improve neural network performance. Experimental results show 207

that the proposed network is lightweight and resource-friendly, and the proposed method 208

outperforms channel selection schemes such as Mask 19. The length of the connection 209

interval (CI) and the number of packets transmitted per CI affect the energy efficiency and 210

QoS of Bluetooth. A larger CI corresponds to a longer network lifetime, but may negatively 211

affect the QoS specified as packet delay. A higher number of packets transmitted per CI 212

corresponds to a higher QoS, but it consumes more energy, reducing network lifetime. To 213

extend the network lifetime with guaranteed QoS, a Q-learning based Bluetooth scheduling 214

algorithm is proposed in literature [22] to dynamically adjust the length of Bluetooth CI 215
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and the number of packets transmitted per CI. The reward function is designed so that 216

the scheduling algorithm learns to satisfy both energy efficiency and quality of service 217

requirements. Numerical results show that the method greatly outperforms random and 218

fixed action schemes in terms of network lifetime while also ensuring QoS and stability. 219

For ZigBee, it is also important to achieve similar interference cancellation as Bluetooth to 220

ensure that ZigBee is protected from interference attacks. In order to decode ZigBee signals 221

in the presence of interference, the literature [23] proposes to use a neural network as a linear 222

spatial filter to suppress interference and to accelerate the training of the neural network 223

using the inherent relationship of its weights, which can guarantee ZigBee communication 224

even when the interference signal is 20 dB stronger than the ZigBee signal. 225

LoRaWAN is another low-power, low-data-rate, but long-range communication tech- 226

nology that can reach several kilometers [24]. It can be used for both A2A and A2G 227

communications. As a low-power wide-area network (LPWAN), low power consumption 228

and high connectivity are essential for LoRaWAN. The choice of transmission parameters 229

is decisive for network energy consumption. In order to reduce energy consumption and 230

improve the performance of LoRa networks, transmission power values need to be auto- 231

matically adjusted according to network requirements and link conditions. The literature 232

[25] proposes a strong transmission parameter selection algorithm based on EXP3 to select 233

the optimal propagation factor and transmission power to reduce the energy consumption 234

of the network. A large number of devices access can cause packet conflicts and degrade the 235

network communication performance. The literature [26] proposes a LoRaWAN channel 236

selection method based on lightweight decentralized reinforcement learning to choose the 237

appropriate channel based on acknowledgement information, thereby effectively avoiding 238

conflicts between LoRa devices with low computational complexity. Similar to [26], to 239

avoid conflicts among LoRa devices, the literature [27] proposes and evaluates a LoRaWAN 240

physical layer transmission parameter assignment algorithm based on double deep Q- 241

learning, which selects the spreading factor and power and can ensure less conflicts and 242

better performance. 243

The optimal parameters for WiFi link configuration depend on the perceived channel 244

quality based on signal strength, channel noise, and external interference. In order to 245

maximize the link layer performance, literature [28] uses a deep neural network-based 246

Gaussian process regression to predict the link layer throughput and a model predictive 247

control-based approach to find the link configuration parameters that optimize the overall 248

link layer performance. Compared with high-throughput adaptation mechanisms, DNN- 249

based methods can significantly improve link-layer performance. DNNs are also used to 250

control the contention window of the WiFi 6 system in [29], where DNNs are trained by 251

data generated from the Wi-Fi 6 simulation system, using loss functions to improve the 252

accuracy of the model in predicting the system throughput, latency, and retransmission 253

rate, and searching for the optimal configuration of CW under different network condi- 254

tions based on the prediction results. This DNN-based WiFi control strategy achieves 255

significant improvements in system throughput, average transmission delay, and packet 256

retransmission rate. In order to improve the efficiency of downlink MU-MIMO-OFDMA 257

transmission in 802.11ax networks, a deep learning-based channel detection (DLCS) and 258

deep learning-based resource allocation (DLRA) approach is proposed in the literature [30]. 259

DLCS utilizes the compression capability of DNN to compress the frequency domain CSI 260

during the feedback process. Then, based on the limited CSI, the AP infers CSI over all 261

tones using well-trained DNNs, reducing the channel sounding overhead of the 802.11 262

protocol, and the AP uses the uplink channel to train the DNN for the downlink channel, 263

making the training process easy to implement. DLRA uses DNNs to solve the mixed- 264

integer power allocation problem to improve system throughput and enable APs to obtain 265

near-optimal solutions in polynomial time. The coexistence of LTE and WiFi can severely 266

degrade WiFi performance. To protect WiFi communication, the literature [31] proposes 267

a CNN-based distributed spectrum management framework, in which CNNs are used 268

to identify the signatures of each technology and report the spectrum occupation of each 269
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channel, and then avoid them by changing the Wi-Fi operating center frequency based on 270

the detected harmful wireless networks to improve Wi-Fi performance.Âă Utilizing the 271

ability to cope with large-scale data, DL is shown to improve the performance of intrusion 272

detection systems (IDS) [32]. The literature [33] proposes a fully unsupervised intrusion 273

detection method based on K-means that can detect attacks without a priori information 274

about the data labels, where stacked auto-encoder is used to capture complex information 275

in lower-dimensional features than the original features, thereby enhancing the clustering 276

effect of the K-means algorithm. The clustering results of K-means have only two classes 277

that represent benign and malicious data. The method is able to classify simulated attacks 278

in WiFi networks with a detection rate of 92%. 279

Relying on cellular networks, LTE (Long Term Evolution) can provide secure, reliable, 280

and wide coverage A2G communications [34]. With LTE-A (Long Term Evolution Ad- 281

vanced), the average throughput of both uplink and downlink is further increased [35]. Not 282

only the coexistence of LTE and WiFi but also the coexistence of the Narrowband Internet 283

of Things (NB-IoT) and LTE can interfere with LTE systems. An iterative sparse learning 284

algorithm called sparse cross-entropy minimization (SCEM) is proposed in [36] to elimi- 285

nate the narrowband interference, and experimental results demonstrate that the SCEM 286

algorithm outperforms sparse Bayesian learning based methods. Due to the dependence 287

on the cellular network, the impact of handover on network quality must be considered. To 288

improve the quality of experience (QoE) of the users, a supervised learning approach-based 289

on NNs is used for optimal handover cell prediction [37]. Obtaining the current data rate 290

is important for network management and resource allocation. However, considering the 291

energy wastage associated with long-term observation of wireless links, an ANN-based 292

algorithm is proposed in [38] to predict the data rate of LTE links to avoid congestion and 293

save energy. 294

WiMAX is a cost-effective broadband wireless access technology based on the IEEE 295

802.16 standard, which covers longer distances than Wi-Fi [39]. WiMAX can provide A2G 296

communications, capable of handling high-quality voice and video streams and providing 297

a high user experience [40]. The research on AI in WiMAX is mainly focused on two aspects: 298

channel prediction and bandwidth allocation. Accurate prediction of wireless channel 299

quality is important to improve network performance. The literature [41] proposes an 300

encoder-decoder based sequence-to-sequence DL model that predicts the future channel 301

quality based on the past channel quality. Experimental results demonstrate that the 302

RL-based model outperforms the auto-regression model and the linear regression model 303

in terms of prediction accuracy. Fair bandwidth allocation for different types of traffic 304

with limited bandwidth is important to ensure the quality of service for applications in 305

WiMAX networks. In [42], a reinforcement learning-based algorithm is proposed to learn 306

the traffic demand in the network and make an efficient bandwidth allocation to meet the 307

QoS requirements of the application. 308

5G is committed to providing ubiquitous connectivity and can meet the higher demand 309

for services in terms of data rate, bandwidth, latency, and other metrics [43]. With its highly 310

flexible and easy-to-deploy nature and robust line-of-sight connectivity links, UAV can be 311

used as a complement to ground networks to extend coverage or as relays to collaborate 312

with ground network communications and are expected to be a key part of 5G to achieve 313

ubiquitous connectivity [44]. With 5G rather than other communication technologies, 314

UAVs can serve a wider range of applications. However, the complexity of the network 315

architecture and the diversity of service requirements make it difficult to optimize the 5G 316

network with traditional approaches. With powerful computing power and the ability 317

to interact with the environment, AI is expected to be an important method to improve 318

5G performance [45]. AI has been widely used in the physical layer optimization of 5G 319

networks to improve network performance. Non-orthogonal multiple access (NOMA), 320

massive multiple input multiple output (MIMO), and millimeter wave (mmWave) are 321

key technologies to improve 5G performance, and the feasibility of using DL to enhance 322

these technologies has been discussed in [46,47]. And good performance can be obtained 323
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in scenarios such as channel estimation, coding and decoding, and massive MIMO. In 324

[48], ANNs are used for channel state information (CSI) estimation, which improves 325

network throughput and saves uplink energy by making accurate CSI predictions. The 326

literature [49] also employs the integration of CNN and long short-term memory (LSTM) 327

networks to predict CSI with high accuracy using historical data. Specifically, the raw 328

data are first preprocessed and converted into CSI information images. Then, the CSI 329

information images are fed into the CNN network to extract frequency representative 330

vectors. Finally, the state representative vectors are fed into the LSTM network, and the 331

predicted state vectors are output. Applying AI to radio resource allocation techniques 332

is another important research direction for using AI to optimize the physical layer of 333

5G networks. To meet the diverse service requirements, the literature [50] uses NNs to 334

jointly optimize the power and bandwidth resource allocation and thus minimize the total 335

power consumption of the base station, where a cascading structure of NNs is proposed to 336

solve the problem that fully connected NNs cannot fully guarantee the QoS requirements. 337

The first NN is used for optimal bandwidth allocation, and the second NN outputs the 338

transmit power required to meet the QoS requirements for a given bandwidth allocation. 339

Simulation results demonstrate that cascaded NNs outperform fully connected NNs in 340

terms of QoS guarantees. In the literature [51], a Q-learning-based power and resource 341

allocation algorithm is proposed to improve the latency and reliability of URLLC users and 342

the throughput of eMBB users when considering heterogeneous traffic with different QoS 343

requirements. The algorithm achieves a significant improvement in throughput for eMBB 344

users and a slight decrease in latency for URLLC users. To cope with congestion in ultra- 345

dense networks (UDNs), the literature [52] uses deep LSTM learning techniques to locally 346

predict the traffic load of UDN base stations and executes appropriate action policies based 347

on the prediction results a priori to mitigate congestion in an intelligent manner. Simulation 348

results show that the scheme outperforms the conventional approach in terms of packet 349

loss rate and throughput. Also in response to the increase in traffic load, the literature 350

[53] proposes request prediction methods based on DNN and LSTM, respectively, where 351

DNNs and LSTMs trained on mobile network traffic datasets are used to predict the rate of 352

additional user requests, thereby reducing the delay in deploying virtual network functions. 353

Simulation results confirm that both DNN and RNN-based solutions are more effective 354

than threshold-based solutions in terms of latency when responding to traffic variations. 355

The rapid growth of IoT devices has put enormous pressure on cybersecurity. To counter 356

these network attacks, the literature [54] uses CNNs to detect anomalous network traffic 357

to create a more proactive, end-to-end defense for 5G networks, where network traffic is 358

converted into images that can be analyzed by CNNs for CNN training as well as anomaly 359

detection. In using CNNs to collect and analyze normal and anomalous network traffic 360

from a simulated environment, the method identifies benign traffic with 100% accuracy 361

and anomalous traffic with 96.4% detection rate. 362

2.2. AI for UAV Swarm Networking and Routing 363

UAV swarm consists of multiple UAVs, which expands the network coverage and 364

improves the stability of the network compared to a single UAV system. Current wireless 365

network architectures for UAV swarms can be divided into infrastructure-based networks 366

(IBN) and ad-hoc-based FANET networks [55]. These two UAV communication network 367

architectures are shown in Figure 4. Infrastructure-based UAV network architecture relies 368

on ground infrastructure to provide relay services between UAVs and UAVs cannot com- 369

municate directly with each other [15]. In FANET, UAVs can communicate with each other 370

directly or indirectly, without the help of ground infrastructure. For FANET, the topology 371

of the UAV swarm has a significant impact on communication efficiency. Common topolo- 372

gies are star, mesh, and multi-layer networks. In a star network, all UAVs communicate 373

with ground nodes or other UAVs through a specific UAV, which may lead to network 374

congestion. Mesh networks, in which nodes are interconnected, have higher flexibility and 375

reliability compared to star networks. However, due to the presence of multiple routes, 376
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an efficient routing protocol is needed to select the best path as well as adapt to changes 377

in the network structure [56]. In addition, considering the variable topology of UAV net- 378

works due to the mobility of UAVs, the signal interference among UAVs, and the network 379

management problems caused by the energy limitation and resource differences of UAVs, 380

real-time dynamic and efficient routing protocols and network management solutions are 381

needed to ensure the quality of service of UAV networks instead of traditional static routing 382

protocols and network management solutions. The conventional routing protocols include 383

static routing protocols, proactive routing protocols, reactive routing protocols, hybrid 384

routing protocols, location-based routing protocols, hierarchical routing protocols, and 385

probabilistic routing protocols [57]. Most of these routing protocols are not appropriate 386

for UAV networks with high mobility because they are designed primarily for low-speed 387

self-organizing networks with slow topology changes. AI algorithms, especially ML al- 388

gorithms, are able to make optimal decisions by learning about the environment, such as 389

network topology, channel state, and other information. Applying AI algorithms to routing 390

protocols can address the dynamic nature of the network. The AI-enabled routing protocols 391

are topology prediction-based routing protocols and adaptive learning-based routing pro- 392

tocols. Topology prediction-based routing protocols forecast the link and network topology 393

states using ML techniques to produce better routing policies and increase the stability and 394

throughput of the network. In addition to continuously learning the environment, adaptive 395

learning-based routing protocols also learn to maximize key network performance parame- 396

ters, including network congestion, throughput, energy consumption, network longevity, 397

and fairness, to generate a routing policy that is suitable for our purposes. Q-learning algo- 398

rithms are frequently used in adaptive learning-based routing protocols. Examples include 399

QoS-aware Q-routing, which can outperform ad-hoc routing algorithms while meeting QoS 400

requirements, and Q-learning-based multi-objective optimized routing protocols, which 401

can achieve higher packet arrival rates than the Q-learning-based routing algorithm while 402

using less energy and delaying communications [58,59]. 403

Infrastructure-based UAV 

network architecture

UAV ad-hoc network 

architecture

Figure 4. UAV communication network architectures.

In addition to dynamic network topology, during the application of UAV swarms, 404

attention should also be paid to the allocation of network resources with the goal of 405

improving the efficiency of network services and dynamically planning the spectrum 406

resources of UAVs according to the needs of the scenario. For example, in order to maximize 407

the spectrum resources available to the UAV swarm and prevent interference, the literature 408

[60] focuses on the resource allocation problem of UAV swarm networks by identifying 409

the ideal frequency band for each UAV. However, it ignores the energy management issue 410
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of UAVs and does not dynamically arrange the spectrum resources according to demand, 411

resulting in a short operation cycle for the UAV swarm network. Therefore, the UAV swarm 412

network should dynamically allocate spectrum resources according to the application 413

requirements to maximize the energy efficiency of UAVs and prolong the network lifetime. 414

In addition, due to the highly dynamic and complex UAV swarm service scenarios, using 415

traditional algorithms to solve UAV swarm network problems takes a lot of time and 416

cannot achieve real-time processing and decision-making. The use of artificial intelligence 417

algorithms, especially machine learning algorithms, to solve network problems is a current 418

research hotspot. AI algorithms are able to adapt to the dynamics and complexity of 419

the UAV swarm environment and make real-time decisions. Literature [61] suggests a 420

digital twin-based intelligent collaboration framework for UAV swarms to better learn 421

the optimal decisions from the network environment by fusing digital twin techniques 422

with reinforcement learning techniques. Digital twin and ML have become very popular 423

topics in recent years. The effectiveness of the suggested approach is demonstrated in 424

the intelligent network reconfiguration of UAV swarms in time-varying environments. 425

Experiments demonstrate that the algorithm can select the optimal network model in 426

different scenarios. In order to provide broadband wireless communication, millimeter 427

waves are introduced to UAV swarms, but this also creates issues with millimeter beam 428

misalignment due to UAV movement and interference among UAV swarms. In order to 429

manage spectrum resources and UAV energy consumption with improved flexibility and 430

efficiency, a new resource management architecture was developed in [62] as a solution to 431

this challenge. And the effectiveness of the proposed spectrum management architecture is 432

validated in five potential scenarios. 433

2.3. AI for UAV Collision Avoidance 434

Collision avoidance technology is an important issue that needs to be considered dur- 435

ing the flight of UAV. UAVs should avoid collisions not only with other UAVs but also with 436

various obstacles such as buildings, birds, trees, etc. In general, UAV collision avoidance 437

techniques include three steps: obstacle sensing, collision prediction, and collision avoid- 438

ance [63]. The process of a UAV gathering information about obstacles is called obstacle 439

sensing. Through cooperative obstacle sensing techniques, information about the UAV’s 440

condition as well as information about the surrounding obstacles can be shared between 441

UAVs. However, existing methods can only be used between UAVs that use the same 442

protocol and cannot acquire information about obstacles in the surrounding environment. 443

In order to obtain information about obstacles in the surrounding environment, the usual 444

approach is to use sensors to sense the environment and to obtain the location of obstacles 445

through imaging and positioning techniques. 446

For a UAV swarm, position information can be shared, and internal collisions can be 447

avoided by planning the flight path of each UAV within the swarm.Âă For instance, the 448

literature [64] proposes a DRL-based formation flight control for navigation for effective 449

UAV swarm construction. The collision rate of successful formation UAVs is reduced 450

to 3.4% without colliding with other UAVs. However, for the UAVs outside the UAV 451

swarm, since the flight trajectory of other UAVs cannot be known, the flight trajectory 452

must be adjusted according to the real-time dynamic environment to avoid collision. After 453

obtaining information about the UAV trajectory and the surrounding obstacles, it is possible 454

to predict whether a collision will occur by using a collision prediction method. The collision 455

avoidance algorithm then performs a collision avoidance operation, typically by devising a 456

brand-new collision-free path. Numerous other academic works also simultaneously study 457

collision avoidance and prediction. In [63], collision prediction algorithms are classified 458

into two main categories: trajectory fitting methods and ML methods. The trajectory 459

fitting function often cannot achieve accurate prediction because the environment is too 460

complex during the movement of UAVs. Fortunately, ML algorithms can make more 461

accurate trajectory predictions by extracting features. However, the use of ML algorithms 462

generates high energy consumption, which is not very friendly to energy-constrained 463
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UAVs. Among the ML algorithms, CNNs are good at extracting features, while RNNs and 464

reinforcement learning can acquire knowledge from past experience, and these features 465

enable them to make more accurate trajectory prediction. In [65], LSTM was used to predict 466

the motion of obstacles, and an uncertainty-aware multi-agent dynamic collision avoidance 467

algorithm based on nonlinear probabilistic velocity obstacles was proposed that can avoid 468

obstacles that the optimal reciprocal collision avoidance algorithm cannot avoid. Object 469

detection(OD) and deep reinforcement learning (DRL) are used to solve the problem of 470

collision-free autonomous UAV navigation supported by simple sensors in [66], where OD 471

is used to provide accurate environmental observations for DQN and DQN is used to make 472

optimal flying decisions. Compared to the algorithm using DRL alone, OD+DQN not only 473

enables collision-free UAV flight but also reduces the flight distance. The literature [67] 474

proposes a two-stage reinforcement learning strategy to solve the UAV collision avoidance 475

problem under imperfect perception, where the first stage uses a supervised training 476

method with a loss function to optimize the collision avoidance strategy and the second 477

stage uses a policy gradient to refine the collision avoidance strategy. This two-stage 478

reinforcement learning has increased performance in terms of success rate and trajectory 479

length compared to conventional reinforcement learning. In [68], UAVs are used to collect 480

data from ground devices, and Q-learning is used to help UAVs avoid collisions without 481

knowing the trajectories of other UAVs. This scheme allows the UAV to avoid collisions 482

and can reduce the path length of the UAV when collecting data. Energy consumption is 483

another important factor to consider for UAVs, and reinforcement learning algorithms will 484

consume a lot of energy during their execution. 485

3. UAV-Assisted IoT Application Scenarios 486

As illustrated in Figure 5, there are a lot of application scenarios for UAV-assisted 487

IoT. For example, UAVs can monitor crop growth, spray pesticides, and also automate 488

farms for smart agriculture. In disasters and emergencies, UAVs can provide emergency 489

communication services, deliver supplies, and monitor the environment. UAVs can also 490

empower smart cities by supporting video surveillance, smart transportation systems, 491

and healthcare. In the modern battlefield, UAVs are of tactical importance. In addition to 492

providing communication services as well as reconnaissance of the battlefield, there are 493

many specific military UAVs used to perform military missions. With the support of AI, 494

UAVs can complete various IoT tasks more efficiently. 495

3.1. Agriculture 496

Food is the most essential element of people’s lives. According to a survey by [69], 497

total global food demand is expected to increase by 35% to 56% by 2050 compared to 498

2010. In order to cope with the increasing food demand, the development of agricultural 499

technology is needed to drive the increase in food production. In addition, the Internet of 500

Things will enable real-time monitoring and management of arable land, bringing a new 501

paradigm to the development of agriculture [70]. Using sensors to obtain environmental 502

information such as images and temperatures, and then analyzing the data and making 503

immediate decisions through big data or AI methods, applying IoT to agriculture can 504

increase productivity and yields and reduce costs, providing support for smart and preci- 505

sion farming. However, the high construction cost of terrestrial networks and the limited 506

network services due to fixed terrestrial network equipment severely limit the application 507

and development of IoT in agriculture. Compared with expensive terrestrial and satellite 508

networks, drones are more economical and flexible to deploy, perform data collection, and 509

provide high-quality network services on demand. UAVs are typically used in agriculture 510

for crop monitoring, drug spraying, etc. Specifically, they perform data collection, network 511

provisioning, and special agricultural tasks. In performing data collection, the UAV first 512

collects information from ground sensors or through sensors equipped with the UAV. The 513

data is then transferred to a computing center or processed on the UAV and analyzed by 514

algorithms to arrive at decisions. AI algorithms can be applied to the flight control, data 515
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Figure 5. UAV-assisted IoT application scenarios.

processing, and decision-making processes of UAVs, which can speed up data processing 516

and make immediate decisions. Deep learning techniques, especially CNNs, have powerful 517

image processing capabilities. Combining DL with UAVs can be used in smart agriculture 518

for vegetation identification, classification, and segmentation, crop counting and yield 519

prediction, crop mapping, weed detection, and the detection of crop diseases and nutrient 520

deficiencies [71]. In addition, UAVs can also be used to spray pesticides to further reduce 521

labor costs and realize agricultural automation. AI can also be used to plan UAV operation 522

strategies to improve UAV work efficiency. In order to allow UAVs to efficiently and cost- 523

effectively collect farm data for further analysis and decision-making, the literature [72] 524

uses Q-learning to plan UAV trajectories in intelligent farm remote sensing, a scheme that 525

collects data with the lowest energy consumption as well as the least time delay. However, 526

a more practical model needs to be considered in future work. 527

3.2. Disaster and Emergency 528

Disasters such as earthquakes usually result in damage to infrastructure such as houses 529

and roads. The absence of available communication facilities can cause great inconvenience 530

to rescue operations. Unlike ground-based networks, UAVs are immune to most natu- 531

ral disasters and can be flexibly deployed to provide communication services to disaster 532

areas. In addition, UAVs can carry cameras and sensors to obtain site conditions and 533

sense environmental information, which can help people analyze disaster situations as 534

well as perform rescue missions. However, limited by energy, UAVs need to ensure energy 535

efficiency and thus extend their service time when providing communication services 536

and performing special tasks. Moreover, UAVs work in a dynamic environment, which 537

is difficult for traditional algorithms to cope with. Using AI to cope with the problem 538

of optimizing resource allocation for UAVs not only adapts well to the dynamic environ- 539

ment but also brings autonomy to UAVs and enhances the automation of UAVs. In order 540

to improve the efficiency of UAVs in performing tasks as well as energy efficiency, the 541
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literature [73] considers a scenario where a multi-mission UAV provides tasks such as ma- 542

terial transportation and communication services in a post-disaster area and uses a greedy 543

algorithm and an algorithm based on an insertion algorithm to plan the mission. Both 544

heuristic algorithms can achieve savings in the time required to plan the UAV compared to 545

the optimal algorithm while ensuring good performance, thus enabling a fast response to 546

unexpected situations. In addition, UAVs can be used for airdrops of supplies in disaster 547

areas and forest fire fighting. It is worth noting that ground communication facilities may 548

be damaged due to disasters, and communication services are crucial for post-disaster 549

reconstruction efforts. UAVs can be used as flying base stations to provide communication 550

services in disaster areas. For example, in [74], an emergency communication system 551

using a UAV as a flyingÂăbase station to assist ultra-dense networks is proposed, and a 552

DQN-based resource allocation scheme is proposed to maximize system energy efficiency 553

while ensuring user communication quality to cope with system emergencies when com- 554

munication resources are insufficient. To extend network coverage, multiple UAVs often 555

form swarms of UAVs to provide communication services to disaster areas. However, 556

ground users such as escapees and rescuers are usually constantly moving, which requires 557

the UAV swarm network to be able to adapt the network structure to the ground personnel 558

activities in order to provide as many services as possible. The literature [75] proposes a 559

mobility model for simulating the movement of victims in disaster situations and combines 560

Jaccard distance and simulated annealing algorithms to deploy UAV swarm networks, 561

which avoid network disconnections while increasing the number of users served. 562

3.3. Smart City 563

Although there is no precise definition of “smart city," we can consider it an urban 564

optimization solution that uses advanced information and communication technologies, 565

IoT technologies, big data, and AI to empower cities, thereby facilitating city management 566

and providing convenience to citizens [76]. Typical smart city application scenarios include 567

smart transportation systems, smart city monitoring, smart healthcare, smart grid, smart 568

education, etc [77]. The implementation of smart cities is important for energy savings and 569

emission reduction, environmental protection, and sustainable urban development. There 570

are many uses for UAVs in smart cities, which can be used to collect sensor information, 571

transport goods, and monitor the city. The following are three scenarios that will introduce 572

the use of UAVs in smart cities: urban surveillance, intelligent transportation systems, and 573

healthcare. 574

3.3.1. Surveillance 575

With the increasing population of cities, more resources need to be invested to enhance 576

urban security and thus protect people’s living standards. In addition to placing security 577

personnel on guard, major cities have deployed advanced video surveillance systems 578

to monitor the occurrence of abnormal situations in the area [78]. However, security 579

personnel cannot do real-time monitoring, and the labor cost is relatively high. Video 580

surveillance systems can do real-time monitoring, but it is difficult to effectively identify 581

various hazardous situations with a fixed monitoring perspective. UAVs are highly flexible 582

and can track and monitor targets in a comprehensive manner. Moreover, UAVs can be 583

deployed quickly and can effectively respond to unexpected situations as well as make up 584

for the blind spots of the video surveillance system. The combination of UAVs and video 585

surveillance systems can further improve urban security. 586

To be able to accurately identify and track anomalies, video surveillance systems as 587

well as UAVs must have image recognition technology, which is usually implemented by 588

AI algorithms. For example, CNN and OpenCV are widely used models in the field of 589

image recognition. In addition, AI is able to pre-process image data to reduce redundant 590

data for transmission, enable planning of UAV paths, and improve surveillance efficiency 591

and energy efficiency. However, computationally intensive tasks like data processing can 592

place a huge energy and computational burden on UAVs. The combination of the UAV 593
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and the MEC server provides a solution to this dilemma. Data processing tasks can be 594

performed either by UAV transmission to a remote server or on a UAV equipped with MEC 595

server. The literature [79] investigates the question of whether image processing should 596

be performed locally or offloaded to the MEC server when using a cluster of UAVs for 597

crowd monitoring and facial recognition. Experimental results show that offloading the 598

image processing tasks to the MEC server can reduce energy consumption and processing 599

time by more than 100 times. Most surveillance systems employ a single data source for 600

target localization, and the utilization of multi-UAV sensor networks is uncommon but has 601

enormous potential. The literature [80] presents a novel multi-UAV surveillance system 602

for multi-target identification and tracking, including a video image-based moving target 603

identification method, a collaborative UAV task assignment algorithm based on group 604

intelligence optimization, and a localization model based on machine learning and data 605

fusion methods. Machine learning is first used to extract the topology of the data based on 606

the multi-source data collected by UAVs and sensors to establish a mapping between the 607

data and the environment. The target’s location is then estimated using mapping based 608

on the target’s relevant data. Finally, pigeon-inspired optimization is used to coordinate 609

multiple UAVs, taking energy constraints into account to determine which UAV is assigned 610

to perform the localization and tracking tasks. The system is empirically validated to have 611

high localization and tracking accuracy. UAVs are utilized for crime prediction in [81]. 612

These UAVs are classified into three classes, which are utilized for sensing information, 613

computational analysis, and deterrence. First, sensing UAVs acquire data from sensors, 614

such as pictures and sounds, and send it to computing UAVs. Then, trained ML models 615

are used by computational UAVs to anticipate potential crimes. Finally, depending on the 616

forecast findings, deterrent UAVs will travel to the respective locations for observation. 617

The experiment shows that when the deterrent separation is 1280 meters, 20 UAVs can 618

discourage virtually all offenses. To provide a reliable surveillance system using a swarm of 619

UAVs, a collaborative model-free multi-agent deep reinforcement learning-based algorithm 620

has been proposed in the literature [82], which finds the optimal trajectory within the 621

surveillance area in order to optimize the energy consumption and the number of users 622

that can be monitored. 623

3.3.2. Intelligent Transportation Systems 624

Intelligent transportation systems (ITSs) are an important part of smart cities. With 625

the development of information and communication technology, autonomous driving 626

technology, and connected vehicle technology, ITSs are also progressing and moving 627

toward the automation of transportation systems [83]. However, current traffic systems still 628

require human resources, such as traffic police, to be on the scene to provide support in case 629

of road congestion or accidents, which often requires a long response time. UAVs are able to 630

be quickly and adaptably deployed to provide services for some ITS automation scenarios, 631

such as using UAVs to collect road data for ITS decision-making and scheduling, providing 632

quick response to emergencies like traffic accidents and providing on-site information, 633

and acting as flying base stations to provide communication services for in-vehicle self- 634

organizing networks [84]. 635

To improve the timeliness of UAV-assisted road information collection for telematics, 636

the literature [85] introduces the concept of AoI to keep the information fresh and uses the 637

DDPG algorithm to plan the UAV trajectory, thus ensuring the freshness of the information 638

with minimal throughput constraints. Routing protocols are essential for high-speed 639

data transmission. To ensure secure and efficient routing for UAV-assisted vehicular ad- 640

hoc networks, the literature [86] uses an ant colony optimization algorithm to improve 641

the routing algorithm of FANET to supplement disconnected FANET links with UAVs, 642

reducing the end-to-end delay and routing overhead. However, the protocol is vulnerable 643

to attacks by malicious UAVs and still requires appropriate security protocols to ensure 644

route security. To improve the energy efficiency when UAVs are used as flying base stations, 645

literature [87] uses heuristic algorithms to determine the location and altitude of UAVs to 646
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avoid overlapping coverage of multiple UAVs and equalization of coverage and transmit 647

power of a single UAV. However, the network switching problem due to vehicle movement 648

is not taken into account. UAVs as flying base stations can provide video, music, and other 649

content services to vehicles on roadways without communication infrastructure. However, 650

considering the limited storage capacity and battery capacity of the UAV, it is necessary to 651

plan the UAV’s trajectory and cache the contents rationally so as to serve as many vehicles 652

as possible with low energy consumption. In [88], the PPO-Clip algorithm is used to control 653

the UAV’s trajectory to maximize the energy efficiency of the UAV, i.e., to maintain as many 654

downlinks as possible with the lowest energy consumption. In this case, the UAV can both 655

acquire content from and provide content to the vehicle. However, the scenario assumed in 656

this paper only considers the one-way driving process of a section of road and does not 657

consider the continuity of UAV services, and the scenario assumptions still need further 658

improvement. 659

3.3.3. Healthcare 660

In healthcare, UAVs can perform tasks such as human health information collection 661

and medical supply delivery. The authors in [89] propose the use of UAVs to monitor the 662

body area network (BAN) and also consider a specific scenario where a link is established 663

with the driver through a vehicle network to monitor the condition of the human body 664

and prevent accidents. In today’s COVID-19 pandemic, UAVs are also used to collect 665

samples and deliver medical supplies, which not only saves human resources but also 666

effectively avoids the risk of being infected [90]. However, UAVs are often involved in the 667

sharing of medical data when providing healthcare services, in which case it is easy for 668

data leakage to occur. Fortunately, blockchain technology brings a solution to the problem 669

of security and privacy of data [91,92]. Blockchain uses cryptographic techniques such as 670

hash functions and public key encryption to protect shared data and can be used to ensure 671

the authenticity of stored information as well as improve the security and transparency of 672

UAVs, helping to overcome many of the problems UAS face such as coordination, security, 673

collision avoidance, privacy, decision-making, and signal interference [93]. 674

3.4. Military 675

UAVs play a significant role in contemporary warfare and are a vital part of military 676

technology. UAVs can, for instance, create temporary data networks, use sensors to survey 677

the battlefield, locate targets using advanced AI algorithms, and even serve as weapons 678

to carry out military missions [94,95]. Battlefield environments are extremely dangerous 679

and highly dynamic, and UAVs need to constantly adjust their trajectories to the situation 680

to ensure their safety. To achieve fast path planning, a genetic algorithm implemented 681

in parallel on a graphics processing unit was proposed in [96]. The UAV trajectory is 682

represented by points in 3D space, and the GA algorithm generates the trajectory by moving 683

these points. This method minimizes fuel consumption while significantly reducing the 684

path planning time. Another thing to think about in military warfare is how to protect 685

UAVs. During missions, UAVs constantly send encrypted location information to ground- 686

based stations, which can pose a serious threat to UAVs if leaked. Literature [97] uses 687

UAVs to collect encrypted messages sent by enemy UAVs within line of sight and their 688

fuzzy location information, and uses NNs to learn the correspondence between plaintexts 689

and ciphertexts to crack the plaintexts. When the number of opposing UAVs is higher, the 690

amount of data that can be collected is larger, which allows for training a more accurate 691

NN model. Therefore, military UAVs should avoid being deployed in large numbers in 692

small areas. 693

4. Tasks and Methods in AI-Enabled UAV-Assisted IoT 694

The IoT application scenarios and specific application instances were thoroughly 695

explained in the previous chapter. In these scenarios, data collection and network service 696

provision can be summed up as the main roles of UAVs. Next, we will explain and 697
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outline the issues that UAVs will face while executing these tasks, the metrics that must be 698

addressed, and the related AI solutions, taking into consideration relevant literature. 699

4.1. Data Collection 700

An important application scenario for UAVs is to collect information from the sensor 701

network and send this information back to the data center for processing. One of the 702

most important things in this process is to plan the UAV path rationally. This is because 703

the data has different requirements for time delay and the UAV has limited energy. In 704

the process of collecting data, the flight path of the UAV needs to be planned reasonably 705

according to the age of information, data collection efficiency, energy consumption, and 706

other requirements. Compared with traditional optimization algorithms, AI algorithms 707

such as group intelligence-based algorithms and reinforcement learning algorithms can 708

effectively cope with the dynamic environment and obtain near-optimal solutions in real 709

time to dynamically plan UAV paths. In the following article, we will summarize the 710

literature on UAV data collection in terms of three metrics: data collection timeliness, data 711

collection efficiency, and energy consumption. Table 3 summarizes the optimization targets, 712

performance metrics, and AI solutions for UAVs performing data collection. 713

Table 3. Optimization targets, performance metrics, and AI solutions during UAV in performing data
collection.

Optimization Target Performance Metrics AI Methods Reference

Path planning AoI DQN [98]
Path planning AoI and energy DQN [99]

Path planning and
hover position AoI and energy TD3 [100]

Path planning AoI, energy and
packet loss rate DQN [101]

Path planning Delay and energy GA [102]
Path planning AoI Q-learning [103]

Path planning and
collision avoidance AoI Sarsa [104]

Path planning Collection time TD3 [105]

Path planning Collection time and
energy SADOL and MADOL [106]

Path planning Data collected Dueling DQN [107]

Path planning Data acquisition
performance DNN and DQN [108]

Path planning Data collocation
efficiency and energy ACO [109]

Path planning and
transmit power

allocation
Energy Sarsa [110]

Path planning and
hover position Energy AEM [111]

Path planning Energy Ptr-A* [112]
Path planning Energy ACO [113]
Path planning Energy K-means and GA [114]

Path planning and
collision avoidance

Data collocation
efficiency D3QN [115]

AoI is a metric that characterizes the freshness of information and can also be used to 714

indicate the timeliness of information transmission. In order to reduce the AoI weighted 715

sum of sensor information collected by the UAV, a DQN-based UAV-assisted data collection 716

algorithm is proposed in the literature [98] to control the flight direction of the UAV and 717

the connected sensors. Also, energy and start-termination point constraints are considered 718

in that literature. A more complex scenario is considered in literature [99], where the UAV 719

has to charge the ground nodes before data collection. The scheduling of information and 720
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energy transfers is jointly considered in the trajectory optimization process to minimize 721

the average AoI of the system, and a DQN scheme with two ANN networks is proposed 722

to solve the problem. In order to minimize the weighted sum of the average AoI, the 723

propulsion energy of the UAV, and the transmission energy of the IoT device, literature 724

[100] proposes a twin-delayed deep deterministic policy gradient-based UAV trajectory 725

planning algorithm to jointly optimize the UAV’s flight, hover position, and data collection 726

bandwidth allocation. Also, the TD3-AUTP algorithm outperforms the DQN and AC 727

algorithms in terms of achievable AoI and energy efficiency. AoI, packet loss rate, and 728

UAV energy consumption are jointly considered in literature [101], and the DQN algorithm 729

is used to find the optimal trajectory. Experimental results demonstrate that this scheme 730

can effectively reduce AoI and packet loss rates compared to the greedy algorithm. The 731

information collected by UAVs during surveillance and remote sensing is often very time- 732

sensitive. Therefore, to ensure that the collected data can be transmitted in a timely manner, 733

a GA-based approach was used in the literature [102] to find the UAV flight path that 734

satisfies the timeliness, energy, storage, and communication constraints. In order to ensure 735

the timeliness of data and avoid data packet expiration or loss, literature [103] considers 736

the AoI and deadline of the data and uses Q-learning to plan the trajectory of the UAV to 737

reduce the expired data packets. Compared to GA, Q-learning performs better in terms of 738

time consumption. Literature [104] also considers the collision avoidance problem during 739

UAV data collection, using a Sarsa-based learning algorithm to minimize the sensor’s 740

average AoI under the constraints of UAV energy and collision avoidance. The proposed 741

sarsa-based learning algorithm can approximate the optimal policy when certain conditions 742

are met. 743

The data collection efficiency of the UAV is determined by the amount of data collected 744

and the data collection time. The greater the amount of data collected per unit time, the 745

higher the data collection efficiency. In order to improve the efficiency of UAV data 746

collection, literature [105] proposes a deep reinforcement learning algorithm based on 747

TD3 to design the trajectory of the UAV under throughput and motion constraints to 748

minimize the data collection time. Similarly, to reduce the data collection time, the literature 749

[106] proposes the single-intelligent-depth option learning (SADOL) algorithm and the 750

multi-intelligent-depth option learning (MADOL) algorithm to plan data collection paths 751

for energy-constrained UAVs for deterministic and indeterministic boundary scenarios, 752

respectively. Considering the limitations of UAV on-board power and flight time, UAV 753

needs to maximize data collection from wireless network devices under the shortest flight 754

path, thus improving data collection efficiency. In the literature [107], a DQN-based 755

algorithm is proposed for finding the optimal trajectory and data collection in a specific 756

coverage area and balancing between data collection, trajectory, and convergence time. 757

Dueling DQL is also used to improve the system’s performance and convergence speed. 758

The success rate of data collection is also an important indicator in the process of data 759

collection. To solve the UAV data acquisition problem under dynamic scenarios such as 760

moving nodes, node additions, and deletions, a two-stage deep reinforcement learning 761

framework is proposed in the literature [108] to plan UAV trajectories online, where the 762

first layer uses DNN to model the dynamically changing environment and the second 763

layer uses DQN to plan trajectories online. Experimental results show that this two-stage 764

deep reinforcement learning framework can improve the data acquisition success rate. In 765

addition, literature [115] considers the collision avoidance problem in a data collection 766

scenario with multiple UAVs in a non-cooperative scenario and proposes a dueling double- 767

depth Q-network (D3QN)-based algorithm to learn the decision strategies of typical UAVs 768

without prior knowledge of the environment, which avoids collisions while maximizing 769

the amount of collected data. 770

The transmission of large amounts of redundant data, too low data collection efficiency, 771

and the unreasonable allocation of UAV transmitting power can cause energy consumption. 772

In order to reduce the energy consumption caused by redundant data transmission, a 773

matrix completion-based sampling points selection joint Intelligent Unmanned Aerial 774
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Vehicle Trajectory Optimization (SPS-IUTO) scheme was proposed in the literature [109]. 775

The scheme selects sampling points using a matrix-based approach and optimizes the 776

trajectory using an optimized ant colony optimization algorithm. To minimize the total 777

energy consumption of all devices during UAV data collection, literature [110] uses the 778

SARSA algorithm to obtain the UAV trajectory, thus solving the joint problems of UAV 779

trajectory, device association, and transmit power allocation while ensuring that each 780

device should meet a given data rate constraint. For collecting data from massive machine- 781

like communication mMTCs, it is necessary to find the best hovering position and flight 782

strategy for the UAV within the cluster to minimize the UAV’s energy consumption. In 783

[111], a novel modeling technique based on the idea of artificial energy map (AEM) is 784

proposed for finding the UAV’s hovering position. Firstly, greedy learning clustering (GLC) 785

is used to optimize machine-type communication device clustering and UAV hovering 786

strategies to minimize transmission and hovering energy. Genetic algorithms are then used 787

to find the flight strategy with the lowest energy consumption. Article [112] uses UAVs 788

to access cluster heads in a certain order to solve the data collection problem of clustered 789

wireless sensor networks and proposes a pointer network-A* (Ptr-A*) based algorithm for 790

planning UAV paths, thus reducing the energy consumption of UAVs in the process of 791

data collection. Agricultural monitoring also requires the collection of data from a large 792

number of sensors. Just like [111], the literature [113] first clusters the sensors, where a 793

hierarchical data collection scheme is proposed to improve the node clustering efficiency. 794

The UAV’s path is then planned by an ant colony optimization algorithm. The experimental 795

results show that this scheme can collect data efficiently at a low energy cost. Similarly, 796

the literature [114] uses K-means to cluster sensors and then uses GA to plan the UAV 797

trajectory, thus reducing energy consumption. 798

UAV-assist MEC architecture UAV-enabled MEC architecture

Base Station with 

MEC server

UAV
UAV with MEC 

server

End devices

End devices

Long distance

Figure 6. UAV-assisted and enabled MEC architectures.

4.2. Network Service Provision 799

Thanks to the rapid development of cloud computing and mobile edge computing 800

technologies, UAVs can carry MEC servers or establish connections to MEC servers to 801

provide low-latency and highly reliable computing and processing services to resource- 802

limited devices. UAV-assisted and enabled MEC architecture has been widely discussed 803

and has attracted a lot of research in academia, and the architecture can be seen in Figure 804

6 [8]. However, considering the limited energy of UAVs, computational offloading, data 805

offloading, trajectory optimization, and resource allocation need to be addressed during 806
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service provision to improve energy efficiency and service quality. Since both computation 807

offloading and task offloading consume the computational resources of servers, and since 808

there is not much difference between them, they are collectively referred to as “computing 809

offloading” in this paper. AI, especially RL, which is widely used to improve network 810

performance thanks to its ability to make real-time decisions based on the environment, 811

provides a solution to the problems under the dynamic UAV-assisted and enabled MEC 812

architecture to further improve network performance and user service quality of experience. 813

Table 4 summarizes the optimization objectives, performance metrics, and AI methods for 814

UAVs in providing network services. 815

Table 4. Optimization targets, performance metrics, and AI solutions during UAV in providing
network services.

Optimization Target Performance Metrics AI Methods Reference

Computing
offloading and

resource allocation
Delay and energy MARL [116]

Resource allocation Delay and QoS MADDPG [117]
Computing
offloading Delay DDPG [118]

Computing
offloading and

resource allocation
Delay iTOA [119]

Computing
offloading and path

planning
Delay DQN [120]

Computing
offloading and

resource allocation
Energy and delay AC [121]

Computing
offloading and

resource allocation
Energy and delay SAC [122]

Computing
offloading, resource

allocation and power
control

Energy MARL [123]

Computing
offloading and path

planning

Energy, throughput
and QoS DDQN [124]

Computing
offloading and path

planning
Energy AC [125]

Computing
offloading and path

planning

Delay and
convergence DDPG and DQN [126]

Computing
offloading and

resource allocation
Delay and energy TD3 [127]

Improving the quality of UAV network service is an important issue for UAV to con- 816

sider when providing network services. The main metrics for evaluating UAV network 817

services are QoS and service delay. The typical practice is to expand the service range of the 818

UAV network, improve the QoS of users, and reduce the service latency of users through 819

UAV trajectory planning, resource allocation, and computation offloading. However, it is 820

still necessary to pay attention to the fairness and throughput of the UAV communication 821

system in the process of optimizing network services to avoid skewing and wasting re- 822

sources. In [116], UAVs are equipped with some computing resources to act as edge servers 823

and collaborate with the ground base station to process the tasks of the ground devices. 824

And a multi-intelligent reinforcement learning algorithm is proposed for solving the joint 825
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optimization problem of computational allocation and resource allocation, thus reducing 826

the task response time under the energy constraint of UAVs. The MEC-and UAV-assisted 827

vehicular networks were considered in [117], where UAVs and base stations equipped 828

with MEC servers provide services to ground vehicles. And a MADDPG-based scheme for 829

managing multidimensional resources is proposed to cope with highly dynamic vehicle 830

scenarios with latency-sensitive and computationally intensive applications. This scheme 831

can meet the latency and QoS requirements of vehicles. The literature [118] uses the DDPG 832

algorithm to provide computational offloading decisions for single UAV-assisted multi-user 833

scenarios. Experimental results demonstrate that the DDPG algorithm is easier to converge 834

on and can achieve lower latency compared to the DQN algorithm. In [119], tasks can 835

be executed locally in the UAV or sent via the UAV to the MEC server for execution. An 836

intelligent task offloading algorithm (iTOA) based on the AlpahGo core algorithm, MCTS, 837

and UAV edge computing network is proposed to solve the computational offloading and 838

computational and communication resource allocation problems. The iTOA algorithm 839

improves the latency performance of the system compared to greedy search and game 840

theory-based task offloading methods. When UAVs are used as flying base stations, they 841

can provide flexible service coverage through trajectory planning. A three-tiered edge 842

computing system is used in [120], where sensors in the first tier generate data, UAVs in the 843

second tier carry MEC servers for initial processing of the data, and the operations center 844

in the third tier does the final processing of the data. The combined scheme reduces the 845

data latency by planning the UAV path through DQN and then scheduling the network 846

through Lyapunov optimization. 847

Energy efficiency is another issue that UAV needs to be concerned about in providing 848

network services. The energy efficiency of UAVs in providing network services includes the 849

energy efficiency of the UAVs and the energy efficiency of users. The energy efficiency of 850

UAVs is positively correlated with their effective service time. We can improve the energy 851

efficiency of UAVs by reducing energy consumption, improving service efficiency, and 852

extending the service time of UAVs through trajectory planning, computational offloading, 853

and power control. For users, launch power is the main source of energy consumption, and 854

UAVs can reduce users’ launch power by optimizing trajectories. In [121], a SAG-IoT net- 855

work architecture is considered in which UAVs carry MEC servers, satellites are connected 856

to cloud servers through a backbone network, and tasks generated by IoT devices can be 857

executed locally or offloaded to UAVs and satellites. An actor-critic based reinforcement 858

learning algorithm is proposed to solve the computational offloading problem of SAG-IoT. 859

The UAV and MEC server resource allocation and task scheduling problem is formulated 860

as a mixed integer programming problem, and a heuristic algorithm is proposed to solve it. 861

Compared with random and greedy algorithms, this scheme can achieve both low latency 862

and low energy consumption. The UAV-assisted MEC architecture needs to consider the 863

communication link from the UAV to the MEC server and requires additional considera- 864

tion for the allocation of communication resources. In [122], the UAV is used to help the 865

user complete computational tasks as well as to establish stable wireless communication 866

between the user and the MEC server. That is, the UAV and the MEC server collaborate 867

to process the tasks provided by the user. A soft-actor-critic (SAC) algorithm is proposed 868

for determining dynamically superior computational offloading and resource allocation 869

policies in terms of latency, energy consumption, and task discards. The literature [123] con- 870

siders the economic issues in UAV-assisted MEC systems and proposes a multi-intelligent 871

reinforcement learning algorithm to jointly power control and resource allocation and 872

make offloading decisions for users. The system energy consumption is reduced while 873

the system performance is guaranteed, thus improving the UAV revenue. The literature 874

[124] considers a scenario where a single UAV serves mobile ground users and is equipped 875

with an MEC server. A DDQN-based algorithm is proposed to optimize the UAV trajectory 876

to maximize system throughput with guaranteed UAV energy and user QoS constraints. 877

And the performance of DDQN is better than DQN. Similar to [124], the literature [125] 878

considers the use of a single UAV equipped with a MEC server to serve ground users and 879
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uses an actor-critic-based algorithm for controlling trajectories. The difference is that the 880

goal of the literature [125] is to minimize the energy consumption of all users. 881

In addition, the issues of algorithm convergence and learning efficiency in large 882

scenarios are also to be considered. A single UAV has limited service capability to meet the 883

needs of users in large-scale scenarios. But enabling multiple UAVs leads to an exponential 884

growth of the system state space and actions, also called dimensional disaster. A hierarchical 885

trajectory optimization and offload optimization (HT3O) algorithm was designed in the 886

literature [126] to reduce the complexity of the problem and improve the learning efficiency 887

through alternate optimization, where the DDPG algorithm and DQN algorithm were used 888

for trajectory and offload optimization separately. The scheme is capable of fast convergence 889

and is effective in reducing the average task latency compared to ordinary reinforcement 890

learning algorithms. In [127], multiple UAVs are used to assist in the computation as well as 891

to offload the tasks further to the edge cloud. To solve the dimensionality problem, a multi- 892

intelligent TD3 algorithm is used to jointly optimize the UAV trajectory, computational 893

offloading, and communication resource allocation in dynamic MEC environments, thus 894

reducing latency and energy consumption. 895

5. Open Issue 896

AI not only enhances UAV network performance but also brings intelligence to UAVs 897

and has decision-making capabilities, which can give UAVs the autonomy to respond 898

flexibly to real-time changes in the environment. While there is a large body of literature 899

on the use of AI to enhance UAV services, there are still some issues to consider when 900

applying AI to UAVs and UAV-assisted IoT. 901

5.1. AI Training and Convergence Problems 902

The application of AI algorithms, especially RL algorithms in communication net- 903

works, has been heavily researched but requires a large amount of data for training to 904

achieve good results. Unfortunately, training data is often difficult to obtain. Moreover, 905

these collected data may also suffer from redundancy, label errors, and class imbalance, 906

which severely affect the AI training results [13]. Data augmentation can generate new data 907

based on existing data, can avoid the problem of overfitting, and is an important way to 908

solve the problems of lack of training data and algorithm convergence. Federated Learning 909

(FL) executes ML algorithms in a decentralized manner and updates model parameters 910

through the interaction of local and global models. The distributed joint training method 911

of FL can solve the problem of imbalanced training data. For example, a UAV with less 912

training data can update the local model through the training results of other UAVs to 913

ensure the effectiveness of training. 914

In addition, AI algorithms do not easily converge in the presence of large environments 915

and action spaces. Alternating iterative learning methods can be used to reduce the 916

problem complexity and thus solve the convergence problem of AI algorithms in large- 917

scale scenarios [126]. However, related research still needs to be improved to flexibly 918

respond to various situations. The emerging graph neural networks (GNN) in recent years 919

have had good results in dealing with large-scale scenarios. GNNs use graph structures 920

that greatly improve data analysis and reduce the number of network parameters and 921

thus computational complexity by using a message passing mechanism similar to that 922

of distributed optimization algorithms [128]. In literature [129], a GNN-based method is 923

proposed to solve the joint optimization problem of UAV location and relay path selection 924

under large-scale networks, which is able to achieve the same performance in small-scale 925

network scenarios with twice the time complexity of violent search. Moreover, the method 926

is scalable to adapt to dynamic environments and still converges quickly to the best 927

performance in large-scale scenarios. In the future, GNN will be an important way to solve 928

the convergence problem of AI algorithms in large-scale scenarios. 929
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5.2. Resource and Energy Constrained Issues for UAV 930

Since UAVs have limited energy and will consume energy during flight, the issue of 931

energy conservation becomes more important when applying AI and MEC servers, which 932

are energy-intensive algorithms and devices, to UAVs. In addition to using algorithms to 933

perform other energy-saving operations, such as trajectory planning for UAVs, to improve 934

the energy efficiency of UAVs. For example, in the literature [110], energy consumption was 935

reduced by optimizing the UAV trajectory and transmit power to improve the UAV data 936

collection efficiency. In [121], resource allocation and task scheduling were jointly optimized 937

to reduce energy consumption. We can also investigate lightweight AI algorithms, such 938

as GNN or distributed learning algorithms that run on resource-constrained devices to 939

provide solutions for resource-constrained networks [12]. The literature [130] also proposes 940

a dynamic NN that uses a knowledge base to select the network width, i.e., dynamically 941

adjusts the model complexity according to the service demand, thus achieving a reasonable 942

match between demand, resources, and performance. Some AI algorithms can also use 943

DyNN to dynamically adjust the network width according to task demand, thus achieving 944

energy savings. In addition, hardware performance improvements and software and 945

hardware adaptations are important ways to allow AI algorithms to run on UAVs with 946

limited resources and energy. 947

5.3. Security and Privacy Issues for AI and UAV 948

UAVs may be attacked by malicious devices during flight, such as hijacking and 949

sabotage of UAVs; jamming UAV communications by faking identities; and eavesdropping 950

on UAV communications. This not only affects the security of UAV communication but also 951

may interfere with UAV flight, leading to UAV collisions. In addition to the communication 952

security issues regarding UAVs that have been discussed in Chapter 2, data security and 953

privacy issues are also important when training AI models. When training AI models, data 954

needs to be collected from various nodes, and it is very easy for data leakage to occur in 955

this process. FL builds global models by exchanging model parameters, which reduces the 956

transmission of network data traffic and protects users’ data privacy and security. FL has 957

been used for UAV trajectory control, and network security, and is a good method to protect 958

the safety of AI training [131,132]. However, due to the existence of model data transfer 959

during training, FL is still subject to attacks, e.g., by injecting anomalous data and thus 960

affecting the training process of the model. Moreover, for FL, this attack also penetrates 961

the entire network through the training process. The integration of blockchain technology 962

with FL is a solution to improving the security of FL. In [133], the authors introduce a 963

blockchain-based FL architecture for UAVs that ensures privacy protection in FL. However, 964

the convergence problem of FL is not guaranteed, and the data differences of different 965

nodes and model update speed differences will have an impact on the convergence speed 966

of FL. Related issues still need further research in the future [6]. 967

6. Conclusion 968

UAV brings communication services to anywhere there is a need with very low cost 969

and very fast response, leading to UAV-assisted IoT, a new development direction of IoT, 970

and providing communication technology support for the development of IoT. Together 971

with the support of MEC’s powerful computing and storage capabilities and AI’s powerful 972

processing and analysis capabilities, UAV becomes more intelligent, autonomous, and able 973

to provide more services, injecting new energy into the development of UAV-assisted IoT. 974

This paper introduces UAV communication technology, IoT technology, and AI technology 975

in detail, analyzes the potential application and development direction of using AI to 976

empower UAV-assisted IoT, and comprehensively reviews UAV communication technology, 977

networking technology, collision avoidance technology, and application scenarios of UAV- 978

assisted IoT, and summarizes the existing problems and corresponding AI solutions. Finally, 979

we summarize the problems and analyze possible solutions when applying AI to UAV and 980

UAV-assisted IoT. 981
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