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Abstract: Classical and optimal control architectures for motion mechanics with fusion of noisy sen-

sors use different algorithms and calculations to perform and control any number of physical de-

mands, to varying degrees of accuracy, precision, and cost. Their performances are tested for the 

purpose of comparison through the means of a Monte Carlo simulation that simulates how different 

parameters might vary under noise, representing real-world imperfect sensors. We find that im-

provements in one figure of merit often come at a cost in the performance in the others, especially 

depending on the presence of noise in the system sensors. If sensor noise is negligible, open-loop 

optimal control performs the best. However, in the overpowering presence of sensor noise, using a 

control law inversion patching filter performs as the best replacement, but has significant computa-

tional strain. 

Keywords: sensor fusion; sensor noise; optimization; feedback; real-time optimization; velocity-
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1. Introduction 

Artemis I will be the first integrated flight test of NASA’s deep space exploration sys-

tem: the Orion spacecraft, Space Launch System (SLS) rocket and the ground systems at 

Kennedy Space Center in Cape Canaveral, Florida. The first in a series of increasingly com-

plex missions, Artemis I will be an uncrewed flight that will provide a foundation for human 

deep space exploration and demonstrate our commitment and capability to extend human 

existence to the Moon and beyond. During this flight, the uncrewed Orion spacecraft will 

launch on the most powerful rocket in the world and travel thousands of miles beyond the 

Moon, farther than any spacecraft built for humans has ever flown, over the course of about 

a three-week mission. [1] 

 

Figure 1. Lunar lander concept sought for the Artemis program, image courtesy NASA [2], image 

use in accordance with NASA image use policy: [3]. 
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Dealing with the fusion of potentially poor, noisy sensors is a ubiquitous challenge 

that has a long lineage leading to several disparate approaches. Some researchers focus 

on improving the sensor itself or its signal using internal algorithms. Others seek to de-

velop architectures that prove robust to fused noisy sensor data. Wang, et al. proposed a 

novel method for accurate, autonomous and real-time orbit determinations for geo-refer-

encing with a standalone global positioning system receiver [4]. Xiong, et al. addressed 

systematic centroid errors and poor attitude accuracy by augmenting star trackers with 

an image intensifier [5]. Kim, et al. proposed an algorithm for determining the orbit of a 

geostationary satellite using single-epoch measurements from a global positioning system 

receiver with sparse visibility of the global positioning system satellites [6]. Takayama 

illustrated weaknesses with global navigation system signals and proposed novel sensor 

noise models used to enhance sensor sensitivity [7].  

Leake, et al. proposed dealing with sensor issues with improved sensor algorithms, 

proposing a non-dimensional star identification algorithm compared in terms of accuracy, 

speed, and robustness to the so-called pyramid algorithm. [8] Marin, et al. sought to en-

hance star trackers by sensor and sensor fusion algorithms to provide a smoother and 

faster output. [9] Perov, et al. sought to utilize the principle of phase interferometer, using 

multiple receiving antennas [10]. Wang, et al. sought to integrate communications navi-

gation with global positioning system sensors. [11] Christian proposed autonomous aug-

mentation using optical navigation by relativistic perturbation of starlight [12]. Fan, et al. 

investigated a plume noise suppression algorithm based on star point shape and the an-

gular distance between stars [13]. Opromolla, et al. proposed dealing with sensor issues 

algorithmically by using a model-based three-dimensional template matching technique 

for pose acquisition of an uncooperative space object [14].  

Rather than dealing with sensor issue algorithmically as proposed by Opromolla, 

Chen, et al. instead focused on the control algorithm using the sensor measurements and 

proposed a velocity-based impedance control scheme illustrating efficacy in both speed 

and robustness [15]. This manuscript parallels the insights of Chen, et al. and enhances 

the velocity-based logic with optimization methods of Pontryagin akin Sandberg’s recent 

recitation [16]. Sandberg’s very recent improvements follow a lineage of small improve-

ments from its provenance in the nonlinear adaptive control methods of the 1990’s as pro-

posed by Slotine [17] and afterward improved by Fossen [18], Sands [19,20] who offered 

experimental validation in [21]. Most recently Raigoza [22] who augmented the method 

with autonomous collision avoidance, and Wilt [23] who evaluated efficacy in the face of 

uniform variations in mass moment of inertia (e.g., from fuel slosh). This manuscript pro-

poses and illustrates methods that assume velocity-based control logic like [Chen] but 

seek to induce open-loop optimal results like [Sandberg, Raigoza, and Wilt] and thus mit-

igate deleterious effects of noisy sensors.  

Controllers are differential equations that are designed to be able to manipulate some 

state variable by arbitrarily changing a variable connected to it through a physical law or 

equation. They often feature several points of adjustment and tunability to fit figures of 

merit desired by the designer. The figures of merit utilized here include spacecraft track-

ing accuracy (how well the controller reaches the desired target), precision (as measured 

by deviation), and cost (numerical evaluation of the resources used). Computational bur-

den is also monitored since difficulties such as singular matrix inversions are involved. A 

variety of control system architectures were evaluated, and their ability is assessed to per-

form the task of a rest-to-rest reorientation normalized to unity. 

1.1. Novelties presented 

Numbered lists can be added as follows: 

1. Open loop optimal results are analytically calculated providing a performance 

benchmark for comparing other methods. 

2. Inspired by Opromolla, 2015 [10], velocity-based classical control is investigated, 

especially since it was utilized as the comparative benchmark by Sandberg 2022 
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[16], Raigoza 2022 [22], and Wilt 2022 [23], while the open-loop optimal results 

in item #1 are used as comparative benchmark here.  

3. Real-time optimal control is compared since it was the latest cited proposals of 

2022. 

4. Double-integrator patching filters are implemented seeking to match open loop 

optimal results amidst fusion of noisy sensors.  

5. System-inverting patching filters are implemented also seeking to match open 

loop optimal results amidst fusion of noisy sensors. 

2. Control System Architectures 

2.1 The task at hand 

The controllers will perform a rest-to-rest reorientation of one unit of rotation (indi-

cated by variable � whose rate is indicated by variable �) scaled to unity over unit of 

time scaled to unity. The equations for such a maneuver are listed in equations (1) – (3). 

Controller cost will be used as a key figure of merit, where a quadratic cost computation 

will be used indicated by variable J in equation (4). 

�(0) = �(0) = 0 (1)

�(1) = �� = 1 (2)

�(1) = 0 (3)

� =
1

2
� �(�)���

�

�

 (4)

with state �(�), rate �(�), desired state �� , quadratic cost functional �(�), and control 

variable �(�). The state, rate, and control are connected in accordance with equations (5) 

and (6). 

� = �̇ (5)

� =
1

�
�̇ (6)

for moment of inertia �, where dotted variables indicate derivatives in time. 

2.2. Proportional plus velocity (P+V) control 

The P+V controller is a form of classical control, tuned using two different gains: a 

proportional gain �� applied to the state error, added to a velocity gain ��  applied to 

the rate, not the rate error (see (14)). P+V controllers can be easily tuned to fit desired settling 

times and damping ratios. For a maximum tolerance of 2% error at the desired settling 

time, equation (7). 

�� = −
ln(0.02 ∗ �1 − ��)

���

 (7)

can be used, where � is the damping ratio of the controller and ��  is its natural fre-

quency response. For a P+V controller, these are known to be equations (8) and (9). 

�� = ��� (8)

and 

� =
��

2���

 (9)

For a settling time of ≤ 1 second and a damping ratio of 0.7, the gains are calculated to 

be �� = 37 and �� = 8.5. 
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P+V controllers are always able to reach the desired value, but it is the selection of 

gains that affects how quickly it is reached. This ability is hampered by noise, especially 

on the rate sensor. Because the end rate is 0, any error in rate detection will cause a control 

to move the system off of the desired value. Additionally, the settling time is only for the 

state target, so no estimation of the rate target settling time is used to set the gains. 

2.3. Open-loop Optimal Control 

For a given problem with dynamics, boundary conditions, and a cost functional, an 

optimal solution exists that minimizes the output of the cost functional, which is found 

using Pontryagin’s method [24]. Using equations (1)-(6), the task described in the task at 

hand (from section 2.1) has an optimal control �∗ of the form in equation (10).  

�∗(�) = ��(�� + �) (10)

By integrating twice and applying the initial and final boundary conditions, the lin-

ear system in equation (11) is found. 

�

0 0 0 1
0 0 1 0

1/6 1/2 1 1
1/2 1 1 0

� �

�
�
�
�

� = �

0
0

��

0

� (11)

where the solution to equation (11) can be applied to (10) to yield equation (12).  

�∗(�) = ��(−12� + 6) (12)

which has a minimal quadratic cost of �∗ = 6 and exact achievement of the target end 

conditions. While open-loop optimal control yields the perfect results on paper, it is com-

pletely blind to noise and perturbation. 

2.4. Real-time Optimal Control 

Real-time optimal control, or RTOC, is a modification of the previous iteration of 

optimal control that considers the current state of the system, allowing the controller to 

adjust for noise and perturbations. The top two rows of the matrix in (11) are the equations 

for �∗(�) and �∗(�), the optimal forms of the state and rate variables, evaluated at the 

initial conditions. By modifying these rows such that the forms are evaluated at the cur-

rent time ��, the linear system changes to: 

⎣
⎢
⎢
⎡
��

�/6 ��
�/2 �� 1

��
�/2 �� 1 0

1/6 1/2 1 1
1/2 1 1 0⎦

⎥
⎥
⎤

�

�
�
�
�

� = �

�(��)

�(��)
��

0

� (13)

The vector of unknowns on the left-hand side is calculated by inverting the matrix 

and multiplying it by the vector of knowns on the right-hand side. The unknowns � and 

� are then used in (10) to make an instantaneous optimal control, calculated for the cur-

rent state of the system. Therefore, the controller can adjust its control output in the pres-

ence of noise and perturbations. 

While being able to change course based on the current state of the system is an ad-

vantage over open-loop optimal control, RTOC has a large computational demand in its 

inversion of a 4x4 matrix. Additionally, the matrix becomes singular as �� → 1, which 

causes problems as singular matrices are uninvertible. In simulation, the effect of this is 

the control shooting off to infinity towards the end of the runtime, leading to huge error 

in the state and/or rate. To avoid this behavior, a switch is worked in so that, when the 

matrix determinant approaches 0, the controller switches to open-loop optimal control for 

the remainder of the runtime. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2022                   doi:10.20944/preprints202211.0248.v1

https://doi.org/10.20944/preprints202211.0248.v1


 

2.5. Patching Filter: Double Integrator 

One way to combine the analytical accuracy of optimal control and the computational 

simplicity & tunability of classical P+V control is to impose a ‘patching’ filter that inte-

grates the optimal control �∗(�) twice to find the optimal state function �∗(�), which is 

given to a P+V controller as the desired value instead of a constant command ��. 

2.6. Patching Filter: Double Integrator, Tuned 

However, the result of the previous architecture may not be desirable. Should the 

gains of the original P+V controller be modifiable, tuning them around the patching filter 

is a viable strategy. This architecture is not as well-studied as the original P+V control, so 

handy equations based around desired settling time and damping ratio are not available. 

Therefore, the gains will be tuned by hand, i.e., trial and error, until the result meets ac-

ceptable figures of merit. 

2.7. Patching Filter: Control Law Inversion 

Should the gains not be modifiable, there is another way to adjust the architecture. 

Instead of directly integrating the optimal control, the control law for the P+V controller 

can be solved for an optimal input such that, after all the gains are applied and the control 

calculated, the P+V controller output matches that of the optimal control �∗(�), where the 

asterisk ‘*’ indicates optimality. The P+V control law is listed in equation (14). Solving for 

the desired state results in equation (15).  

� = ��(�� − �) − ��� (14)

�� =
1

��

� +
��

��

� + � (15)

Entering the optimal values �∗, �∗, and �∗ gives the optimal input. For a patching 

filter that works in the Laplace domain as a transfer function, this can be rewritten as 

equation (16) which can be simplified to become equation (17). 

Θ�(�) = �∗(�) �
1

��

+
��

���
+

1

��
� (16)

Θ�(�)

�∗(�)
= �

�� + ��� + ��

����
� (17)

Equation (17) is the patching filter to be applied to the optimal control yielding the 

optimal state trajectory input for the P+V controller. 

3. Results and Analysis 

The following simulations were performed in MATLAB Simulink, using the ode4 

(Runge-Kutta) integrator and a 0.01s step size. Using a random number generator with a 

Gaussian distribution, a noise signal was added to the state and rate with variances of 

0.0001 with zero mean. The moment of inertia was also varied randomly but uniformly to 

±10% of its true value. 

3.1. Monte Carlo Simulation 

Displayed in Figure 2 are the results of 1000 simulations of each of the control archi-

tectures outlined in the previous section. Table 1 contains the numerical performances of 

each architecture for direct comparison. 
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(a) (b) 

 

 

 

 
(c) (d) 

  

  
(e) (f) 

Figure 2. Monte Carlo plots, N = 1000. Rings show 1-sigma, 2-sigma, and 3-sigma deviations from the 

mean, denoted by a +. (a) P+V control; (b) open-loop optimal control; (c) RTOC; (d) double integrator 

patching filter; (e) double integrator, tuned; (f) control law inversion patching filter.  

From Table 1, the relationships between accuracy (the final values of � & �), preci-

sion (the magnitude of their spread, seen in �), and cost (J) can be evaluated. The P+V 

controller, while having the smallest standard deviations for both values, has notable er-

ror in �� and the highest quadratic cost, 301% the cost of the next highest cost. Open-loop 

optimal has some of the most accurate mean values, but the second-highest spread in both 

state and rate. RTOC is similar, with lower cost (-0.5%) and rate spread (-29%) but higher 

state spread (38%) and final rate error (218%). The double integrator patching filter has 

the second-lowest spreads in both state and rate and the lowest cost, but the final values 

are completely off the mark; 16% error in state and 943% more rate error than the next 

highest architecture. After some tuning, it performs similarly to the P+V controller but 

with higher spreads (17.2% and 264% respectively), lower cost (-66.8%), and a more 
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accurate final rate (12% the error of the P+V). Finally, the control law inversion patching 

filter strikes a balance between all figures of merit: lowest state error, third lowest state 

spread, second lowest rate error, third lowest state spread, and a cost only marginally 

higher (0.7%) than the optimal �∗ = 6, where the asterisk ‘*’ indicates optimality. How-

ever, it took the longest to run after RTOC. 

Table 1. Numerical results of Monte Carlo simulations, N = 1000. � refers to the standard devia-

tion of a quantity. All other numerical results represent the mean over all simulations. 

Architecture �� �� �� �� J �� 

P+V1 1.0176 0.0099 -0.1128 0.0140 40.1842 0.5979 

Open-loop optimal 1.0029 0.0163 0.0004 0.0220 6.0000 0.0000 

RTOC 1.0028 0.0225 0.0087 0.0156 5.9701 0.00001 

Double Integrator1 0.8399 0.0100 1.0640 0.0146 2.2295 0.0560 

Double Int., Tuned2 1.0227 0.0116 -0.0140 0.0510 13.3345 0.7892 

Control Inversion1 0.9996 0.0105 -0.0016 0.0155 6.0412 0.1045 

P+V1 1.0176 0.0099 -0.1128 0.0140 40.1842 0.5979 
1 �� = 37, �� = 8.5 
2  �� = 78, �� = 0.65 

Table 2. Numerical results of Monte Carlo simulations, N = 1000. � refers to the standard devia-

tion of a quantity. All other numerical results represent the mean over all simulations. Percent 

differences are compared to the benchmark open loop optimal results.  

Architecture �� �� �� �� Cost �� 

P+V1 1% -39% -28300% -36% 570% 60% 

Open-loop optimal -- -- -- -- -- -- 

RTOC 0% 38% 2075% -29% 0% 0% 

Double Integrator1 -16% -39% 265900% -34% -63% 6% 

Double Int., Tuned2 2% -29% -3600% 132% 122% 79% 

Control Inversion1 0% -36% -500% -30% 1% 10% 
1 �� = 37, �� = 8.5 
2  �� = 78, �� = 0.65 

 

Figure 3. Singular run of RTOC using pinv(A) without open loop switching. Note the deterioration 

in �(�) starting after time = 0.8 seconds, indicating the function’s inability to reliably solve the sys-

tem as it approaches singularity. 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2022                   doi:10.20944/preprints202211.0248.v1

https://doi.org/10.20944/preprints202211.0248.v1


 

  

(a) (b) 

 

 

 

 
  

(c) (d) 

Figure 4. Singular runs of RTOC for each matrix inverse procedure. Solid blue line: �(�); dashed green 

line: �(�). (a) (�)��; (b) 1\A; (c) inv(A); (d) pinv(A). Note the failure of plots (a) and (c) to reach the right 

side, where time = 1 second. 

4. Conclusions 

From the results shown in Section 3 summarized in table 2, there is no one control 

that performs the best in every single regard. The P+V controller has high cost and rate 

error, the optimal controls have low cost and high accuracy but higher susceptibility to 

sensor noise, while the double integrator patching filter is difficult to tune and costly. The 

control law inversion patching filter, however, can be seen as the best alternative to open-

loop optimal control especially in the presence of sensor noise and inertia uncertainties, 

as it had a cost only slightly higher (0.7%) with smaller standard deviations (35.6% less 

spread in state, 29.5% less spread in rate) and final results more accurate than any other 

architecture (14.3% the state error of the runner up, 18.4% the rate error of the runner up). 

The key tradeoff was computational burden since control inversion optimization took 25-

40% longer to run than some of the other architectures.  
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