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Abstract: As a model for economic and ecological systems, replicator dynamics represents a basic 1
form of agent competition for finite resources. Here, we investigate the effects of stochastic resetting 2
in this kind of processes. Random reset events abruptly lead individual resources to a small value s
from which dynamics must start anew. Numerical results show that resource distribution over the 4
population of competing agents develops highly nonuniform profiles, exhibiting clustering and 5
fluctuations with anomalous dependence on the population size. This non-standard statistical behav-
ior jeopardizes an analytical treatment based on mean-field assumptions. We propose alternative 7
simplified analytical approaches which provide a stylized description of entropy evolution for the 8
clustered distribution of resources and explain the unusually slow decrease of fluctuations. 0

Keywords: replicator population; stochastic resetting; resource distribution; anomalous fluctuations; 10
clustering 11

1. Introduction 12

In theoretical biology, a replicator is an abstract unit capable of creating copies of itself 1
through interaction with the environment [1,2]. This very generic concept —~which provides 1.
a unified tool for studying evolutionary dynamics at several levels— encompasses such s
entities as nucleic-acid molecules (RNA and DNA), genes, cells, and, of course, living 16
organisms. In the theory of cultural evolution, an analogous notion applies to memes, the 17
units of cultural information, thus extending the same theoretical framework to social and 1.
economic phenomena [3]. The concept of replicator turned out to be especially fruitful 1
within evolutionary game theory, as a model for biological evolution under natural selection. =0
In this context, replicators represent strategies whose individual profit, measured by their 2
relative reproduction success, depends on both their intrinsic fitness and their mutual ==
interaction [4]. 23

Replicator dynamics is a mathematical model, used in evolutionary game theory, that = 2.
describes how the relative prevalence of different strategies changes in time [5,6]. If, in =5
a large population, x;(t) is the fraction of players adopting strategy i at time f, replicator =
dynamics prescribe that 27

N
% = xj [fi(x) - gfj(x)xj]/ @
j=

(i=1,2,...,N), where f;(x) denotes the fitness of strategy i, and generally depends on  zs
all the components of x = (x1,xp,...,xN). It can be seen that the N-dimensional simplex, 2o
given by ) ; x; = 1 with x; > 0 for all i, is invariant under Equations (1), and also actsasa 30
global attractor for all non-negative initial conditions. From the perspective of population =
dynamics, Equations (1) can be interpreted as the time evolution of N interacting species a2
with fitnesses f;(x), additionally subjected to a global mechanism of growth limitation, ss
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given by the second term in the brackets, which asymptotically constrains populations to s
the subspace where } ; x; = 1. In this work, we adopt a similar interpretation, where x; s
represents the resources (richness) of an economic agent 7 in a population of N interacting e
agents. 37

In the simplest version of replicator dynamics, all fitnesses are constant: f;(x) = A; for s
all 7 [7]. In this situation, the first term in the right-hand side of Equations (1) induces an 3o
exponential growth of the resources x;, at rate A;. The opposing effect of the second term, 4o
however, limits this growth. For sufficiently long times, in fact, the system approaches the 4
N-dimensional simplex. The outcome of these contrary trends is that, asymptotically, the a2
replicator with maximal fitness accumulates all the resources. Namely, for t — oo, a3

@)

o 1 if)\i:max{)xl,)\z,--- ,/\N},
71 0 otherwise.

Thus, with constant fitnesses, the population always ends in a state where resources are 4
trivially concentrated in just one agent. If two or more agents have identical maximal s
fitnesses, all the resources become shared between them in proportions depending on the 4
initial values x;(0). a7

Our aim in this paper is to study the effect of reset events on the replicator dynamics s
with constant fitnesses. Resetting is a stochastic mechanism by which a dynamical variable s
—in the present case, x;(t)— is occasionally brought to a prefixed value, from which its  so
dynamics start anew. This mechanism is able to severely modify the statistical behavior s
of a dynamical system [8]. In the present case, we expect it to inhibit the accumulation of s
resources by a single agent or a small group of agents, bringing about a nontrivial resource s
distribution over the replicator population. To gain insight into the overall behavior of s
our model, which we present in Section 2, Section 3 is devoted to the numerical and ss
analytical study of the case of a single replicator. In Section 4, we show that the combined  se
effect of replicator dynamics and resetting in a large population with identical fitnesses s
results in anomalous statistical properties, with an extremely slow decrease of fluctuations s
as the population size grows. This unusual feature is accompanied by clustering in the  so
amount of individual resources, which, over time, sustains a highly heterogeneous resource o
distribution over the population. Analytical arguments based on a toy two-cluster model &
are proposed to explain these numerical observations. Finally, Section 5 is devoted to e
discussing our main results. o3

2. Replicators with Resetting 6a

Stochastic resetting was initially introduced as a mechanism of unbounded growth s
limitation in the context of demographic dynamics [9,10]. Remarkably, when combined with s
multiplicative (exponential) growth, it gives rise to long-time power-law distributions for e
the relevant variables [10,11]. It can therefore be used as a model for the emergence of such s
distributions in the broad class of phenomena where they are observed [12], ranging from e
biological taxon abundances [13] to economic resource sharing [14]. Since its introduction 7
more than two decades ago, the statistical effects of stochastic resetting have been studied 7.
in a large variety of dynamical processes, such as transport on networks [15], hydrologic 7
phenomena [16], RNA kinetics [17], and active-particle motion [18], among many others 7
[8]. 74

As advanced in the Introduction, stochastic resetting acts on a variable x(t), whose 75
evolution is otherwise governed by certain dynamical rules, instantaneously bringing 7
its value to a prefixed level u. The times at which these events take place are uniformly 7~
distributed at random with frequency g -namely, the average time between two consecutive s
events is g~ '— and the evolution of x(t) begins de novo after each resetting. Reset events 7o
emulate the effect of sudden crises or catastrophic occurrences, where the state of the o
system under study suffers an abrupt change in a short time [19]. This kind of phenomenon e
is not uncommon in social and economic contexts [11,20,21]. 82


https://doi.org/10.20944/preprints202211.0265.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 November 2022 d0i:10.20944/preprints202211.0265.v1

30f13

In the replicator dynamics with constant fitnesses A;, we introduce reset events by e
proposing oa

N
X; = Xj <Ai — Z )\]x]> + (u; — x;) P (¢), 3)
i=1
(i=1,2,...,N; cf. Equation (1)), where a5

Pi(t) =) o(t —tig) 4)

k

is a Poisson process of frequency g; [16]. For each i, the Dirac delta functions in the sum are s
centered at the times t;; (k = 1,2,...) at which x;(#) is reset to a small value u;. In fact, the
prefactor u; — x; in the last term of Equations (3) insures that resetting occurs to that specific e
value. The Markovian stochastic equations (3) can be dealt with by means of a series of s
standard methods, notably, the Chapman-Kolmogorov equation, which governs the joint  so
probability distribution of the resources x;(t) [22]. It can also be treated numerically, by o
a rather intuitive implementation of the Poisson process along discretized time [23]. In o2
the following sections, we use these techniques to study the collective dynamics of the o3

replicator population with resetting. 0s

3. Dynamics of a Single Replicator with Resetting 95

As a first step in the analysis of our model, it is instructive to study the case of a single o6

replicator, N = 1. Equation (3) becomes o7
¥ =Ax(1—x)+ (u—x)P(t), )

with P(t) = Y, 6(t — t). The random reset times t; have frequency 4. The first term in the s
right-hand side of Equation (5) makes it clear that, for a single replicator, the deterministic oo
contribution to the dynamics is equivalent to logistic growth [24]. Due to arbitrariness in 100
the choice of time units, the system has two independent parameters only: the ratio /A, 10
and the reset value u. 102
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Figure 1. Two realizations of the solution to the stochastic equation (5), for # = 0.01 and different
values of the ratio g/A. (a) /A = 0.1. (b) g/ A = 2.5. Note different scales in the vertical axes.

Figure 1 shows a pair of realizations of x(t), for u = 0.01 and two values of /A, 103
exhibiting qualitatively different behavior. For a relatively small resetting frequency, /A = 104
0.1 (upper panel), x(t) usually has enough time to reach the zone of logistic saturation, 1os
just below the level of maximal resources (x = 1). The evolution is only occasionally 1o
punctuated by reset events to x = u. On the other hand, when the resetting frequency is 1o
larger (/A = 2.5, lower panel), x(t) barely transits the zone of exponential growth before 1os
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it is interrupted by a reset event. In this latter situation, the evolution is very similar to the 100
case where the deterministic part of the dynamics is purely multiplicative, which we have 110
analyzed in detail in a recent contribution [19]. 111

Assuming that the stochastic process represented by Equation (5) reaches a stationary 1
regime for long times, the stationary distribution for x, f5(x), can be obtained from the s

time-independent Chapman-Kolmogorov equation 114
d
T [Pf ()] = g8 (u —x) — qf* (x). ©6)
Here, v(x) = Ax(1 — x) is the velocity of probability drift induced by the deterministic 11s
logistic dynamics. The solution to this equation reads 116
—u\ A
fst(x) _ f]\(l p u> x*lfq//\(l _ x)71+q/)L @)

for u < x < 1,and f5(x) = 0 otherwise. This stationary distribution behaves as a power 1
law both for small and large values of x. For /A > 1, the exponent of 1 — x is positive, and  11s
the distribution has a maximum at x = u while it decays to zero as x — 1. For g/A <1, 11
on the other hand, f5(x) exhibits a bimodal profile, with a maximum at x = u and a 12
divergence at x = 1. This case is illustrated in Figure 2, where we plot the distribution 12
as a function of both x (left panel) and 1 — x (right panel) for u = 0.01 and g/A = 0.1. 122
The log-log axes emphasize the power-law dependence toward the two ends. Excellent 12s
agreement between analytical and numerical results supports the assumption of a well- 124
defined long-time stationary regime for the stochastic process. The bimodal concentration 125
of resources at the extreme values, with the ensuing depletion in the intermediate zone, isa 126
direct consequence of the competing effect of logistic growth, which favors accumulation 127

near the maximum, and of reset events, which populate the zone of lower resources. 128
10 ————r——— T
] a | b1
1 dq
« ]
f () |
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Figure 2. Stationary probability distribution for the solution to the stochastic equation (5), f5t(x), (a)
as a function of x and (b) as a function of 1 — x, for u = 0.01 and q/A = 0.1. The line stands for the
analytical expression (7). Symbols correspond to a 100-column histogram, built from 4 x 10° samples
of x(t) taken from a numerical realization of Equation (5) every 10 time units. The numerical solution
was realized by means of a standard finite-difference algorithm with a time step of 1073 time units.

4. Fluctuations and Clustering in Large Homogeneous Populations 120

Turning now the attention to the case with N > 1, we consider homogeneous replicator 130
populations, in which the parameters u;, A;, and g; in Equation (3) are the same for all 1
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agents. In this situation, agents differ from each other in the individual realizations of the 132
sequence of stochastic reset events only. This homogeneity implies that none of them has 133
an a priori advantage based on fitness, or on the frequency and strength of resetting. Thus, 13s
any nontrivial emergent collective behavior should be ascribed to the randomness in the 135

time distribution of reset events. 136
For a homogeneous population, Equation (3) reads 137
i = Axi(1 —x) + (u — x;) Pi(t), ®)
with P;(t) given as in Equation (4) with the same resetting frequency ¢ for all i. In turn, 138
N
X =) %; )
j=1

stands for the total resources over the population. Assuming that, as in the case of N =1, 130
the system attains a well-defined stationary state for long times, we expect that x7 reaches 140
a constant value if N is large enough. Of course, this requires that resource fluctuations 1a
are self-averaging over time and over the ensemble. If these conditions are fulfilled, the s
stationary distribution for individual resources satisfies Equation (6) with, now, v(x) = 1as
Ax(1 — x7). The solution is 144

quq/)‘(lfxT)

S —1— //\(lfxT)
fH(x) A " q , (10)

for u < x < 1 and 0 otherwise. The absence of a logistic nonlinearity in Equation (8) 1as

determines that f5t(x) is now a pure power law; cf. (7). 146
The value of x1 in Equation (10) must be obtained self-consistently, requiring that it 17
coincides with the total resources calculated from the distribution f5(x), namely 148
1 Nqu
x:N/xStxdxziq. 11
The only positive solution to this self-consistency equation is 149

_Aq—1+4 V(A/q—1)2+4Nu)/q

T 2M/q (12)

For a given value of Nu, the total resources vary monotonically from x7 ~ 1 —-¢q/A =1 1s0
for g < Ato xr =~ Nu for g > A. In the first limit, when the resetting frequency is s
negligible, the population is driven by almost purely replicator dynamics, and one single  s:
agent typically concentrates all the resources. When, on the other hand, reset events 1ss
are dominant, the N agents always have resources close to the minimal value u. The 1s
corresponding distributions are 155

(w1t —1)"1x72 forg < A,
fHx) = (13)
(u=9/* — 1) Ix 1792 forg > A.

In the remaining of this paper, we fix the attention on the case g < A. Indeed, much as 1se
in the case of N = 1 analyzed in Section 3, for 4 > A —when reset events dominate over 1ss
resource growth— the replicator dynamics hardly manifests itself, and evolution does not  1ss
essentially differ from that of a system of non-interacting multiplicative elements with 1se
resetting ([19], cf. Figure 1b). For brevity, numerical results are presented for just a few 160
parameter sets, which we have found to be representative of more general situations. 161

Following the same numerical techniques used in the case of a single replicator, 1e2
we have computed the stationary distribution of individual resources for populations 1es
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of different sizes, with Nu = 0.01 and q/A = 0.1. According to the analytical result of 1es
Equation (12), all these systems have the same total resources, xt ~ 0.901. Symbols in 1es
Figure 3 show histograms of f5t(x) for three values of N, analogous to those presented in e
Figure 2 for N = 1. Lines stand for the corresponding analytical prediction (10). 167

Figure 3. Symbols: Numerical estimation of the stationary distribution f5(x) for three values of
N, with Nu = 0.01 and g/A = 0.1. Lines: Analytical solution (10) to the stationary Chapman-
Kolmogorov equation, for the same parameters. Inset: The same data in log-linear scales, for a better
appraisal in the upper part of the vertical axis. The data for N = 10 and 10% have been scaled by the
factors indicated in the plot.

It is apparent that, although numerical and analytical results follow the same general 1es
trend in the distribution of resources, there are important systematic deviations along the  1eo
whole interval of the variable x. The deviations decrease in magnitude as the population 17
grows, but are still non-negligible for a large system of 10° replicators. For this size and 17
large x, the slopes of the power-law tails in the numerical estimation and the analytical 17
prediction are very similar but, as for the values of the distributions, the former are about 17
one order of magnitude above the latter. The difference has the opposite sign at small x, as 17
shown in the inset. We show in the following paragraphs that these discrepancies originate 17s
in the anomalous statistical behavior of the total resources xr(t). Its fluctuations along 17
time, in fact, decay very slowly with the system size N. This indicates that our assumption 177
that xt is constant, used to solve the stationary Chapman-Kolmogorov equation, may only 17
hold for extremely large populations, drastically limiting the usefulness of the analytical 17
approach in this kind of systems. 180

4.1. Anomalous fluctuations of total resources 181

Figure 4a presents numerical estimations of the stationary distribution of x7 along 1.2
time, in realizations of Equation (8) for different system sizes N. In all cases, f5t(xr) is 1ss
sharply peaked around a large value x7 ~ 0.93, and exhibits a broad shoulder for smaller iss
xt. Overall, this behavior is compatible with the analytically predicted value, x7 ~ 0.901, 1es
obtained from Equation (12). Note however the rather slow change of the shoulder at small  1e6
xr as N grows: a variation by a factor of 10° in the size of the population leads to a decrease  1s7
of just above one order of magnitude in the height of the distribution in that zone. 188
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Figure 4. (a): Stationary distribution f¢(x7) of total resources xr, for four values of N, Nu = 0.01,

and g/A = 0.1. (b): Coefficient of variation Cy as a function of N. The dashed curve is a B-spline
approximation included as a guide to the eye. All results are estimations obtained from numerical
solutions of Equation (8) along 2 x 108 time steps.

This weak dependence on N is remarkably apparent in the coefficient of variation of
xT, defined as

cv = <1T>\/ 5 ) ()~ )P, (14)

where

T

(er) = 1 [ xr(oas (15
is the time average of x7(t), and T is a sufficiently long averaging interval. The coefficient
Cy encompasses overall statistical properties of f5(x7) in a single quantity, as a measure
of the fluctuations of xr(f) relative to its average. Figure 4b is a log-log plot of Cy as
a function of N. Across the five orders of magnitude covered by the system sizes, the
coefficient of variation only decreases by a factor of 3, and there is no clear indication that
it might approach zero as N — oco. In fact, within this rather wide interval of N, it lacks
the typical power-law trend that characterizes the system-size dependence of fluctuations
in self-averaging statistical systems (usually, N~* with 0 < z < 1) [25]. This hints at a
strongly heterogeneous behavior within the population, and calls for a closer look at the
time evolution of individual replicators.

4.2. Heterogeneity and clustering in the evolution of resources

The darkest curve in Figure 5a shows the evolution of total resources x7(t) in a
population of N = 10* replicators, with Nu = 0.01 and q/A = 0.1. At the initial time,
all the replicators have identical resources, x(0) = u. We see that, most of the time, x7(t)
fluctuates close to its maximum value. Intermittently, however, total resources exhibit sharp
collapses where x7(t) suddenly drops to a small value, followed by a rapid recovery.

Other curves in Figure 5a show x;(t) for the three agents with highest resources at
each time. These curves demonstrate the typically heterogeneous resource distribution
over the population: most of the time, these three replicators accumulate a large fraction
of the total resources. Comparison with x7(t), moreover, illustrates how collapses in total
resources usually coincide with a reset event of the richest replicator.

do0i:10.20944/preprints202211.0265.v1
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Figure 5. (a): Evolution of total resources, x7(¢), and of individual resources for the three replicators
with largest x;(t) at each time, in a realization with N = 10*, Nu = 0.01, and g/ = 0.1. (b): Entropy
of individual shares, Equation (16), for the same realization. The dashed segment has the slope
analytically predicted for the decrease of H(t) with the two-cluster model of Section 4.3.

As a more compact characterization of heterogeneity in the distribution of resources 213

over the population, we have computed the entropy of the individual shares x;/xr as a

function of time: 215

N

H(t)y=-)

i=1

x;i(t)
xr(t)

This quantity is depicted in Figure 5b for the same realization as in the upper panel. It
shows that, in the intervals between collapses of xt(t), resources progressively accumulate
in less and less replicators. Resetting of one of the replicators with high resources, in turn,
entails a sudden growth of H(t), with an ensuing decrease as resources become increasingly
concentrated.

During the intervals between collapses, we expect the population to be divided into at
least two groups with different resource distributions inside each group. Those replicators
that have undergone a reset event since the latest collapse should have low resources, close
to the resetting level u. On the other hand, replicators that have evolved without resource
resetting in the same period should possess, on the average, relatively higher resources,
with a distribution closer to the equilibrium profile of Equation (10). In a succession of
several consecutive collapses, the same mechanism may generate more than two groups,
leading to a clustered, markedly heterogeneous resource distribution.

Clustering in the resource distribution is well illustrated by a Zipf plot, in which
individual resources are represented against the rank of each replicator in a list sorted by
decreasing values of x;. Figure 6 shows snapshots of this kind of plot at four times, in a
system of N = 5000 replicators. Other parameters are as in Figure 5. For At = 89, the first
collapse has not taken place yet. In this situation, except for the first-rank replicator which
already monopolizes practically all resources, the distribution over the population closely
follows the equilibrium profile, whose slope is shown by the dashed line. As time elapses,
the occurrence of collapses creates clusters, which in the Zipf plots appear as more or less
flat plateaus separated by much sharper steps. In the supplementary video S1, which
shows an animation of the Zipf plots for the same realization along time, the appearance,
evolution, and fading of these plateaus is apparent.

x;i(t)
xr(t) n

(16)
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Figure 6. Four snapshots of a Zipf plot of individual resources versus rank in a decreasing list of

resources, in a population of N = 5000 replicators with Nu = 0.01 and q/A = 0.1. The dashed

segments show the slope that the plot should exhibit if the population had reached the equilibrium

distribution of Equation (10). Plateaus of different sizes at different times reveal the formation of

groups and, thus, clustering in the resource distribution.

Intermittent collapses of total resources and the consequent clustering of resource 240
distribution, leading to an overall highly non-uniform behavior inside the population, are 24
likely determinants of the differences observed between analytical and numerical results, 2a2
as illustrated by Figure 3, and the slow decay of fluctuations of Figure 4b. In the following, e
under a few simplifying assumptions, we provide a stylized description for the behavior 2ss
of the entropy H(t) and a prediction for the typical time between collapses, as well as an  zas
argument which explains the extremely slow decay of fluctuations in total resources as the 246
system size grows. 247

4.3. Two-cluster model and the decay of fluctuations 248

As a simplified analytical approach to heterogeneity in the replicator population, 2
we propose a toy model in which, at all times between collapses, total resources have 2so
the value x7 given by Equation (12), and the ensemble is divided into just two clusters. =zs:
The first cluster contains the N, (t) replicators whose resources have been reset after the zs2
latest collapse, occurred at time ¢.. The second cluster comprises the N — N, (t) remaining  zss
replicators. Moreover, we assume that the individual resources in the first cluster are all 254
equal to the reset level u, while the remaining resources are homogeneously distributed  2ss
over the second cluster. This implies that the total resources in each cluster are N, ()u and  zse

x1 — Ny (t)u, respectively. With these assumptions, Equation (16) yields 257
Ny (Hu
_ N (t)u ~ Txr MO
H(t) = [1 pom } In NN pos In oy In[N — N,(t)], (17)

where the approximation of the rightmost side holds for u < xr. 258

As successive reset events occur, replicators from the cluster of high resources are 2s0
transferred to the other cluster at rate g so that, on the average, the number of replicators in  ze0
the former satisfies the equation 261

LIN =N ()] = [N~ Ny (1), (18)
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with N — N;(t;) = N at the time of the latest collapse. Namely, 262
N — N (t) = Ne9(t—te), (19)

Replacing into the approximation for the entropy in Equation (17), we find 263
H(t) ~InN —q(t —t.), (20)

which predicts an approximate linear decay between collapses. The slanted dashed segment 264
in Figure 5b has the slope predicted by this result, displaying very good agreement with zes
the behavior of the numerically obtained signal for H(). 266

Our approximation for the entropy H(t) makes it also possible to estimate the typical 27
time between collapses, 7. In fact, in the two-cluster model a collapse will occur when  26s
just a single replicator remains in the high-resource cluster, N — N,(t) = 1, accumulating s
essentially all the resources. In this case, H = 0 which, according to Equation (17), is the 270
entropy attained at time t = f. + g~ ! In N. On the average, the last replicator will be reset 27
after an additional time q_l. Thus, we have 272

1+InN
T=—.

21
. (21)

In our simplified picture, T is nothing but the period of the successive decays of H(t) =7
between its maximum and its minimum. Figure 7a shows the power spectrum P(v) of an  z7a
actual numerical calculation of H(t) in a system with N = 1000, Nu = 0.01, and g/A = 0.1. =275
Its broad profile exposes the stochastic nature of the mechanisms at play in the variation of 27
the entropy, but shows a clear peak at a well-defined frequency, which reveals an underlying 27~
time-periodic pattern. The vertical dashed line demonstrates that this frequency coincides 27
quite sharply with the prediction of Equation (21), v = 7~! = /(1 +InN). We have 27
performed this same comparison for different values of N, evaluating the main period of 2s0
of numerical signals for the entropy from the position of the highest peak in their power 2e
spectra. In Figure 7b, results are compared with Equation (21), represented by the dotted  2e2

line, with very good agreement. 283
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Figure 7. (a): Power spectrum of a time signal for the entropy H(t), numerically obtained in a
replicator population with N = 1000, Nu = 0.01, and g/A = 0.1. The vertical dashed line is the
frequency predicted for H(t) by the two-cluster model, in the approximation Nu < 1. (b): Average
time between collapses estimated from the power spectrum of the entropy (symbols) and from the
analytical prediction (21, dashed line), as a function of N, with the same parameters as in panel (a).

Finally, along the same lines of approximation, we are able to give an explanation 2ss
for the extremely slow decay of fluctuations in the total resources xt as the system size zss
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N grows, revealed by the weak dependence on N of the stationary resource distributions s
f5(x) and f3t(x7) (Figures 3 and 4a) and explicitly illustrated in Figure 4b. The time s
signal of x7(t) shown in Figure 5a suggests that fluctuations in total resources are mainly zss
dominated by the collapses associated with resetting of the replicators that accumulate 2so
most of the resources. In a highly stylized model for the signal x7(t), we can assume that ze0
the statistical distribution of total resources is given by a dichotomic process, where —in the 2o
interval between collapses— xt stays at its minimum value Nu during a “recovery time” tg, =2e2
and at its (approximate) equilibrium value 1 — g/A during the (average) remaining time 203

T — tg. Namely, 208
t t
st _ 7R _ _ 7R _ 1
fer) = Ro(xr — Nu) + (1 . >5(xT 1+ /\). (22)
From this Ansatz, the calculation of the mean value and the standard deviation of x7 is 205
straightforward. In the limit Nu < 1, we find 206
(xp) = (1= & (1—1) oo = R(1- IR (1—ﬂ) (23)
T AL T T T A
which yields a coefficient of variation 207

. trR/T
Cy = HilftR/T' (24)

If tg is interpreted as the time needed by xr(t) to recover from its small value just after zos
a collapse up to its equilibrium value, we do not expect tg to depend on N, at least =200
for sufficiently large systems. Indeed, according to Equation (8), total resources should 00
approximately obey X7 = Ax7(1 — x7) — gx1, which is independent of N. If this is the case, o0

Equations (21) and (24) imply that the coefficient of variation of x1 decays as 302
1
Cy ~ 25
v — (25)
for N — oo. 303

Symbols in Figure 8 correspond to results for Cy as a function of In N for three different sos
values of q/A, obtained from numerical solutions of Equation (8) analogous to those of  sos
Figure 4b. Dashed lines stand for the asymptotic behavior predicted by Equation (25). 06
Numerical results closely follow the prediction, even for relatively small values of N. On o7
the one hand, Equation (25) shows that Cy converges to zero as N grows, which validates  sos
the Chapman-Kolmogorov formulation for sufficiently large systems. On the other, the 00
same result proves the extremely slow decay of fluctuations with the population size. Just 310
as an illustration, suppose that one wants to diminish fluctuations in x7 by a factor of 10, 1.
starting from results for a system of 10* replicators. The new system should have nothing s
less than 10 replicators (!), a size clearly beyond the reach of any presently available s
computational means. 314
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Figure 8. Coefficient of variation of total resources Cy as a function of In N, for Nu = 0.01 and three
values of q/A (note log-log scales). Symbols correspond to numerical results, and dashed lines stand
for the asymptotic behavior predicted in Equation (25).

5. Conclusion 315

Replicator dynamics with constant fitnesses is a basic model of agent competition, s
where one or a few agents eventually accumulate all the available resources. In this paper, s
we have investigated whether this concentration can be mitigated by stochastic resetting in s
the case of a homogeneous population. Reset events are randomly distributed in time, and 310
force the dynamics of randomly drawn agents to start anew from a small value. Analytical 20
results based on the Chapman-Kolmogorov equation show that, in fact, the long-time sz
distribution of individual resources approaches a smooth profile, with a power-law decay sz
of probability as the amount of resources grows. 323

However, numerical evidence reveals that —even for long times and large populations— sz
the analytical prediction is, at most, an approximation to the actually observed resource szs
distributions. A closer inspection of the dynamics of individual agents shows that the 26
overall behavior is still governed by a few agents, which occasionally accumulate most 27
of the total resources. When the resources of one of these wealthier agents are reset, total s2s
resources “collapse”, and the resource distribution suddenly becomes much more even. sz
Subsequent collapses of this kind lead the distribution to develop clustering, separating sso
the population into groups of agents with similar individual resources. This heterogeneity s
is responsible for the sustained differences between numerical and analytical results. These 332
collapse-driven dynamics are also responsible for the extremely slow decay of fluctuations  sss
with the system size, which jeopardizes the use of the mean-field approach implicit in the = s:a
Chapman-Kolmogorov equation (6) for any practically attainable number of agents. Such 35
anomalous statistical behavior is reminiscent of extreme-value statistics, whose relevance sse
to economic processes has been emphasized in various contexts [20,26,27]. 337

The present study complements recent work on cooperative agents subject to stochas- s3s
tic resetting [19], where we have shown that cooperation leads to resource redistribution, s
distorting the power-law distributions derived from the sole effect of reset events. These 340
contributions represent a first attempt to characterize the collective behavior of interacting s
agents under the action of resetting, thus combining deterministic dynamics with stochas- s
tic ingredients. Other interactions of economic and ecological interest (e.g., parasitism, s
predator-prey, etc.) are worth considering in future work on the subject. 348

Supplementary Materials: Video S1: Animation of Zipf plots for resource distribution over the s
replicator population (cf. Figure 6). 346
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