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Abstract: As a model for economic and ecological systems, replicator dynamics represents a basic 1

form of agent competition for finite resources. Here, we investigate the effects of stochastic resetting 2

in this kind of processes. Random reset events abruptly lead individual resources to a small value 3

from which dynamics must start anew. Numerical results show that resource distribution over the 4

population of competing agents develops highly nonuniform profiles, exhibiting clustering and 5

fluctuations with anomalous dependence on the population size. This non-standard statistical behav- 6

ior jeopardizes an analytical treatment based on mean-field assumptions. We propose alternative 7

simplified analytical approaches which provide a stylized description of entropy evolution for the 8

clustered distribution of resources and explain the unusually slow decrease of fluctuations. 9

Keywords: replicator population; stochastic resetting; resource distribution; anomalous fluctuations; 10

clustering 11

1. Introduction 12

In theoretical biology, a replicator is an abstract unit capable of creating copies of itself 13

through interaction with the environment [1,2]. This very generic concept –which provides 14

a unified tool for studying evolutionary dynamics at several levels– encompasses such 15

entities as nucleic-acid molecules (RNA and DNA), genes, cells, and, of course, living 16

organisms. In the theory of cultural evolution, an analogous notion applies to memes, the 17

units of cultural information, thus extending the same theoretical framework to social and 18

economic phenomena [3]. The concept of replicator turned out to be especially fruitful 19

within evolutionary game theory, as a model for biological evolution under natural selection. 20

In this context, replicators represent strategies whose individual profit, measured by their 21

relative reproduction success, depends on both their intrinsic fitness and their mutual 22

interaction [4]. 23

Replicator dynamics is a mathematical model, used in evolutionary game theory, that 24

describes how the relative prevalence of different strategies changes in time [5,6]. If, in 25

a large population, xi(t) is the fraction of players adopting strategy i at time t, replicator 26

dynamics prescribe that 27

ẋi = xi

[
fi(x)−

N

∑
j=1

f j(x)xj

]
, (1)

(i = 1, 2, . . . , N), where fi(x) denotes the fitness of strategy i, and generally depends on 28

all the components of x = (x1, x2, . . . , xN). It can be seen that the N-dimensional simplex, 29

given by ∑i xi = 1 with xi ≥ 0 for all i, is invariant under Equations (1), and also acts as a 30

global attractor for all non-negative initial conditions. From the perspective of population 31

dynamics, Equations (1) can be interpreted as the time evolution of N interacting species 32

with fitnesses fi(x), additionally subjected to a global mechanism of growth limitation, 33
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given by the second term in the brackets, which asymptotically constrains populations to 34

the subspace where ∑i xi = 1. In this work, we adopt a similar interpretation, where xi 35

represents the resources (richness) of an economic agent i in a population of N interacting 36

agents. 37

In the simplest version of replicator dynamics, all fitnesses are constant: fi(x) = λi for 38

all i [7]. In this situation, the first term in the right-hand side of Equations (1) induces an 39

exponential growth of the resources xi, at rate λi. The opposing effect of the second term, 40

however, limits this growth. For sufficiently long times, in fact, the system approaches the 41

N-dimensional simplex. The outcome of these contrary trends is that, asymptotically, the 42

replicator with maximal fitness accumulates all the resources. Namely, for t→ ∞, 43

xi =

{
1 if λi = max{λ1, λ2, · · · , λN},
0 otherwise.

(2)

Thus, with constant fitnesses, the population always ends in a state where resources are 44

trivially concentrated in just one agent. If two or more agents have identical maximal 45

fitnesses, all the resources become shared between them in proportions depending on the 46

initial values xi(0). 47

Our aim in this paper is to study the effect of reset events on the replicator dynamics 48

with constant fitnesses. Resetting is a stochastic mechanism by which a dynamical variable 49

–in the present case, xi(t)– is occasionally brought to a prefixed value, from which its 50

dynamics start anew. This mechanism is able to severely modify the statistical behavior 51

of a dynamical system [8]. In the present case, we expect it to inhibit the accumulation of 52

resources by a single agent or a small group of agents, bringing about a nontrivial resource 53

distribution over the replicator population. To gain insight into the overall behavior of 54

our model, which we present in Section 2, Section 3 is devoted to the numerical and 55

analytical study of the case of a single replicator. In Section 4, we show that the combined 56

effect of replicator dynamics and resetting in a large population with identical fitnesses 57

results in anomalous statistical properties, with an extremely slow decrease of fluctuations 58

as the population size grows. This unusual feature is accompanied by clustering in the 59

amount of individual resources, which, over time, sustains a highly heterogeneous resource 60

distribution over the population. Analytical arguments based on a toy two-cluster model 61

are proposed to explain these numerical observations. Finally, Section 5 is devoted to 62

discussing our main results. 63

2. Replicators with Resetting 64

Stochastic resetting was initially introduced as a mechanism of unbounded growth 65

limitation in the context of demographic dynamics [9,10]. Remarkably, when combined with 66

multiplicative (exponential) growth, it gives rise to long-time power-law distributions for 67

the relevant variables [10,11]. It can therefore be used as a model for the emergence of such 68

distributions in the broad class of phenomena where they are observed [12], ranging from 69

biological taxon abundances [13] to economic resource sharing [14]. Since its introduction 70

more than two decades ago, the statistical effects of stochastic resetting have been studied 71

in a large variety of dynamical processes, such as transport on networks [15], hydrologic 72

phenomena [16], RNA kinetics [17], and active-particle motion [18], among many others 73

[8]. 74

As advanced in the Introduction, stochastic resetting acts on a variable x(t), whose 75

evolution is otherwise governed by certain dynamical rules, instantaneously bringing 76

its value to a prefixed level u. The times at which these events take place are uniformly 77

distributed at random with frequency q –namely, the average time between two consecutive 78

events is q−1– and the evolution of x(t) begins de novo after each resetting. Reset events 79

emulate the effect of sudden crises or catastrophic occurrences, where the state of the 80

system under study suffers an abrupt change in a short time [19]. This kind of phenomenon 81

is not uncommon in social and economic contexts [11,20,21]. 82
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In the replicator dynamics with constant fitnesses λi, we introduce reset events by 83

proposing 84

ẋi = xi

(
λi −

N

∑
j=1

λjxj

)
+ (ui − xi)Pi(t), (3)

(i = 1, 2, . . . , N; cf. Equation (1)), where 85

Pi(t) = ∑
k

δ(t− ti,k) (4)

is a Poisson process of frequency qi [16]. For each i, the Dirac delta functions in the sum are 86

centered at the times ti,k (k = 1, 2, . . . ) at which xi(t) is reset to a small value ui. In fact, the 87

prefactor ui − xi in the last term of Equations (3) insures that resetting occurs to that specific 88

value. The Markovian stochastic equations (3) can be dealt with by means of a series of 89

standard methods, notably, the Chapman-Kolmogorov equation, which governs the joint 90

probability distribution of the resources xi(t) [22]. It can also be treated numerically, by 91

a rather intuitive implementation of the Poisson process along discretized time [23]. In 92

the following sections, we use these techniques to study the collective dynamics of the 93

replicator population with resetting. 94

3. Dynamics of a Single Replicator with Resetting 95

As a first step in the analysis of our model, it is instructive to study the case of a single 96

replicator, N = 1. Equation (3) becomes 97

ẋ = λx(1− x) + (u− x)P(t), (5)

with P(t) = ∑k δ(t− tk). The random reset times tk have frequency q. The first term in the 98

right-hand side of Equation (5) makes it clear that, for a single replicator, the deterministic 99

contribution to the dynamics is equivalent to logistic growth [24]. Due to arbitrariness in 100

the choice of time units, the system has two independent parameters only: the ratio q/λ, 101

and the reset value u. 102

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8

x(t
)

a
b

x(t
)

� t
u

Figure 1. Two realizations of the solution to the stochastic equation (5), for u = 0.01 and different
values of the ratio q/λ. (a) q/λ = 0.1. (b) q/λ = 2.5. Note different scales in the vertical axes.

Figure 1 shows a pair of realizations of x(t), for u = 0.01 and two values of q/λ, 103

exhibiting qualitatively different behavior. For a relatively small resetting frequency, q/λ = 104

0.1 (upper panel), x(t) usually has enough time to reach the zone of logistic saturation, 105

just below the level of maximal resources (x = 1). The evolution is only occasionally 106

punctuated by reset events to x = u. On the other hand, when the resetting frequency is 107

larger (q/λ = 2.5, lower panel), x(t) barely transits the zone of exponential growth before 108
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it is interrupted by a reset event. In this latter situation, the evolution is very similar to the 109

case where the deterministic part of the dynamics is purely multiplicative, which we have 110

analyzed in detail in a recent contribution [19]. 111

Assuming that the stochastic process represented by Equation (5) reaches a stationary 112

regime for long times, the stationary distribution for x, f st(x), can be obtained from the 113

time-independent Chapman-Kolmogorov equation 114

d
dx
[
v(x) f st(x)

]
= qδ(u− x)− q f st(x). (6)

Here, v(x) = λx(1− x) is the velocity of probability drift induced by the deterministic 115

logistic dynamics. The solution to this equation reads 116

f st(x) =
q
λ

(
1− u

u

)−q/λ

x−1−q/λ(1− x)−1+q/λ (7)

for u ≤ x < 1, and f st(x) = 0 otherwise. This stationary distribution behaves as a power 117

law both for small and large values of x. For q/λ > 1, the exponent of 1− x is positive, and 118

the distribution has a maximum at x = u while it decays to zero as x → 1. For q/λ < 1, 119

on the other hand, f st(x) exhibits a bimodal profile, with a maximum at x = u and a 120

divergence at x = 1. This case is illustrated in Figure 2, where we plot the distribution 121

as a function of both x (left panel) and 1− x (right panel) for u = 0.01 and q/λ = 0.1. 122

The log-log axes emphasize the power-law dependence toward the two ends. Excellent 123

agreement between analytical and numerical results supports the assumption of a well- 124

defined long-time stationary regime for the stochastic process. The bimodal concentration 125

of resources at the extreme values, with the ensuing depletion in the intermediate zone, is a 126

direct consequence of the competing effect of logistic growth, which favors accumulation 127

near the maximum, and of reset events, which populate the zone of lower resources. 128

0 . 0 1 0 . 1 1

1

1 0

0 . 0 1 0 . 1 1

f s t ( x )

x

a b

1−x
Figure 2. Stationary probability distribution for the solution to the stochastic equation (5), f st(x), (a)
as a function of x and (b) as a function of 1− x, for u = 0.01 and q/λ = 0.1. The line stands for the
analytical expression (7). Symbols correspond to a 100-column histogram, built from 4× 105 samples
of x(t) taken from a numerical realization of Equation (5) every 10 time units. The numerical solution
was realized by means of a standard finite-difference algorithm with a time step of 10−3 time units.

4. Fluctuations and Clustering in Large Homogeneous Populations 129

Turning now the attention to the case with N > 1, we consider homogeneous replicator 130

populations, in which the parameters ui, λi, and qi in Equation (3) are the same for all 131
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agents. In this situation, agents differ from each other in the individual realizations of the 132

sequence of stochastic reset events only. This homogeneity implies that none of them has 133

an a priori advantage based on fitness, or on the frequency and strength of resetting. Thus, 134

any nontrivial emergent collective behavior should be ascribed to the randomness in the 135

time distribution of reset events. 136

For a homogeneous population, Equation (3) reads 137

ẋi = λxi(1− xT) + (u− xi)Pi(t), (8)

with Pi(t) given as in Equation (4) with the same resetting frequency q for all i. In turn, 138

xT =
N

∑
j=1

xj (9)

stands for the total resources over the population. Assuming that, as in the case of N = 1, 139

the system attains a well-defined stationary state for long times, we expect that xT reaches 140

a constant value if N is large enough. Of course, this requires that resource fluctuations 141

are self-averaging over time and over the ensemble. If these conditions are fulfilled, the 142

stationary distribution for individual resources satisfies Equation (6) with, now, v(x) = 143

λx(1− xT). The solution is 144

f st(x) =
quq/λ(1−xT)

λ(1− xT)
x−1−q/λ(1−xT), (10)

for u ≤ x < 1 and 0 otherwise. The absence of a logistic nonlinearity in Equation (8) 145

determines that f st(x) is now a pure power law; cf. (7). 146

The value of xT in Equation (10) must be obtained self-consistently, requiring that it 147

coincides with the total resources calculated from the distribution f st(x), namely 148

xT = N
∫ 1

u
x f st(x)dx =

Nqu
q− λ(1− xT)

. (11)

The only positive solution to this self-consistency equation is 149

xT =
λ/q− 1 +

√
(λ/q− 1)2 + 4Nuλ/q

2λ/q
. (12)

For a given value of Nu, the total resources vary monotonically from xT ≈ 1− q/λ ≈ 1 150

for q � λ to xT ≈ Nu for q � λ. In the first limit, when the resetting frequency is 151

negligible, the population is driven by almost purely replicator dynamics, and one single 152

agent typically concentrates all the resources. When, on the other hand, reset events 153

are dominant, the N agents always have resources close to the minimal value u. The 154

corresponding distributions are 155

f st(x) ≈


(u−1 − 1)−1x−2 for q� λ,

(u−q/λ − 1)−1x−1−q/λ for q� λ.
(13)

In the remaining of this paper, we fix the attention on the case q < λ. Indeed, much as 156

in the case of N = 1 analyzed in Section 3, for q > λ –when reset events dominate over 157

resource growth– the replicator dynamics hardly manifests itself, and evolution does not 158

essentially differ from that of a system of non-interacting multiplicative elements with 159

resetting ([19], cf. Figure 1b). For brevity, numerical results are presented for just a few 160

parameter sets, which we have found to be representative of more general situations. 161

Following the same numerical techniques used in the case of a single replicator, 162

we have computed the stationary distribution of individual resources for populations 163
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of different sizes, with Nu = 0.01 and q/λ = 0.1. According to the analytical result of 164

Equation (12), all these systems have the same total resources, xT ≈ 0.901. Symbols in 165

Figure 3 show histograms of f st(x) for three values of N, analogous to those presented in 166

Figure 2 for N = 1. Lines stand for the corresponding analytical prediction (10). 167

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
10−6

10−3

100

103

106

f s t ( x )

x

N  =1 0
N  =1 0 3

N  =1 0 5

10−7 10−6 10−5 10−4 10−3 10−20

1 x 1 0 7

x 1 0 4
 

x 1 0 2

Figure 3. Symbols: Numerical estimation of the stationary distribution f st(x) for three values of
N, with Nu = 0.01 and q/λ = 0.1. Lines: Analytical solution (10) to the stationary Chapman-
Kolmogorov equation, for the same parameters. Inset: The same data in log-linear scales, for a better
appraisal in the upper part of the vertical axis. The data for N = 10 and 103 have been scaled by the
factors indicated in the plot.

It is apparent that, although numerical and analytical results follow the same general 168

trend in the distribution of resources, there are important systematic deviations along the 169

whole interval of the variable x. The deviations decrease in magnitude as the population 170

grows, but are still non-negligible for a large system of 105 replicators. For this size and 171

large x, the slopes of the power-law tails in the numerical estimation and the analytical 172

prediction are very similar but, as for the values of the distributions, the former are about 173

one order of magnitude above the latter. The difference has the opposite sign at small x, as 174

shown in the inset. We show in the following paragraphs that these discrepancies originate 175

in the anomalous statistical behavior of the total resources xT(t). Its fluctuations along 176

time, in fact, decay very slowly with the system size N. This indicates that our assumption 177

that xT is constant, used to solve the stationary Chapman-Kolmogorov equation, may only 178

hold for extremely large populations, drastically limiting the usefulness of the analytical 179

approach in this kind of systems. 180

4.1. Anomalous fluctuations of total resources 181

Figure 4a presents numerical estimations of the stationary distribution of xT along 182

time, in realizations of Equation (8) for different system sizes N. In all cases, f st(xT) is 183

sharply peaked around a large value xT ≈ 0.93, and exhibits a broad shoulder for smaller 184

xT . Overall, this behavior is compatible with the analytically predicted value, xT ≈ 0.901, 185

obtained from Equation (12). Note however the rather slow change of the shoulder at small 186

xT as N grows: a variation by a factor of 103 in the size of the population leads to a decrease 187

of just above one order of magnitude in the height of the distribution in that zone. 188
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N
Figure 4. (a): Stationary distribution f st(xT) of total resources xT , for four values of N, Nu = 0.01,
and q/λ = 0.1. (b): Coefficient of variation CV as a function of N. The dashed curve is a B-spline
approximation included as a guide to the eye. All results are estimations obtained from numerical
solutions of Equation (8) along 2× 108 time steps.

This weak dependence on N is remarkably apparent in the coefficient of variation of 189

xT , defined as 190

CV =
1
〈xT〉

√
1
T

∫ T

0
[xT(t)− 〈xT〉]2dt, (14)

where 191

〈xT〉 =
1
T

∫ T

0
xT(t)dt (15)

is the time average of xT(t), and T is a sufficiently long averaging interval. The coefficient 192

CV encompasses overall statistical properties of f st(xT) in a single quantity, as a measure 193

of the fluctuations of xT(t) relative to its average. Figure 4b is a log-log plot of CV as 194

a function of N. Across the five orders of magnitude covered by the system sizes, the 195

coefficient of variation only decreases by a factor of 3, and there is no clear indication that 196

it might approach zero as N → ∞. In fact, within this rather wide interval of N, it lacks 197

the typical power-law trend that characterizes the system-size dependence of fluctuations 198

in self-averaging statistical systems (usually, N−z with 0 < z < 1) [25]. This hints at a 199

strongly heterogeneous behavior within the population, and calls for a closer look at the 200

time evolution of individual replicators. 201

4.2. Heterogeneity and clustering in the evolution of resources 202

The darkest curve in Figure 5a shows the evolution of total resources xT(t) in a 203

population of N = 104 replicators, with Nu = 0.01 and q/λ = 0.1. At the initial time, 204

all the replicators have identical resources, x(0) = u. We see that, most of the time, xT(t) 205

fluctuates close to its maximum value. Intermittently, however, total resources exhibit sharp 206

collapses where xT(t) suddenly drops to a small value, followed by a rapid recovery. 207

Other curves in Figure 5a show xi(t) for the three agents with highest resources at 208

each time. These curves demonstrate the typically heterogeneous resource distribution 209

over the population: most of the time, these three replicators accumulate a large fraction 210

of the total resources. Comparison with xT(t), moreover, illustrates how collapses in total 211

resources usually coincide with a reset event of the richest replicator. 212

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 November 2022                   doi:10.20944/preprints202211.0265.v1

https://doi.org/10.20944/preprints202211.0265.v1


8 of 13

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 x T

1 s t
2 n d
3 r dx(t

)
a

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0
2
4
6
8

b

H(
t)

� t
Figure 5. (a): Evolution of total resources, xT(t), and of individual resources for the three replicators
with largest xi(t) at each time, in a realization with N = 104, Nu = 0.01, and q/λ = 0.1. (b): Entropy
of individual shares, Equation (16), for the same realization. The dashed segment has the slope
analytically predicted for the decrease of H(t) with the two-cluster model of Section 4.3.

As a more compact characterization of heterogeneity in the distribution of resources 213

over the population, we have computed the entropy of the individual shares xi/xT as a 214

function of time: 215

H(t) = −
N

∑
i=1

xi(t)
xT(t)

ln
xi(t)
xT(t)

. (16)

This quantity is depicted in Figure 5b for the same realization as in the upper panel. It 216

shows that, in the intervals between collapses of xT(t), resources progressively accumulate 217

in less and less replicators. Resetting of one of the replicators with high resources, in turn, 218

entails a sudden growth of H(t), with an ensuing decrease as resources become increasingly 219

concentrated. 220

During the intervals between collapses, we expect the population to be divided into at 221

least two groups with different resource distributions inside each group. Those replicators 222

that have undergone a reset event since the latest collapse should have low resources, close 223

to the resetting level u. On the other hand, replicators that have evolved without resource 224

resetting in the same period should possess, on the average, relatively higher resources, 225

with a distribution closer to the equilibrium profile of Equation (10). In a succession of 226

several consecutive collapses, the same mechanism may generate more than two groups, 227

leading to a clustered, markedly heterogeneous resource distribution. 228

Clustering in the resource distribution is well illustrated by a Zipf plot, in which 229

individual resources are represented against the rank of each replicator in a list sorted by 230

decreasing values of xi. Figure 6 shows snapshots of this kind of plot at four times, in a 231

system of N = 5000 replicators. Other parameters are as in Figure 5. For λt = 89, the first 232

collapse has not taken place yet. In this situation, except for the first-rank replicator which 233

already monopolizes practically all resources, the distribution over the population closely 234

follows the equilibrium profile, whose slope is shown by the dashed line. As time elapses, 235

the occurrence of collapses creates clusters, which in the Zipf plots appear as more or less 236

flat plateaus separated by much sharper steps. In the supplementary video S1, which 237

shows an animation of the Zipf plots for the same realization along time, the appearance, 238

evolution, and fading of these plateaus is apparent. 239
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Figure 6. Four snapshots of a Zipf plot of individual resources versus rank in a decreasing list of
resources, in a population of N = 5000 replicators with Nu = 0.01 and q/λ = 0.1. The dashed
segments show the slope that the plot should exhibit if the population had reached the equilibrium
distribution of Equation (10). Plateaus of different sizes at different times reveal the formation of
groups and, thus, clustering in the resource distribution.

Intermittent collapses of total resources and the consequent clustering of resource 240

distribution, leading to an overall highly non-uniform behavior inside the population, are 241

likely determinants of the differences observed between analytical and numerical results, 242

as illustrated by Figure 3, and the slow decay of fluctuations of Figure 4b. In the following, 243

under a few simplifying assumptions, we provide a stylized description for the behavior 244

of the entropy H(t) and a prediction for the typical time between collapses, as well as an 245

argument which explains the extremely slow decay of fluctuations in total resources as the 246

system size grows. 247

4.3. Two-cluster model and the decay of fluctuations 248

As a simplified analytical approach to heterogeneity in the replicator population, 249

we propose a toy model in which, at all times between collapses, total resources have 250

the value xT given by Equation (12), and the ensemble is divided into just two clusters. 251

The first cluster contains the Nr(t) replicators whose resources have been reset after the 252

latest collapse, occurred at time tc. The second cluster comprises the N − Nr(t) remaining 253

replicators. Moreover, we assume that the individual resources in the first cluster are all 254

equal to the reset level u, while the remaining resources are homogeneously distributed 255

over the second cluster. This implies that the total resources in each cluster are Nr(t)u and 256

xT − Nr(t)u, respectively. With these assumptions, Equation (16) yields 257

H(t) = −
[

1− Nr(t)u
xT

]
ln

1− Nr(t)u
xT

N − Nr(t)
− Nr(t)u

xT
ln

u
xT
≈ ln[N − Nr(t)], (17)

where the approximation of the rightmost side holds for u� xT . 258

As successive reset events occur, replicators from the cluster of high resources are 259

transferred to the other cluster at rate q so that, on the average, the number of replicators in 260

the former satisfies the equation 261

d
dt
[N − Nr(t)] = −q[N − Nr(t)], (18)
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with N − Nr(tc) = N at the time of the latest collapse. Namely, 262

N − Nr(t) = Ne−q(t−tc). (19)

Replacing into the approximation for the entropy in Equation (17), we find 263

H(t) ≈ ln N − q(t− tc), (20)

which predicts an approximate linear decay between collapses. The slanted dashed segment 264

in Figure 5b has the slope predicted by this result, displaying very good agreement with 265

the behavior of the numerically obtained signal for H(t). 266

Our approximation for the entropy H(t) makes it also possible to estimate the typical 267

time between collapses, τ. In fact, in the two-cluster model a collapse will occur when 268

just a single replicator remains in the high-resource cluster, N − Nr(t) = 1, accumulating 269

essentially all the resources. In this case, H = 0 which, according to Equation (17), is the 270

entropy attained at time t = tc + q−1 ln N. On the average, the last replicator will be reset 271

after an additional time q−1. Thus, we have 272

τ =
1 + ln N

q
. (21)

In our simplified picture, τ is nothing but the period of the successive decays of H(t) 273

between its maximum and its minimum. Figure 7a shows the power spectrum P(ν) of an 274

actual numerical calculation of H(t) in a system with N = 1000, Nu = 0.01, and q/λ = 0.1. 275

Its broad profile exposes the stochastic nature of the mechanisms at play in the variation of 276

the entropy, but shows a clear peak at a well-defined frequency, which reveals an underlying 277

time-periodic pattern. The vertical dashed line demonstrates that this frequency coincides 278

quite sharply with the prediction of Equation (21), ν = τ−1 = q/(1 + ln N). We have 279

performed this same comparison for different values of N, evaluating the main period of 280

of numerical signals for the entropy from the position of the highest peak in their power 281

spectra. In Figure 7b, results are compared with Equation (21), represented by the dotted 282

line, with very good agreement. 283

0 . 0 1 0 . 1
0

1 0 0 0

2 0 0 0

3 0 0 0

P(ν
)

ν

N  = 1000
a

1 0 2 1 0 4 1 0 6

5 0

1 0 0

1 5 0
b

��

N
Figure 7. (a): Power spectrum of a time signal for the entropy H(t), numerically obtained in a
replicator population with N = 1000, Nu = 0.01, and q/λ = 0.1. The vertical dashed line is the
frequency predicted for H(t) by the two-cluster model, in the approximation Nu� 1. (b): Average
time between collapses estimated from the power spectrum of the entropy (symbols) and from the
analytical prediction (21, dashed line), as a function of N, with the same parameters as in panel (a).

Finally, along the same lines of approximation, we are able to give an explanation 284

for the extremely slow decay of fluctuations in the total resources xT as the system size 285
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N grows, revealed by the weak dependence on N of the stationary resource distributions 286

f st(x) and f st(xT) (Figures 3 and 4a) and explicitly illustrated in Figure 4b. The time 287

signal of xT(t) shown in Figure 5a suggests that fluctuations in total resources are mainly 288

dominated by the collapses associated with resetting of the replicators that accumulate 289

most of the resources. In a highly stylized model for the signal xT(t), we can assume that 290

the statistical distribution of total resources is given by a dichotomic process, where –in the 291

interval between collapses– xT stays at its minimum value Nu during a “recovery time” tR, 292

and at its (approximate) equilibrium value 1− q/λ during the (average) remaining time 293

τ − tR. Namely, 294

f st(xT) =
tR
τ

δ(xT − Nu) +
(

1− tR
τ

)
δ
(

xT − 1 +
q
λ

)
. (22)

From this Ansatz, the calculation of the mean value and the standard deviation of xT is 295

straightforward. In the limit Nu� 1, we find 296

〈xT〉 =
(

1− tR
τ

)(
1− q

λ

)
, σxT =

√
tR
τ

(
1− tR

τ

)(
1− q

λ

)
, (23)

which yields a coefficient of variation 297

CV =

√
tR/τ

1− tR/τ
. (24)

If tR is interpreted as the time needed by xT(t) to recover from its small value just after 298

a collapse up to its equilibrium value, we do not expect tR to depend on N, at least 299

for sufficiently large systems. Indeed, according to Equation (8), total resources should 300

approximately obey ẋT = λxT(1− xT)− qxT , which is independent of N. If this is the case, 301

Equations (21) and (24) imply that the coefficient of variation of xT decays as 302

CV ∼
1√

ln N
(25)

for N → ∞. 303

Symbols in Figure 8 correspond to results for CV as a function of ln N for three different 304

values of q/λ, obtained from numerical solutions of Equation (8) analogous to those of 305

Figure 4b. Dashed lines stand for the asymptotic behavior predicted by Equation (25). 306

Numerical results closely follow the prediction, even for relatively small values of N. On 307

the one hand, Equation (25) shows that CV converges to zero as N grows, which validates 308

the Chapman-Kolmogorov formulation for sufficiently large systems. On the other, the 309

same result proves the extremely slow decay of fluctuations with the population size. Just 310

as an illustration, suppose that one wants to diminish fluctuations in xT by a factor of 10, 311

starting from results for a system of 104 replicators. The new system should have nothing 312

less than 10400 replicators (!), a size clearly beyond the reach of any presently available 313

computational means. 314
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0 . 1

1
q / �  = 0.3

0.1
0.03

C V

l n N
Figure 8. Coefficient of variation of total resources CV as a function of ln N, for Nu = 0.01 and three
values of q/λ (note log-log scales). Symbols correspond to numerical results, and dashed lines stand
for the asymptotic behavior predicted in Equation (25).

5. Conclusion 315

Replicator dynamics with constant fitnesses is a basic model of agent competition, 316

where one or a few agents eventually accumulate all the available resources. In this paper, 317

we have investigated whether this concentration can be mitigated by stochastic resetting in 318

the case of a homogeneous population. Reset events are randomly distributed in time, and 319

force the dynamics of randomly drawn agents to start anew from a small value. Analytical 320

results based on the Chapman-Kolmogorov equation show that, in fact, the long-time 321

distribution of individual resources approaches a smooth profile, with a power-law decay 322

of probability as the amount of resources grows. 323

However, numerical evidence reveals that –even for long times and large populations– 324

the analytical prediction is, at most, an approximation to the actually observed resource 325

distributions. A closer inspection of the dynamics of individual agents shows that the 326

overall behavior is still governed by a few agents, which occasionally accumulate most 327

of the total resources. When the resources of one of these wealthier agents are reset, total 328

resources “collapse”, and the resource distribution suddenly becomes much more even. 329

Subsequent collapses of this kind lead the distribution to develop clustering, separating 330

the population into groups of agents with similar individual resources. This heterogeneity 331

is responsible for the sustained differences between numerical and analytical results. These 332

collapse-driven dynamics are also responsible for the extremely slow decay of fluctuations 333

with the system size, which jeopardizes the use of the mean-field approach implicit in the 334

Chapman-Kolmogorov equation (6) for any practically attainable number of agents. Such 335

anomalous statistical behavior is reminiscent of extreme-value statistics, whose relevance 336

to economic processes has been emphasized in various contexts [20,26,27]. 337

The present study complements recent work on cooperative agents subject to stochas- 338

tic resetting [19], where we have shown that cooperation leads to resource redistribution, 339

distorting the power-law distributions derived from the sole effect of reset events. These 340

contributions represent a first attempt to characterize the collective behavior of interacting 341

agents under the action of resetting, thus combining deterministic dynamics with stochas- 342

tic ingredients. Other interactions of economic and ecological interest (e.g., parasitism, 343

predator-prey, etc.) are worth considering in future work on the subject. 344

Supplementary Materials: Video S1: Animation of Zipf plots for resource distribution over the 345

replicator population (cf. Figure 6). 346
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