

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

1 How much of aging is simply a 2 trash collection problem?

3
4 Michael Renteln, M.S. in Molecular Genetics and Biochemistry from the University of
5 Southern California

6 11/11/22
7

8 Correspondence: Michael Renteln; E-mail: mrenteln@gmail.com
9

10 **Abstract:**

11 Aging kills 100,000 people a day - more than any other cause of death combined. The exact
12 causes of aging have been much discussed, but the most pressing issue with regard to aging
13 appears to me to be lipofuscin accumulation. That is, the accumulation of indigestible
14 cellular garbage that needs to be removed from our cells, then the body. In this piece, I will
15 explain why I think "getting rid of the garbage" should be at least one of our main goals
16 with regard to longevity research for now.

17

18 **Keywords:**

19 Anti-aging therapy, lipofuscin, SENS, oncolytic vector, telomerase, TFEB, and intracellular
20 microbe

21

22 **Introduction:**

23 There are many theories about why we age, but one stands out as being the most plausible
24 based on the evolutionary and mechanistic evidence. That is the "garbage catastrophe
25 theory of aging." Drs. Brunk and Terman postulated years ago that the problem of aging
26 can essentially be summed up as a "garbage disposal issue¹." The main idea is that basically
27 old molecules are sometimes damaged in ways that prevent the lysosomes from breaking
28 them down properly, and over time these damaged, old molecules accumulate inside the
29 lysosomes. Eventually, the lysosomes become full of this indigestible garbage, i.e.,
30 "lipofuscin", and cannot perform their normal function - then there is a garbage back-up
31 and the cell starts to decline health-wise.

32

33 Lipofuscin can eventually occupy a large portion of the cytoplasm in certain cell types.
34 Whether or not lipofuscin itself can exert negative effects on the cell that contains it, simply
35 accumulating to a critical level would logically cause a garbage backup. The cells may try to
36 produce more lysosomes - but will eventually reach capacity. It also makes sense that
37 reaching a critical threshold of lipofuscin in non-dividing cells throughout the body could
38 accelerate the accumulation of the other six categories of age-related damage as defined by
39 Dr. Aubrey de Grey². (Intracellular aggregates, i.e., lipofuscin, is his fourth category of age-
40 related damage.)

41

42 Dysfunctional mitochondria are a hallmark of aging³. With lipofuscin accumulation,
43 damaged mitochondria - sometimes with mtDNA mutations, sometimes just with damage
44 to their membranes, proteins, lipids, and DNA - will not be recycled as rapidly and may
45 then start to accumulate. Mitochondrial DNA mutation accumulation is Dr. de Grey's fifth
46 category of age-related damage - and they can in fact accrue over time. However, I will
47 address this on a fundamental level later.

48

49 Tau will begin to build up inside neurons due to the garbage back-up, eventually becoming
50 hyper-phosphorylated and forming neurofibrillary tangles. Similarly, β -amyloid that is
51 normally degraded may continue to persist, building to levels that lead to plaque formation.
52 Hopefully, if lipofuscin is removed, plaques that have already formed could regress - in line
53 with Le Chatelier's Principle. In other words, if lipofuscin is cleared and β -amyloid in
54 solution is taken up and phagocytosed again, insoluble plaques may start to dissipate back
55 into solution as well - at which point the β -amyloid in solution would again be taken up and
56 degraded. Transthyretin amyloid could also be another amyloid that forms in the
57 extracellular spaces of our bodies as a result of lipofuscin accumulation in various tissues.

58

59 Moreover, extracellular matrix cross-link-degrading enzymes could be secreted at proper
60 levels and even could be upregulated when the cells sense a large number of cross-links in
61 their vicinity. Even if there are some cross-links that can't be degraded by endogenous
62 enzymes - if the ECM is turned over more frequently - molecules bound together by
63 uncleavable cross-links could get endocytosed by tissue-resident cells or phagocytosed by
64 (bioengineered or regular) tissue-resident macrophages - and then be removed eventually
65 as lipofuscin inside lysosomes if necessary.

66

67 Additionally, cancer is more likely to initiate or progress if many microenvironments
68 throughout the body are corrupted by lipofuscin accumulation. Along those lines, stem cell
69 niche corruption may prevent them from replicating efficiently to replenish tissues.
70 Furthermore, it is clear that with the extracellular matrix not being properly cared for by
71 its resident cells, extracellular matrix cross-linking could reach pathological levels - most of
72 that could certainly be reversible upon removal of the lipofuscin, however.

73

74 Senescent cells may start to accumulate if tissue-resident immune cells are rendered inert
75 by lipofuscin accumulation and the non-functionality of the parenchymal cells around them
76 also caused by lipofuscin accumulation, leading to dilapidation of the extracellular matrix.
77 Here I refer to irreversibly senescent cells, which have suffered DNA damage and can no
78 longer function properly. However, many cells that show signs of senescence like the
79 senescence-associated secretory phenotype⁴ may be *reversibly* senescent. They may have
80 entered into that state due to epigenetic damage brought on by lipofuscin accumulation. I
81 have much hope that this epigenetic state can revert back to a youthful state once
82 lipofuscin is removed, however.

83

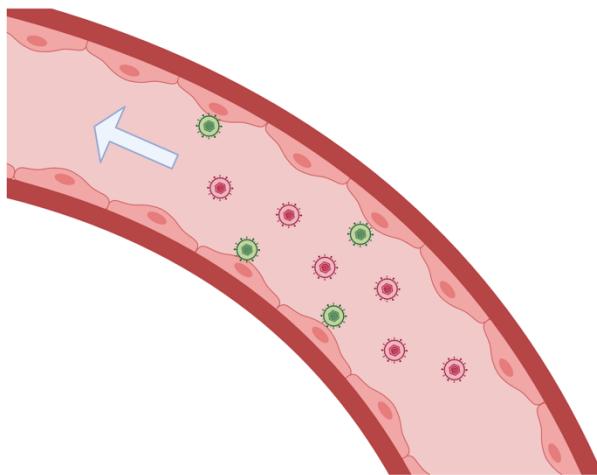
84 There was a paper published recently in *Nature Aging* that suggests that epigenetic damage
85 is mostly reversible at least⁵. The hallmarks of aging that it related to were mitochondrial
86 dysfunction, nutrient sensing, and stem cell composition. If lipofuscin is removed, damaged
87 mitochondria will be recycled and nutrient sensing processes should go back to normal.

88 Stem cells in this study likely show a younger epigenetic age because they divide frequently
89 and thus dilute out their lipofuscin. That relates to my hypothesis about why Yamanaka
90 factors rejuvenate tissues⁶; I believe it may be because they transiently induce a
91 pluripotent stem cell state. Thus, cells that normally wouldn't divide start to divide
92 transiently, and thereby dilute out their lipofuscin. Sox2, one of the four Yamanaka factors,
93 also initially stimulates autophagy⁷ - which decreases "false" lipofuscin. I'm defining false
94 lipofuscin as intracellular garbage that a cell could potentially recycle if it were encouraged
95 in some way. "Real" lipofuscin is intracellular garbage that cannot be digested no matter
96 how we manipulate a cell's metabolism - namely the junk that must be removed. Finally,
97 this rejuvenation technique, known as partial reprogramming, may be dangerous because
98 it has a serious risk of causing cancer.
99

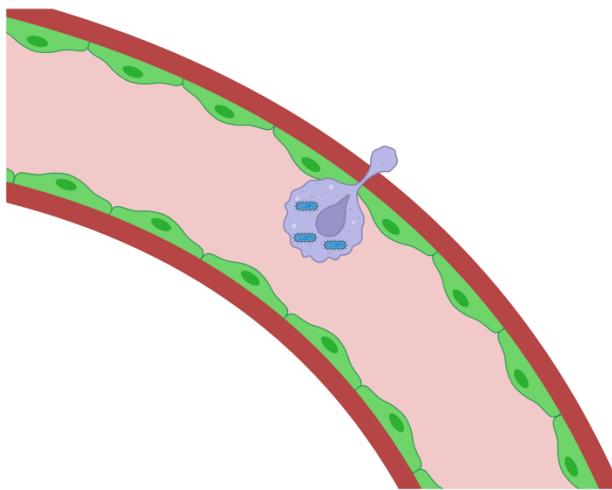
100 Thus, one could see how lipofuscin accumulation reaching a critical threshold level
101 throughout our tissues might lead to a downward spiral pathologically-speaking⁸.
102

103 I have written an article about strategies for removing lipofuscin from cells in culture to
104 test this theory, and how we might go about removing lipofuscin in whole organisms if cell
105 culture work indicates that it leads to substantial rejuvenation⁹. It is also important to
106 remember that cells in culture don't always die from causes that are reflective of *in vivo*
107 aging.
108

109 To treat whole organisms in a high-throughput manner, however, we will need to have a
110 way of delivering trash-collecting (i.e., phagocytic) intracellular microbes or proteins that
111 induce the export of lipofuscin to all the target cells throughout the body. As this probably
112 includes most cells in the body, that really necessitates that we use the bloodstream as a
113 systemic delivery system. If we can get a relatively even distribution of bioengineered
114 leukocytes into tissues throughout the body - but only at low levels - we can still simply
115 promote their replication via small molecule while visualizing the process through HSV1-
116 TK¹⁰.
117


118 **Systemic extravasation of bioengineered carrier macrophages:**

119 The trouble with trying to intravenously administer large liposomes or viral vectors, which
120 can contain much more complex payloads, is that they cannot reach many
121 intraparenchymal target cells throughout the body because the vascular endothelium
122 serves as a stringent barrier. Some intracellular microbes can transcytose across the
123 intestinal epithelium - but this is not necessarily helpful for the vascular endothelium¹¹.
124 There are some pathogens that can cross the blood-brain barrier, but this is typically under
125 conditions of systemic inflammation or bacterial-mediated cytolysis of vascular endothelial
126 cells to cause gaps in the endothelium¹². Basically, we do not know nearly as much about
127 effecting safe microbial transcytosis/paracellular passage across the vascular endothelium
128 as we do about white blood cell extravasation¹³ - although we do not know all the
129 mechanisms of leukocyte diapedesis either. Thus, in the more immediate future, to get the
130 trash-collecting microbes across the vascular endothelium, we may have to employ a
131 somewhat complex, two-step delivery system that involves carrier white blood cells.
132


133 The two-step system could involve first delivering a gene vector to vascular endothelial
134 cells - this would then inducibly allow for the transmigration of bioengineered white blood
135 cells containing the trash-collecting microbes. Basically, clinicians would seek to infect all
136 or the majority of a patient's vascular endothelial cells with a herpes simplex virus type 1
137 (HSV-1) vector. (Different pseudotypes of HSV-1 or bi-specific antibodies may be
138 necessary to ensure that all vascular endothelial cells throughout the body are transduced;
139 one marker may not be enough - as vascular endothelial cells in different anatomical
140 locales do not have the exact same gene expression patterns¹⁴.) They would then inducibly
141 express from the viral genomes (upon small molecule administration) synthetic, luminal
142 adherence proteins and chemokines¹⁵. These would allow for the attachment and
143 transmigration of bioengineered macrophages. After transmigration, perhaps
144 chemorepellents could be secreted abluminally to direct them away from the vascular
145 endothelial cells, across the rest of the vascular wall, and toward target tissue. The
146 macrophages could then randomly migrate around until binding to a cell type of interest, at
147 which point they could (directionally) donate trash-collecting microbes to the target cell.
148

149 In fact, the trash-collecting microbes could replicate within the carrier white blood cells up
150 to a moderate copy number¹⁶ - restrained by AI-2-based quorum sensing, perhaps¹⁷. The
151 carrier white blood cells could then continuously donate the trash-collecting microbes to
152 target cells via microvesicular secretion, secretory autophagy, transient TNTs, or even
153 partial cell-cell fusion; they could enter target cells, engulf their lysosomes, and escape.
154

155 A.

156
157 B.

158
159 Figure 1: A) Gene vectors are administrated intravenously; they bind to vascular
160 endothelial cells, are internalized, and transduce them to allow control over synthetic
161 adherence proteins and chemokines that facilitate the extravasation of bioengineered
162 white blood carrier cells. B) The bioengineered white blood cells carrying intracellular
163 microbes are “smuggled” across the vascular endothelium in many regions throughout the
164 body.

165
166 The vascular endothelial glycocalyx may make the delivery of large gene vectors difficult.
167 AAV vectors are able to reach the vascular endothelial cells beneath the glycocalyx, at least
168 in many regions (in mice)^{18,19}. I suggested HSV, however, because I thought multiple
169 proteins may be required to ensure extravasation of the bioengineered white blood cells
170 carrying intracellular, trash-collecting microbes - perhaps multiple proteins that vary
171 based on anatomical locale. But perhaps a single, synthetic chemokine will be enough.
172 Multiple AAVs can be employed if necessary. (An adenoviral vector is also a possibility,
173 perhaps²⁰.) If a larger gene vector is required and can only transduce a small number of
174 vascular endothelial cells throughout the body - that could still be enough, or at least very
175 helpful. Imaging via HSV1-TK could let us know when the bioengineered white blood cells
176 have reached the tissue parenchyma in various regions - and a small molecule could be
177 intravenously administered to promote the replication of the bioengineered white blood
178 cells in those regions. The intracellular microbes in the bioengineered white blood cells
179 would keep pace with that division - restrained by quorum sensing. The two-step delivery
180 process could, in this sense, still potentially save a given patient a lot of intraparenchymal
181 infusions in different anatomical locales.

182
183 It may not require a gene vector, however, to see the effects we want. We could perform
184 immunopheresis to remove circulating leukocytes, then deliver siRNA to endothelial cells
185 that knocks down endomucin²¹, an inhibitor of endothelial cell-leukocyte adhesion and an
186 important protein in enhancing the glycocalyx, and finally administer the bioengineered
187 macrophages that will cross the vascular wall. Magnetic nanoparticle (MNP)-based
188 permeabilization could also be applied for various areas that have thicker glycocalyx, for
189 example²². Endothelial cells in those areas could be bound by peptides that recognize that

190 vascular "zip code" - conjugated with MNPs. Importantly, though, endomucin is specifically
191 expressed by venous endothelial cells. We may also need to remove lipofuscin from
192 various cell types like smooth muscle cells in the arterial walls.

193
194 The only other option that I think makes any sense on a large scale is to manually inject
195 parenchymal regions throughout the body with bioengineered white blood cells carrying
196 the trash-collecting microbes. The bioengineered white blood cells could be induced to
197 replicate up to a sufficient number once there via small molecule. That solution isn't pretty,
198 but if lipofuscin is truly the main culprit in age-related disease, we simply have to do
199 whatever is required. More likely, we could combine the aforementioned two-step delivery
200 system and intraparenchymal injections for full coverage. Please keep in mind that the
201 small molecule-induced replication option works for the two-step system as well of course,
202 and that in both scenarios there would be continuous donation of trash-collecting microbes
203 from each carrier white blood cell while they randomly migrate around a given tissue.

204
205 There are two important considerations for the two-step delivery system. One is that
206 clinicians should perhaps slowly infuse the patient with bioengineered macrophages after
207 inducing the synthetic luminal adherence proteins and chemokines, so as not to create too
208 much stress on the vasculature. The other is that one may need to employ superinfection
209 exclusion (SIE)²³ in terms of the HSV-1 vector to make sure that all or the majority of
210 vascular endothelial cells are transduced - but without ending up with too high of a vector
211 copy number per given cell. SIE would ideally be on the level of intracellular capsid
212 trafficking. For example, the degradation system cited here²⁴ could ensure the degradation
213 of incoming capsids before they transfer their DNA to the nucleus²⁵. A synthetic gene
214 circuit imbuing network-dosage compensation could also be of use in this situation
215 potentially²⁶. Given that the average EC lifespan is >1 year²⁷, there is a clear therapeutic
216 window here if the vasculature can be thoroughly transduced first. The extent of vascular
217 endothelial transduction could be visualized via the HSV-1 thymidine kinase. And a kill
218 switch could be included to destroy the vector genomes (based on CRISPR, for example)
219 after lipofuscin removal treatment.

220
221 Testing this type of delivery system in mice may be more facile than actually implementing
222 the real formulation because new mice strains can be engineered that express various
223 foreign genes in their vascular endothelial cells. They could have a synthetic chemokine
224 that brings across bioengineered macrophages²⁸, endomucin siRNA, a chemorepellent from
225 the abluminal side of the vascular endothelium, etc. Ferritin could even potentially be
226 overexpressed in the mouse vascular endothelial cells²⁹ to enable magnetic-based
227 disruption of endothelial junctions in large regions of the body - as in the previously-cited
228 article²².

229

230 **Two remaining issues in the near future:**

231 There are two remaining age-related issues I can think of that we should consider in the
232 immediate future. One is telomere shortening. Telomeres are simply non-sense, repetitive
233 sequences of DNA on both ends of every one of our chromosomes. Telomeres exist because
234 otherwise, important chromosomal DNA would be lost every time the cell divides. To
235 replenish our telomere lengths, stem cells - the cells that divide - use an enzyme called

236 “telomerase”. If our telomeres shorten too much through not expressing enough
237 telomerase, too much division, damage, or some combination of these factors, it triggers a
238 program where the cell either undergoes apoptosis or enters a senescent state. It has been
239 proposed that not enough telomerase is made in our stem cells, and that over time their
240 telomeres shorten so much they become senescent and we age. (Shorter telomeres are also
241 associated with an increased risk of cancer.) However, even though stem cell telomeres do
242 shorten with age in some individuals, for some individuals, their telomeres stay the same
243 length or even lengthen with age.

244
245 Blood stem cells from aged individuals can still function normally if they are “rejuvenated”
246 *ex vivo* - and then transplanted into a young niche³⁰. It appears as though every compound
247 that I’ve seen used to “rejuvenate” aged stem cells (e.g., CASIN and rapamycin) actually
248 decreases false lipofuscin in the cells through the stimulation of autophagy^{31,32}. From the
249 theoretical perspective, one could imagine that if a stem cell is slowly-dividing, it could
250 build up lipofuscin over time even with some replication. Alternatively, a rapidly-dividing
251 stem cell could be restrained by a niche full of lipofuscin, and then start to accumulate
252 lipofuscin itself. Lipofuscin removal from the stem cells/their niches may make them
253 better able to degrade damaged telomerase components and generate new ones, but it is
254 still possible that a gene vector encoding telomerase could be needed to lengthen the
255 telomeres of our stem cells - preventing them from becoming cancerous or senescent. To
256 negate this potential issue, we could deliver a gene vector encoding inducible telomerase to
257 our stem cells using essentially the same delivery system I am proposing for lipofuscin
258 clearance - and overexpress it periodically.

259
260 Importantly, non-dividing cell telomeres shorten to some extent with age as well due to
261 stress/damage³³. This may not be something we have to worry about for quite some time,
262 but eventually, telomere shortening in long-lived post-mitotic cells could become
263 problematic. Perhaps if the telomeres of long-lived non-dividing cells like neurons reach a
264 short enough level, they would be able to detect that and endogenously express a sufficient
265 amount of telomerase (given periodic lipofuscin removal). If not, we could also periodically
266 induce telomerase expression in long-lived non-dividing cell types - although much less
267 frequently than in aged stem cells. In other words, we want to ensure that none of our cells
268 have excessively long telomeres, as that could contribute to cancer.

269
270 Constitutive telomerase expression in many tissues from birth leads to oncogenic effects.
271 However, periodic overexpression of telomerase in all our adult stem cells could be safe for
272 a long period of time if (DNA repair proteins and) tumor suppressor proteins are also
273 overexpressed. Dr. Blasco *et al.* demonstrated that in mice overexpressing tumor
274 suppressor proteins, telomerase upregulation increases longevity³⁴. However, it should be
275 noted that mice have much longer telomeres than humans; their telomere biology is also
276 different in other ways. The only other option would be to periodically reseed all of our
277 stem cells. For some stem cell types at least, this could be rather difficult. Another
278 protective mechanism that should probably be developed would be to assign microbes to
279 dispense the telomerase in a manner that is carefully guarded - as I will discuss later on.
280

281 An adeno-associated virus serotype 9 (AAV9) encoding telomerase has been shown to
282 extend the lifespan adult/old mice when injected intravenously. Additionally,
283 cytomegalovirus (CMV) encoding telomerase had even more impressive results when
284 administered intranasally and intraperitoneally old mice^{35,36}. AAVs are non-replicating
285 vectors, so even slowly-dividing stem cells will eventually lose the vector unless there is
286 some sort of asymmetric inheritance process for the vector genome (even with otherwise
287 symmetrical stem cell division). The CMV vector was a replicating vector, but the infection
288 is cleared eventually. Some latent genome copies may remain in non-dividing cells,
289 however. It is possible that remaining viral genomes replicate in dividing cells to a small
290 extent, but will likely eventually be lost - perhaps in all but the slowest-dividing cells. The
291 infection potentially uses leukocytes as trojan horses to gain access to various tissues.
292

293 Again, mouse telomere biology is different than human telomere biology, so it is still
294 unclear how safe it is to use either approach in humans. However, there is a human case
295 study where a 44-year-old female underwent two series of AAV9-hTERT injections - one in
296 2015 and one in 2020³⁷. It was shown that her leukocyte telomere lengths greatly
297 increased over time. In this approach, the idea is that a non-replicating vector is used, so it
298 is not permanently kept in stem cells - they divide and lose the vector, and more rapidly-
299 dividing stem cells lose the vector more quickly.
300

301 Given the approach, it would at first glance seem a little strange that her leukocyte
302 telomeres continued to increase in length over time, as hematopoietic stem cells are
303 rapidly-dividing, and thus would dilute out the AAV vector quickly. However, it appears as
304 though hTERT also induces autophagy³⁸ and stimulates replication, at least in (embryonic)
305 stem cells³⁹; if hTERT were overexpressed for a while in her aged niche-restrained
306 hematopoietic stem cells (HSCs) and their niches - division could then ensue or speed up
307 once much false lipofuscin had been degraded/had been programmatically forced to be
308 diluted out from the HSCs. If this occurred for a sufficient period of time, her HSCs would
309 theoretically be able to divide normally again, dilute out the remainder of their lipofuscin,
310 and maintain their own telomere lengths.
311

312 It is worth noting that AAV-mediated delivery appears to be much more effective in mice⁴⁰
313 than larger animals like non-human primates^{41,42,43} - perhaps due to differences in
314 extravasation. Thus, we may need to use my aforementioned delivery system to effectively
315 deliver a gene vector encoding hTERT in humans in a manner I described in my anti-aging
316 article. In terms of cancer, even though cell division rates and DNA mutation rates are not
317 correlated⁴⁴, perhaps more rapidly-dividing stem cells are more prone to become
318 malignant or at least aggressively malignant⁴⁵ - and so losing the vector in those cells
319 prevents the increase in cancer we see when telomerase is constitutively overexpressed
320 throughout the body⁴⁶. But if aged stem cells can degrade damaged telomerase enzymes
321 and create more, new ones after shrinking their lipofuscin deposits - then why is there no
322 increase in oncogenesis? It appears as though hTERT expression can actually promote
323 proliferation, not simply enable it to occur indefinitely - so its overexpression in already
324 rapidly-dividing stem cells could be problematic.
325

326 The second issue is whether we should worry about memory B and T cells. Specifically,
327 should we worry that they will eventually build up in our bodies over time through
328 exposure to different pathogens to the point where there is no more space for naïve B and
329 T cells? Dr. de Grey mentioned this as being an issue, especially for CMV. If the thymus and
330 other lymphoid tissues are free of lipofuscin and still functioning properly, perhaps this
331 will not be a problem - as the clonal expansion of memory B and T cells may be a
332 compensatory action to counter the marked drop in the output of naïve B and T cells due to
333 bone marrow/spleen aging and age-related regression of the thymus, respectively⁴⁷.
334

335 However, perhaps for the elderly who already suffer from a clonal expansion of memory B
336 and T cells, removing lipofuscin from lymphoid tissues may not be enough. We may also
337 need to eliminate the memory B and T cells that have clonally expanded and massively
338 skewed their pathogen resistance profiles. It would be relatively simple to do that with
339 immunotoxins against B and T cells in general or CAR T-cells against them. Perhaps we
340 could specifically target clones that are most prevalent using a gene vector-type approach
341 wherein sensors look for particular DNA or RNA sequences and kill the cell if they are
342 detected. We could pre-emptively lengthen the telomeres of our hematopoietic stem cells
343 to ready them for massive expansion after that. Notably, if memory B and T cells sit around
344 for long periods of time without replicating - i.e., when the body is not exposed to their
345 corresponding pathogen, they could fill with lipofuscin over time and be unable to function
346 properly (e.g., re-enter a replicative state when necessary) after that.
347

348 **Anti-aging gene therapy:**

349 Altering endogenous gene expression or adding foreign genes to our cells - when it is not
350 necessary - may not be great idea. Introducing DNA in general into our nuclei through gene
351 therapy could be problematic; it could integrate at sites of double-strand breaks, for
352 example. Also, if you mess with finely-tuned genetic circuits, it may result in cancer. If you
353 mess with said circuits in many of our cells at once, it also may have other very harmful
354 effects potentially. Dr. Aubrey de Grey has said as much. However, perhaps there are some
355 good, safe targets other than telomerase that can be underexpressed or overexpressed to
356 increase longevity.
357

358 TFEB, a protein that is considered the “master regulator of autophagy”, might also be a
359 target that would be safe to periodically overexpress throughout the body. Notably, gene
360 vectors may not be necessary for altering TFEB gene dosage. A company called Generian is
361 developing a small molecule inhibitor of the E3 ligase that degrades TFEB, which would
362 thereby boost its levels in our tissues. Perhaps overexpression of TFEB from a gene vector
363 would be more potent, however. In mice, TFEB can safely be overexpressed in the ventral
364 midbrain at least⁴⁸.
365

366 FOXN1 may also be a good target. FOXN1 overexpression has been shown to counter-act
367 thymic involution⁴⁹. I argue that this is because it increases cell division⁵⁰ as well as
368 proteasome activity⁵¹, which can partially compensate for declining autophagy efficiency
369 due to lipofuscin accumulation. Maybe TFEB overexpression in the thymus would yield
370 similar results. Perhaps the thymus accumulates lipofuscin much more rapidly than other

371 organs because it is so metabolically active and thus its constituent cells need to divide
372 much more frequently to dilute out the lipofuscin.

373

374 **Cancer:**

375 If lipofuscin removal is indeed such a potent rejuvenation therapy, our risk of getting
376 cancer would dramatically decrease. If you first receive (an extensive) lipofuscin removal
377 treatment at a very advanced age - your risk of getting cancer might be slightly higher, but I
378 think the biological age range that we can all achieve is 25-40, which is very low risk.
379 Cancer in that age group is possible, however, although it's much more rare than in the
380 elderly (e.g., through essentially random metabolic errors or excessive sunlight exposure).
381 Notably, cancer is especially unlikely in young people who are unstressed, eat healthy,
382 exercise regularly, and do not get excessive sun exposure. Early detection of cancer is also
383 extremely beneficial; we can all have full body scans frequently.

384

385 I have written two articles on the subject of cancer therapy about a novel approach, which I
386 call Oncolytic Vector Efficient Replication Contingent on Omnipresent Mutation
387 Engagement (OVERCOME)^{52,53}. OVERCOME, or a variation of it that I mention, may be
388 enough to cure cancer or at least effectively treat it without side effects in a way that can be
389 repeated indefinitely. It would be difficult to explain how it works exactly in this piece. But
390 you can read about the details here^{52,53}. Basically OVERCOME involves using an
391 intracellular microbe to detect mutations in a patient's cancer that are ubiquitous
392 throughout their tumors - and respond by replicating within/destroying any cancer cell
393 containing the targeted mutations.

394

395 It is perhaps possible that solid tumors will be overcome via other types of treatments like
396 immunotherapy or targeted therapies. In terms of immunotherapy, the problem I see is
397 that many mutations affect proteins that are internal to the cell, so they cannot be targeted
398 externally. It is true that cells "present" a sample of the peptides inside of them to immune
399 cells for review, to ensure that they are destroyed if they are infected or cancerous.
400 However, cancer cells often downregulate the complex that they use to present their
401 internal peptides - in order to escape recognition by the immune system⁵⁴. Moreover,
402 some cancer cells may also downregulate production of the targeted external or internal
403 mutant protein to escape treatment - which can't really be addressed from outside said
404 cancer cells. OVERCOME, on the other hand, involves using an intracellular microbe to
405 detect mutations - and mutant genes can be forced to produce their corresponding protein.

406

407 The success we've seen with CAR T-cells is because they can be used to eliminate entire
408 populations of white blood cells to destroy certain blood cancers, as these white blood cells
409 can be wiped out without killing the patient, but we clearly can't do that with the cells in
410 solid tissues. Unfortunately, even if a protein is targeted by CAR T-cells that is normally
411 present on all B cells, for example, blood cancers can evolve to downregulate its expression.
412 That's why sometimes a patient's blood cancer recurs after treatment with CAR T-cells⁵⁵.
413 The situation is even worse for solid tumors, as the microenvironment of solid tumors is
414 often quite complex immunologically and can shut down our white blood cells - although
415 researchers are working very hard to figure out how to bioengineer CAR T-cells to be
416 resistant to immunosuppressive effects. Of note, there was recently a very interesting

417 clinical trial where all 18 rectal cancer patients went into remission after treatment with an
418 antibody against PD-1⁵⁶.

419
420 While targeted therapies can involve small molecules capable of crossing plasma
421 membranes and binding to intracellular proteins, it is still the case that cancer cell escape
422 variants will likely emerge - even when combinations of small molecules are used - as many
423 genetic pathways have a lot of redundancy. I am hopeful that new treatments for cancers
424 with various genetic/epigenetic signatures will be discovered - but it may be a slow
425 process, taking decades before many cancers can be treated. OVERCOME, on the other
426 hand, may be able to treat a huge number of cancers with just a bit of preliminary
427 bioengineering work.

428
429 Maybe in many cases eliminating the majority (i.e., not even the vast majority) of a patient's
430 tumor cells is enough for your natural immune system to step in and finish the job and/or
431 devastating enough so that the remaining tumor cells are simply unable to continue to
432 proliferate after so much of the tumor or tumors have been decimated. But it is obviously
433 better to kill as many of them as possible. Without computerized microrobots and/or
434 nanorobots, one probably is never going to be able to eliminate every single one of a
435 patient's cancer cells, even if multiple ubiquitous mutations are targeted and a potent
436 bystander effect is employed.

437
438 However, it also true that with immunotherapies like anti-PD-1 antibodies and CAR T-cells
439 you run the risk of the patient developing cytokine release syndrome and immune effector
440 cell-associated neurotoxicity syndrome; with targeted small molecules there can also be
441 serious side effects. While OVERCOME may initially require immunosuppression, which
442 has many negative side effects as well, eventually stealth microbes can be utilized in such a
443 way that there are essentially no side effects^{57,58}.

444
445 Overexpressing DNA repair and tumor suppressor proteins^{59,60,61} in our cells could help
446 stave off cancer until we develop computerized microrobots and/or nanorobots that can
447 eliminate/prevent cancer without fail. As I mentioned earlier in terms of overexpressing
448 longevity proteins or underexpressing proteins that accelerate aging, it is not really
449 advisable to alter gene dosage or introduce new genes into our cells, but it may be a
450 necessary risk here if OVERCOME is not always curative or cannot even stave off death
451 from cancer in all cases. As an important sidenote, lipofuscin removal could potentially
452 help treat or even cure cancer in the elderly in some cases - at least in part by re-
453 establishing a healthy immune system.

454
455 In reality, the best type of anti-cancer strategy aside from computerized microrobots
456 and/or nanorobots would be to pre-empt it entirely. Such an approach was conceived of by
457 Dr. de Grey. He calls it "Whole-body Interdiction of Lengthening of Telomeres" (WILT)⁶². It
458 involves deleting the machinery required to lengthen telomeres in all cells in our body and
459 periodically reseeding our stem cells with similarly bioengineered cells. This would
460 essentially completely eliminate the problem of cancer. Unfortunately, aside from
461 telomerase there is another mechanism cancer cells can use to extend their telomeres,
462 called "alternative lengthening of telomeres" (ALT). It has been estimated that ALT is

463 active in 10-20% of all cancers⁶³. One or more of the proteins involved in ALT may be
464 required for other critical cellular processes - so knocking them out of our cells may not be
465 possible. Another crucial issue is that reseeding stem cells in certain tissues at least may
466 not be particularly facile. Dr. de Grey, however, has pointed out that the more rapidly-
467 dividing stem cells like those of the skin, gut, and immune system seem easier to reseed
468 than stem cells that divide more slowly, like those in the brain and heart. (My delivery
469 system may help with reseeding - if bioengineered macrophages could carry a stem cell
470 inside them, detect niches, and deposit their cargo there, but I'm not sure.)

471
472 Perhaps we could knock out hTERT in all of our cells and install an intracellular bacterium
473 that replicates up to a small number inside our stem cells; they could dispense telomerase
474 periodically (when induced via exogenous small molecule). They could have many
475 mechanisms in place to ensure that their telomerase cannot be hijacked by the host cell.
476 Maybe just many redundant, inducible kill switches. But then we would have to re-“infect”
477 all of a patient’s stem cells again. The intracellular bacteria could use potentially use
478 molecular switches to detect mRNA or protein that indicate that certain ALT proteins are
479 required at that moment. That seems a bit difficult, but perhaps less so than reseeding
480 stem cells in areas like the brain.

481
482 **Conclusion:**
483 Finally, four other issues must still be addressed with regard to age-related disease.
484 However, in the next few hundred years we grant ourselves, they can be dealt with. They
485 are mitochondrial DNA mutations (as Dr. de Grey pointed out), nuclear DNA mutations,
486 nuclear DNA damage (as Ben Best, director of the Cryonics Society of Canada, has written
487 about⁶⁴), and dilapidation of the extracellular components of our bodies. Periodic
488 lipofuscin removal should help to reverse/stave off all of these issues. Additionally, there
489 are various stop-gap solutions and fundamental solutions to these issues. The first three
490 issues could be stalled by DNA repair protein overexpression, and there is perhaps a way of
491 stalling the fourth category as well - namely, by promoting extensive extracellular matrix
492 turnover more frequently than it occurs endogenously, in combination with more even
493 more frequent lipofuscin removal treatments than I originally envisioned (i.e., once every
494 decade).

495
496 As I mention in my paper⁹, the elderly will likely need a more extensive first lipofuscin
497 removal session. When we do the first round of lysosome removal, we must wait for a
498 period of time for any cytosolic garbage to be sent to the new lysosomes and dysfunctional
499 mitochondria to be mitophagized, etc. Some of that material may prove to be indigestible
500 as well. Thus, we must do multiple rounds of removal potentially during an elderly
501 patient’s first treatment. Furthermore, we may wish to export their autophagosomes as
502 well as their lysosomes. Old autophagosomes may accumulate that were unable to fuse
503 with lipofuscin-laden lysosomes and were therefore sitting in the cytoplasm for quite some
504 time. If so, these old autophagosomes may have compromised outer membranes, and as a
505 result be unable to fuse even with new lysosomes when they are generated.

506
507 Also, I am a bit worried that some of the damage that has accumulated in the extracellular
508 matrix for example, may simply be irreversible without computerized microrobots and/or

509 nanorobots, especially in the elderly, in which various areas have been left "untended" for
510 long periods of time. However, being healthier and hopefully happier would mean they
511 could more easily follow a strict diet. And with a lot of their physical frailty potentially
512 reversed, they could once again exercise vigorously (high intensity bursts) and reverse
513 some of the otherwise irreversible age-related damage that may have accumulated/stay
514 maximally healthy until we can fix the rest with computerized microrobots/nanorobots.
515

516 Reversing advanced atherosclerosis in the elderly, perhaps especially in terms of heavily-
517 calcified vascular plaque - could possibly be a bit more concerning than other forms of ECM
518 damage. That is because vascular plaques can cause stenosis and also rupture, potentially
519 leading to clots. (Foam cells are present in vascular plaques, but the definition of
520 extracellular matrix damage, i.e., damage to the biomolecular scaffold of our bodies, should
521 include the accumulation of normal or abnormal cells in areas that they should not be in. In
522 this case, they are not essential to move back wherever they originally came from/maintain
523 - like an untold number of macrophages in the blood vessel wall at a specific locale.) Diet
524 and exercise could help to greatly reverse such pathology. Of course, vigorous exercise for
525 the elderly will probably be much easier after an initial, extensive session of lipofuscin
526 removal. Temperature may also play a role in determining the extent of pathology caused
527 by atherosclerotic plaques - especially in terms of whether they rupture or not. Perhaps
528 many sessions of whole-body hyperthermia could help stabilize dangerous plaques or even
529 cause the regression of plaques⁶⁵.
530

531 Plaques could be treated by intravenously administering a wave of bioengineered carrier
532 macrophages full of magnetotactic⁶⁶ bacteria to a patient - to be drawn into the plaque
533 areas via MRI⁶⁷. The carrier macrophages could locally secrete acid and enzymes that help
534 with the digestion of calcified tissue when they sense that they are near the plaque - like
535 osteoclasts. This digestion/decalcification process may have to be gradual in certain cases,
536 at least, and concurrent with plaque phagocytosis - with constitutive, low-level secretion of
537 acid/collagenase/etc. or periodic induction. The magnetotactic bacteria would also escape
538 the carrier cells, enter foam cells, engulf their lysosomes⁶⁸, and then escape the foam cells.
539 Finally, they would be drawn magnetically to an (intraperitoneal) extraction point.
540

541 Finally, the carrier cells could be macrophages loaded with magnetic nanoparticles as well -
542 and phagocytose the plaque material in general. When they sense that they've reached a
543 moderate level of "fullness" with indigestible⁶⁹ or at least hard to digest garbage like
544 oxidized low density lipoprotein, they could migrate to an (intraperitoneal) extraction
545 point via magnetism. The ECM turnover approach for general extracellular cross-link
546 removal may help a lot here as well - i.e., endothelial cells and smooth muscle cells in
547 vascular walls could prevent the accumulation of various cross-links that may form during
548 atherosclerotic plaque formation. Finally, there is also always the eventual option of
549 xenotransplantation of porcine blood vessels or lab-grown blood vessel tissue if traditional
550 therapies and these approaches are not sufficient for atherosclerosis.
551

552 Mitochondrial DNA mutations should be the easiest to fundamentally address. Dr. de Grey
553 has suggested allotopic expression as a solution². My delivery system could also be used to
554 deliver microbes that engulf old mitochondria and secrete new ones or at least new mtDNA

555 - if it can be successfully delivered to pre-existing mitochondria in the target cell. While the
556 latter three issues might need computerized microrobots and/or nanorobots to fix
557 fundamentally, in the hundreds or even thousands of years of healthy life we can hopefully
558 grant ourselves with lipofuscin removal and stop-gap measures, I believe we can develop
559 such technology⁷⁰.

560
561 There are two final caveats. Clots and bleeds are unlikely in young, healthy individuals, but
562 can still occur. The most clear solution in these cases is tissue engineering *in vitro* or
563 possibly xenotransplantation before tissue engineering biotechnology has advanced far
564 enough. Xenotransplantation may be more feasible earlier. However, these options are not
565 likely to be great solutions in the event of serious clots or bleeds in critical areas like the
566 brain, heart, or lungs. (For neurons, obviously large scale tissue replacement is not really
567 even feasible without computerized microrobots and/or nanorobots to reinstall synaptic
568 connections, etc.) For clots, perhaps my proposed delivery system could deliver genes to
569 all of our cells that ensure they do not undergo apoptosis when starved of nutrients and
570 oxygen, but rather enter into a more dormant state. When the situation reverses itself, they
571 could function normally again. For bleeds - we could bioengineer circulating white blood
572 cells to quickly patch up the leak, as well as bioengineer tissue-resident macrophages to
573 phagocytose red blood cells and general bloodstream biomolecules much more efficiently.

574

575 **Acknowledgments:**

576 Thank you very much to my family - and also my friends, especially Chris Welch and Ray
577 Lomeli. Also, thank you to Dr. Aubrey de Grey and Michael Rae for their work in the field of
578 anti-aging research. The figure in this piece was created with BioRender.com.

579

580 **References:**

¹ Terman A and Brunk UT. Lipofuscin. *The International Journal of Biochemistry & Cell Biology* 2004;36(8):1400–1404; doi: [10.1016/j.biocel.2003.08.009](https://doi.org/10.1016/j.biocel.2003.08.009).

² Zealley B and de Grey ADNJ. Strategies for Engineered Negligible Senescence. *Gerontology* 2013;59(2):183–189; doi: [10.1159/000342197](https://doi.org/10.1159/000342197).

³ López-Otín C, Blasco MA, Partridge L, et al. The Hallmarks of Aging. *Cell* 2013;153(6):1194–1217; doi: [10.1016/j.cell.2013.05.039](https://doi.org/10.1016/j.cell.2013.05.039).

⁴ Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. *Genes Dev* 2020;34(23–24):1565–1576; doi: [10.1101/gad.343129.120](https://doi.org/10.1101/gad.343129.120).

⁵ Kabacik S, Lowe D, Fransen L, et al. The Relationship between Epigenetic Age and the Hallmarks of Aging in Human Cells. *Nat Aging* 2022;2(6):484–493; doi: [10.1038/s43587-022-00220-0](https://doi.org/10.1038/s43587-022-00220-0).

⁶ Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. *Nature* 2020;588(7836):124–129; doi: [10.1038/s41586-020-2975-4](https://doi.org/10.1038/s41586-020-2975-4).

⁷ Wang S, Xia P, Ye B, et al. Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. *Cell Stem Cell* 2013;13(5):617–625; doi: [10.1016/j.stem.2013.10.005](https://doi.org/10.1016/j.stem.2013.10.005).

⁸ Kang Y-K, Min B, Eom J, et al. Different Phases of Aging in Mouse Old Skeletal Muscle. *Aging* 2022;14(1):143–160; doi: [10.18632/aging.203812](https://doi.org/10.18632/aging.203812).

⁹ Renteln M. Lipofuscin as the main driving force of current age-related disease: justification and strategies for removal. *Molecular Biology Reports* (Under Review)

Preprint → doi: 10.20944/preprints202208.0229.v5

¹⁰ Johnson M, Karanikolas BDW, Priceman SJ, et al. Titration of Variant HSV1-tk Gene Expression to Determine the Sensitivity of 18F-FHBG PET Imaging in a Prostate Tumor. *J Nucl Med* 2009;50(5):757–764; doi: [10.2967/jnumed.108.058438](https://doi.org/10.2967/jnumed.108.058438).

¹¹ Nikitas G, Deschamps C, Disson O, et al. Transcytosis of *Listeria monocytogenes* across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. *J Exp Med* 2011;208(11):2263–2277; doi: [10.1084/jem.20110560](https://doi.org/10.1084/jem.20110560).

¹² Le Guennec L, Coureuil M, Nassif X, et al. Strategies used by bacterial pathogens to cross the blood–brain barrier. *Cellular Microbiology* 2020;22(1):e13132; doi: [10.1111/cmi.13132](https://doi.org/10.1111/cmi.13132).

¹³ Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. *Nat Rev Immunol* 2007;7(9):678–689; doi: [10.1038/nri2156](https://doi.org/10.1038/nri2156).

¹⁴ Chi J-T, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, et al. Endothelial cell diversity revealed by global expression profiling. *Proceedings of the National Academy of Sciences* (2003) **100**:10623–10628. doi: [10.1073/pnas.1434429100](https://doi.org/10.1073/pnas.1434429100)

¹⁵ van Buul JD, Hordijk PL. Signaling in Leukocyte Transendothelial Migration. *Arteriosclerosis, Thrombosis, and Vascular Biology* (2004) **24**:824–833. doi: [10.1161/01.ATV.0000122854.76267.5c](https://doi.org/10.1161/01.ATV.0000122854.76267.5c)

¹⁶ Gupta M, Shin D-M, Ramakrishna L, et al. IRF8 directs stress-induced autophagy in macrophages and promotes clearance of *Listeria monocytogenes*. *Nature Communications* 2015;6:6379; doi: [10.1038/ncomms7379](https://doi.org/10.1038/ncomms7379).

¹⁷ Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM. *Salmonella* typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. *Mol Cell* (2004) **15**:677–687. doi: [10.1016/j.molcel.2004.07.020](https://doi.org/10.1016/j.molcel.2004.07.020)

¹⁸ Lipinski DM, Reid CA, Boye SL, et al. Systemic Vascular Transduction by Capsid Mutant Adeno-Associated Virus After Intravenous Injection. *Hum Gene Ther* 2015;26(11):767–776; doi: [10.1089/hum.2015.097](https://doi.org/10.1089/hum.2015.097).

¹⁹ Krolak T, Chan KY, Kaplan L, et al. A High-Efficiency AAV for Endothelial Cell Transduction throughout the Central Nervous System. *Nat Cardiovasc Res* 2022;1(4):389–400; doi: [10.1038/s44161-022-00046-4](https://doi.org/10.1038/s44161-022-00046-4).

²⁰ Lu ZH, Kaliberov S, Zhang J, et al. The Myeloid-Binding Peptide Adenoviral Vector Enables Multi-Organ Vascular Endothelial Gene Targeting. *Lab Invest* 2014;94(8):881–892; doi: [10.1038/labinvest.2014.78](https://doi.org/10.1038/labinvest.2014.78).

²¹ Zahr A, Alcaide P, Yang J, et al. Endomucin prevents leukocyte–endothelial cell adhesion and has a critical role under resting and inflammatory conditions. *Nat Commun* 2016;7(1):10363; doi: [10.1038/ncomms10363](https://doi.org/10.1038/ncomms10363).

²² Qiu Y, Tong S, Zhang L, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. *Nat Commun* 2017;8(1):15594; doi: [10.1038/ncomms15594](https://doi.org/10.1038/ncomms15594).

²³ Hunter M, Fusco D. Superinfection exclusion: A viral strategy with short-term benefits and long-term drawbacks. *PLoS Comput Biol* 2022;18(5):e1010125; doi: [10.1371/journal.pcbi.1010125](https://doi.org/10.1371/journal.pcbi.1010125).

²⁴ Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. *Nature Structural & Molecular Biology* (2012) **19**:117–121. doi: [10.1038/nsmb.2180](https://doi.org/10.1038/nsmb.2180)

²⁵ Horan KA, Hansen K, Jakobsen MR, Holm CK, Søby S, Unterholzner L, Thompson M, West JA, Iversen MB, Rasmussen SB, et al. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. *J Immunol* (2013) **190**:2311–2319. doi: [10.4049/jimmunol.1202749](https://doi.org/10.4049/jimmunol.1202749)

²⁶ Acar M, Pando BF, Arnold FH, Elowitz MB, van Oudenaarden A. A general mechanism for network-dosage compensation in gene circuits. *Science* (2010) **329**:1656–1660. doi: [10.1126/science.1190544](https://doi.org/10.1126/science.1190544)

²⁷ Montezano, Augusto C., Karla B. Neves, Rheure A. M. Lopes, and Francisco Rios. “Isolation and Culture of Endothelial Cells from Large Vessels.” In *Hypertension: Methods and Protocols*, edited by Rhian M. Touyz and Ernesto L. Schiffrin, 345–48. Methods in Molecular Biology. New York, NY: Springer, 2017. https://doi.org/10.1007/978-1-4939-6625-7_26.

²⁸ Graham GJ, Handel TM, Proudfoot AEI. Leukocyte Adhesion: Reconceptualizing Chemokine Presentation by Glycosaminoglycans. *Trends Immunol* 2019;40(6):472–481; doi: [10.1016/j.it.2019.03.009](https://doi.org/10.1016/j.it.2019.03.009).

²⁹ Stanley SA, Gagner JE, Damanpour S, et al. Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice. *Science* 2012;336(6081):604–608; doi: [10.1126/science.1216753](https://doi.org/10.1126/science.1216753).

³⁰ Guidi N, Marka G, Sakk V, et al. An Aged Bone Marrow Niche Restrains Rejuvenated Hematopoietic Stem Cells. *STEM CELLS* 2021;39(8):1101–1106; doi: [10.1002/stem.3372](https://doi.org/10.1002/stem.3372).

³¹ Landspersky T, Saçma M, Rivière J, et al. Autophagy in Mesenchymal Progenitors Protects Mice against Bone Marrow Failure after Severe Intermittent Stress. *Blood* 2022;139(5):690–703; doi: [10.1182/blood.2021011775](https://doi.org/10.1182/blood.2021011775).

³² Zhang X, Chen W, Gao Q, et al. Rapamycin Directly Activates Lysosomal Mucolipin TRP Channels Independent of MTOR. *PLOS Biology* 2019;17(5):e3000252; doi: [10.1371/journal.pbio.3000252](https://doi.org/10.1371/journal.pbio.3000252).

³³ Ain Q, Schmeer C, Penndorf D, et al. Cell cycle-dependent and -independent telomere shortening accompanies murine brain aging. *Aging (Albany NY)* 2018;10(11):3397–3420; doi: [10.18632/aging.101655](https://doi.org/10.18632/aging.101655).

³⁴ Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase Reverse Transcriptase Delays Aging in Cancer-Resistant Mice. *Cell* 2008;135(4):609–622; doi: [10.1016/j.cell.2008.09.034](https://doi.org/10.1016/j.cell.2008.09.034).

³⁵ Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase Gene Therapy in Adult and Old Mice Delays Aging and Increases Longevity without Increasing Cancer. *EMBO Mol Med* 2012;4(8):691–704; doi: [10.1002/emmm.201200245](https://doi.org/10.1002/emmm.201200245).

³⁶ Jaijyan DK, Selariu A, Cruz-Cosme R, et al. New Intranasal and Injectable Gene Therapy for Healthy Life Extension. *Proc Natl Acad Sci U S A* 2022;119(20):e2121499119; doi: [10.1073/pnas.2121499119](https://doi.org/10.1073/pnas.2121499119).

³⁷ Sewell PE. Systemic Human Hert Aav Gene Transfer Therapy And The Effect On Telomere Length And Biological Age, A Case Report. *J Regen Biol Med* 2022; doi: [10.37191/Mapsci-2582-385X-4\(2\)-106](https://doi.org/10.37191/Mapsci-2582-385X-4(2)-106).

³⁸ Ali M, Devkota S, Roh J-I, et al. Telomerase Reverse Transcriptase Induces Basal and Amino Acid Starvation-Induced Autophagy through MTORC1. *Biochemical and Biophysical Research Communications* 2016;478(3):1198–1204; doi: [10.1016/j.bbrc.2016.08.094](https://doi.org/10.1016/j.bbrc.2016.08.094).

³⁹ Yang C, Przyborski S, Cooke MJ, et al. A Key Role for Telomerase Reverse Transcriptase Unit in Modulating Human Embryonic Stem Cell Proliferation, Cell Cycle Dynamics, and In Vitro Differentiation. *Stem Cells* 2008;26(4):850–863; doi: [10.1634/stemcells.2007-0677](https://doi.org/10.1634/stemcells.2007-0677).

⁴⁰ Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV Serotypes 1-9 Mediated Gene Expression and Tropism in Mice after Systemic Injection. *Mol Ther* 2008;16(6):1073–1080; doi: [10.1038/mt.2008.76](https://doi.org/10.1038/mt.2008.76).

⁴¹ Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. *Mol Ther* (2011) 19:1058–1069. doi: [10.1038/mt.2011.72](https://doi.org/10.1038/mt.2011.72)

⁴² Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, Chan CM, McCrate M, Chicoine LG, Coley BD, et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. *Mol Ther* (2011) 19:1971–1980. doi: [10.1038/mt.2011.157](https://doi.org/10.1038/mt.2011.157)

⁴³ Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. *Mol Ther* (2018) 26:664–668. doi: [10.1016/j.ymthe.2018.01.018](https://doi.org/10.1016/j.ymthe.2018.01.018)

⁴⁴ Cagan A, Baez-Ortega A, Brzozowska N, et al. Somatic Mutation Rates Scale with Lifespan across Mammals. *Nature* 2022;604(7906):517–524; doi: [10.1038/s41586-022-04618-z](https://doi.org/10.1038/s41586-022-04618-z).

⁴⁵ Chen X, Burkhardt DB, Hartman AA, et al. MLL-AF9 Initiates Transformation from Fast-Proliferating Myeloid Progenitors. *Nat Commun* 2019;10(1):5767; doi: [10.1038/s41467-019-13666-5](https://doi.org/10.1038/s41467-019-13666-5).

⁴⁶ Se A, S A, Mk T, et al. Constitutive Telomerase Expression Promotes Mammary Carcinomas in Aging Mice. *Proceedings of the National Academy of Sciences of the United States of America* 2002;99(12); doi: [10.1073/pnas.112515399](https://doi.org/10.1073/pnas.112515399).

⁴⁷ Weng N. Aging of the Immune System: How Much Can the Adaptive Immune System Adapt? *Immunity* 2006;24(5):495–499; doi: [10.1016/j.immuni.2006.05.001](https://doi.org/10.1016/j.immuni.2006.05.001).

⁴⁸ Torra A, Parent A, Cuadros T, et al. Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration. *Mol Ther* 2018;26(6):1552–1567; doi: [10.1016/j.ymthe.2018.02.022](https://doi.org/10.1016/j.ymthe.2018.02.022).

⁴⁹ Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. *Development* 2014;141(8):1627–1637; doi: [10.1242/dev.103614](https://doi.org/10.1242/dev.103614).

⁵⁰ Zook EC, Krishack PA, Zhang S, et al. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. *Blood* 2011;118(22):5723–5731; doi: [10.1182/blood-2011-03-342097](https://doi.org/10.1182/blood-2011-03-342097).

⁵¹ Uddin MM, Ohigashi I, Motosugi R, et al. Foxn1-β5t transcriptional axis controls CD8+ T-cell production in the thymus. *Nat Commun* 2017;8(1):14419; doi: [10.1038/ncomms14419](https://doi.org/10.1038/ncomms14419).

⁵² Renteln M. Conditional Replication of Oncolytic Viruses Based on Detection of Oncogenic mRNA. *Gene Therapy* 2018;25(1):1–3; doi: [10.1038/gt.2017.99](https://doi.org/10.1038/gt.2017.99).

⁵³ Renteln M. Promoting oncolytic vector replication with switches that detect ubiquitous mutations. *Current Cancer Therapy Reviews* (Under Review)

Preprint → doi: 10.20944/preprints202208.0220.v1

⁵⁴ Cornel AM, Mimpel IL, Nierkens S. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel)* 2020;12(7):E1760; doi: [10.3390/cancers12071760](https://doi.org/10.3390/cancers12071760).

⁵⁵ Park JH, Rivière I, Gonon M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. *N Engl J Med* 2018;378(5):449–459; doi: [10.1056/NEJMoa1709919](https://doi.org/10.1056/NEJMoa1709919).

⁵⁶ Cersek A, Lumish M, Sinopoli J, et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. *New England Journal of Medicine* 2022;0(0):null; doi: [10.1056/NEJMoa2201445](https://doi.org/10.1056/NEJMoa2201445).

⁵⁷ Stritzker J, Hill PJ, Gentschev I, et al. Myristoylation negative msbB-mutants of probiotic *E. coli* Nissle 1917 retain tumor specific colonization properties but show less side effects in immunocompetent mice. *Bioeng Bugs* 2010;1(2):139–145; doi: [10.4161/bbug.1.2.10286](https://doi.org/10.4161/bbug.1.2.10286).

⁵⁸ Harimoto T, Hahn J, Chen Y-Y, et al. A Programmable Encapsulation System Improves Delivery of Therapeutic Bacteria in Mice. *Nat Biotechnol* 2022;40(8):1259–1269; doi: [10.1038/s41587-022-01244-y](https://doi.org/10.1038/s41587-022-01244-y).

⁵⁹ García-Cao I, García-Cao M, Martín-Caballero J, et al. ‘Super P53’ Mice Exhibit Enhanced DNA Damage Response, Are Tumor Resistant and Age Normally. *EMBO J* 2002;21(22):6225–6235; doi: [10.1093/emboj/cdf595](https://doi.org/10.1093/emboj/cdf595).

⁶⁰ Zhao Y, Burikhanov R, Qiu S, et al. Cancer Resistance in Transgenic Mice Expressing the SAC Module of Par-4. *Cancer Res* 2007;67(19):9276–9285; doi: [10.1158/0008-5472.CAN-07-2124](https://doi.org/10.1158/0008-5472.CAN-07-2124).

⁶¹ Garcia-Cao I, Song MS, Hobbs RM, et al. Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State. *Cell* 2012;149(1):49–62; doi: [10.1016/j.cell.2012.02.030](https://doi.org/10.1016/j.cell.2012.02.030).

⁶² Grey ADNJ de. Whole-Body Interdiction of Lengthening of Telomeres: A Proposal for Cancer Prevention. *Front Biosci* 2005;10(1–3):2420; doi: [10.2741/1707](https://doi.org/10.2741/1707).

⁶³ MacKenzie D, Watters AK, To JT, et al. ALT Positivity in Human Cancers: Prevalence and Clinical Insights. *Cancers (Basel)* 2021;13(10):2384; doi: [10.3390/cancers13102384](https://doi.org/10.3390/cancers13102384).

⁶⁴ Best BP. Nuclear DNA Damage as a Direct Cause of Aging. *Rejuvenation Research* 2009;12(3):199–208; doi: [10.1089/rej.2009.0847](https://doi.org/10.1089/rej.2009.0847).

⁶⁵ Bruxel MA, Tavares AMV, Zavarize Neto LD, et al. Chronic whole-body heat treatment relieves atherosclerotic lesions, cardiovascular and metabolic abnormalities, and enhances survival time restoring the anti-inflammatory and anti-senescence heat shock response in mice. *Biochimie* 2019;156:33–46; doi: [10.1016/j.biochi.2018.09.011](https://doi.org/10.1016/j.biochi.2018.09.011).

⁶⁶ Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. *Nat Rev Microbiol* 2016;14(10):621–637; doi: [10.1038/nrmicro.2016.99](https://doi.org/10.1038/nrmicro.2016.99).

⁶⁷ Muthana M, Kennerley AJ, Hughes R, et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. *Nature Communications* 2015;6(1):8009; doi: [10.1038/ncomms9009](https://doi.org/10.1038/ncomms9009).

⁶⁸ Shiratori T, Suzuki S, Kakizawa Y, Ishida K. Phagocytosis-like cell engulfment by a planctomycete bacterium. *Nat Commun* (2019) **10**:5529. doi: [10.1038/s41467-019-13499-2](https://doi.org/10.1038/s41467-019-13499-2)

⁶⁹ Marques ARA, Ramos C, Machado-Oliveira G, et al. Lysosome (Dys)Function in Atherosclerosis—A Big Weight on the Shoulders of a Small Organelle. *Frontiers in Cell and Developmental Biology* 2021;9:658995; doi: [10.3389/fcell.2021.658995](https://doi.org/10.3389/fcell.2021.658995).

⁷⁰ Freitas Jr. RA. Progress in Nanomedicine and Medical Nanorobotics. In: *Handbook of Theoretical and Computational Nanotechnology*. (Rieth M, Schommers W. eds.) American Scientific Publishers: Stevenson Ranch, Calif; 2005.