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Simple Summary: In this study, we aimed to investigate the use of deep learning for classifying
whole-slide images of urine liquid-based cytology specimens into neoplastic and non-neoplastic
(negative). To do so, we used a total of 786 whole-slide images to train a model using four different
approaches, and we evaluated it on 750 whole-slide images. The best model achieved good classi-
fication performance, demonstrating the promising potential of use of such models for aiding the
screening process for urothelial carcinoma in routine clinical practices.

Abstract: Urinary cytology is a useful, essential diagnostic method in routine urological clinical
practice. Liquid-based cytology (LBC) for urothelial carcinoma screening is commonly used in the
routine clinical cytodiagnosis because of its high cell collection rate. Since conventional screening
processes by cytoscreeners and cytopathologists using microscopes is limited in terms of human
resources, it is important to integrate new deep learning methods that can automatically and rapidly
diagnose a large amount of specimens without delay. The goal of this study was to investigate the use
of deep learning models for the classification of urine LBC whole-slide images (WSIs) into neoplastic
and non-neoplastic (negative). We trained deep learning models using 786 WSIs by transfer learning,
fully supervised, and weakly supervised learning approaches. We evaluated the trained models on
two test sets (equal and clinical balance) with a combined total of 750 WSIs, achieving ROC-AUCs for
WSI diagnosis in the range of 0.984-0.990 by the best model, demonstrating the promising potential
use of our model for aiding urine cytodiagnostic processes.
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1. Introduction

For routine clinical practices, clinicians obtain urinary tract cytology specimens for
the screening of urothelial carcinoma. Urine specimens play a critical role in the clinical
evaluation of patients who have clinical signs and symptoms (e.g., haematuria and painful
urination) suggestive of pathological changes within the urinary tract. Urothelial carcinoma
is the most common malignant neoplasm detected by urine cytology. The most common
site of origin of urothelial carcinoma is bladder. According to the Global Cancer Statistics
2020 [1], bladder cancer is the tenth most commonly diagnosed cancer with 573,278 of
new cases and 212,536 of new deaths worldwide in 2020. Most of the bladder cancers are
urothelial in origin (approximately 90% of bladder cancers) and primary adenocarcinoma of
the bladder is rare [2,3]. Bladder cancer often presents insidiously. Haematuria is the most
common presentation of bladder cancer, which is typically intermittent, frank, painless and
at times present throughout micturition [3]. Delayed diagnosis of urothelial carcinoma is
associated with high grade muscle invasion which has the potential to progress rapidly
and cancer metastasis [3]. Of course, cystoscopy with a biopsy is the gold standard for
diagnosis of urothelial carcinoma in clinical practice; however, it is aggressive and relatively
inconvenient as a follow-up monitoring approach [4]. It has been reported that 48.6% of
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biopsy proven low-grade urothelial carcinomas had a urine cytodiagnosis of atypical
or neoplastic suspicious, which could conclude that existing urine cytology screening
and surveillance systems are accurate in diagnosing urothelial carcinoma [5]. Therefore,
cytological urothelial carcinoma screening in urine specimens plays a key role in early stage
cancer detection and treatment in routine clinical practices [6,7].

Liquid-based cytology (LBC) was developed as an alternative to conventional smear
cytology in the 1990s [8]. LBC has several advantages in preparation and diagnostic process
compared with conventional smear. The LBC technique preserves the cells of interest in
a liquid medium and removes most of the debris, blood, and exudate either by filtering
or density gradient centrifugation. LBC provides automated and standardized processing
techniques that produce a uniformly distributed and cell-enriched slide. Moreover, residual
specimens can be used for additional investigations (e.g., immunochtochemistry). ThinPrep
(Hologic, Inc., United States) and SurePath (Becton Dickinson, Inc., United States) for LBC
specimen preparation have been approved by the US Food and Drug Administration
(FDA). Compared to the conventional smear cytology, LBC has lower background elements,
provides better cell preservation, and has a higher satisfaction rate [9]. As for the sensitivity,
it has been reported that LBC achieved at 0.58 (CI: 0.51-0.65) and conventional smear
achieved at 0.38 [4,8]. It is understandable that the efficiency of diagnosis employing the
LBC is high because of the cell collection rate. It was shown that the accuracy of diagnoses
made employing the LBC method can be increased by understanding the characteristics
of the cell morphology in suspicious cases (e.g., high-grade urothelial carcinoma and low-
grade urothelial carcinoma) [10]. LBC specimens performed significantly better in urinary
cytology when evaluating malignant categories especially high-grade urothelial carcinoma
(HGUC), which facilitate a more accurate diagnosis than conventional preparations [11].
Moreover, from the standpoint of rationality, preparation and screening times were 2.25
and 1.33-2.00 times greater when using LBC (ThinPrep) compared with cytocentrifugation
(conventional smear cytology) [12]. Therefore, computational screening (cytodiagnostic)
aids for urine LBC specimens would be a great benefit for urothelial carcinoma screening
as medial image analysis.

Whole-slide images (WSIs) are digitisations of the conventional glass slides obtained
via specialised scanning devices (WSI scanners), and they are considered to be comparable
to microscopy for primary diagnosis [13]. It has been reported that evaluation of WSI
is generally equivalent to using conventional glass slides under microscopy [14]. The
use of WSI has to some degree met the goals of saving pathologists working time and
providing high quality pathological images with convenient access and easily navigable
viewing online based software which saves resources and costs by eliminating slide glass
shipping expenses [14]. The advent of WSIs led to the application of medical image analysis
techniques, machine learning, and deep learning techniques for aiding pathologists in
inspecting WSIs [15]. Importantly, a routine scanning of LBC slides in a single layer
of WSIs would be suitable for further high throughput analysis (e.g., automated image
based cytological screening and medical image analysis) [16]. Indeed, deep learning
approaches and its clinical application to classify cytopathological changes (e.g., neoplastic
transformation) were reported in the recent years [17–26]. In this study, we trained deep
learning models based on convolutional neural networks (CNN) using a training dataset of
786 urine LBC (ThinPrep) WSIs. We evaluate the model on two test sets (equal balance and
clinical balance test sets) with a combined total of 750 WSIsm achieving ROC-AUCs for
WSI neoplastic classification in the range of 0.984-0.990.

2. Materials and Methods
2.1. Clinical Cases and Cytopathological Records

In this retrospective study, a total of 1,556 LBC ThinPrep Pap test (Hologic, Inc.) con-
ventionally prepared cytopathological slide glass specimens of human urine cytology were
collected from a private clinical laboratory in Japan after routine cytopathological review
of those glass slides by cytoscreeners and pathologists. The LBC specimens were selected
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randomly to reflect a real clinical settings as much as possible. We have also collected LBC
specimens so as to compile test sets with an equal balance and a clinical balance of negative
and neoplastic. The cytoscreeners and pathologists excluded inadequate LBC specimens
(n=21) prior to the start of the experiments. All WSIs were scanned at a magnification
of ×20 using the same Leica Aperio AT2 Digital Whole Slide Scanner (Leica Biosystems,
Tokyo, Japan) and were saved in the SVS file format with JPEG2000 compression. Each WSI
diagnosis was observed by at least two cytoscreeners or pathologists with the final checking
and verification performed by a senior cytoscreener or pathologist. In this study, we have
classified urine LBC WSIs into two classes: one is negative and the other is neoplastic
(Table 1). Negative WSIs were diagnosed as Class I or Class II and neoplastic WSIs were
diagnosed as Class III, Class IV, or Class V in routine clinical cytodiagnosis (Table 1). The
cytoscreeners and pathologists had to agree whether the output class was negative or
neoplastic on each urine LBC WSI.

2.2. Dataset

The private clinical laboratory in Japan that provided urine LBC specimen glass slides
in the present study was anonymized due to the confidentiality agreement. Table 1 breaks
down the distribution of the dataset into training, validation, and test (equal balance and
clinical balance) sets. The split was carried out randomly taking into account the proportion
of each label in the dataset. The test sets were composed of WSIs of equal balance and
clinical balance urine LBC specimens. The equal balance test set consisted of 50% negative
and 50% neoplastic urine LBC cases (Table 1). The clinical balance test set consisted of a
ratio of 10 (negative) to 1 (neoplastic) urine LBC cases based on a real clinical setting which
was reported by the Japanese Society of Clinical Cytology as the statistics on cytodiagnosis
in 2016 to 2021 (https://jscc.or.jp/). The urine LBC cases in the present study were collected
based on the cytodiagnoses provided by the private clinical laboratory. Two independent
cytoscreeners or pathologists viewed all the WSIs with the final verification by a senior
cytoscreener or pathologist and the ones they had a disagreement on were removed from
the dataset. We have confirmed that cytoscreeners and pathologists were able to classify
(Table 1) from the visual inspection of the LBC ThinPrep Pap test (Hologic, Inc.) stained
WSIs alone.

2.3. Annotation

Cytoscreeners and pathologists who perform routine cytopathological screening and
cytodiagnoses in general hospitals and clinical laboratories in Japan manually annotated 72
neoplastic WSIs from the training (62 WSIs) and validation (10 WSIs) sets (Table 1). Coarse
manually drawing polygonal annotations were obtained by free-hand drawing in-house
online tool developed by customising the open-source OpenSeadragon tool at https://
openseadragon.github.io/ which is a web-based viewer for zoomable images. On average,
the cytoscreeners and pathologists manually annotated 180 cells (or cellular clusters) per
WSI. Annotated neoplastic WSIs consisted of Class III, Class IV, and Class V cytodiagnostic
classes except for Class I and Class II (Table 1). We set three annotation labels for neoplastic
urothelial epithelial cells: atypical cell, low-grade urothelial carcinoma (LGUC) cell, and
high-grade urothelial carcinoma (HGUC) cell (Table 1 and Figure 1). For example, on
the Class III (Figure 1A, B), Class IV (Figure 1C, D), and Class V (Figure 1E, F) WSIs,
cytoscreeners and pathologists performed annotations around the atypical cells (Figure 1A,
B), LGUC cells (Figure 1C, D), and HGUC cells (Figure 1E, F) based on the representative
neoplastic urothelial epithelial cell morphology (e.g., hyperchromatism, irregular chromatin
distribution, abnormalities of nuclear shape, increased nuclear/cytoplasmic ratio, irregular
nuclear distribution, nuclear enlargement, abnormal cytoplasm, prominent nucleolus,
cellular and nuclear polymorphism). If the WSIs were classified as Class V, for example,
it would be possible to have atypical cell, LGUC cell, and HGUC cell annotations in a
WSI. In contrast, the cytoscreeners and pathologists did not annotate areas where it was
difficult to cytologically determine that the cells were neoplastic. The negative subset of the
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training and validation sets (Table 1) was not annotated and the entire cell spreading areas
within the WSIs were used. The average annotation time per WSI was about 90 minutes.
Annotations performed by the cytoscreeners and pathologists were modified (if necessary)
and verified by a senior cytoscreener.

2.4. Deep Learning Models

We performed training using transfer learning with fine-tuning using two different
weight initialisations: ImageNet (IN) and pre-training on a uterine cervix (UC) neoplastic
(x10, 1024) dataset from a previous study. We used two different approaches for training
during fine-tuning: fully supervised (FS) and weakly supervised (WS) learning. We used
a modified version of EfficientNetB1 (ENB1) [27] with a tile size of 1024×1024 px. This
resulted in a total of four models, all trained at magnification x10 and tile size 1024x1024px:
ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-FS+WS, and ENB1-IN-WS. We performed the
fine-tuning of the models using the partial fine-tuning approach [28], which consists in
only fine-tuning the affine parameters of batch-normalization layers and the final classifica-
tion layer (Figure 2). starting with pre-trained weights on ImageNet. Figure 2 shows an
overview of the training method and trained deep learning models. The training methodol-
ogy that we used in the present study was exactly the same as reported in our previous
studies [29].

We performed slide tiling by extracting square tiles from tissue regions of the WSIs. We
started by detecting the tissue regions in order to eliminate most of the white background.
This was conducted by performing thresholding on a grayscale version of the WSIs using
Otsu’s method [30]. For the CNN, we have used the EfficientNetB1 architecture [27] with a
modified input size of 1024 × 1024 px to allow a larger view; this is based on cytologists’
input that they usually need to view the neighbouring cells around a given cell in order to
diagnose more accurately. We used the partial fine-tuning approach [28] for the tuning the
CNN component.

For training and inference, we then proceeded by extracting 1024 × 1024 px tiles from
the tissue regions. We performed the extraction in real-time using the OpenSlide library
[31]. To perform inference on a WSI, we used a sliding window approach with a fixed-size
stride of 512 × 512 px (half the tile size). This results in a grid-like output of predictions
on all areas that contained cells, which then allowed us to visualise the prediction as a
heatmap of probabilities that we can directly superimpose on top of the WSI. Each tile had
a probability of being neoplastic; to obtain a single probability that is representative of the
WSI, we computed the maximum probability from all the tiles.

During fully supervised learning, we maintained an equal balance of positively and
negatively labelled tiles in the training batch. To do so, for the positive tiles, we extracted
them randomly from the annotated regions (annotation label: atypical cell, LGUC cell, and
HGUC cell) of neoplastic WSIs, such that within the 1024 × 1024 px, at least one annotated
cell was visible anywhere inside the tile. For the negative tiles, we extracted them randomly
anywhere from the tissue regions of negative WSIs (Table 1). We then interleaved the
positive and negative tiles to construct an equally balanced batch that was then fed as
input to the CNN. In addition, to reduce the number of false positives, given the large size
of the WSIs, we performed a hard mining of tiles, whereby at the end of each epoch, we
performed full sliding window inference on all the negative WSIs in order to adjust the
random sampling probability such that false positively predicted tiles of negative were
more likely to be sampled.

During weakly supervised learning, to maintain the balance on the WSI, we oversam-
pled from WSIs to ensure that the model trained on tiles from all WSIs in each epoch. We
then switched to hard mining tiles. To perform hard mining, we alternated between training
and inference. During inference, the CNN was applied in a sliding window fashion on all
the tissue regions in the WSI, and we then selected the k tiles with the highest probability
for being positive. This step effectively selects tiles that are most likely to be false positives
when the WSI is negative. The selected tiles were placed in a training subset, and once that
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subset contained N tiles, training was initiated. We used k = 8, N = 256, and a batch size
of 32.

During training, we performed real-time augmentation of the extracted tiles using
variations of brightness, saturation, and contrast. We trained the model using the Adam
optimisation algorithm [32], with the binary cross entropy loss, beta1 = 0.9, beta2 = 0.999,
and a learning rate of 0.001. We applied a learning rate decay of 0.95 every 2 epochs.
We used early stopping by tracking the performance of the model on a validation set,
and training was stopped automatically when there was no further improvement on the
validation loss for 10 epochs. The model with the lowest validation loss was chosen as the
final model.

2.5. Software and Statistical Analysis

The deep learning models were implemented and trained using the open-source
TensorFlow library [33]. AUCs were calculated in python using the scikit-learn package
[34] and plotted using matplotlib [35]. The 95% CIs of the AUCs were estimated using the
bootstrap method [36] with 1000 iterations. The ROC curve was computed by varying the
probability threshold from 0.0 to 1.0 and computing both the TPR and FPR at the given
threshold.

3. Results
3.1. Insufficient AUC Performance of whole slide image (WSI) neoplastic evaluation on urine LBC
WSIs using existing series of LBC cytopathological model

Prior to training urine LBC neoplastic screening models, we applied existing LBC
uterine cervix neoplastic screening model [20] and histopathological classification models
and evaluated their AUC performances on urine LBC test sets (Table 1). This is summarised
in Table 3.

3.2. High ROC-AUC performance of urine LBC WSI evaluation of neoplastic urothelial epithelial
cell screening

We trained four deep learning models ([ENB1-UC-FS+WS], [ENB1-UC-WS], [ENB1-
IN-FS+WS], and [ENB1-IN-WS]) using transfer learning (TL) with fine-tuning [29]with fully
supervised (FS) learning [20,37], and weakly supervised (WS) learning [38] approaches as
described elsewhere. These models are all based on the EfficientNetB1 convolutional neural
network (CNN) architecture. To compare transfer learning models’ performance ([ENB1-
UC-FS+WS] and [ENB1-UC-WS]), we trained two models using EfficientNetB1 architecture
at a same magnification of ×10 and tile size (1024×1024 px). To train deep learning models,
we used a total of 62 neoplastic (with annotation) and 724 negative (without annotation)
training set WSIs and 10 neoplastic (with annotation) and 10 negative (without annotation)
validation set WSIs (Table 1). This resulted in four different models: (1) ENB1-UC-FS+WS
(x10, 1024), (2) ENB1-UC-WS (x10, 1024), (3) ENB1-IN-FS+WS (x10, 1024), and (4) ENB1-IN-
WS (x10, 1024). We evaluated these four different trained deep learning models on equal
balance and clinical balance test sets (Table 1). For each test set (equal and clinical balance),
we computed the ROC-AUC, log-loss, accuracy, sensitivity, and specificity and summarized
in Table 4 and Figure 3 and 4. Overall, four different trained deep learning models achieved
equivalent ROC-AUC, log-loss, accuracy, sensitivity, and specificity at whole-slide level
(WSI evaluation) in both equal and clinical balance test sets (Table 4, Figure 3). However,
heatmap image appearances were different among four trained deep learning models
(Figure 4). The localization patterns of predicted tiles were approximately same among
four trained deep learning models (Figure 4). Looking at heatmap images of the same
urine LBC WSIs (WSI-1 and WSI-2) (Figure 4) that were correctly predicted (true-positive)
as neoplastic WSI using four different trained models, all models could predict tiles with
neoplastic urothelial epithelial cells (Figure 4A-D, M-P) satisfactorily (Figure 4E-L, Q-X).
However, probabilities in each neoplastic predicted tiles were totally different among four
trained models (Figure 4). Among the four trained model, ENB1-UC-FS+WS exhibited
the best tile prediction overall based on inspection of the heatmap images (Figure 4E, F,
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Q, R). Therefore, our results show that the ENB1-UC-FS+WS model is the best model for
urine LBC neoplastic urothelial epithelial cell screening (Table 4 and Figure 4). Figures
show representative WSIs of true positive (Figure 5), true negative (Figure 6), false positive
(Figure 7), and false negative (Figure 8) from using the model [ENB1-UC-FS+WS].

3.3. True Positive Prediction

The model ENB1-UC-FS+WS satisfactorily predicted neoplastic urothelial epithelial
cells in urine LBC WSIs (Figure 5). Cytopathologically, Figure 5A exhibited atypical
urothelial epithelial cells (Figure 5B) and was diagnosed as Class III. Figure 5E showed low
grade urothelial carcinoma (LGUC) cells (Figure 5F) and was diagnosed as Class IV. Figure
5I showed high grade urothelial carcinoma (HGUC) cells (Figure 5J) and was diagnosed
as Class V. These three WSIs should be classified as neoplastic in this study. The heatmap
images show true positive predictions of atypical utorhelial cells (Figure 5C, D), LGUC cells
(Figure 5G, H), and HGUC cells (Figure 5K, L) which were confirmed by a cytoscreener
and a cytopathologist by viewing original WSIs and predicted heatmap images. In contrast,
in low probability tiles (light blue and blue background) (Figure 5), two independent
cytoscreeners confirmed there were no neoplastic urothelial epithelial cells.

3.4. True Negative Prediction

The model ENB1-UC-FS+WS satisfactorily predicted negative cases (cytopathologi-
cally as Class I and Class II) in urine LBC WSIs (Figure 6). The heatmap images show true
negative predictions of neoplastic urothelial epithelial cells (Figure 6C, F). In zero probabil-
ity tiles (blue background color) (Figure 6C, F), there are no neoplastic urothelial epithelial
cells in pyuria (cytodiagnosed as Class I) (Figure 6A) which consisted of infective fluid
with small number of non-neoplastic epithelial cells (Figure 6B) and urothelial epithelial
cells with slight nuclear enlargement (Figure 6D, E) (cytodiagnosed as Class II).

3.5. False Positive Prediction

A cytopathologically diagnosed negative (Class I) case (Figure 7A) consisted of meta-
plastic squamous epithelial cells and non-neoplastic urothelial epithelial cells (Figure 7B)
was false positively predicted for neoplastic urothelial epithelial cells by our model [ENB1-
UC-FS+WS ]. The heatmap image (Figure 7C) shows false positive predictions of neoplastic
urothelial epithelial cells with high probability tiles (Figure 7D). Cytopathologically, there
are non-neoplastic urothelial epithelial cells with a slightly increased nuclear cytoplasmic
(N/C) ratio and metaplastic squamous epithelial cells (Figure 7B), which could be a major
cause of false positive.

3.6. False Negative Prediction

According to the cytodiagnosis report and additional cytoscreener and cytopathol-
ogist’s review, in this urine LBC WSI (Figure 8A), there were ceuular culsters of atypical
(neoplastic) urothelial epithelial cells (Figure 8B, C) with high nuclear cytoplasmic ratio,
indicating this WSI (Figure 8A) should be classified as neoplastic (Class III). However, our
model [ENB1-UC-FS+WS ] did not predict or very low level predicted neoplastic urothelial
epithelial cells (Figure 8D-F). It would be speculated that neoplastic urothelial epithe-
lial cellular clustering could be a possible cause of false negative due to the overlapping
morphology.

4. Discussion

In this study, we trained deep learning models for the classification of neoplastic
urothelial epithelial cells in WSIs of urine LBC specimens. The best model (ENB1-UC-
FS+WS) achieved overall a good performance with ROC-AUCs of 0.984 (CI: 0.969 - 0.995) on
equal balance and 0.990 (CI: 0.982 - 0.996) on clinical balance test sets and low log-loss values
of 0.180 (CI: 0.123 - 0.259) on equal balance and 0.223 (CI: 0.181 - 0.284) on clinical balance

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2022                   doi:10.20944/preprints202211.0249.v1

https://doi.org/10.20944/preprints202211.0249.v1


7 of 18

test sets, which reflects the clinical setting based on the statistics on cytodiagnosis in 2016
to 2021 by the Japanese Society of Clinical Cytology (https://jscc.or.jp/). Both equal and
clinical balance test sets (Table 1) were collected based on the cytodiagnoses, reviewed by
two independent cytoscreeners or cytopathologists, then verified by a senior cytoscreener
or cytopathologist. We ensured that we had consensus on the diagnoses of the test set WSIs.
Our best model (ENB1-UC-FS+WS) also achieved high accuracy (0.945-0.946), sensitivity
(0.940-0.960), and specificity (0.929-0.946) in WSI level. It has been reported that at urine
LBC (ThinPrep) WSI level, the deep learning model predicted neoplastic (positive) WSI at
0.842 (accuracy), 0.795 (sensitivity), and 0.845 (specificity) [39]. Our latest reported uterine
cervix LBC (ThinPrep) model demonstrated accuracy at 0.907, sensitivity at 0.850, and
specificity at 0.911 at WSI level [20]. In this study, we have trained total four deep learning
models (ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-FS+WS, and ENB1-IN-WS) using two
different weight initialisation: ImageNet and pre-trained uterine cervix neoplastic LBC
model from a previous study [20] (Figure 2). At WSI level, these four models showed almost
comparable ROC-AUC, log-loss, accuracy, sensitivity, and specificity (Table 4 and Figure
3). However, there was wide variety of tile level prediction as visualized by the heatmap
images between the four models (Figure 4). Based on the WSI and tile level (heatmap)
evaluations, we have concluded that the model (ENB1-UC-FS+WS) which was trained
using the pre-trained uterine cervix LBC model [20] weight initialisation, performed best.
As for the false-negative prediction outputs in the urine LBC WSI which was cytodiagnosed
as Class III (Figure 8A), the model (ENB1-UC-FS+WS) could not predict neoplastic atypical
urothelial epithelial cell cluster (Figure 8B-F) in which neoplastic urothelial epithelial cells
were overlapping and nuclear shapes and structures were hard to determine in the WSI
(Figure 8B, C). The model (ENB1-UC-FS+WS) could predict true negative urine crystal and
cell debris precisely. False negative prediction outputs were most likely due to neoplastic
urothelial epithelial cell clusters that mimicked urine crystal or cell debris.

According to the annual statistics on cytodiagnosis by the Japanese Society of Clinical
Cytology (https://jscc.or.jp/), in 2021, there were 2,041,547 urine cytodianosis reports in
Japan. In 2021, the total number of cytodiagnosis in Japan was 7,157,413. Therefore, the
population of urine cytodiagnosis was approximately 28.5%. In Japan, urine cytology was
the second most common cytology in 2021, as cervical cytology was the most common
(3,289,877 cases, 50.0%) (https://jscc.or.jp/). LBC of urine specimens is commonly used
in cytology laboratories throughout the world and various processing methods, such as
ThinPrep and SurePath, have been reported [40,41]. The LBC technique preserves the
cells of interest (e.g., urothelial epithelial cells) in a liquid medium and removes most of
the debris, blood, and exudate either by filtering or density gradient centrifugation. The
efficiency of diagnosis employing the LBC is high because of the cell collection rate. It was
demonstrated that the accuracy of diagnoses made employing the LBC method can be
increased by understanding the characteristics of the urothelial epithelial cell morphology
in suspicious cases [10]. Following the appropriate LBC specimen preparation steps, cell
morphology (structure) is satisfactorily preserved, which allows more accurate diagnosing
of LBC slides as shown by the significant concordance between cytological and histological
diagnosis (92%), the significant number of LGUC (20.5%) revealed by urinary cytology
and validated by histology, and the low rate (8%) of misjudgement of cytological diagnosis
[42]. In addition, the leftover urine LBC material can be used for other techniques such as
immunocytochemistry, molecular biology and flow cytometry [43]. Therefore, LBC has been
applied with good results in urine cytology and can be regarded as an appropriate substitute
for conventional smear urine cytology. LBC techniques opens new possibilities for a
systemic urothelial carcinoma screening by integrating digital pathology WSI technique and
deep learning model(s), resulting a standardised high-quality readout (e.g., classification).

One limitation of this study is that it primarily included urine LBC (ThinPrep) WSIs
(both training and test sets) from a single private clinical laboratory in Japan. Therefore, the
deep learning models could potentially be biased to such specimens. Validations on a wide
variety of specimens from multiple different origins (both clinical laboratories and hospitals)
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Table 1. Datasets

training validation test (equal balance) test (clinical balance) Total
Negative 724 10 100 500 1334

Class I 360 5 50 250 665
Class II 364 5 50 250 669

Neoplastic 62 10 100 50 222
Class III 38 4 48 20 110
Class IV 11 3 23 14 51
Class V 13 3 29 16 61

Total 786 20 200 550 1556

Table 2. Annotation labels and numbers of annotation

Annotation label Number of annotation
Atypical cell 9950
Low-grade urothelial carcinoma (LGUC) cell 1646
High-grade urothelial carcinoma (HGUC) cell 1611
Total 13207

and other LBC method(s) (e.g., SurePath) would be essential for ensuring the robustness
of the models. Another potential validation study should involve the comparison of the
performance of the models against cytoscreeners and cytopathologists in a clinical setting.

5. Conclusion

In the present study, we trained deep learning models for the classification of neoplastic
urine LBC WSIs. We have evaluated the models on two test sets (equal and clinical balance)
achieving ROC-AUCs for WSI diagnosis in the range of 0.984-0.990 by the best model
(ENB1-UC-FS+WS). At WSI level, the model (ENB1-UC-FS+WS) achieved high accuracy
(0.945-0.946), sensitivity (0.940-0.960), and specificity (0.929-0.946). Not only at WSI level,
the model (ENB1-UC-FS+WS) satisfactorily predicted neoplastic urothelial epithelial cells
(atypical, LGUC, and HGUC cells) by the heatmap images. Therefore, our model (ENB1-
UC-FS+WS) can infer whether the urine LBC WSI is neoplastic (Figure 5) or negative
(Figure 6) by inspecting model prediction outputs easily at WSI level as well as heatmap
image, which makes it possible to use a deep learning model such as ours as a tool to aid in
the urine LBC screening process in the clinical setting (workflow) for ranking cases by order
of priority. Cytoscreeners and/or cytopathologists will need to perform full screening and
subclassification (e.g., negative, atypical cells, suspicious for malignancy, and malignant)
after the primary screening by our deep learning model, which could reduce their working
time as the model would have highlighted the suspected neoplastic regions, and they
would not have to perform an exhaustive search throughout the entire WSI.

Table 3. ROC-AUC and log-loss scores for existing deep learning models to classify liquid-based
cytology (LBC) and histopathology whole slide images (WSIs)

Existing models ROC-AUC Log Loss
Liquid-based cytology (LBC)
Uterine cervix Neoplastic (x10, 1024) 0.836 [0.775 - 0.885] 0.778 [0.620 - 0.989]
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Table 4. ROC AUC, log loss, accuracy, sensitivity, and specificity results on the equal balance and
clinical balance test sets.

Test set
Equal balance Clinical balance

ENB1-UC-FS+WS (x10, 1024)
ROC-AUC 0.984 [0.969 - 0.995] 0.990 [0.982 - 0.996]

Log-loss 0.180 [0.123 - 0.259] 0.223 [0.181 - 0.284]
Accuracy 0.945 [0.905 - 0.970] 0.946 [0.924 - 0.962]

Sensitivity 0.960 [0.920 - 0.990] 0.940 [0.861 - 1.000]
Specificity 0.929 [0.862 - 0.972] 0.946 [0.924 - 0.964]

ENB1-UC-WS (x10, 1024)
ROC-AUC 0.990 [0.985 - 0.999] 0.990 [0.981 - 0.997]

Log-loss 0.251 [0.178 - 0.295] 0.098 [0.081 - 0.119]
Accuracy 0.955 [0.935 - 0.985] 0.940 [0.920 - 0.960]

Sensitivity 0.950 [0.911 - 0.990] 0.980 [0.933 - 1.000]
Specificity 0.960 [0.931 - 1.000] 0.936 [0.915 - 0.958]

ENB1-IN-FS+WS (x10, 1024)
ROC-AUC 0.982 [0.957 - 0.996] 0.986 [0.963 - 0.998]

Log-loss 0.225 [0.156 - 0.321] 0.082 [0.063 - 0.106]
Accuracy 0.950 [0.910 - 0.975] 0.936 [0.918 - 0.956]

Sensitivity 0.930 [0.863 - 0.971] 0.960 [0.894 - 1.000]
Specificity 0.970 [0.930 - 1.000] 0.934 [0.914 - 0.955]

ENB1-IN-WS (x10, 1024)
ROC-AUC 0.980 [0.960 - 0.997] 0.995 [0.990 - 0.998]

Log-loss 0.258 [0.185 - 0.289] 0.128 [0.114 - 0.144]
Accuracy 0.960 [0.940 - 0.990] 0.944 [0.924 - 0.960]

Sensitivity 0.970 [0.945 - 1.000] 1.000 [1.000 - 1.000]
Specificity 0.950 [0.914 - 0.990] 0.938 [0.915 - 0.956]

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2022                   doi:10.20944/preprints202211.0249.v1

https://doi.org/10.20944/preprints202211.0249.v1


10 of 18

Figure 1. Representative manually drawing annotation image for neoplastic labels on urine liquid-
based cytology (LBC) whole slide images (WSIs). The atypical urothelial cells (A, B) were annotated as
atypical cell label. The suspected low grade urothelial carcinoma (LGUC) cells (C, D) were annotated
as LGUC cell label and high grade utorhelial carcinoma (HGUC) cells (E, F) were annotated as HGUC
cell label. The three labels (atypical cell, LGUC cell, and HGUC cell) were grouped as neoplastic label
for fully supervised learning. Scale bars are 50 µ m.
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Figure 2. Training method and deep learning models overview. We performed training using two
different weight initialisations: ImageNet (IN) and pre-training on a uterine cervix (UC) neoplastic
(x10, 1024) dataset from a previous study. We used two different approaches for training: fully
supervised (FS) and weakly supervised (WS) learning. This resulted in a total of four models, all
trained at magnification x10 and tile size 1024x1024px: ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-
FS+WS, and ENB1-IN-WS.
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Figure 3. ROC curves for the equal balance and clinical balance test sets using four trained deep
learning models. (A) transfer learning (TL) from uterine cervix liquid-based cytology (LBC) model
and fully and weakly supervised learning model, magnification at x10 and tile size at 1024 x 1024
px (ENB1-UC-FS+WS (x10, 1024)); (B) TL from uterine cervix LBC model and weakly supervised
learning model, magnification at x10 and tile size at 1024 x 1024 px (ENB1-UC-WS (x10, 1024)); (C)
EfficientNetB1 based fully and weakly supervised learning model, magnification at x10 and tile size
at 1024 x 1024 px (ENB1-IN-FS+WS (x10, 1024)); (D) EfficientNetB1 based weakly supervised learning
model, magnification at x10 and tile size at 1024 x 1024 px (ENB1-IN-WS (x10, 1024)).
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Figure 4. Comparison of neoplastic predictions in the representative two neoplastic urine liquid-
based cytology (LBC) whole-slide images (WSIs) (WSI-1 and WSI-2) of four trained deep learning
models (ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-FS+WS, and ENB1-IN-WS). According to the
cytopathological diagnostic (Dx) reports, WSI-1 (A-L) was diagnosed as Class III and WSI-2 (M-X)
was diagnosed as Class IV – both were classified in the neoplastic class in this study. (A-D and M-P):
LBC cytopathological images for WSI-1 (A-D) and WSI-2 (M-O); heatmap prediction images for
ENB1-UC-FS+WS model in WSI-1 (E-F) and WSI-2 (Q, R); heatmap prediction images for ENB1-UC-
WS model in WSI-1 (G, H) and WSI-2 (S, T); heatmap prediction images for ENB1-IN-FS+WS model
in WSI-1 (I, J) and WSI-2 (U, V); heatmap prediction images for ENB1-IN-WS model in WSI-1 (K,
L) and WSI-2 (W, X). The localization of predicted tiles in neoplastic WSIs (WSI-1 and WSI-2) were
almost same in four models (ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-FS+WS, and ENB1-IN-WS).
However, the model pre-trained from uterine cervix LBC model with fully and weakly supervised
learning (ENB1-UC-FS+WS) showed the highest neoplastic probabilities (F and R) in neoplastic tiles
(B-D and N-P) as compared to other models (G-L and S-X). The heatmap uses the jet color map where
blue indicates low probability and red indicates high probability.
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Figure 5. Representative examples of neoplastic true positive prediction outputs on urine liquid-
based cytology (LBC) whole-slide images (WSIs) from test sets using the ENB1-UC-FS+WS model.
According to the cytopathological diagnostic (Dx) reports, (A) was diagnosed as Class III with atypical
urothelial epithelial cells (B), (E) was diagnosed as Class IV with suspected low grade urothelial
carcinoma (LGUC) cells (F), and (I) was diagnosed as Class V with suspected high grade utorhelial
carcinoma (HGUC) cells (J). The heatmap images (C, D, G, H, K, L) show true positive predictions
of neoplastic urothelial epithelial cells (D, H, and L), which correspond respectively to atypical (B),
suspected LGUC (F), and HGUC (J) cells. The heatmap uses the jet color map where blue indicates
low probability and red indicates high probability.
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Figure 6. Two representative examples of neoplastic true negative prediction outputs on urine
liquid-based cytology (LBC) whole-slide images (WSIs) from test sets using ENB1-UC-FS+WS model.
According to the cytopathological diagnostic (Dx) reports, (A) was diagnosed as Class I and (B) was
Class II, which were negative for urothelial neoplastic epithelial cells. Cytopathologically, (A) was
pyuria which consisted of infective fluid (pus) with small number of non-atypical epithelial cells (B).
(D) included urothelial epithelial cells with slight nuclear enlargement. The heatmap images (C, F)
show true negative prediction of neoplastic epithelial cells. The heatmap uses the jet color map where
blue indicates low probability and red indicates high probability.

Figure 7. A representative example of neoplastic false positive prediction outputs on urine liquid-
based cytology (LBC) whole-slide images (WSIs) from test sets using the ENB1-UC-FS+WS model .
According to the cytopathological diagnostic (Dx) report, (A) was diagnosed as Class I and consisted
of metaplastic squamous epithelial cells and non-atypical (non-neoplastic) urothelial epithelial cells
with inflammatory cells (B). The heatmap images (C, D) show false positive predictions (D) which cor-
respond respectively to (B). The heatmap uses the jet color map where blue indicates low probability
and red indicates high probability.
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Figure 8. A representative example of neoplastic false negative prediction outputs on urine liquid-
based cytology (LBC) whole-slide images (WSIs) from test sets using the ENB1-UC-FS+WS model.
According to the cytopathological diagnostic (Dx) report, (A) was diagnosed as Class III and included
clusters of atypical urothelial epithelial cells (B, C). The heatmap images (D-F) show false negative
predictions (E, F) which correspond respectively to (B, C). The heatmap uses the jet color map where
blue indicates low probability and red indicates high probability.
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