

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Psychometric Properties of the Persian Version Fear of Hospitalization Scale in Patients Undergoing Emergency Surgery

Hamid Sharif Nia¹, Slobodan Janković², Nasrin Hanifi^{3,*}

1 Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran, email: h.sharifnia@mazums.ac.ir; Tel: 989111275093; ORCID: 0000-0002-5570-3710

2 Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; email: sjankovic@medf.kg.ac.rs; ORCID: 0000-0002-1519-8828

3 Zanjan Nursing and Midwifery school, Zanjan University of Medical Sciences (ZUMS), Iran. email: nasrinhanifi@zums.ac.ir; Tel: 989123422431; ORCID: 0000-0003-2480-214X

* Correspondence: Dr. Nasrin Hanifi, nasrinhanifi@zums.ac.ir

Abstract: Purpose : This study was designed to characterize the psychometric properties of the Persian version of the Fear of Hospitalization Scale (P-FHS). **Design and methods:** In order to evaluate the validity and reliability of the translated scale, a cross-sectional design was employed. Ten experts evaluated the content validity of the Fear of Hospitalization Scale (FHS) after it had been back-translated into Persian. With 612 patients having emergency surgery, construct validity was assessed using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). The STROBE checklist for cross-sectional studies was followed. **Findings :** The results of EFA (n = 306) showed that the fear of hospitalization had three factors. These three factors accounted for 45.28% of the total variance. Also, these factors were confirmed by CFA (n = 306) (root-mean-square error of approximation = (90%. confidence interval) = 0.050 [0.041, 0.058], goodness-of-fit index = 0.945, comparative fit index = 0.968, Non-Normal Fit Index = 0.948, incremental fit index = 0.968, Tucker-Lewis Index = 0.959). The coefficients of Cronbach's alpha, McDonald's omega, composite reliability, and maximum reliability for all three factors were greater than 0.7, demonstrating satisfied internal consistency. **Practice implication:** According to the published results, the P-FHS is effective at measuring hospitalization anxiety in patients undergoing emergency surgery. It is advised that nurses in Iranian culture use a legitimate and trustworthy technique to pinpoint the causes of hospitalization anxiety in patients undergoing emergency surgery to give optimal care.

Keywords: Fear; Hospitalization; Psychometric properties; Emergencies; Surgery

1. INTRODUCTION

Isolation and fear are brought on by hospitalization in stressful inpatient settings. (Naderifar. M., Goli. H., Hosseinzadeh. M., & Ghaljaei. F., 2017). While at the hospital, the patient has anxiety and worry due to poor communication with staff, waiting for surgery, fear of dying, fear of the unknown, and some unmet needs (Naderifar. M. et al., 2017; Strøm et al., 2018; Villa et al., 2020). Other factors contributing to fear of hospitalization include the effects of the disease, being away from family, and a lack of confidence in medical professionals (Jankovic et al., 2018; Strøm et al., 2018). Evidence has also revealed that awareness of self-care behaviors, nurse behavior, level of health literacy, depth of knowledge, kind of illness, education, occupation, sex, and age are all linked to fear of hospitalization (Besharat. MA., Ramesh. S., & Nogh. H.. 2018; Silva & Araújo, 2022). Since fear of hospitalization is one of the emotional responses to hospitalization that can be linked to poor patient outcomes, prevention, early diagnosis, and treatment are encouraged (Vincent et al., 2018). It is possible to control fear and provide better nursing care by

identifying the patient's sources of worry and fear (Chatterjee et al., 2021; Khodarahmi & Galehdar, 2021; Zare Marzouni, Karimi, Narimi, Ghasemi, & Janaki, 2016).

When hospitalization and surgery are combined, patients' concerns and anxieties increase (Chen, Soens, & Kovacheva, 2022; Ng, Wang, Shen, Toh, & He, 2021) Surgery is stressful and may have an adverse effect on a person's physical and mental health (Vaughn, Wichowski, & Bosworth, 2007; Yang et al., 2022). Emergency surgery candidates frequently display tension and anxiety. Hospital anxiety among surgical patients is exacerbated by fear of anesthesia and concern over surgical mishaps (Chen et al., 2022). Fear impairs patients' capacity to adapt, intensifies postoperative discomfort, lengthens hospital stays, and reduces quality of life (Abedini, Pourfathi, Sakha, Towfighi, & Parish, 2018; Eloísa Fernández Fernández et al.; E. Fernández Fernández et al., 2022).

The first step in treating patients' unfounded anxiety and dread is to find out what they are scared of. A valid and trustworthy scale is required to determine patients' worries (Foster & Park, 2012) Questionnaires such as State-Trait Anxiety Inventory (STAI), (Martéau & Bekker, 1992); Hospital Fears Rating Scale (HFRS), (Melamed & Siegel, 1975; Venham & Gaulin-Kremer, 1979); Visual Analog Scale (VAS), (Sherman, Eisen, Burwinkle, & Varni, 2006); Beck Anxiety Inventory (BAI), (Fydrich, Dowdall, & Chambliss, 1992); Hamilton Anxiety Rating Scale (HAM-A), (Thompson, 2015); Zung Self-Rating Anxiety Scale (SAS), (Zung, 1971); Depression Anxiety Stress Scales (DASS), (Lovibond & Lovibond, 1995) were developed to assess the psychological issues associated with hospitalization. The Surgical Fear Questionnaire (SFQ) has been developed to evaluate the level of fear of surgical interventions. The SFQ consists of eight items ranging from zero (not afraid at all) to ten (very afraid). This instrument has two dimensions: fear of immediate surgical results and fear of long-term surgical complications (Theunissen et al., 2014). SFQ psychometric indicators have been approved in different countries (Bağdigen & Karaman Özlü, 2018; Theunissen et al., 2018; Wittmann, Csabai, Drótós, & Lázár, 2018). Other sources of fear are not examined by this technique. There are several reasons for the fear of hospitals. Almost all sources of anxiety were examined by Jankovic et al., who created Fear of Hospitalization Scale (FHS) (Jankovic et al., 2018). This 17-item scale, which is based on a 5-point Likert scale, measures the fear of hospitalization. It is not just focused on the surgical position but also includes situations like the fear of privacy invasion and the worry of the patient losing control of the situation (Jankovic et al., 2018). The psychometric properties of this instrument have not been investigated in other populations or cultures.

Emergency hospitalization is associated with fear and anxiety, but invasive and surgical interventions increase this anxiety and fear (Chen et al., 2022; Ng et al., 2021) . As a result, patients undergoing emergency surgery were chosen for this study. Assessing the fear of hospitalization, especially in emergency surgery, requires a reliable and valid scale. According to the literature review, there is no scale in Iranian culture that measures all aspects of the fear of hospitalization in an emergency situation. Therefore, this study was designed with the aim of determining the psychometric properties of the Persian version fear of hospitalization scale (P-FHS) in patients undergoing emergency surgery.

2. METHODS

2.1. Study design

In order to ascertain the psychometric characteristics of the P-FHS among Iranian patients undergoing emergency surgery, this methodological study used a cross-sectional approach. This study's reporting adheres to the guidance in Strengthening the Reporting of Observational Studies in Epidemiology. (von Elm et al., 2014)

2.2. Participants

The inclusion criteria of the participants in this study were: being a candidate for emergency surgery, being over 18 years old, having full consciousness, and willingness to

participate in the study. Patients who required psychiatric counseling due to extreme anxiety were not included in the study. Patients were selected by a convenient sampling method. From May 29 to October 4, 2020, a scale was administered at the Ayatollah Mousavi Hospital, which is connected to the Zanjan University of Medical Sciences. In total, 612 participated in this study. Patients filled out the questionnaire once their clinical situation had stabilized.

2.3. Measures

The scale had two sections. Participants' demographics, including gender, age, marital status, education level, work status, triage level, diagnosis, and preoperative pain intensity, were questioned in the first portion of the study. In the second section, the 17-item fear of hospitalization scale was used to measure the fear of patients undergoing emergency surgery. Participants were asked to respond to each statement using a five-point range Likert scale from 1 (strongly agree) to 4 (strongly disagree). Items 2, 9, 10, and 11 were scored in reverse.

2.4. Procedure

Initially, written permission for the use of the P-FHS was obtained from the developer of the scale, Professor Dr. Slobodan Janković, through email communication. Subsequently, we followed the forward-backward translation technique and invited two English-Persian translators to translate the FHS to Persian. Independent translations from English into Persian were done by the two translators. In order to create a single P-FHS, a panel of experts—including some of the authors of this article—reviewed and commented on these two Persian translations of the FHS. Last but not least, a Persian-English translator back translated the single P-FHS into English, and the translation's accuracy was verified by a committee of experts (Beaton, Bombardier, Guillemin, & Ferraz, 2002).

2.5. Construct validity and reliability

This study conducted both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to confirm the factorial structure as well as the construct validity and reliability of the P-FHS. We randomly split the dataset ($n = 612$) into two groups for data analysis. The first dataset ($n = 306$) was used to conduct EFA using SPSS version 28, and the second dataset ($n = 306$) was used to conduct CFA using AMOS version 27. This study employed maximum likelihood EFA with Promax rotation, the Kaiser–Meyer–Olkin (KMO) > 0.8 and Bartlett's test of sphericity was significant ($p < 0.05$) were used to assess the relevance and appropriateness of the data for conducting the factor analysis.

The factorial structure of P-FHS was following the parallel analysis and commonalities > 0.2 . Moreover, the factor loading for each item in the extracted factors should be greater than 0.3 (Çokluk & Koçak, 2016). Next, we conducted maximum likelihood CFA to validate the factorial structure extracted from EFA. The model fit was assessed through several fit indices, such as the Chi-square (χ^2) test, Chi-square (χ^2) /degree of freedom (df) ratio < 4 , goodness-of-fit index (GFI) > 0.9 , comparative fit index (CFI) > 0.9 , normed fit index (NFI) > 0.9 , relative fit index (RFI) > 0.9 , incremental fit index (IFI) > 0.9 , and Tucker–Lewis's index (TLI) > 0.9 , standardized root means square residual (SRMR) < 0.09 , and root mean square error of approximation (RMSEA) < 0.08 . The P-FHS was evaluated for its convergent validity and discriminant validity (Fornell & Larcker, 1981). For convergent validity, composite reliability (CR) should be higher than 0.7, and Average Variance Extracted (AVE) should be greater than .5 (Ahadzadeh, Sharif, Ong, & Khong, 2015). This study also assessed the construct reliability over its internal consistency (comprising Cronbach's alpha and McDonald's omega), (Javali, Gudaganavar, & Raj, 2011) composite reliability (CR), and maximum reliability (MaxR). To achieve acceptable construct reliability, Cronbach's alpha, McDonald's omega, CR, and MaxR should be greater than 0.7 (Sharif Nia et al., 2014).

2.6. Multivariate Normality and Outliers

Both univariate and multivariate normality of the data were evaluated in this study. The univariate distributions were tested for outliers, skewness, and kurtosis. The normality of the multivariate was assessed using Mardia's coefficient of multivariate kurtosis, and the Mardia's coefficient. Mardia's coefficient > 7.98 can be considered indicative of a departure from multivariate normality. The multivariate outliers were detected using Mahalanobis distance ($p < 0.001$).

2.7. Ethical considerations

The Helsinki Declaration on the Use of Human Subjects and the Charter of Patient Rights served as the study's ethical guidelines. The National Committee for Ethics in Biomedical Research of Iran gave its clearance to this study (approval code: IR.ZUMS.REC.1400.464). All patients gave their written consent. When the patient's clinical condition had stabilized, questionnaires were finished.

3. RESULTS

3.1. Participants' profiles

In total, 612 Iranian patients undergoing emergency surgery participated in this study, including 256 females and 356 males, with a mean age of 39.63 years ($SD = 13.67$) (Table 1).

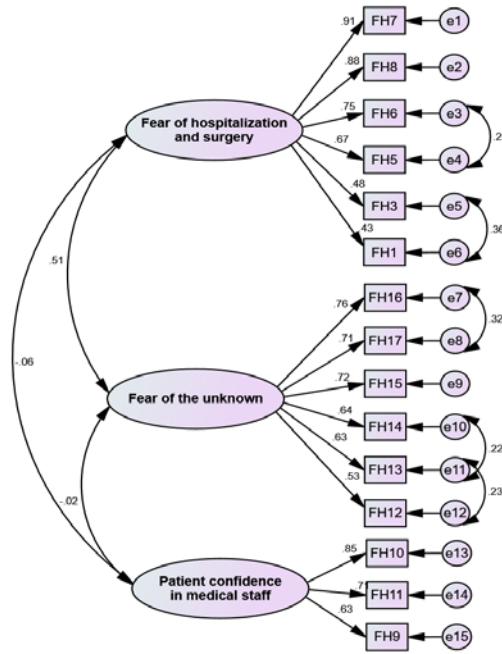
Table 1. Personal characteristics of the study participants (N= 612).

Variable	N	(%)
Gender		
Female	256	41.8
Male	356	58.2
Marital status		
Single	168	27.5
Married	444	72.5
Educational level		
Illiterate	147	24
Middle school	244	39.9
High school	114	18.6
University graduate	107	17.5
Employment status		
Unemployed	62	10.1
Retired	53	8.7
Employed	301	49.2
Homewife	143	23.4
Student	53	8.7
Triage level		
Level 2	282	46.1
Level 3	330	53.9
Diagnosis		
Head trauma	76	24.8
General surgery	121	39.5
Orthopedic surgery	74	24.2
Other	12	4.2
Variable	Mean	SD
Age	39.63	13.67

Preoperative pain	6.65	1.92
--------------------------	------	------

3.2. Validity and reliability

Table 2 shows the results of the EFA with Promax rotation ($n = 306$) on the Persian version of the fear of hospitalization. The results showed that the KMO was 0.855, and the Bartlett's Test of Sphericity was significant ($p < 0.001$, 3922.255 , $df = 105$), indicating the relevance and appropriateness of the data for conducting the factor analysis. Three factors were extracted, consisting of 15 items and explaining 45.28% of the total variance. Two items were removed due to the commonality of less than 0.3 and factor loading of less than 0.3.


Table2: The result of EFA and internal consistency on the four factors Persian version the fear of hospitalization (N = 306).

Factor	Items	Factor loading	h^2	λ	% Variance	Internal consistency
Fear of being injured	Q ₇ . I am anxious when I think on a patients' room.	0.957	0.829			
	Q ₈ . I am anxious when I think on an operation theatre.	0.901	0.765			
	Q ₆ . Operation theatre is a place where I would never want to be	0.733	0.588			$\alpha = 0.854$
	Q ₅ . If a physician suggested admission to a hospital, my heart would beat stronger.	0.628	0.475	2.992	19.94	$\Omega = 0.862$
	Q ₃ . I am afraid of general anaesthesia.	0.458	0.241			AIC = 0.497
	Q ₁ . I would be anxious and having fear if a physician suggests hospitalization.	0.351	0.230			
Fear of losing privacy or autonomy	Q ₁₆ . I feel uncomfortable to share the same room with other sick people.	0.858	0.686			
	Q ₁₇ . I am afraid that I will not be able to leave the hospital when I feel a need to do so.	0.773	0.595			
	Q ₁₅ . I am afraid that I will lose privacy if I am admitted to a hospital.	0.735	0.504	2.202	14.68	$\alpha = 0.841$
	Q ₁₄ . If I had surgery, my recovery would be questionable.	0.574	0.385			$\Omega = 0.843$
	Q ₁₃ . If I was admitted to a hospital, I would have hard time being away from my family.	0.506	0.420			AIC = 0.469
	Q ₁₂ . Each stay in a hospital is associated with painful Procedures.	0.481	0.298			
Trust to medical staff	Q ₁₀ . I believe that physicians in a hospital are competent.	0.843	0.708			$\alpha = 0.769$
	Q ₁₁ . I believe that nurses (technicians) would take good care of me when I stay in a hospital.	0.717	0.514	1.620	10.66	$\Omega = 0.777$
	Q ₉ . Medical staff is making me feel secure.	0.629	0.398			AIC = 0.529

Abbreviation: h^2 : Communalities, λ : Eigenvalues, α : Cronbach's alpha, Ω : McDonald's omega, AIC: Average inter-item correlation.

Next, maximum likelihood CFA ($n = 306$) was conducted to validate the factorial structure obtained from EFA. As shown in Figure 1, to improve the model, five pairs of measurement errors were allowed to freely co-vary (e₃ to e₄, e₅ to e₆, e₇ to e₈, e₁₀ to e₁₁, and e₁₁ to e₁₂). The factor loadings for all items ranged from 0.43 to 0.91 and were significant.

After reviewing the modification indices, the final three-factor model fits the data well ($\chi^2 (82) = 206.504$, $p < .001$, $\chi^2/df = 2.518$, GFI = 0.945, CFI = 0.968, NFI = 0.948, IFI = 0.968, TLI = 0.959, RMSEA (90% C.I.) = 0.050 [0.041, 0.058]).

Figure1. Factor structure of the Persian fear of hospitalization with correlations among the three factors, standardized factor loadings, and error terms.

Coefficients of Cronbach's alpha, McDonald's omega, CR, and MaxR for all the factors were greater than 0.7, demonstrating satisfactory internal consistency and construct reliability. The AVE for one factor was less than the required threshold of 0.5, but AVE was greater than MSV, and CR more than 0.7 can be used to assess convergent validity in psychological studies. Therefore, convergent validity was achieved in this study as CR for factors was above 0.7 (Table 3).

Table 3: The indices of the convergent, discriminant validity in the CFA model ($n = 306$).

Factors	CR	AVE	MSV	MaxR(H)
Fear of hospitalization and surgery	0.851	0.504	0.260	0.914
Fear of the unknown	0.828	0.449	0.260	0.840
Patient confidence in medical staff	0.777	0.542	0.004	0.812

4. DISCUSSION

The results of EFA showed that the P-FHS had three factors. Construct validity revealed three factors: fear of being injured, fear of losing privacy or autonomy, and trust in medical staff. These three factors accounted for 45.28% of the total variance. Cronbach's alpha, McDonald's omega, composite reliability, and maximum reliability for all three factors were greater than 0.7, demonstrating satisfactory internal consistency.

The first factor included six items, and it was named according to the original version as "fear of being injured". Patients receiving emergency surgery in the current study were particularly concerned with anesthesia and surgical-related injuries. In the study of Theunissen et al., who developed the SFQ, two factors, including fear of short-term and long-term consequences of surgery, were extracted (Theunissen et al., 2014). Hospitalization is always associated with fear and anxiety; when it is associated with surgery, the patient's fear and anxiety are magnified (Chevillon, Hellyar, Madani, Kerr, & Kim, 2015; Zare Marzouni et al., 2016). Fear of surgery and anesthesia is common among patients who are about to be hospitalized (Melchior et al., 2018). The patient's fear of the unknown, lack of knowledge, particularly regarding the procedure, and uncertainty increase when everything occurs as an emergency (Carleton, 2016; Hernández-Palazón et al., 2018).

Another six elements made up the second component, which was titled "fear of losing autonomy or privacy" in the original form. Items relating to the fear of losing autonomy, privacy, and situational control are included in this dimension. One aspect of hospitalization that could cause stress and worry for a patient is the invasion of their privacy (Vélez, 2020). The evidence has demonstrated that patients' perceptions of privacy respect were lower than those of staff members (Malekmohammdi, Payami Bousari, Vakili, & Rabie Siahkali, 2021; Mardani, Sabet Sarvestani, Khani Jeyhooni, & dehghan, 2019). As a result, the medical staff could disregard patients' worries about privacy while they are in the hospital (Kalantari, Jafari Varjoshani, Hanifi, & Fallah, 2020). However, one of main ethical responsibilities is to respect the patient's autonomy (Martin & Muller, 2021). Fear may arise from the perception that the patient's autonomy is being lost.

The third factor has three items related to the patient's trust in the medical staff. In this study, these three items were scored inversely. Patients may experience anxiety as a result of being placed in an unfamiliar setting during hospitalization (Kohrt, Griffith, & Patel, 2018). Such setting causes patients to lose confidence in both themselves and their health care providers (Virdun, Luckett, Lorenz, Davidson, & Phillips, 2017). By identifying the sources of patients' lack of trust in the treatment staff, interventions can be designed to reduce the patients' fear (Akyirem et al., 2022).

4.1. Implications for psychiatric nursing practice

It is advised that medical professionals in Iranian culture understand the causes of their patients' fear while they are in the hospital in order to manage it and give them better care.

4.2. Strengths and limitations

This study provides a scale to assess the level and sources of fear of patients undergoing emergency surgery. Since the participants in this study only include the patients undergoing emergency surgery, the generalizability of the P-FHS to other situation of healthcare is limited. Also, the use of self-reporting method can be a source of bias in the response. Another limitation of this study was the non-homogeneous type of surgery of the patients. It is suggested that the patients be homogenous in terms of the type of surgery in future studies. Because there was no valid similar instrument in Persian language, it was not possible to compare the P-FHS with another instrument. Therefore, it is recommended that the psychometric characteristics of other instruments, for example, SFQ, should be evaluated in Iranian culture, so that in future studies, a comparison can be made between the P-FHS and other instruments.

5. CONCLUSIONS

The P-FHS measures the level of fear of hospitalization in patients undergoing emergency surgery with three factors. Evaluating the psychometric properties of this scale on 612 patients undergoing emergency surgery in Iranian culture showed that the scale has acceptable construct validity, content validity, and internal consistency.

6. ACKNOWLEDGMENTS

The authors appreciate the financial support of the Vice Chancellor for Research of Zanjan University of Medical Sciences and the participation of nurses in this study. Also, the authors are grateful to Dr Žan Friščić, MD, specialist of orthopedic surgery and native English language speaker, who helped edit this article.

References

Abedini, N., Pourfathi, H., Sakha, H., Towfighi, S., & Parish, M. (2018). Prevalence and factors of the preoperative anxiety in the patients and their family in Shohada Hospital ,Tabriz. *Iranian Journal Of Anaesthesiology and Critical Care*, 40(103): 16-24. Retrieved from <https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=685487>

Ahadzadeh, A. S., Sharif, S. P., Ong, F. S., & Khong, K. W. (2015). Integrating health belief model and technology acceptance model: an investigation of health-related internet use. *Journal of medical Internet research*, 17(2), e3564. doi:DOI: <https://doi.org/10.2196/jmir.3564>

Akyirem, S., Salifu, Y., Bayuo, J., Duodu, P. A., Bossman, I. F., & Abboah-Offei, M. (2022). An integrative review of the use of the concept of reassurance in clinical practice. *Nursing Open*, 9(3), 1515-1535. doi:<https://doi.org/10.1002/nop2.1102>

Bağdigen, M., & Karaman Özlu, Z. (2018). Validation of the Turkish Version of the Surgical Fear Questionnaire. *Journal of PeriAnesthesia Nursing*, 33(5), 708-714. doi:<https://doi.org/10.1016/j.jopan.2017.05.007>

Beaton, D., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2002). Recommendations for the cross-cultural adaptation of health status measures. *New York: American Academy of Orthopaedic Surgeons*, 12, 1-29.

Besharat. MA., Ramesh. S., & Nogh. H.. (2018). The Predicting role of worry, anger rumination and social loneliness in adjustment to coronary artery disease. *Cardiovascular Nursing Journal*, 6(4): 6-15.

Carleton, R. N. (2016). Fear of the unknown: One fear to rule them all? *Journal of Anxiety Disorders*, 41, 5-21. doi:<https://doi.org/10.1016/j.janxdis.2016.03.011>

Chatterjee, A., Strong, G., Meinert, E., Milne-Ives, M., Halkes, M., & Wyatt-Haines, E. (2021). The use of video for patient information and education: A scoping review of the variability and effectiveness of interventions. *Patient Education and Counseling*, 104(9), 2189-2199. doi:<https://doi.org/10.1016/j.pec.2021.02.009>

Chen, Y.-Y. K., Soens, M. A., & Kovacheva, V. P. (2022). Less stress, better success: a scoping review on the effects of anxiety on anesthetic and analgesic consumption. *Journal of Anesthesia*, 36(4), 532-553. doi:<https://doi.org/10.1007/s00540-022-03081-4>

Chevillon, C., Hellyar, M., Madani, C., Kerr, K., & Kim, S. C. (2015). Preoperative Education on Postoperative Delirium, Anxiety, and Knowledge in Pulmonary Thromboendarterectomy Patients. *American Journal of Critical Care*, 24(2), 164-171. doi:<https://doi.org/10.4037/ajcc2015658>

Çokluk, Ö., & Koçak, D. (2016). Using Horn's Parallel Analysis Method in Exploratory Factor Analysis for Determining the Number of Factors. *Educational Sciences: Theory and Practice*, 16(2), 537-551. doi: <https://doi.org/10.12738/estp.2016.2.0328>

Fernández Fernández, E., Fernández-Ordoñez, E., García-Gamez, M., Guerra-Marmolejo, C., Iglesias-Parra, R., García-Agua Soler, N., & González-Cano-Caballero, M. Indicators and predictors modifiable by the nursing department during the preoperative period: A scoping review. *Journal of clinical nursing*, n/a(n/a). doi:<https://doi.org/10.1111/jocn.16287>

Fernández Fernández, E., Fernández-Ordoñez, E., García-Gamez, M., Guerra-Marmolejo, C., Iglesias-Parra, R., García-Agua Soler, N., & González-Cano-Caballero, M. (2022). Indicators and predictors modifiable by the nursing department during the preoperative period: A scoping review. *J Clin Nurs*. doi:<https://doi.org/10.1111/jocn.16287>

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. *Journal of marketing research*, 18(1), 39-50. doi:<https://doi.org/10.1177/002224378101800104>

Foster, R. L., & Park, J.-h. (2012). An integrative review of literature examining psychometric properties of instruments measuring anxiety or fear in hospitalized children. *Pain Management Nursing*, 13(2), 94-106. doi:<https://doi.org/10.1016/j.pmn.2011.06.006>

Fydrich, T., Dowdall, D., & Chambliss, D. L. (1992). Reliability and validity of the beck anxiety inventory. *Journal of Anxiety Disorders*, 6(1), 55-61. doi:[https://doi.org/10.1016/0887-6185\(92\)90026-4](https://doi.org/10.1016/0887-6185(92)90026-4)

Hernández-Palazón, J., Fuentes-García, D., Falcón-Araña, L., Roca-Calvo, M. J., Burguillos-López, S., Doménech-Asensi, P., & Jara-Rubio, R. (2018). Assessment of Preoperative Anxiety in Cardiac Surgery Patients Lacking a History of Anxiety: Contributing Factors and Postoperative Morbidity. *Journal of Cardiothoracic and Vascular Anesthesia*, 32(1), 236-244. doi:<https://doi.org/10.1053/j.jvca.2017.04.044>

Jankovic, S. M., Antonijevic, G. V., Vasic, I. R., Zivkovic-Radojevic, M. N., Mirkovic, S. N., Nikolic, B. V., . . . Raspopovic, K. M. (2018). A rating instrument for fear of hospitalisation. *Journal of clinical nursing*, 27(7-8), 1431-1439. doi:<https://doi.org/10.1111/jocn.14295>

Javali, S. B., Gudaganavar, N. V., & Raj, S. M. (2011). Effect of varying sample size in estimation of coefficients of internal consistency. 1-8. doi:<https://doi.org/10.9754/journal.wmc.2011.001649>

Kalantari, Z., Jafari Varjoshani, N., Hanifi, N., & Fallah, R. (2020). The Relationship between Moral Intelligence of Emergency Personnel with the Level of Respect for Patients' Privacy in the Emergency Departments, Zanjan, Iran, 2018. *Journal of Military Medicine*, 22(7), 760-770. doi:<https://doi.org/10.30491/jmm.22.7.10>

Khodarahmi, Z., & Galehdar, N. (2021). The Effect of Non-Pharmacological Measures on Anxiety before Surgical operation: A Systematic Review. *scientific magazine yafte*, 23(2), 169-181. doi:<https://doi.org/10.32592/Yafteh.2021.23.2.12>

Kohrt, B. A., Griffith, J. L., & Patel, V. (2018). Chronic pain and mental health: integrated solutions for global problems. *PAIN*, 159, S85-S90. doi:<https://doi.org/10.1097/j.pain.0000000000001296>

Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. *Behaviour Research and Therapy*, 33(3), 335-343. doi:[https://doi.org/10.1016/0006-296X\(94\)00075-U](https://doi.org/10.1016/0006-296X(94)00075-U)

Malekmohammadi, A., Payami Bousari, M., Vakili, M. M., & Rabie Siahkali, S. (2021). Patients' Privacy in the Operating Room in Zanjan Educational Hospitals in 2019: Perspectives of Patients and Operating Room Staff. *Preventive Care In Nursing and Midwifery Journal*, 11(4), 63-71. doi:<https://doi.org/10.52547/pcnm.11.4.63>

Mardani, m., Sabet Sarvestani, R., Khani Jeyhooni, A., & dehghan, A. (2019). Comparison of the viewpoints of the operating room staff and those of patients on the degree of respecting patients' privacy. *Education and Ethics in Nursing*, 8(1), 14-20. doi:<http://doi.org/10.52547/ethicnurs.8.1.2.14>

Marteau, T. M., & Bekker, H. (1992). The development of a six-item short-form of the state scale of the Spielberger State—Trait Anxiety Inventory (STAII). *British Journal of Clinical Psychology*, 31(3), 301-306. doi:<https://doi.org/10.1111/j.2044-8260.1992.tb00997.x>

Martin, D. E., & Muller, E. (2021). In Defense of Patient Autonomy in Kidney Failure Care When Treatment Choices Are Limited. *Seminars in Nephrology*, 41(3), 242-252. doi:<https://doi.org/10.1016/j.semephrol.2021.05.005>

Melamed, B. G., & Siegel, L. J. (1975). Reduction of anxiety in children facing hospitalization and surgery by use of filmed modeling. *Journal of Consulting and Clinical Psychology*, 43, 511-521. doi:<https://doi.org/10.1037/h0076896>

Melchior, L. M. R., Barreto, R. A. d. S. S., Prado, M. A., Caetano, K. A. A., Bezerra, A. L. Q., & de Sousa, T. V. (2018). Predictors for moderate and serious pre-operative anxiety in hospitalized surgical patients. *Enfermería Global*, 17(4), 86-96. doi:<http://dx.doi.org/10.6018/eglobal.17.4.309091>

Naderifar, M., Goli, H., Hosseini-zadeh, M., & Ghaljaei, F. (2017). Adolescents' Experiences of Hospitalization in Pediatric Ward: A Phenomenological Study. *Journal of Qualitative Research in Health Sciences*, 6(2), 124-133. Retrieved from <https://www.sid.ir/en/journal/ViewPaper.aspx?id=613567>

Ng, S. X., Wang, W., Shen, Q., Toh, Z. A., & He, H.-G. (2021). The effectiveness of preoperative education interventions on improving perioperative outcomes of adult patients undergoing cardiac surgery: a systematic review and meta-analysis. *European Journal of Cardiovascular Nursing*, zvab123. doi:<https://doi.org/10.1093/eurjcn/zvab123>

Sharif Nia, H., Ebadi, A., Lehto, R. H., Mousavi, B., Peyrovi, H., & Chan, Y. H. (2014). Reliability and validity of the persian version of templar death anxiety scale-extended in veterans of iran-iraq warfare. *Iran J Psychiatry Behav Sci*, 8(4), 29-37. doi: PMC4364474

Sherman, S. A., Eisen, S., Burwinkle, T. M., & Varni, J. W. (2006). The PedsQL™ Present Functioning Visual Analogue Scales: preliminary reliability and validity. *Health and Quality of Life Outcomes*, 4(1), 75. doi:<https://doi.org/10.1186/1477-7525-4-75>

Silva, E. d. O., & Araújo, S. A. d. (2022). Role of nurses in the emotional and physical integrity of patients in the postoperative period a literature review study. *Research, Society and Development*, 11(10), e143111031884. doi:<https://doi.org/0.33448/rsd-v11i10.31884>

Strøm, J., Bjerrum, M. B., Nielsen, C. V., Thisted, C. N., Nielsen, T. L., Laursen, M., & Jørgensen, L. B. (2018). Anxiety and depression in spine surgery—a systematic integrative review. *The Spine Journal*, 18(7), 1272-1285. doi:<https://doi.org/10.1016/j.spinee.2018.03.017>

Theunissen, M., Jonker, S., Schepers, J., Nicolson, N. A., Nuijts, R., Gramke, H.-F., . . . Peters, M. L. (2018). Validity and time course of surgical fear as measured with the Surgical Fear Questionnaire in patients undergoing cataract surgery. *PLoS one*, 13(8), e0201511. doi:10.1371/journal.pone.0201511

Theunissen, M., Peters, M. L., Schouten, E. G. W., Fiddelers, A. A. A., Willemsen, M. G. A., Pinto, P. R., . . . Marcus, M. A. E. (2014). Validation of the Surgical Fear Questionnaire in Adult Patients Waiting for Elective Surgery. *PLoS one*, 9(6), e100225. doi:<https://doi.org/10.1371/journal.pone.0100225>

Thompson, E. (2015). Hamilton Rating Scale for Anxiety (HAM-A). *Occupational Medicine*, 65(7), 601-601. doi:<https://doi.org/10.1093/occmed/kqv054>

Vaughn, F., Wichowski, H., & Bosworth, G. (2007). Does Preoperative Anxiety Level Predict Postoperative Pain? *AORN Journal*, 85(3), 589-604. doi:[https://doi.org/10.1016/S0001-2092\(07\)60130-6](https://doi.org/10.1016/S0001-2092(07)60130-6)

Vélez, C. (2020). Not the doctor's business: Privacy, personal responsibility and data rights in medical settings. *Bioethics*, 34(7), 712-718. doi:<https://doi.org/10.1111/bioe.12711>

Venham, L. L., & Gaulin-Kremer, E. (1979). A self-report measure of situational anxiety for young children. *Pediatr Dent*, 1(2), 91-96.

Villa, G., Lanini, I., Amass, T., Bocciero, V., Scirè Calabrisotto, C., Chelazzi, C., . . . Lauro Grotto, R. (2020). Effects of psychological interventions on anxiety and pain in patients undergoing major elective abdominal surgery: a systematic review. *Perioperative Medicine*, 9(1), 38. doi:<https://doi.org/10.1186/s13741-020-00169-x>

Vincent, J. L., Einav, S., Pearse, R., Jaber, S., Kranke, P., Overdyk, F. J., . . . Hoeft, A. (2018). Improving detection of patient deterioration in the general hospital ward environment. *Eur J Anaesthesiol*, 35(5), 325-333. doi:<https://doi.org/10.1097/eja.0000000000000798>

Virdun, C., Luckett, T., Lorenz, K., Davidson, P. M., & Phillips, J. (2017). Dying in the hospital setting: a meta-synthesis identifying the elements of end-of-life care that patients and their families describe as being important. *Palliative medicine*, 31(7), 587-601. doi:<https://doi.org/10.1177/0269216316673547>

von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., & Vandenbroucke, J. P. (2014). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. *International Journal of Surgery*, 12(12), 1495-1499. doi:<https://doi.org/10.1016/j.ijsu.2014.07.013>

Wittmann, V., Csabai, M., Drótós, G., & Lázár, G. (2018). [The reliability and validity of the Hungarian version of the Surgical Fear Questionnaire]. *Orvosi hetilap*, 159(47), 1988-1993. doi:10.1556/650.2018.31205

Yang, K., Shao, X., Lv, X., Yang, F., Shen, Q., Fang, J., & Chen, W. (2022). Perioperative psychological issues and nursing care among patients undergoing minimally invasive surgeries. *Laparoscopic, Endoscopic and Robotic Surgery*. doi:<https://doi.org/10.1016/j.lers.2022.06.001>

Zare Marzouni, H., Karimi, M., Narimi, Z., Ghasemi, A., & Janaki, M. (2016). Effects of education on reduction of stress and anxiety of orthopedic surgery. *Navid No*, 19(62); 62-68.

Zung, W. W. (1971). Self-rating anxiety scale. *BMC Psychiatry*. doi:<https://doi.org/10.1037/t04092-000>