Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

The Antennal Sensory Structures of *Anagyrus vladimiri* Female (Hymenoptera: Encyrtidae)

Milos Sevarika¹, Paolo Giannotti², Andrea Lucchi² and Romani Roberto^{1,*}

- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia Italy; msevarika@gmail.com, roberto.romani@unipg.it
- ² Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa Italy; paolo.gian-notti@unipi.it; andrea.lucchi@unipi.it
- * Correspondence: roberto.romani@unipg.it; Tel.: +39-075-585-6032

Simple Summary: Perception of olfactory cues represents a core function of insects. They perceive these signals by small organs, sensilla, located on the antennae. On the antennae, apart the olfactory sensilla, are also located mechanosensory and gustatory sensilla. With all of them, insects are able to obtain a complete picture of their surroundings. The role each sensilla play can be discerned from their ultrastructural organization. In this work, we investigated the antennae of an important biocontrol agent of scale insects, *Anagyrus vladimiri*. The ultrastructural organization of the sensilla was revealed by scanning and transmission electron microscopy. On the antennae we found various types of sensilla, related to diverse function. Their number and diversity gradually increased, being the highest at the apical antennomere.

Abstract: The Encyrtidae encompass large group of insects widely used in the biocontrol programs of scale insects (Hemiptera: Coccoidea). Here we investigated antennal sensory system organization of *Anagyrus vladimiri* females, a species widely used as a biocontrol agent of *Planococcus* spp. and *Pseudococcus* spp. Ultrastructural investigations with scanning (SEM) and transmission (TEM) electron microscopy revealed filiform antennae made of nine segments. The scape was enlarged and paddle-like, compared to the other antennomeres. The club was mono-segmented and housed the highest number of sensilla. On the antennae, eight morphologically different types of sensilla were recorded; sensilla trichoidea I, trichoidea II, chaetica II, grooved peg sensilla, campaniform sensilla, multiporous plate sensilla, multiporous basiconic sensilla. The sensilla belonged to the major types sensilla types (olfactory, gustatory, thermos-hygroreceptor). The sensilla trichoidea I and multiporous plate sensilla were the most abundant types. The potential functional role of each sensillum was discussed.

Keywords: SEM; TEM; ultrastructure; parasitoid; sensilla

1. Introduction

The mealybugs (Hemiptera: Pseudococcidae) are a group of scale insects, recognized as important pests of agricultural and ornamental crops [1]. They cause damage as nymphs and adults by inhibiting growth, excreting large quantities of honeydew, causing defoliation, plant damage and ultimately loss in production [2,3]. In addition, they are known as vectors of plant viruses [4,5]. Detection and control of mealybugs are challenging, due to their cryptic behaviour and wax production, which serves as a protective barrier against successful insecticide application [6–9]. In the framework of integrated pest management (IPM) different biocontrol agents, including predators (e.g. Coccinellidae) and parasitoids (Encyrtidae), are used to suppress the mealybugs population. Specifically, endoparasitoids from the genus *Anagyrus* are often included in biocontrol programs [8,10–12].

The genus *Anagyrus* encompasses about 350 species of primary endoparasitoid of Pseudococcidae [13]. Within the genus, there are morphologically similar species, such as

Anagyrus pseudococci (Girault), A. sp. near pseudococci (Girault), A. dactylopii (Howard), A. kamali Moursi and A. kivuensis Compere. All these species are nominally included in the informally designated Anagyrus pseudococci complex, distinguished by the coloration of the female antennal flagellomere 1 (F1) [14]. Because of their morphological similarity, the first two species have been misidentified and sometimes confused or mistaken for each other by researchers and commercial biofactories.

Previous research discovered variation in F1 coloration on female parasitoids between Californian (completely black morphotype) and Argentinian (black/white morphotype) population. Primarily it was believed that this minor variation could represent a population-specific characteristics. However, further analysis confirmed that the taxon formerly defined as *A. pseudococci* conversely included a different species that was initially classified as *A.* sp. near *pseudococci* (Girault) [15] and then described and definitely named as *Anagyrus vladimiri* Triapitsyn [14].

A. vladimiri is a well-known biocontrol agent of *Planococcus* spp. and *Pseudococcus spp.* species. Until now it has been successfully used to control *Pseudococcus comstocki* (Kuwana), *P. viburni, Planococcus ficus* (Signoret) and *P. citri* [15,16].

The success of a biocontrol agent in controlling a pest is partially correlated with its ability to locate a host in an appropriate time window. To do so, insects utilize diverse cues, of which olfactory plays a major role. Some olfactory cues are highly volatile and thus detected through larger distance [pheromones, oviposition induced plant volatiles (OIPV), herbivore induced plant volatiles (HIPV)], contrasting the less or even non-volatile, like in the case of cuticular hydrocarbons. Volatile cues are detected by olfactory sensilla, while non-volatile by gustatory sensilla [17–19]. These, along with other sensilla (mechanoreceptors, thermo-hygroreceptors) are dispersed all over the insect body, but mainly on the antennae which, are recognized as the primary sensory appendages [20].

Morphology and distribution of antennal sensilla in males and females of *A. vladimiri* have been studied with the scanning electron microscopy [21]. Six morphologically different sensilla were found on both sexes: trichoidea, placoidea, basiconica, and chaetica type 1, type 3 and type 4, whereas chaetica type 2 sensilla were present only in female wasps, and tridentate scale-shaped type sensilla were present only in male wasps. Based on sensilla external morphology (presence or absence of pores) authors hypothesized a possible olfactory, gustatory or mechanoreceptive function.

In our work, we studied in detail the antennae of *A. vladimiri* with both scanning and transmission electron microscopy, with the aim to define the possible real function of sensilla in the female antenna.

2. Materials and Methods

Insects

Commercially mass-reared males and females of A. vladimiri were provided by Bio-Planet (Cesena, Italy). When emerged, parasitoids were sexed, singly stored in clean glass vials, and fed with a tiny drop of water and honey 1:1 (v:v).

Scanning Electron Microscopy (SEM)

Ten *A. vladimiri* adult females and males were used. The insects were anesthetized by freezing and their head capsule complete with the antennae were excised from the thorax using fine forceps and placed in a lens cleaner liquid for 24 h. Dehydration was carried out in a graded series of ethanol (from 50% up to 99%)followed by treatment with a critical point dryer Leica EM CPD 030. Then the specimens were mounted on aluminium stubs with double-sided sticky tape, positioned on dorsal or ventral side to obtain a total sensillar count for each replicate. The specimens were then sputter-coated with a Edwards sputter coater \$150B prior to their examination with a Scanning Electron Microscope FEI Quanta 200.

Transmission Electron Microscopy (TEM)

For TEM observations, five females were paralyzed by exposure to cold temperatures (-18 °C) for 60 s, then immediately immersed into a solution of glutaraldehyde and paraformaldehyde 2.5% in 0.1 M cacodylate buffer +5% sucrose, pH 7.2-7.3. Each antenna was detached from its base, single antennomeres were isolated and reduced in size by cutting them in two parts to facilitate fixative penetration and left at 4 °C for 2 h. The specimens were kept at 4 °C overnight in the same buffer, then they were post-fixed in 1% OsO4 (osmium tetroxide) for 1 h at 4 °C and rinsed in the same buffer. Dehydration, in a graded ethanol series from 60% to 99%, was followed by embedding in Epon-Araldite with propylene oxide as bridging solvent. Thin sections were taken with a diamond knife on a LKB "Nova" ultramicrotome and mounted on formvar coated 50 mesh grids. Then, sections on grids were stained with uranyl acetate (20 min, room temperature) and lead citrate (5 min, room temperature). Finally, the sections were observed with a Philips® EM 208. Digital pictures (1376 x 1032 pixels, 8b, uncompressed greyscale TIFF files) were obtained using a high-resolution digital camera MegaViewIII (SIS®) connected to the TEM.

3. Results

Antenna general description

The antennae of *A. vladimiri* female were the typical antennae found in Hymenoptera, characterised by a geniculate structure and inserted frontally on the head capsule, below the compound eyes and close to the mouthparts. Each antenna was made up of a scape, a pedicel and a flagellum composed of seven flagellomeres (F1-F7), therefore the whole antenna was made of 9 antennomeres (Figure 1A). The scape was inserted in the head capsule through an elliptical socket (Figure 2A). The basal part of the scape was cylindrical and relatively short. At this level, trichoid sensilla were found arranged close to the headscape joint (Figure 2A). Starting from this part, the most evident region of the scape started in the form of a paddle-like structure, laterally flattened and covered by numerous long hairs (Figure 1A). No pores were found on both sides of any region of the scape. The cuticular surface of the scape presented an elaborate, scale-like sculpture, and a few curls of wax originating from the attacked host were found. The pedicel was attached to the apical corner of the scape, opposite to the rounded edge; trichoid sensilla similar in shape and arrangement to those reported at the head-scape joint were visible at the scape-pedicel joint (Figure 2B). The pedicel appeared conical in shape, with the diameter increasing from the proximal to the distal part, where sparse campaniform sensilla were found (Figure 2C). Antennomeres ranging from F1 to F6 were cylindrical in shape and similar in size (Figure 1A). The last antennomere (F7) was club-like and resulted from the merging of

Three originally separated antennomeres (Figure 1A, B, C). It was the largest antennomere of the antenna, being about 180 μ m long.

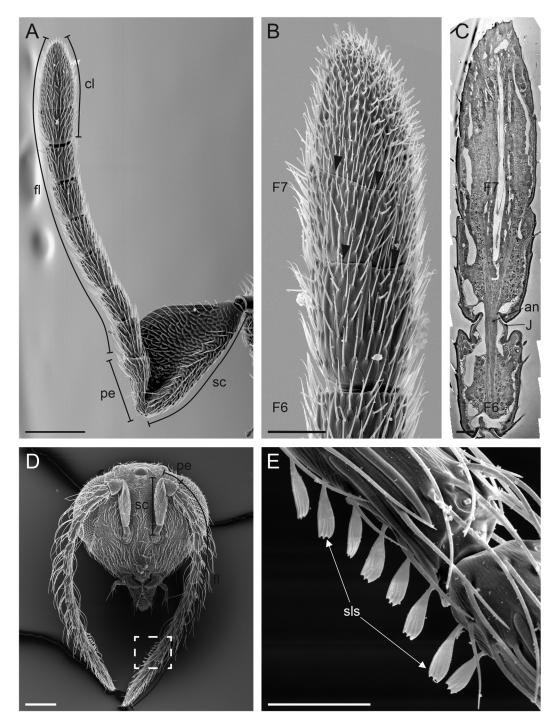
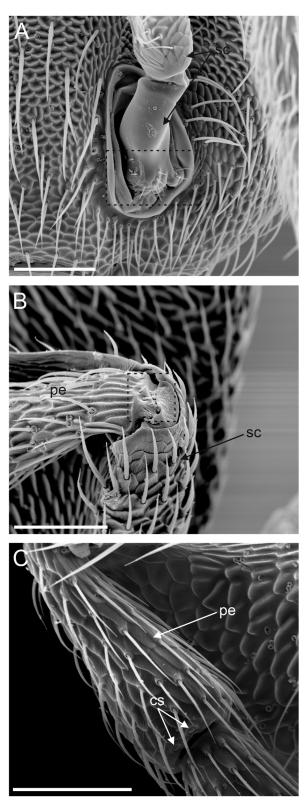
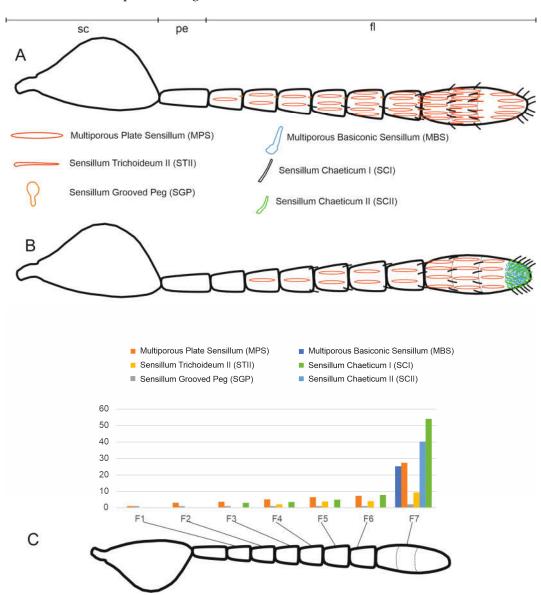
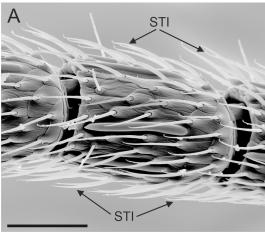
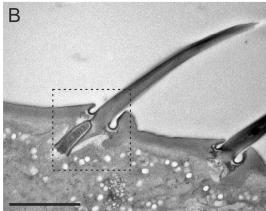



Figure 1. Scanning electron microscopy (SEM) of *Anagyrus vladimiri* antennae. A) General view of the female antenna showing the paddle-like scape (sc) the pedicel (pe) and the flagellomere made up of seven antennomeres. B) Detail of the 7th flagellomere (F7), forming the apical club (cl). Two transverse furrows are indicated by black arrowheads. C) Transmission electron microscopy image obtained combining 13 adjacent pictures, showing a longitudinal section of the F7 and F6. The dissection plan is positioned at the level of the medial region of the antenna, clearly showing the absence of segments at F7 outer grooves level. D) SEM picture showing the male head capsule with the two antennae made of 9 antennomeres. E) close-up view of the dotted square in D) depicting a detail of the scale-like structures (SLS) occurring ventrally on the last two antennomeres. an , antennal nerve; j, joint. Scale bar: A, D: $100 \mu m$; B: $25 \mu m$; C: $10 \mu m$; E: $30 \mu m$.


Figure 2. Scanning electron microscopy (SEM) of *Anagyrus vladimiri* female antennae. A) Particular of the antenna articulation base at the head capsule. The base of the scape is connected with the torulus. The dotted square shows the area where mechanosensory hairs are positioned. B) Detail of the scape (sc)-pedicel (pe) joint; also at this level a few mechanosensory hairs are located near the articulation joint (dotted square). C) lateral view of the pedicel (pe): two campaniform sensilla (CS) are positioned at the distal end of the antennomere. Scale bar: A, C: $50 \mu m$; B: $40 \mu m$.

In males, the antenna is made of the same number of antennomeres, but shows a different general structure, being longer and slender compared to the female one (Figure


1D). The scape was much smaller and did not show the paddle-like form. The apical part of the antenna was not clubbed and presented on its ventral side a single row of scale-like structures (Figure 1E).


Type of sensilla

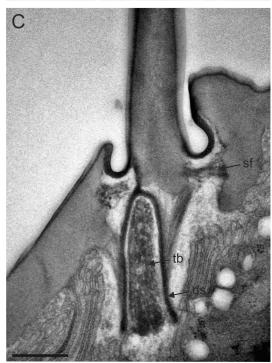
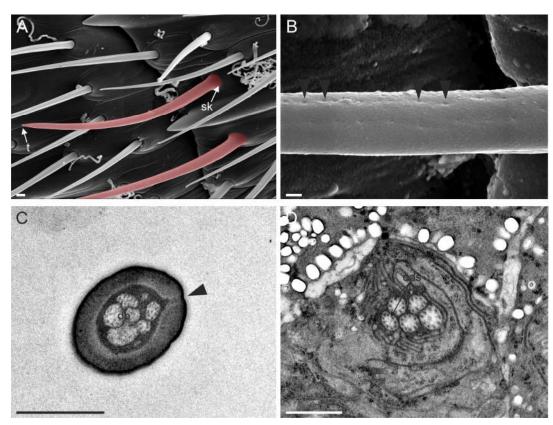
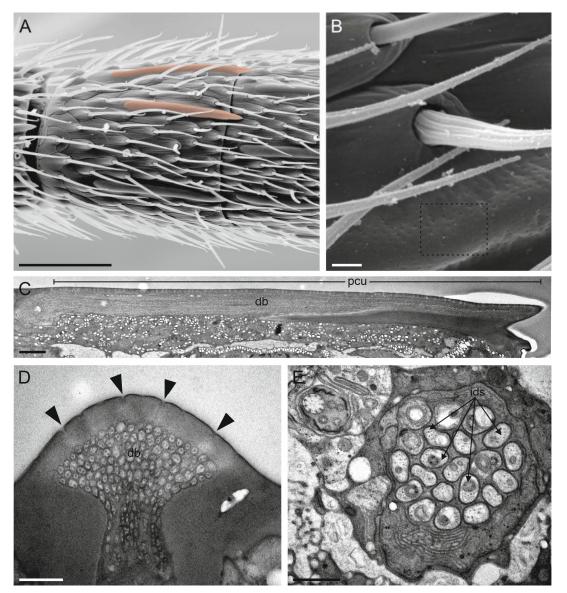

Ultrastructural analysis revealed the presence in the female of several types of sensilla that will be treated according to different classes based on morphological features. A scheme reporting the different types of sensilla and their distribution along the different antennomeres is reported in Figure 3.

Figure 3. Schematic drawing of *Anagyrus vladimiri* female antenna in dorsal (A) and ventral (B) view. The different type of sensilla are reported with their relative distribution. Sensilla Trichoidea I are omitted. C) Graph showing the relative abundance of the different sensilla types on the different flagellomeres (numbered from F1 to F7). Sc, scape; pe, pedicel; fl, flagellum.


Figure 4. A) SEM picture of flagellomere 5 (F5) of *Anagyrus vladimiri* female antenna showing the distribution of Sensilla Trichoidea I (STI). B) TEM picture taken longitudinally through the cuticular shaft and the base socket. C) Close-up view of the base socket (dotted square in B) showing the suspension fibers and the single sensory neuron ending in a tubular body (tb) encased by the dendrite sheath (DS). Scale bar: A, 30 μ m; B: 2μ m; C: 0.5μ m.

Sensilla trichoidea I (ST I)


Sensilla trichoidea I were the most abundant sensilla on the female antenna. They were present on all antennomeres in a sequential manner on both dorsal and ventral side (Figure 4A). Sensilla trichoidea I were about 15 μ m long and had a bristle like shape. The external cuticular wall was crossed by longitudinal, shallow furrows through its all length. The pores presence was not recorded (Figure 4B). This characteristic allowed easy identification from the other subtypes of the sensilla trichoidea. At the sensillum base a distinct socket was present. Cross-sections taken at the sensillum base revealed presence of a single sensory neuron ending in a tubular body (Figure 4C).

Sensilla trichoidea II (ST II)

Sensilla trichoidea II differ from sensilla trichoidea I by being present on the antennae starting from the sixth antennomere (F4) (Figure 5A). Their number gradually increased from two on F4 to ten on F7. ST II were slightly wider and longer than ST I (about 18 μ m in length) and inserted through the antennal wall with an inflexible socket (Figure 5A). Moreover, their external cuticle appeared to be smooth, pierced by tiny pores, mostly organised in parallel lines. The tip was slightly rounded (Figure 5B). Cross-section taken at the apical part of the sensillum revealed the presence of the branched sensory neurons filling the sensillum lumen (Figure 5C). The cuticular wall was thick (~ 300nm) and with a few pores (Figure 5C). Sections taken at the basal part of the sensillum showed presence of five sensory neurons (Figure 5D).

Figure 5. A) SEM picture of the distal area of flagellomere 5 (F5) female antenna in *Anagyrus vladimiri*, two Sensilla Trichoidea II (STII) are visible highlighted with a red mask. The pointed tip (t) and the inflexible socket (sk) are clearly visible. In Fig. B) a series of cuticular pores on the surface of STII can be observed (black arrowheads). C) TEM picture showing a cross section of an STII, the section is taken approximately at the medial region of the sensillum. The lumen is occupied by a series of dendritic branches (db), while a pore is visible connecting the sensillar lumen with the outside (black arrowhead). D) TEM picture of the same sensillum in C) taken below the sensillum base; five outer dendritic segments (ods) belonging to the sensory neurons innervating the sensillum are visible. Scale bar: A, C, D: 1 μm; B: $0.2 \mu m$.

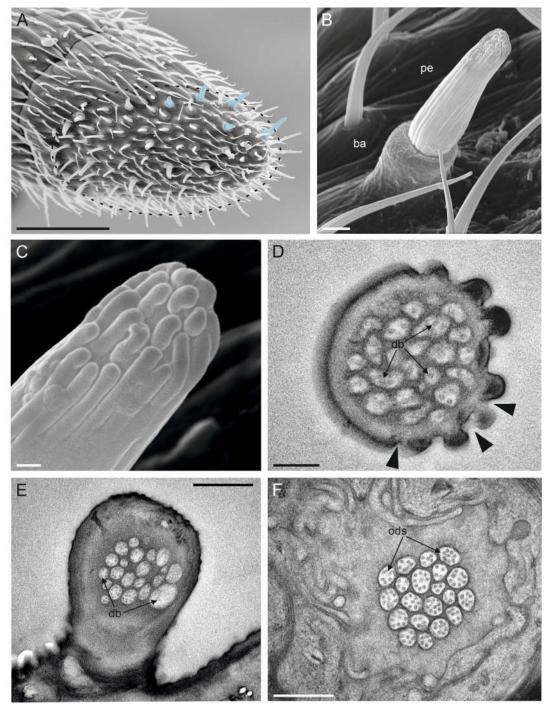
Figure 6. A) SEM picture of the proximal part of F7 in dorsal view, where two Multiporous Plate Sensilla (MPS) can be observed (red mask). B) Detail of the porous cuticle (dotted square). TEM image obtained combining 7 adjacent pictures, showing a longitudinal section of a MPS. A large amount of dendrite branches (db) completely fill the space below the porous cuticle (pcu). D) TEM cross section of an MPS taken approximately at the third distal length form the tip, showing the cuticular pores (black arrowheads) and the dendrite branches (DB). E) TEM cross section showing the bundle of 20 inner dendritic segments (ids) belonging to the sensory neurons innervating a single MPS. Scale bar: A: 30 μm; B, E: 1 μm; C: 2 μm; D: 0.5 μm.

Multiporous Plate Sensilla (MPS)

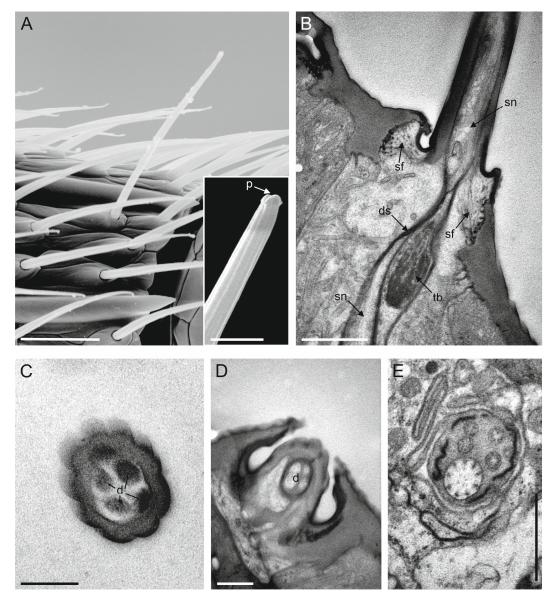
Multiporous Plate Sensilla were flattened structures that presented a slightly elevated medial part. MPS were longitudinally positioned over the antennomeres and were evenly distributed over the antenna dorsal and ventral side (Figure 6A). These sensilla were absent on the scape and the pedicel and present on all flagellomeres. The number of the sensilla gradually increased, being highest at the apical antennomere, where about 28 sensilla were observed. The sensilla were about 42 μ m in length. Generally, the sensilla were extending over a single antennomere, however, sometimes the sensillum tip was protruding over the next antennomere (Figure 6A, C). A close-up view of the external cuticle revealed a sensory cuticle covered by numerous, evenly distributed pores. The transmission electron images revealed the sensillum ultrastructural organization characterized by the multiporous cuticular wall and numerous dendrites (Figure 6C, D). The

cross-section images taken at the apical part of the sensillum showed the presence of numerous dendritic branches, while sections taken at the level of the sensory neurons inner dendritic segment revealed 20-21 units innervating each MPS (Figure 6E).

Multiporous basiconic sensilla (MBS)


These sensilla were found exclusively on the apical part of the last flagellomere, inserted on the ventral side (Figure 7A). On average, 25 sensilla were recorded. MBS were characterized by a distinct socket, in the form of a raised cylinder (diameter 2.5 µm) on which a cuticular peg was inflexibly inserted (Figure 7B). The peg cuticle was longitudinally grooved through its entire length, which on average was 5.5 µm. MBS had a slightly curved tip, on which the grooves running along the peg ended in elongated, finger-like projections (Figure 7C). While cuticular pores were not observed along the sensillum shaft, cross-sections taken at the level of the apical part revealed the presence of several pores defining an apical porous cuticle (Figure 7D). The dendritic projections (~20) of the outer dendritic segments were present within the sensillum lumen (Figure 7E). At the sensillum base, the cuticular wall appeared rather smooth and thick. Each MBS revealed to be innervated by ~20 sensory neurons, therefore they reach the porous cuticle unbranched (Figure 7F).

Sensilla Chaetica I (SCI)


These sensilla were characterized by their position and shape. They were typically located at the distal part of each antennomere. The sensilla chaetica type I were about 15 µm in length and were inserted on the external cuticle with a 45° angle, which distinguished them from other sensilla (Figure 8A). The external wall presented longitudinal grooves over its entire length; no pores were observed. At the sensillum tip a single pore could be observed (inset in Figure 8A). SCI could be found from the F3 to F7, with a pattern of increasing in number from the base to the apex of the antenna. A total number of 73 SCI were recorded per antenna, with most of them (54) located on the club (F7). The ultrastructural TEM investigations revealed the presence of a thick, aporous cuticular wall, with evident ridges as a result of the external grooves (Figure 8C). The sensillum housed five sensory neurons enclosed in a dendritic sheath (Figure 8E). Four sensory neurons developed unbranched dendrites that extended into the sensillar lumen (Figure 8C, D). The fifth sensory neuron ended at the tubular body, located at the sensillum base (Figure 8B). Moreover, at this level suspension fibres connected to the flexible socket could be observed.

Sensilla Chaetica II (SCII)

Sensilla Chaetica type II were located solely at the apical antennomere, at the same area were MBS were found (Figure 9A). These sensilla showed a cuticular peg characterized by furrows extending over its entire length, ending at the tip and defining an elaborated structure that resembled in part the one reported for MBS (although smaller) (Figure 9B). About 45 sensilla per antenna were recorded, distributed only on the ventral side. The sensilla were inserted on the antennal wall through an evident socket. Despite the presence of apical pores was not recorded, we hypothesized the presence of a single pore at the tip. The length on average was $7\mu m$. Ultrastructural investigations with the TEM revealed presence of five sensory neurons, of which one ended at the tubular body (Figure 9C, D).

Figure 7. A) Apical part of the female antennal F7 of *Anagyrus vladimiri* in ventral view. The apical area appears like a flattened sole where several sensilla are inserted. In blue mask, some of the Multiporous Basiconic Sensilla (MBS) are highlighted. B) Detail of a MBS at SEM. The sensillum presents a cylindrical base (BA) that is inflexibly inserted on the antennal wall. A grooved peg (pe) is inserted on top of the cylindrical base. C) Close-up view of the apical region of a MBS. The grooves that are present on the cuticular shaft end in elongated finger-like projections. D) TEM picture showing a cross section of the apical part of a MBS. On the right side it is possible to observe the finger-like projections and the pores (black arrowheads) partly hidden by the same projections. The internal lumen is filled with dendritic branches (db). E) TEM section at the basal region of a MBS: the cuticular wall appears thicker and aporous and the same number of db are visible. F) TEM cross section through the outer dendritic segments (ODS) of the sensory neurons innervating a single MBS. Scale bar: A: 30 μm; B, E: 1 μm; C, D: 0.2 μm; F: 0.5 μm.

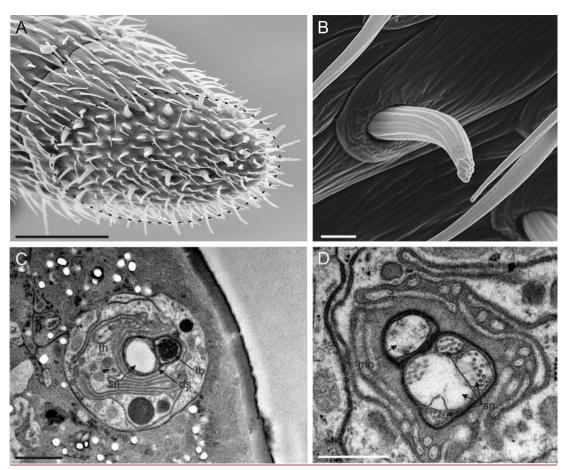


Figure 8. A) Distal region of F6 *Anagyrus vladimiri* female, with evidence of a single Sensillum Chaeticum I (SCI) protruding from the surrounding STI. SCI is characterized by a grooved shaft and a single apical pore (p) (inset in A). B) TEM cross section through the socket of a SCI showing suspension fibers (sf) at the sensillum base and the sensory neurons (sn) innervating the sensillum, surrounded by the dendrite sheath (ds). The sensory neurons enters the cuticular shaft of SCI except for the one ending with the tubular body. C-E) TEM cross section taken at different levels of an SCI. In C and D the sections shows the dendrites inside the lumen in the medial region of the cuticular shaft (C) and close to the base. In E) the outer dendritic segments are embedded by a discontinuous dendrite sheath. Note the large dendrite belonging to the mechanosensory unit. Scale bar: A: 10 μm; inset in A: 1 μm; B, E: 1 μm; C: 0.25 μm; D: 0.5 μm.

Sensilla Grooved-Peg (SGP)

SGP were the least abundant sensilla present on the flagellum. They were distributed on all antennomeres, positioned on the distal antennomere side. We mapped one SGP on each flagellomere, except the last flagellomere on which two SGP were present and positioned dorsally. SGP were inserted on the external cuticle through an evident socket, which appeared to be in a form of a slightly depressed ring. On average, the sensilla were 3 μ m long and 1 μ m in diameter. The cuticular base was smooth, with no pores, while the apical part of the sensillum was rounded with evident grooves. Cross sections taken at the apical part of the sensillum revealed the presence of a thin multiporous wall, with pores located at the grooves base and therefore hidden from the outside. Longitudinal

section through the entire shaft revealed the double-walled nature of SGP, with an outermost and an innermost cuticular wall . This latter gave rise to an inner lumen that was occupied by the sensory neurons. While at the apical level we counted up to three outer dendritic segments, sections taken below the SGP socket revealed a total number of five sensory neurons.

Figure 9. A) Apical part of the female antennal F7 of *Anagyrus vladimiri* in ventral view: in green mask, some of the Sensilla Chaetica II (SCII) are highlighted. B) Detail at the SEM of a SCII. C, D) TEM cross section showing the sensory neurons (SN) associated with a single SCII. In C) a more distal section is reported, where a tubular body (tb) and other sensory neurons (sn) are visible, embedded and separated by the dendrite sheath (ds) and the thecogen cell (th). In D) a more proximal section is shown, reporting the mechanosensory neuron (mn) still separated by the other sn by a distinct ds. Scale bar: A: $30 \mu m$; B, C: $1 \mu m$; D: $0.5 \mu m$.

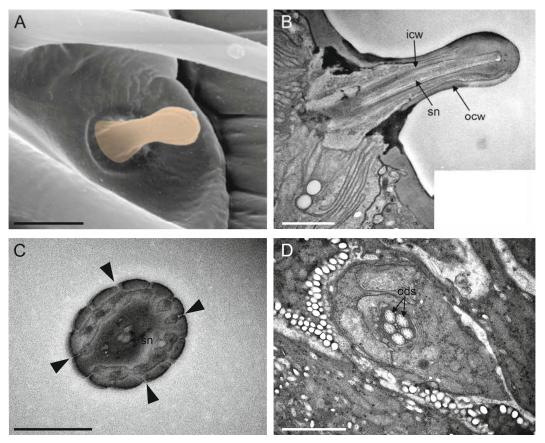


Figure 10. A) A single Sensillum Grooved Peg (SGP) is visible under SEM, located at the distal margin of F6. The sensillum socket appears slightly sunken, while its distal parts is swollen and longitudinally grooved. B) TEM picture obtained from 4 different pictures merged together, showing a longitudinal section of a SGP taken from the tip to the base. The two cuticular walls, the outer (ocw) and the inner (icw), are visible, with the icw defining an inner lumen occupied by the sensory neurons (sn). C) TEM cross section through the sensillum tip sowing the grooves and the cuticular pores somehow hidden between them (black arrowheads). Sn are visible in the central part. D) TEM cross section taken below the socket level, showing 5 outer dendritic segments (ods) belonging to the sensory neurons associated with a single SGP. Scale bar: A, D: 2 μ m; B, C: 1 μ m.

4. Discussion

Encyrtidae is one of the largest families of Chalcidoidea [22]. Their antennae are highly diverse, with flagella that can appear from cylindrical to very broad and flat. Although *A. vladimiri* was reported to have a 9-segmented flagellum [14], here we have shown that it is actually composed of 7 segments. This difference is due to the fact that externally the club appears to be segmented, whereas internally, the last three segments are fused giving rise to a monosegmented club. So far, most species belonging to the Encyrtidae were described to present female antennae for which a segmented club was reported [14,23–28], however, in light of what has been observed in *A. vladimiri*, our hypothesis is that, also in other species belonging to the same family, the occurrence of a monosegmented club is a common trait.

Similar to what has been reported in several other insect species, the distribution pattern of antennal sensory structures in *A. vladimiri* females follows the tendency to have a greater concentration of sensilla in the apical part of the antenna. Based on their ultrastructural organization, olfactory, gustatory and mechanosensory function has been hypothesized for the different types of antennal sensilla. In the apical part of the antennae, olfactory and gustatory sensilla are mostly found, while mechanosensory structures are more distributed along the antennal length, with no distinct antennomeres with a specific abundance. The only exception is the apex of the antenna, which uniquely has two types of sensilla, the Multiporous Basiconic Sensilla and the Sensilla Chaetica II.

Olfactory sensilla are easily distinguished from mechanoreceptor sensilla mainly because of their perforated cuticular wall, the presence of internally corresponding pore tubules, and outer dendritic segments of sensory neurons, characterized by a certain level of branching [20,29]. Therefore, on the base of our morphological investigations we hypothesize an olfactory role for Multiporous Plate Sensilla (MPS), Sensilla trichoidea II (ST II) and Sensilla Grooved-Peg (SGP). The MPS and SGP were widely distributed on the flagellomeres, differently from ST II. As for the sensilla number and distribution, this might depend on the level of specialization in terms of response to different stimuli. In other words, sensilla that are more widely present and distributed over a larger part of the antennal surface could be associated with the perception of "general odours," or odours of higher importance (e.g. sex pheromone), while those located in a specific area could be tuned to specific groups of volatile chemical compounds [30].

Multiporous Plate Sensilla (MPS) are a well-documented and rather frequent type of sensilla in Hymenoptera [31–33]. Because of their different external morphology, MPS are often referred to by different names in the literature: porous plates, placoid sensilla, rhinaria, elongate placoid sensilla, or multiporous plaque sensilla [32,34,35]. In most families of Hymenoptera Apocrita, MPS are elongate, while in some Vespoidea, Stephanidae and Chrysidoidea they appear rounded or like small oval plates [33]. In a detailed ultrastructural study of the antennal sensilla of Chalcidoidea, Barlin and Vinson [31] described two types of MPS, which differ in external morphology and cuticular wall thickness. In addition, they studied three species of Encyrtidae, for which they described two types of MPS in females. This contrasts with our results in A. vladimiri, where we reported only one type of sensillum, which could be associated with the type I described by Barlin and Vinson. Our observations did not show the presence of a second type of MPS on either the dorsal or ventral side of the antenna. This finding is also confirmed by TEM investigations, which did not reveal the presence of the second type of sensillum, which is characterized by a thick porous wall. Thus, there seems to be a variation in the presence of MPS types within the different families of Chalcidoidea. No grooves were present around the sensillum, and the tip appeared free of the surrounding antennal cuticle often found in other Chalcidoidea. The internal ultrastructural organization is similar to that of previous studies. MPS normally have a greater number of associated sensory neurons than those of other sensilla types (frequently more than 20 units). In Tetrastichus hagenowii (Ratz) (Eulophidae) and Torymus warreni (Cock.) (Torymidae) about [36]50 sensory neurons have been recorded [31,37], while 25 were recorded in Dryocosmus kuriphilus (Cynipidae) [36], 27 in Itoplectis conquisitor (Say) (Ichneumonidae) [34], 12-13 in Coeloide brunneri Viereck (Braconidae) [38], 37 in Aphidius smithi Sharma and Subba Rao (Aphidiidae) [39], and 12-18 in Apis mellifera L. (Apidae) [40]. Our finding in A. vladimiri of 20 sensory neurons is in line with what has been reported in previous studies. An olfactory function has been proposed for these sensilla, confirmed by electrophysiological studies [41].

Apart from MPS, ST II were also identified as possible olfactory sensilla. This type of sensilla were reported to occur on various insect species [42]. Although the outer cuticular part may show variation among different species (in terms of distribution and abundance of pores), in contrast, its internal organization follows a general pattern typical of an olfactory sensillum. Differently from MPS, ST II were mainly located dorsally on the apical antennomere and at the distal region of the sub-apical antennomere. The ultrastructural organization was similar to the same sensilla in *Paysandisia archon* (Lepidoptera: Castniidae) [43], *Scleroderma guani* (Bethylidae) [44] and *Eupeodes corollae* (Diptera: Syrphidae) [45]. The occurrence of different type of olfactory sensilla is a common trait that can be found in several insects belonging to diverse, unrelated groups (i.e. Auchenorrhycha, [46]; Coleoptera, [47,48]; Lepidoptera, [49,50]).

The less abundant sensilla type is the Grooved Peg Sensilla (GPS), which were found normally as a singular unit on the distal region of the antennomeres. An exception to this pattern was found in the last flagellomere, where we counted two distinct units. This type of sensilla were reported for several parasitic wasps groups (i.e. Scelionidae:[51,52]; Trichogrammatidae: [53]; Mymaridae: [54], for which a role in the detection of volatile

stimuli was proposed. Similar sensilla occurred also in specialised, blood-sucking species such as mosquitoes [55] and *Triatoma infestans* Klug [56]. In this last species, a different role of double-walled as regards the perception of volatiles has been proposed, with this type of sensilla more specifically tuned to more polar and hydrophilic volatiles such as short-chain carboxylic acids. Because of this, a possible role in the perception of green leaf volatile (being mainly composed by hexenal, hexanol and aliphatic organic acids with a chain length of 3–8 carbons) can be hypothesised for *A. vladimiri*.

From a functional point of view, the presence of different types (or subtypes) of olfactory sensilla has been related to the perception of stimuli of various natures linked to the dynamics of intraspecific interaction or related to the host selection process. In the case of *A. vladimiri*, olfactory sensilla are most likely involved in the perception of host-derived stimuli directly from the host (i.e., sex pheromones) or from plants attacked by the host (induced volatiles).

In A. vladimiri, gustatory sensilla were represented by Sensilla Chaetica type I (SCI) and II (SCII) and Multiporous Basiconic Sensilla (MBS). In general, from a functional point of view, gustatory sensilla frequently combine mechanoreceptive function with chemoreceptive gustatory function [20,29], normally associated with the presence of a single apical pore, which is worth them the appellation of uniporous sensilla. Some significant exceptions are present, within Hymenoptera parasitoids, with the presence of multiporous gustatory sensilla. This type of sensilla are located exclusively on the apical part of the antennae of females, mainly on the ventral side, which facilitates contact between the sensilla and the substrate that the insect explores during host searching behaviour. Ultrastructurally, they consist of truncated-cone type cuticular elements that apically have spherical projections that touch each other, but are still flexible, so they can move during antennal contact. The apical part is perforated with pores (however, hidden by the spherical projections), while the cuticular wall of the sensilla is poreless. Internally, the multiporous gustatory sensilla harbour a large number of unbranched sensory neurons. These particular sensilla have also been described in Platygastridae and Scelionidae [57], associated or not with glands. In Amitus spiniferus (Platygastridae), multiporous gustatory sensilla have 220 sensory neurons, while in *Trissolcus basalis* they reach the impressive number of 400 each [52,57]. In A. vladimiri, the MBS are innervated by 20-21 unbranched sensory neurons, a value very different from that reported for Playgastridae and Scelionidae. A similar reduction in the number of sensory neurons was found in Trichogrammatids in which multiporous gustatory sensilla are innervated by 10 neurons [58]. Such differences in the number of neurons could be associated with the number of multiporous sensilla present. In particular, Platygastridae and Scelionidae have a low number of multiporous gustatory sensilla (whose number does not exceed 10 units per antenna) innervated by a high number of neurons (up to 400 per unit), whereas in A. vladimiri the ventral apical area of females has 25 sensilla, each innervated by 20 neurons. From a functional point of view, in A vladimiri the role of MBS could be to participate in the various stages of the host selection process by females, a hypothesis in line with what has been reported for other groups of oophagous parasitoids[59].

Sensilla Chaetica type I and II shared typical ultrastructural organization and topography of gustatory sensilla. In fact, they were located on the borders of antennomeres (SCI) or at the ventral side of the last antennomere (SCII), which enable them to get in contact with the substrate while the insect is antennating. Both these sensilla are equipped with a mechanosensory neuron that can perceive mechanical stimuli. The number of sensory neurons was the same in both sensilla 5 (4 gustatory + 1 mechanoreceptive neuron). Similar number of sensory neurons was found in other insects groups; *Paysandisia archon* (Lepidoptera: Castniidae)[43]; *Eurygaster maura* (Hemiptera: Scutelleridae) [60]; *Dryocosmus kuriphilus* (Hymenoptera: Cynipidae)[36]; *Harmonia axyridis* (Coleoptera: Coccinelidae) [61]; *Psylliodes chrysocephala* (Coleoptera: Chrysomelidae) [62]. In *A. vladimiri*, SCII are exclusively located at the ventral apical tip of the antenna, therefore sharing the same topographical region occupied by MBS. A similar situation, in which sensilla having the

same function (contact chemoreception) are located on the same antennal area was reported for the fruit fly pupal parasitoid *Trichopria drosophilae* Perkins (Hymenoptera: Diapriidae), where the female is equipped with MGS1 and MGS2; the removal of the apical antennomere impaired the ability of the parasitoid to detect its host [63]. These sensilla are known to respond at various compounds found on the substrate. Electrophysiological recordings carried out in different insect species confirmed that these sensilla type act as contact chemoreceptors. For example, electrophysiological recordings on *Trissolcus brochymenae* (Hymenoptera: Platygastridae) showed response of sensilla chaetica to various tastes. In addition, a concentration-dependent effect was observed for few compounds tested, while other compounds had inhibitory effect of *T. brochymenae* response to sugar [64].

On *A. vladimiri* antennae, the major mechanosensory organs were the Sensilla Trichoidea type I, while sensilla campaniformia and Böhm bristles were located solely at the basal part of the antennae in a low number. Sensilla trichoidea are an ubiquitous type of sensilla found in different insects. Although external morphology of sensilla trichoidea is known to differ in length, grooves presence and distribution, their ultrastructural organization is uniform, being made of a sensory neuron ending at a tubular body. For this sensillum, a mechanoreceptive role is hypothesized [29,65–67]. Similarly, campaniform sensilla and Bhom bristles are well known for their proprioreceptive mechanoreceptive function, which can provide information to the insect about the relative position of the antennae during antennation.

Females of *A. vladimiri* were peculiar by having a laterally flattened and enlarged scape, characteristic readily recorded in Encyrtidae. In other Hymenopterans the scape is enlarged and sometimes of specific shape as in the case of the males of *Melittobia australica* Girault [68,69]. These characteristics are usually associated with the specific function it has in insects' life-biology. For example, the scape of *M. australica* is uniquely shaped in order to clasps female's antennae tips during courtship. Moreover, on its base a pheromone producing gland is located [68]. Similarly, in several species belonging to the *Aphelinus* genus, the presence of pheromone producing glands was recorded and the crucial role of their products in mediating intraspecific communication was hypothesised [70,71]. In our observations we did not record any cuticular opening on *A. vladimiri* female scape which could indicate glands presence. Also, apart some sparse Sensilla Trichoidea I, no other structures were found which could indicate a functional role of the enlarged scape. Due to its specific colour pattern, the scape may provide cues for species recognition or absorb heat due to dark colours.

In Hymenoptera, sexual dimorphism is often observed in social insects and parasitoids. A similar situation was described in *A. vladimiri*, in which antennal sensilla play a pivotal role in courtship and mating behaviour [72]. The most prominent differences were: the general shape of the antennae (lack of the enlarged scape and presence of long and elongated antennomeres in males); sensilla number and distribution (presence of long sensilla trichoidea); presence of scales on the ventral side on the male apical flagellomeres. The scales on males of *A. vladimiri* were similar to those described in other Encyrtidae: *Leptomastix dactylopii* Howard, *Rhopus meridionalis* (Ferrière) and *Asitus phragmitis* (Ferrière) [73]. Initially they were described as specialised male sensory structures. However, detailed ultrastructural organization and behavioural investigations confirmed that they represent actually release sites of epidermal glands which produce secretions that act as a contact pheromone, necessary to initiate mating after which they are named release and spread structures (RSS) [73].

5. Conclusions

In conclusion, in this study we reported the ultrastructural organization of antennal sensilla of *A. vladimiri female*. We showed that the antennae are made of seven antennomeres with the club being monosegmented. On the antennae eight morphologically different sensilla types were recorded, belonging to different functional classes. Among the

different types of sensilla, we found two types (MBS and SCII) present only on the female and located in a specific sensory area, for which a specific role in host recognition was hypothesized. The antennae of males are quite different, and have specific structures for which an involvement in sexual recognition is hypothesized. The present study in fact provides a basis for expanding the study of the functional mechanisms underlying interand intraspefic interactions in this important entomophagous species.

Author Contributions: Conceptualization: M. S., P. G., A. L. and R. R.; **methodology**, X.X; **validation**, X.X., Y.Y. and Z.Z.; formal analysis: M. S., P. G., A. L. and R. R..; investigation: M. S., P. G., A. L. and R. R..; resources: A. L. and R.R.; **data curation**, X.X.; writing—original draft preparation: M. S. and R. R.; writing—review and editing: M.S., P.G., A. L. and R. R.. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All microscopy data are available from the authors upon request.

Acknowledgments: SEM data were obtained at the Scanning Electron Microscopy Centre of DAFE (Pisa University); TEM data were obtained at the Centro Universitario di Microscopia Elettronica e a Fluorescenza (CUMEF; University of Perugia). We also thank Dr. Stefano Foschi (Bioplanet srl, Cesena, ITALY) for having provided live specimens of *A. vladimiri*.

Conflicts of Interest: Authors declare no conflict of interest.

References

- 1. Miller, D.R.; Miller, G.L.; Watson, G.W. Invasive species of mealybugs (Hemiptera: Pseudococcidae) and their threat to U.S. agriculture. *Proc Entomol Soc Wash* **2002**, *104*, 825–836.
- 2. Lucchi, A.; Suma, P.; Ladurner, E.; Iodice, A.; Savino, F.; Ricciardi, R.; Cosci, F.; Marchesini, E.; Conte, G.; Benelli, G. Managing the vine mealybug, *Planococcus ficus*, through pheromone-mediated mating disruption. *Environ. Sci. Pollut. Res* **2019**, *26*, 10708–10718, doi:10.1007/S11356-019-04530-6.
- 3. Walton, V.M.; Daane, K.M.; Bentley, W.J.; Millar, J.G.; Larsen, T.E.; Malakar-Kuenen, R. Pheromone-Based mating disruption of *Planococcus ficus* (Hemiptera: Pseudococcidae) in California vineyards. *J. Econ. Entomol* **2006**, *99*, 1280–1290.
- 4. Bertin, S.; Pacifico, D.; Cavalieri, V.; Marzachì, C.; Bosco, D. Transmission of *Grapevine virus A* and *Grapevine leafroll-associated viruses 1* and 3 by *Planococcus ficus* and *Planococcus citri* fed on mixed-infected plants. *Ann. Appl. Biol* **2016**, 169, 53–63, doi:10.1111/AAB.12279.
- 5. Bertin, S.; Cavalieri, V.; Graziano, C.; Bosco, D. Survey of mealybug (Hemiptera: Pseudococcidae) vectors of *Ampelovirus* and *Vitivirus* in vineyards of northwestern Italy. *Phytoparasitica* **2010**, *38*, 401–409, doi:10.1007/s12600-010-0109-5.
- 6. Mansour, R.; Belzunces, L.P.; Suma, P.; Zappalà, L.; Mazzeo, G.; Grissa-Lebdi, K.; Russo, A.; Biondi, A. Vine and citrus mealy-bug pest control based on synthetic chemicals. A review. *Agron. Sustain. Dev* **2018**, *38*, 1–20, doi:10.1007/S13593-018-0513-7.
- 7. Mansour, R.; Grissa Lebdi, K.; Rezgui, S. Assessment of the performance of some new insecticides for the control of the vine mealybug *Planococcus ficus* in a Tunisian vineyard. *Entomol Hell* **2010**, *19*, 21–33, doi:10.12681/eh.11591.
- 8. Cocco, A.; Pacheco da Silva, V.C.; Benelli, G.; Botton, M.; Lucchi, A.; Lentini, A. Sustainable management of the vine mealybug in organic vineyards. *J Pest Sci* **2021**, *94*, 153–185, doi:10.1007/S10340-020-01305-8.
- 9. Franco, C.; Suma, P.; Borges da Silva, E.; Blumberg, D.; Mendel, Z. Management strategies of mealybug pests of citrus in Mediterranean Countries. *Phytoparasitica* **2004**, *32*, 507–522, doi:10.1007/BF02980445.
- 10. Spodek, M.; Ben-Dov, Y.; Mondaca, L.; Protasov, A.; Erel, E.; Mendel, Z. The cotton mealybug, *Phenacoccus solenopsis* Tinsley (Hemiptera: Pseudococcidae) in Israel: pest status, host plants and natural enemies. *Phytoparasitica* **2018**, 46, 45–55, doi:10.1007/S12600-018-0642-1.
- 11. Kairo, M.T.K.; Pollard, G. v.; Peterkin, D.D.; Lopez, V.F. Biological Control of the Hibiscus Mealybug, *Maconellicoccus hirsutus* Green (Hemiptera: Pseudococcidae) in the Caribbean. *Integrated Pest Management Reviews* 2000 5:4 **2000**, 5, 241–254, doi:10.1023/A:1012997619132.
- 12. Lucchi, A.; Benelli, G. Towards pesticide-free farming? Sharing needs and knowledge promotes Integrated Pest Management. *Environ. Sci. Pollut. Res.* **2018**, *25*, 13439–13445, doi:10.1007/S11356-018-1919-0.
- 13. Noyes, J.S. Universal Chalcidoidea Database Available online: https://www.nhm.ac.uk/our-science/data/chalcidoids/database/index.dsml (accessed on 8 August 2022).
- Andreason, S.A.; Triapitsyn, S. v.; Perring, T.M. Untangling the *Anagyrus pseudococci* species complex (Hymenoptera: Encyrtidae), parasitoids of worldwide importance for biological control of mealybugs (Hemiptera: Pseudococcidae): Genetic data corroborates separation of two new, previously misidentified species. *Biol. Control* 2019, 129, 65–82, doi:10.1016/J.BIOCONTROL.2018.09.010.

- 15. Triapitsyn, S. v.; González, D.; Vickerman, D.B.; Noyes, J.S.; White, E.B. Morphological, biological, and molecular comparisons among the different geographical populations of *Anagyrus pseudococci* (Hymenoptera: Encyrtidae), parasitoids of *Planococcus* spp. (Hemiptera: Pseudococcidae), with notes on *Anagyrus dactylopii*. *Biol. Control* **2007**, 41, 14–24, doi:10.1016/j.biocontrol.2006.12.013.
- 16. Soler, J.M.; Falcò-Garí, J.V.; Herrero, B.; Aquino, D.A. The *Anagyrus* (Hymenoptera: Encyrtidae) parasitoids of the obscure mealybug *Pseudococcus viburni* (Hemiptera: Pseudococcidae) in Spain, with description of a new species. *Zootaxa* **2021**, 4980, 83–98, doi:10.11646/zootaxa.4980.1.5.
- 17. Ozaki, M.; Wada-Katsumata, A. Perception and Olfaction of Cuticular Compounds. In *Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology;* Blomquis, G., Bagnères, A.-G., Eds.; Cambridge University Press: Cambridge, 2010; pp. 207–221.
- 18. Dicke, M.; van Loon, J.J.A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. *Entomol Exp Appl* **2000**, 97, 237–249, doi:10.1046/J.1570-7458.2000.00736.X.
- 19. Vet, L.E.M.; Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. *Annu Rev Entomol* **1992**, 37, 141–172, doi:10.1146/annurev.en.37.010192.001041.
- 20. Zacharuk, R.Y. Antennae and Sensilla. In *Comprehensive Insect Physiology, Chemistry and Pharmacology;* Kerkut, G, A., Gilbert, L, I., Eds.; Pergamon Press, Oxford, 1985.
- 21. Fortuna, T.M.; Franco, J.C.; Rebelo, M.T. Morphology and distribution of antennal sensilla in a mealybug parasitoid, *Anagyrus* sp. near *pseudococci* (Hymenoptera, Encyrtidae). *Microsc. Microanal.* **2015**, *21*, 8–9, doi:10.1017/S1431927614013713.
- 22. Gauld, I.; Bolton, B. The Hymenoptera; Oxford university press, 1988; ISBN 0198585217.
- 23. Guerrieri, E.; Noyes, J.S. Revision of European species of genus *Metaphycus* Mercet (Hymenoptera: Chalcidoidea: Encyrtidae), parasitoids of scale insects (Homoptera: Coccoidea). *Syst Entomol* **2000**, 25, 147–222, doi:10.1046/j.1365-3113.2000.00099.x.
- 24. Rudoy, A.; Zhu, C.D.; Ferrari, R.R.; Zhang, Y.Z. Integrative taxonomy based on morphometric and molecular data supports recognition of the three cryptic species within the *Encyrtus sasakii* complex (Hymenoptera, Encyrtidae). *J Hymenopt Res* **2022**, 90, 129–152, doi:10.3897/JHR.90.75807.
- 25. Roh, G.H.; Lee, Y.J.; Zhu, J.J.; Park, C.G. Morphology and distribution of antennal sensilla in egg parasitoid, *Ooencyrtus neza-rae* (Hymenoptera: Encyrtidae). *Microsc Res Tech* **2019**, *82*, 972–982, doi:10.1002/JEMT.23244.
- 26. Zhou, H.; Wu, W.J.; Zhang, F.P.; Fu, Y.G. Scanning electron microscopy studies of the antennal sensilla of *Metaphycus parasaissetiae* Zhang & Huang (Hymenoptera: Encyrtidae). *Neotrop Entomol* **2013**, 42, 278–287, doi:10.1007/S13744-013-0113-9.
- 27. van Baaren, J.; Barbier, R.; Nénon, J.P. Female antennal sensilla of *Epidinocarsis lopezi* and *Leptomastix dactylopii* (Hymenoptera: Encyrtidae), parasitoids of pseudococcid mealybugs. *Can J Zool* **1996**, 74, 710–720, doi:10.1139/Z96-080.
- 28. Xi, Y.-Q.; Yin, X.-M.; Zhu, C.-D.; Guerrieri, E.; Zhang, Y.-Z. Scanning electron microscopy studies of antennal sensilla of *Ooencyrtus phongi* (Hymenoptera: Encyrtidae). *Microsc Res Tech* **2011**, 74, 936–945, doi:10.1002/jemt.20979.
- 29. Keil, T.A.; Steinbrecht, R.A. Mechanosensitive and Olfactory Sensilla of Insects. In *Insect ultrastructure*; King, R.C., Akai, H., Eds.; Springer: Boston, 1984; pp. 477–516.
- 30. Schmidt, H.R.; Benton, R. Molecular mechanisms of olfactory detection in insects: beyond receptors. *Open Biol* **2020**, *10*, 200252, doi:10.1098/rsob.200252.
- 31. Barlin, M.R.; Bradleigh Vinson, S. Multiporous plate sensilla in antennae of the Chalcidoidea (Hymenoptera). *Int J Insect Morphol Embryol* **1981**, 10, 29–42, doi:10.1016/0020-7322(81)90011-8.
- 32. Basibuyuk, H.H.; Quicke, D.L.J. Gross morphology of multiporous plate sensilla in the Hymenoptera (Insecta). *Zool Scr* **1999**, 28, 51–67, doi:10.1046/j.1463-6409.1999.00007.x.
- 33. Polidori, C.; Nieves-Aldrey, J.L. Diverse filters to sense: Great variability of antennal morphology and sensillar equipment in gall-wasps (Hymenoptera: Cynipidae). *PLoS One* **2014**, *9*, 30–33, doi:10.1371/journal.pone.0101843.
- 34. Borden, J.H.; Chong, L.; Rose, A. Morphology of the elongate placoid sensillum on the antennae of *Itoplectis conquisitor*. *Ann Entomol Soc Am* **1978**, 71, 223–227, doi:10.1093/aesa/71.2.223.
- 35. Onagbola, E.O.; Boina, D.R.; Hermann, S.L.; Stelinski, L.L. Antennal Sensilla of *Tamarixia radiata* (Hymenoptera: Eulophidae), a Parasitoid of *Diaphorina citri* (Hemiptera: Psyllidae). *Ann Entomol Soc Am* **2009**, 102, 523–531, doi:10.1603/008.102.0324.
- 36. Sevarika, M.; Stacconi, M.V.R.; Romani, R. Fine morphology of antennal and ovipositor sensory structures of the gall chestnut wasp, *Dryocosmus kuriphilus*. *Insects* **2021**, *12*, doi:10.3390/insects12030231.
- 37. Barlin, M.R.; Bradleigh Vinson, S.; Piper, G.L. Ultrastructure of the antennal sensilla of the cockroach-egg parasitoid, *Tetrastichus hagenowii* (Hymenoptera: Eulophidae). *J. Morphol.* **1981**, *168*, 97–108.
- 38. Richerson, J. v.; Borden, J.H.; Hollingdale, J. Morphology of a unique sensillum placodeum on the antennae of *Coeloides brunneri* (Hymenoptera: Braconidae). *Can J Zool* **1972**, *50*, 909–913, doi:10.1139/z72-123.
- 39. Borden, J.H.; Rose, A.; Chorney, R.J. Morphology of the elongate sensillum placodeum on the antennae of *Aphidius smithi* (Hymenoptera: Aphidiidae). *Can J Zool* **1978**, *56*, 519–525, doi:10.1139/z78-075.
- 40. Slifer, E.H.; Sekhon, S.S. Fine structure of the sense organs on the antennal flagellum of the honey bee, *Apis mellifera* Linnaeus. *J Morphol* **1961**, *109*, 351–381, doi:10.1002/jmor.1051090308.
- 41. Kaissling, K.-E.; Renner, M. Antennale Rezeptoren für Queen Substance und Sterzelduft bei der Honigbiene. *Z Vgl Physiol* **1968**, *59*, 357–361, doi:10.1007/BF00365967.
- 42. Chang, H.; Guo, M.; Wang, B.; Liu, Y.; Dong, S.; Wang, G. Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two *Helicoverpa* species using the same pheromone components. *Sci. Rep.* **2016**, *6*, 1–12, doi:10.1038/srep18742.

- 43. Ruschioni, S.; Riolo, P.; Verdolini, E.; Peri, E.; Guarino, S.; Colazza, S.; Romani, R.; Isidoro, N. Fine structure of antennal sensilla of *Paysandisia archon* and electrophysiological responses to volatile compounds associated with host palms. *PLoS One* **2015**, *10*, doi:10.1371/journal.pone.0124607.
- 44. Li, X.; Lu, D.; Liu, X.; Zhang, Q.; Zhou, X. Ultrastructural Characterization of Olfactory Sensilla and Immunolocali-zation of Odorant Binding and Chemosensory Proteins from an Ectoparasitoid *Scleroderma guani* (Hymenoptera: Bethylidae). *Int J Biol Sci* 2011, 7, 848–868.
- 45. Dong, W.Y.; Wang, B.; Wang, G.R. Morphological and ultrastructural characterization of antennal sensilla and the detection of floral scent volatiles in *Eupeodes corollae* (Diptera: Syrphidae). *Front Neuroanat* **2021**, *15*, doi:10.3389/fnana.2021.791900.
- 46. Riolo, P.; Minuz, R.L.; Anfora, G.; Stacconi, M.V.R.; Carlin, S.; Isidoro, N.; Romani, R. Perception of host plant volatiles in *Hyalesthes obsoletus*: Behavior, morphology, and electrophysiology. *J Chem Ecol* **2012**, *38*, 1017–1030, doi:10.1007/S10886-012-0154-2/FIGURES/5.
- 47. Merivee, E.; Rahi, M.; Bresciani, J.; Ravn, H.P.; Luik, A. Antennal sensilla of the click beetle, *Limonius aeruginosus* (Olivier) (Coleoptera: Elateridae). *Int J Insect Morphol Embryol* **1998**, 27, 311–318, doi:10.1016/S0020-7322(98)00023-3.
- 48. di Giulio, A.; Maurizi, E.; Rossi Stacconi, M.V.; Romani, R. Functional structure of antennal sensilla in the myrmecophilous beetle *Paussus favieri* (Coleoptera, Carabidae, Paussini). *Micron* **2012**, *43*, 705–719, doi:10.1016/j.micron.2011.10.013.
- 49. Li, Y.; Liu, F.; Du, X.; Li, Z.; Wu, J. Ultrastructure of antennal sensilla of three fruit borers (Lepidoptera: Crambidae or Tortricidae). *PLoS One* **2018**, *13*, e0205604, doi:10.1371/JOURNAL.PONE.0205604.
- 50. Larsson, M.C.; Hallberg, E.; Kozlov, M. v.; Francke, W.; Hansson, B.S.; Löfstedt, C. Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths *Eriocrania* spp. (Lepidoptera: Eriocraniidae). *J. Exp. Biol.* **2002**, 205, 989–998, doi:10.1242/JEB.205.7.989.
- 51. Cave, R.D.; Gaylor, M.J. Antennal sensilla of male and female *Telenomus reynoldsi* Gordh and Coker (Hymenoptera: Scelionidae). *Int J Insect Morphol Embryol* 1987, 16, 27–39, doi:10.1016/0020-7322(87)90054-7.
- 52. Bin, F.; Colazza, S.; Isidoro, N.; Solinas, M.; Vinson, S.B. Antennal chemosensilla and glands, and their possible meaning in the reproductive behaviour of *Trissolcus basalis* (Woll.) (Hym.: Scelionidae). *Entomologica* **1989**, 24, 33–97.
- 53. Amornsak, W.; Cribb, B.; Gordh, G. External morphology of antennal sensilla of *Trichogramma australicum* Girault (Hymenoptera: Trichogrammatidae). *Int J Insect Morphol Embryol* **1998**, 27, 67–82, doi:10.1016/S0020-7322(98)00003-8.
- 54. van Baaren, J.; Boivin, G.; le Lannic, J.; Nénon, J.-P. Comparison of antennal sensilla of *Anaphes victus* and *A. listronoti* (Hymenoptera, Mymaridae), egg parasitoids of Curculionidae. *Zoomorphology* **1999**, *119*, 1–8, doi:10.1007/s004350050076.
- 55. McIver, SusanB. Fine structure of antennal grooved pegs of the mosquito, *Aedes aegypti*. *Cell Tissue Res* **1974**, 153, doi:10.1007/BF00229162.
- 56. Diehl, P.A.; Vlimant, M.; Guerenstein, P.; Guerin, P.M. Ultrastructure and receptor cell responses of the antennal grooved peg sensilla of *Triatoma infestans* (Hemiptera: Reduviidae). *Arthropod Struct Dev* **2003**, *31*, 271–285, doi:10.1016/S1467-8039(03)00004-5.
- 57. Isidoro, N.; Romani, R.; Bin, F. Antennal multiporous sensilla: Their gustatory features for host recognition in female parasitic wasps (Insecta, Hymenoptera: Platygastroidea). *Microsc Res Tech* **2001**, *55*, 350–358, doi:10.1002/jemt.1183.
- 58. Ruschioni, S.; Romani, R.; Romani, R.O. Morphology and distribution of antennal multiporous gustatory sensilla related to host recognition in some *Trichogramma* spp. *Bull Insectology* **2012**, *65*, 171–176.
- 59. Isidoro, N.; Bin, F.; Colazza, S.; Vinson, S.B. Morphology of antennal gustatory sensilla and glands in some parasitoid Hymenoptera with hypothesis on their role in sex and host recognition. *J Hymenopt Res* **1996**, *5*, 206–239.
- 60. Romani, R.; Rossi Stacconi, M.V. Mapping and ultrastructure of antennal chemosensilla of the wheat bug *Eurygaster maura*. *Insect Sci* **2009**, *16*, 193–203, doi:10.1111/j.1744-7917.2009.00271.x.
- 61. Sevarika, M.; Rondoni, G.; Conti, E.; Romani, R. Antennal sensory organs and glands of the harlequin ladybird, *Harmonia axyridis*. *Entomol Exp Appl* **2021**, 169, 111–124, doi:10.1111/eea.12948.
- 62. Isidoro, N.; Bartlet, E.; Ziesmann, J.; Williams, I.H. Antennal contact chemosensilla in *Psylliodes chrysocephala* responding to cruciferous allelochemicals. *Physiol Entomol* **1998**, 23, 131–138, doi:10.1046/j.1365-3032.1998.232066.x.
- 63. Romani, R.; Isidoro, N.; Bin, F.; Vinson, & S.B. Host recognition in the pupal parasitoid *Trichopria drosophilae*: a morphofunctional approach. *Entomol Exp Appl* **2002**, *105*, 119–128, doi:10.1046/J.1570-7458.2002.01040.X.
- 64. Iacovone, A.; Salerno, G.; French, A.S.; Conti, E.; Marion-Poll, F. Antennal gustatory perception and behavioural responses in *Trissolcus brochymenae* females. *J Insect Physiol* **2015**, 78, 15–25, doi:10.1016/j.jinsphys.2015.04.013.
- 65. McIver, S.B. Mechanoreception. Comprehensive Insect Physiology, Biochemistry and Phramacology 1985, 6, 71–132.
- 66. Keil, T.A. Functional morphology of insect mechanoreceptors. *Microsc Res Tech* **1997**, *39*, 506–531, doi:10.1002/(SICI)1097-0029(19971215)39:6<506::AID-JEMT5>3.0.CO;2-B.
- 67. Krishnan, A.; Sane, S.P. Antennal Mechanosensors and Their Evolutionary Antecedents. In *Advances in Insect Physiology*; Elsevier Ltd., 2015; Vol. 49, pp. 59–99.
- 68. Dahms, E.C. An interpretation of the structure and function of the antennal sense organs of *Melittobia australica* (Hymenoptera: Eulophidae) with the discovery of a large dermal gland in the male scape. *Mem Queensl Mus* **1984**, 21, 361–385.
- 69. Matthews, R.W.; González, J.M.; Matthews, J.R.; Deyrup, L.D. Biology of the Parasitoid *Melittobia* (Hymenoptera: Eulophidae)*. *Annu Rev Entomol* **2009**, *54*, 251–266, doi:10.1146/annurev.ento.54.110807.090440.
- 70. Romani, R.; Grasso, D.A.; Mori, A.; Isidoro, N.; Moli, F. le Antennal glands of the slave-making ant *Polyergus rufescens* and its slave species *Formica cunicularia* (Hymenoptera, Formicidae). *Can J Zool* **2006**, *84*, 490–494, doi:10.1139/z05-187.

- 71. Shirley, X.A.; Woolle, J.B.; Hoppe, K.R.; Isidoro, N.; Romani, R. Evolution of glandular structures on the scape of males in the genus *Aphelinus* Dalman (Hymenoptera, Aphelinidae). *J Hymenopt Res* **2019**, 72, 27–43, doi:10.3897/jhr.72.36356.
- 72. Romano, D.; Benelli, G.; Stefanini, C.; Desneux, N.; Ramirez-Romero, R.; Canale, A.; Lucchi, A. Behavioral asymmetries in the mealybug parasitoid *Anagyrus* sp. near *pseudococci*: does lateralized antennal tapping predict male mating success? *J Pest Sci* **2018**, *91*, 341–349, doi:10.1007/s10340-017-0903-7.
- 73. Guerrieri, E.; Pedata, P.A.; Romani, R.; Isidoro, N.; Bin, F. Functional anatomy of male antennal glands in three species of Encyrtidae (Hymenoptera: Chalcidoidea). *J Nat Hist* **2001**, *35*, 41–54, doi:10.1080/002229301447880.