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Abstract: Recent studies have proven that synthetic aperture radar (SAR) automatic target recogni- 1
tion (ATR) models based on deep neural networks (DNN) are vulnerable to adversarial examples. =
However, existing attacks are easily failed in the case where adversarial perturbations cannot be fully s
fed to victim models. We call this situation perturbation offset. Moreover, since background clutter 4
takes up most of the areas in SAR images and has low relevance to recognition results, fooling models s
with global perturbations is quite inefficient. This paper proposes a semi-whitebox attack network,
called Universal Local Adversarial Network (ULAN), to generate universal adversarial perturbations 7
(UAP) for the target regions of SAR images. In the proposed network, we calculate the model’s s
attention heatmaps through layer-wise relevance propagation (LRP), which is used to locate the  »
target regions of SAR images that have high relevance to recognition results. In particular, we utilize 10
a generator based on the U-Net to learn the mapping from noise to UAPs and craft adversarial 11
examples by adding the generated local perturbations to target regions. Experiments indicate that 12
the proposed method fundamentally prevents perturbation offset and achieves comparable attack 13
performance to conventional global UAPs by perturbing only a quarter or less of SAR image areas. 14

Keywords: deep neural network (DNN); synthetic aperture radar automatic target recognition (SAR- 15
ATR); universal adversarial perturbation (UAP); U-Net; attention heatmap; layer-wise relevance 16
propagation (LRP) 17

1. Introduction 18

Synthetic aperture radar (SAR) is widely used in military and civilian fields for its 1o
ability to image targets with high resolution under all-time and all-weather conditions [1-3]. 20
However, unlike natural images, it is difficult for humans to intuitively understand SAR 2
images without resorting to interpretation techniques. The most popular interpretation 22
method at present is the SAR automatic target recognition (SAR-ATR) technology based  2s
on deep neural networks (DNNs) [4-8]. With its powerful representation capabilities, the 24
DNN outperforms traditional supervised methods in image classification tasks. Yet, some =5
researchers have proved that DNN-based SAR target recognition models are vulnerable to 26
adversarial examples [9]. 27

Szegedy et al. [10] first propose the concept of adversarial examples, that is, a well-  2s
designed tiny perturbation can lead to the misclassification of a well-trained recognition  2e
model. This discovery makes adversarial attacks become one of the biggest threats to 1o
artificial intelligence (AI) security. So far, researchers have proposed a series of adversarial =~ s
attack methods, which can be divided into two categories from the perspective of prior 2
knowledge: white-box attacks and black-box attacks. In white-box conditions, the attacker s
has high access to the victim model, which means that the attacker can utilize lots of prior s
information to craft adversarial examples. The typical white-box methods are gradient- s
based attacks [11,12], boundary-based attacks [13], saliency map-based attacks [14], etc. 36
Conversely, in black-box conditions, the biggest challenge for attackers is that they can  s7
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only access the output information of the victim model, or even less. The representative s
black-box methods are probability label-based attacks [15,16], decision-based attacks [17], 3o
and transferability-based attacks [18], etc. While the above methods achieve fantastic attack 40
performance, all of them fool DNNs with data-dependent perturbations, i.e., each input =
corresponds to a different adversarial perturbation, which is hard to satisfy in real-world 42
deployments. Moosavi et al. [19] first propose a universal adversarial perturbation (UAP) 43
that can deceive DNNs independently of the input data. Subsequently, the work in [20] 44
designs a universal adversarial network to learn the mapping from noise to UAPs and 45
demonstrates the transferability of UAPs across different network structures. Mopuri et al. 46
[21] argue that it is difficult for attackers to obtain the training dataset of the victim model, s
so to reduce the dependence on the dataset, they propose a data-free method to generate s
UAPs by destroying the features extracted by convolutional layers. Another data-free work 4
[22] uses class impressions to simulate real data distribution, generating UAPs with high =0
transferability. In the field of remote sensing, Xu et al. [23] are the first to investigate the s
adversarial attack and defense in safety-critical remote sensing tasks. Meanwhile, they also s
propose the Mixup-Attack [24] to craft universal adversarial examples for remote sensing s
data. Furthermore, researchers [25] have successfully attacked an advanced YOLOV2 s
detector in the real world with just a printed patch. Thus, a further study on adversarial s
examples, especially UAPs, is necessary for both attackers and defenders. 56

With the wide application of DNNSs in the field of SAR-ATR, researchers embark on sz
the adversarial examples of SAR images. In terms of data-dependent perturbations, Lietal. s
[26] use the FGSM and BIM algorithms to produce abundant adversarial examples for the s
CNN-based SAR image classification model and comprehensively analyze various factors o
affecting the attack success rate. The work in [27] presents a Fast C&W algorithm for real- e
time attacks that introduces an encoder network to generate adversarial examples through e
one-step forward mapping of SAR images. To enhance the universality of adversarial s
perturbations, Wang et al. [28] utilize the method proposed in [19] to craft UAPs for SAR s
images and achieve high attack success rates. In addition, the latest research [29] has broken s
through the limitations of the digital domain and implemented the UAP of SAR imagesin s
the signal domain by transmitting a two-dimensional jamming signal. o7
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Figure 1. Given an original SAR image in the dataset and a well-designed UAP, we display the
adversarial attacks with (bottom) and without (top) perturbation offset. Since we can only perturb
a limited region, the perturbation size is smaller than the image size but identical to the input size
of the victim model. Here, we attack the model by perturbing the green box region, that is, adding
the UAP to this region. The adversarial attack without perturbation offset means that the perturbed
(green box) region must be exactly fed to the model. However, suppose the model takes as input the
red box region that has an offset from the perturbed region, the incomplete adversarial perturbation
is likely to make the attack fail.

Although the above methods perform well in fooling SAR target recognition models, s
they are vulnerable and inefficient in practical applications. Specifically, existing attack o
methods are working on the assumption that the adversarial perturbations can be fully 7
fed to the victim model, while it is not always held in practice, i.e., in many cases the =
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perturbations fed to the model are incomplete, resulting in the failure of the adversarial 7
attacks. We attribute the failure to the vulnerability of adversarial attacks and call this 7
situation perturbation offset. For ease of understanding, we detail a specific example in Figure 7
1. On the other hand, we calculate the model’s attention heatmaps [31] through layer-wise 7
relevance propagation (LRP) [32], which is used to analyze the relevance of each pixel in 7
the SAR image to the recognition results. The pixel-wise attention heatmaps can be found 7
in Section 4.3. The fact is that the background regions of SAR images have little relevance to 7
the model’s outputs, and the features that greatly impact the recognition results are mainly 7
concentrated in the target regions. However, existing attack methods fool DNN models by =0
global perturbations so that massive time and computing resources are allocated to design e
perturbations for low-relevance background regions, which is undoubtedly inefficient.
Therefore, the vulnerability and inefficiency of adversarial attacks are pending to be solved =3
in real-world implementations. sa

In this paper, we propose a semi-whitebox [33] attack network — called Universal Local s
Adversarial Network (ULAN) to generate UAPs for target regions of SAR images. Specifically,  es
we first calculate the model’s attention heatmaps through LRP to locate the target regions e
in SAR images that have high relevance to the recognition results. Then, we utilize a s
U-Net [30] to learn the mapping from noise to UAPs and craft the adversarial examples by e
adding the generated local perturbations to the target regions. In this way, attackers can s
focus perturbations on the high-relevance target regions, which significantly improves the o
efficiency of adversarial attacks. Meanwhile, the proposed method also ensures that the o
well-designed perturbations can be fully fed to the victim model along with the targets s
such that perturbation offset is fundamentally prevented. 0s

The main contributions of this paper are summarized as follows. o5

(1) We are the first to evaluate the adversarial attacks against DNN-based SAR-ATR o6
models in the case of perturbation offset and analyze the relevance of each pixel in o7
SAR images to the recognition results. Our research reveals the vulnerability and s
inefficiency of existing adversarial attacks in SAR target recognition tasks. 99

(2) A semi-whitebox attack network is proposed to generate UAPs for the target regions 1c0
of SAR images. Once the proposed network is trained, it can real-time attack the 1o
victim model without requiring access to the model itself anymore, and thus possesses 102
high potential in practical applications. 103

(3) Experiments on the moving and stationary target acquisition and recognition (MSTAR)  1cs
dataset show that the proposed method not only prevents perturbation offset effec- 10
tively, but also achieves comparable attack performance to the conventional global 106
UAPs by perturbing only a quarter or less of the SAR image area. Furthermore, we 1o
evaluate the attack performance of the ULAN under small sample conditions, and the 108
result shows that given five images per class, our method can cause a misclassification 1o
rate over 70%. 110

The rest of this paper is organized as follows. Section 2 introduces the relevant 1.
preparation knowledge. In Section 3, we describe the proposed method in detail. The 1

experiment results are shown in Section 4. The conclusion is given in Section 5. 113
2. Preliminary 114
2.1. Universal Adversarial Perturbations for SAR Target Recognition 115

Suppose x,€[0,255]"*H is an 8-bit gray-scale image from the SAR image dataset X', 11
and f(-) is a DNN-based k-class SAR target recognition model without a softmax output 117
layer. Given a sample x, as input to f(-), the output is a k-dimensional logits vector 1
f(xn)=[f(xn)1, f(xn)2,- -, f(xn)x), where f(x,);€R denotes the score of x, belonging to 11
class i. Let C, = argmax;(f(x,);) represent the predicted class of the model for x;,. 120
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Universal adversarial perturbations (UAP) can fool the model independently of the 122
input data as follows: 122

arg max(f (x, +9);) # Cp
for "most" x, € X s.t. i (1)
o, <¢

where 0 is a UAP, the Ly-norm is defined as |4 || p:(zi 16:17) %, and ¢ controls the magnitude 12
of . Meanwhile, adversarial attacks can be divided into non-targeted and targeted attacks 124
in terms of attack modes. As the name suggests, the former just makes DNN models 125
misclassify, while the latter induces models to output specified results. From a military 12
perspective, targeted attacks are more challenging and threatening than non-targeted 12r
attacks. In other words, UAPs can reduce the probability that DNN models correctly i2s
recognize samples in non-targeted attack scenarios; conversely, they increase the probability 120
of models identifying samples as target classes in targeted attack scenarios. Therefore, we 130
transform (1) into the following optimization problems: 131

e for the non-targeted attack: 132

Yy D(argmax(f (xu + 6);)==Ciy)

minimize(
N

) stlol, <& @
¢  for the targeted attack: 133

N D(arg max(f (x +6)i)==Cta)

maximize( ! N ), S-t-Hszp <Z 3)

where the discriminant function D(-) equals one if the equation holds; otherwise equals 13
zero. N is the total number of images in the dataset. C; and Cy; represent the true and 135
target classes of the input data. Obviously, the above optimization problems are exactly the 136
opposite of a DNN’s training process, and the corresponding loss functions will be given in a7
the next chapter. 138

2.2. Attention Heatmaps 139

AlexNet MobileNet ResNet18

Lighthouse

VGGI11-BN VGG16 VGG16-BN

Figure 2. Attention heatmaps for AlexNet [34], MobileNet [35], ResNet18 [36], VGG11-BN, VGG16,
and VGG16-BN [37].
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When humans make judgments, they can reasonably allocate their attention to differ- s
ent features of an object and get the desired semantic information efficiently. Coincidentally, 1
recent studies have shown that DNNs have similar characteristics when making decisions  1a2
[31]. For example, in image classification tasks, the pixels surrounding target regions tend 1as
to have a much greater impact on the classification results than others. Researchers typically 14
utilize attention heatmaps to visualize the contribution of each pixel to the network output. 14s

Nowadays, lots of algorithms have been proposed to calculate the DNN’s attention 146
heatmaps. In this paper, we employ layer-wise relevance propagation (LRP) [32] to obtain 147
the pixel-wise attention heatmaps, which is actually a backward visualization method 14
[38—40] that obtains the heatmap by calculating the relevance between adjacent layers from 14
outputs to inputs. Figure 2 displays the heatmaps of six DNNs calculated by LRP. As s
we can see, the hotspots are mainly concentrated in the target regions, and the heatmaps s
of different DNNs have similar structures, i.e., attention heatmaps may be the semantic sz
features shared by DNNs. Destroying the common semantic feature of DNNs is a promising  1ss
idea to enhance the transferability of adversarial examples. We will detail the principle of s
LRP in Section 3.2. 155

3. The Proposed Universal Local Adversarial Network (ULAN) 156

The framework of the universal local adversarial network (ULAN) is shown in Figure sz
3. To describe the training process of the ULAN more clearly, we divide it into four steps. 1ss
The first step uses a generator to learn the mapping from normal distribution noise into  1se
universal adversarial perturbations (UAPs). Next, the second step calculates the pixel-wise 160
attention heatmaps of the surrogate model through layer-wise relevance propagation (LRP). 16
Then, the third step utilizes UAPs and attention heatmaps to craft adversarial examples of ez
SAR images. Finally, the fourth step computes the training loss and updates the generator’s 1es
parameters through backward propagation. Note that the victim model is a white-box 1es
in the training phase, but in the testing phase it is a black-box, and thus we calculate the 1es
heatmap of the surrogate model as an alternative to the victim network’s heatmap. This 1es
chapter will introduce each of the above steps in detail. 167

L,-norm

Clip

Figure 3. Framework of the ULAN. The UAP ¢ generated by the generator G(+) is a local perturbation, and its size is much smaller than
the SAR image x. Attackers utilize the attention heatmap (hmap) of the surrogate model f;(-) to locate the target region, i.e., the green
box region, and obtain the adversarial example by adding J to the target region. The victim model f, (-) takes the adversarial example
as input and outputs the attack loss L,, plus the norm loss L, to form the total loss L¢, which is used to update the parameters of G(-).

3.1. Structure of Generative Network 168

In order to craft UAPs independently of the input data, this paper trains a generative 1eo
network G(+) to transform the normal distribution noise Z into a UAP ¢ as follows: 170

§=G(2), Z~N(0,1) (4)
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where Z and ¢ have the same size, denoted as w x h. Meanwhile, we set the size of SAR  1n:
images to W x H. Since the generated J is a local perturbation, the relationship between 172
wxhand W x Histhatw x h < W x H. 173

The characteristics of SAR images should be taken into account when choosing the 17s
generative network. First of all, a SAR image mainly consists of the target and background 7s
clutter. Yet, the features that have great impact on the recognition results are mainly 17
concentrated in the target region, which only occupies a tiny part of the SAR image. Second, 177
compared to natural images, the professionalism and confidentiality of SAR images make 17s
them challenging to access. This means that we need to consider adversarial attacks 17
under small sample conditions, so a lightweight generator is necessary to prevent network 1so
overfitting. In summary, this paper takes the U-Net as the generator to craft UAPs. 181

Input Output

Conv(3x3)+ReLLU

I Max pool(2x2)

Crop & Copy
F - t ConvTrans(2x2)
Conv(1x1)+ReLU

Figure 4. The structure of the U-Net.

Table 1. The network parameters. Here we set w X h to 32 x 32 and abbreviate the combination
of two convolutional layers as DoubleConv. The parameters of the convolutional layer represent
the number of input and output channels and the kernel size, respectively. The parameter of the
max-pooling layer represents the kernel size.

Layer Shape
Input 1x32x32
DoubleConv(1, 64, 3)+Max pool(2) 64 x 16 x 16
DoubleConv(64, 128, 3)+Max pool(2) 128 x 8 x 8
DoubleConv(128, 256, 3)+Max pool(2) 256 x 4 x 4
DoubleConv(256, 512, 3)+Max pool(2) 512 x2x2
DoubleConv(512,1024, 3) 1024 x 2 x 2
ConvTrans(1024, 512, 2)+DoubleConv(1024, 512, 3) 512 x4 x4
ConvTrans(512, 256, 2)+DoubleConv(512, 256, 3) 256 x 8 x 8
ConvTrans(256, 128, 2)+DoubleConv(256, 128, 3) 128 x 16 x 16
ConvTrans(128, 64, 2)+DoubleConv(128, 64, 3) 64 x 32 x 32
Conv(64,1,1) 1x32x32

Figure 4 shows the detailed U-Net structure. It is first proposed to segment biomedical ez
images [30] and mainly consists of an encoder and a decoder. The encoder extracts features s
by down-sampling the input data, while the decoder recovers the data by up-sampling  1e
feature maps. The biggest difference between the U-Net and other common encoder- 1ss
decoder models is that the former introduces a skip connection operation to fuse features 1ss
from different layers. Specifically, both the encoder and the decoder consist of four sub- s
blocks. The encoder block contains two 3 x 3 convolutional layers and a 2 X 2 max-pooling  1ss
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layer, while the decoder block contains a 2 x 2 transposed convolutional layer and two 3 x 3
convolutional layers. Note that the last layer of the decoder utilizes a 1 x 1 convolutional
layer to make the number of input and output channels identical. The network parameters
are given in Table 1.

3.2. Layer-wise Relevance Propagation (LRP)

To analyze the relevance of each pixel in SAR images to the recognition results, we
need obtain the DNN model’s attention heatmaps first. In this paper, we use layer-wise
relevance propagation (LRP) [32] to calculate the pixel-wise attention heatmaps of the
surrogate model f;(+). For an easy explanation, we suppose f;(+) is an [-layer DNN without
the softmax output layer. Figure 5 illustrates the network’s forward propagation and LRP.

[—
x‘” ” o f;("’)l 0 h 0

FACH

_(-1)
Zij

0-11)
R,

mndnQ

[0,

f(x)

Attention Heatmap

OO0
000

U/ &
"w""

Figure 5. Forward propagation (left) and LRP (right) of the surrogate model f;(-).

The left of Figure 5 shows a standard forward propagation, which takes a SAR image
x as input and outputs a logits vector f;(x). A common mapping from one layer to the next
one can be expressed as follows:

xlgz—1) _ J(Zl(z—l)) 5)

zg_l) = wg_l)xi(l_l) (6)
1 -1 1

2V =y @)

1

where zfl_l) and xl.(l_l) denote the pre-activation and post-activation of the corresponding

node (superscript and subscript denote layer and node indices, respectively), o(+) is an acti-
(1-1) (1-1)

vation function, wj; r

(-1 0

; and z;’, and b](l) is a bias term. The activation function o (-) is usually
nonlinear, such as the hyperbolic tangent tanh or the rectification function ReLU, which can
enhance the network’s representation capacity. Note that the input and output layers typi-
cally don’t include activation functions, and the output fs(x)=[fs(x)1, fs(x)2,- - -, fs(X)n,]
is a logits vector without softmax operations.

As for LRP, given a target class output fs(x); as input, its output is a pixel-wise
attention heatmap reflecting the image regions most relevant to fs(x);. Specifically, we
sequentially decompose the relevance of each node for the target class output f;(x); from
the neural network’s output layer to input layer. Meanwhile, the backward propagation of
the relevance must satisfy the following conservation property:

fs(x)]' = R]<l) = ZREFU - .= ZRS) ®)
i n

and z can be understood as the weight and local pre-activation

between nodes x

199

200

202
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A common decomposition is to allocate the relevance according to the ratio of local to 2

global pre-activations in the forward propagation, as follows: 218
T S
| .
Riegm =" & ©)
ya
]
where R( ) denotes the relevance assigned from node R]( ) to node Rl(lfl). This decom- 210

position can approximately satisfy the conservation property in (8): 220

(I-1,) ) b](l)
ZRH—] ’ (1 - W)
]

Z; (10)
~RrW
~ R;

Additional, considering that if z]( ) goes to zero, then Rfl_.l D will close to infinity, so (9) can 221
be modified by introducing a stable term € > 0 as follows: 222
LU=1)

-1l ij l
RIH ] ) — d R](. ) 11)

( ) +e€-sign(z ](l))

In summary, we can calculate the relevance of each node for the target class output = zz:
through the following recursion formula and backward pass the relevance until reaching 224
the input layer. 226

LU=1)
(=1 _ ij )
R =L 0 i 1)
j +e€-sign(z Z; )

3.3. Adversarial Examples of SAR Images 220

To add the local perturbations generated in Section 3.1 to the target regions of SAR 227
images, we determine the perturbation location through the attention heatmaps calculated  22s
by Section 3.2. Therefore, we take the attention heatmap centroid as the perturbation center 2zo

and design a perturbation function to craft the adversarial examples. 230
First of all, the coordinates of the image centroid can be calculated by the following 23
formula [41]: 232
Mg Moy
= 1
(uC/ UC) ( MOO MOO ( 3)

where My is the zero-order moment of the image, Mg and My; are the first-order moments  2ss
of the image. Here involves the calculation of higher-order moments, which are generally 234
defined as: 235

Myp = //u“v’gf(u,v)dudv (14)

For a digital image, we regard the coordinates of the pixel as a two-dimensional random 236
variable (u#,v), and the value of each pixel is regarded as the density of the point. Thus, 23
a gray-scale image can be represented by a two-dimensional gray-scale density function 2:s
V(u,v), and its higher-order moments can be expressed as: 230

My = ZZV(u,v) cut . oP (15)

Note that the premise here is a two-dimensional gray-scale image, so we convert the 240
attention heatmap hmap to a single-channel gray-scale image first, and then preprocess it = 2a
with Gaussian blur and binarization algorithms [42]. 242
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Then, we take the attention heatmap centroid as the perturbation center, so the pixel a3
coordinates corresponding to (0, 0), i.e., the perturbation origin, can be derived as: 244

(tto, v0) = (1t + At — L%J,meAv— m) (16)

where w and & are the width and height of 4, | ¥ | and {%J represent the displacement 2ss
difference between the perturbation center and the perturbation origin in the horizontal 246
and vertical directions, and |- | means rounding down. Meanwhile, this paper adds a two- 247
dimensional random noise (Au, Av) ~ U(—5,5) on the centroid coordinates to improve zas
the generalization of our attack. 240

Next, we add the UAP § to the perturbed region through the following perturbation  2s
function. Let Pert(u,,v,,6, W, H) be a function that takes as input the perturbation origin = 2s:
coordinates (u,,v,), a UAP §, and the size of SAR images W x H, and outputs an adversarial zs:
perturbation 5* €RW>*H of the same size as SAR images, defined as: 253

<u< —1
(1 — Uy, v —1,) ,if{uo SUS Ut W

0% (u,v) = v <o<o+h—1 (17)
0<u<W-1 .
0<v<H-1 0 , otherwise

In brief, the adversarial perturbation 6* = Pert(u,,v,,6, W, H) equals zero at all pixels 2sa

except the pixels in the perturbed region. 285
Finally, the adversarial example x* can be expressed as: 256

x* = Clip[0,255] (x + (5*) (18)
The clipping operation restricts the pixel values of x* to the interval of [0,255], ensuring =s-
that x* is still an 8-bit gray-scale image. 258
3.4. Design of Loss Functions 250

To effectively fool the DNN model with a minor perturbation, we design a loss function  zeo
Ly consisting of an attack loss £, and a norm loss £;,. This section will introduce them in 261

detail. 262
For the non-targeted attack: In this paper, we design an attack loss £, on the basis of  zes
the following standard cross-entropy loss. 264

loss(fo(x),Ch) = _10g<exp(fy(x)c,,)> (19)

Yjexp(fo(x)))

where f,(x) is the logits output of the victim model. The above formula actually contains zss
the following softmax operation: 266

softmax(fy(x);) = (%) €f0,1] 20)

Obviously, the cross-entropy loss in (19) has been widely used in network training ez
to improve the DNN model’s classification accuracy by increasing the confidence of true  zes
classes. Instead, according to Formula 2, the non-targeted attack can minimize the classifi- zeo
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cation accuracy by decreasing the confidence of true classes, i.e., increasing the confidence =270

of others, and thus, the attack loss £, can be expressed as: 271
Yizc, exp(fo(x*);)
La(fo(x*),C) = —1lo J7tr
(fo(x*), Chr) g( » exp(fo(x);) on
—_ —log 1— exp(fv(x*)ctr)
¥ exp(fo(x*);)

Meanwhile, a norm loss £, is introduced to limit the perturbation magnitude. We use 272
the traditional L,-norm to measure the degree of image distortion as follows: 273

L(x,x7) = [[x" =],

= (Y |ax|?)7

1

(22)

Then, we apply the linear weighted sum method to balance the relationship between 274
L, and Ly, so the total loss £; can be represented as: 275

Lt = La(fo(x¥),Cx) +w- Ly(x,x")

—w- = — _ explfo(*’)c,) (23)
= w ||X x”p 10g<1 Z]exp(fv(x*)])>

where w > 0is a constant that measures the relative importance of the attack effectiveness 27e
and the attack stealthiness. 277

For the targeted attack: According to Formula 3, the targeted attack is to maximize 27s
the probability that the victim model recognizes samples as target classes. In other words, =27
we need to increase the confidence of target classes. Thus, contrary to the non-targeted 2s0
attack, the attack loss £, can be expressed as: 201

e><P<f<x>c>> (24)

La(folx"), Cia) = —1°g<z]. exp(fo(x");)

The norm loss £, is the same as (22), so the total loss L; of the targeted attack can be  zs2
derived as follows: 283

Lt = La(fo(x*),Cta) +w - Lyn(x,x¥)

— o =), - 10g(exp<fv<x*>cm> ) @)
4 ¥ exp(fo(x*);)
4. Experiments 284
4.1. Dataset and Implementation Details 285
4.1.1. Dataset 286

The moving and stationary target acquisition and recognition (MSTAR) dataset [43] ze7
published by the U.S. Defence Advanced Research Projects Agency (DARPA) is employed  2ss
in our experiments. MSTAR is collected by the high-resolution spotlight SAR and contains  zss
SAR images of Soviet military vehicle targets at different azimuth and depression angles. ze0
All the experiments are performed under the standard operating condition (SOC), which 201
includes ten ground target classes, such as self-propelled howitzer (251); infantry fighting 2.2
vehicle (BMP2); armored reconnaissance vehicle (BRDM2); wheeled armored transport 2o
vehicle (BTR60, BTR70); bulldozer (D7); main battle tanks (T62, T72); cargo truck (ZIL131); 204
self-propelled artillery (ZSU234). The training dataset contains 2747 images collected at 17° 205
depression angle, and the testing dataset contains 2426 images captured at 15° depression 206


https://doi.org/10.20944/preprints202211.0243.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2022 d0i:10.20944/preprints202211.0243.v1

11 of 24

angle. More details about the dataset are shown in Table 2, and Figure 6 shows the optical 2e7
images and corresponding SAR images of ten ground target classes. 208

Table 2. Details of MSTAR under SOC, including target class, serial, depression angle, and number of training and testing images.

Target Class Serial Training Data Testing Data
Depression Angle Number Depression Angle Number

251 b01 17° 299 15° 274
BMP2 9566 17° 233 15° 196
BRDM2 E-71 17° 298 15° 274
BTR60 k10yt7532 17° 256 15° 195
BTR70 c71 17° 233 15° 196
D7 92v13015 17° 299 15° 274
T62 A51 17° 299 15° 273
172 132 17° 232 15° 196
ZIL131 E12 17° 299 15° 274
ZSU234 dos 17° 299 15° 274

D7 T62 T72 ZIL131 Z5U234

Figure 6. Optical images (top) and SAR images (bottom) of ten ground target classes.

4.1.2. Implementation Details 200

Due to the different sizes of SAR images in MSTAR, we first center-crop the image o0
to 128 x 128. Meanwhile, in practice, the target is not necessarily located in the center of = so:
the SAR image. Thus, we random-crop the cropped image to 88 x 88 again, and finally o
normalize it to N'(0,1). 303

For the victim models, we adopt six common DNNs, A-ConvNets-BN [44], VGG16-  s0s
BN [37], GoogLeNet [45], InceptionV3 [46], ResNet50 [36] and ResNeXt50 [47], which are  sos
trained on the MSTAR dataset and have a classification accuracy of over 97%. The surrogate o6
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model employs a well-trained VGG16-BN network to approximate the pixel-wise attention o7
heatmap of the victim model. During the training phase, we form the validation dataset by sos
uniformly sampling 10% data from the training dataset, and use the Adam optimizer [48] o0
with the learning rate 0.001, the training epoch 15, and the training batch size 32. The size 310
of UAPs defaults to 44 x 44, the norm type defaults to Ly-norm, and the weight coefficient 1
w defaults to 0.5. a2

Considering that most of the current research aims to craft global adversarial pertur- s:s
bations for SAR images, few scholars focus on universal or local perturbations. Therefore, 31
in the comparative experiments, we take the methods proposed in [20,49] as baselines =15
to compare with the ULAN. Note that baseline methods generate global UAPs for SAR 316
images, while our method only needs to perturb local regions. All codes are written in =17
Pytorch and the experimental environment consists of Windows 10; GPU (NVIDIA GeForce s
RTX 2080 Ti); and CPU (3.6GHz Intel(R) Core(TM) i9-9900K). 310

4.2. Evaluation Metrics 320

This paper takes into account two factors to comprehensively evaluate the perfor- sz
mance of adversarial attacks: the attack effectiveness and the attack stealthiness. In the sz
experiments, we craft adversarial examples for all samples in the SAR image dataset, so the = szs
victim model’s classification accuracy directly reflects the attack effectiveness of UAPs: 324

¥h_1 D(argmax(f (xu+0);)==Cir)
Acc = N

¥t,,—1 Easy D(arg max(f (xa-+8);)==Cia)
TN Targeted Attack

Non-targeted Attack (26)

where Cy and Cy, represent the true and target classes of the input data, k is the number sz
of target classes, and D(-) is a discriminant function. The non-targeted attack effect is 326
inversely proportional to the classification accuracy, while the targeted attack performance 27
is proportional to the Acc metric. Moreover, to verify the reliability of attacks, we also  szs
compare the confidence level of target classes before and after the attack. 320
When evaluating the attack stealthiness, in addition to using the L,-norm to measure  sso

the degree of image distortion, we also introduce the structural similarity (SSIM) [50], a 332
metric more in line with human visual perception, for a more objective evaluation, defined 32
as: 333

SSIM(a,b) — Z(ZFaP;h + C1)(22(7ab +2C2) @7)
(42 + 2+ C) (02 + 02 + Cy)

where a and b are the images to be compared, p,, yp and oy, 03 are the mean and standard ~ ss«
deviation of the corresponding image, 0 is the covariance, and Cj, C; are the constants 35
used to keep the metric stable. The value of the SSIM ranges from —1 to 1, and the higher 36
the SSIM, the more imperceptible the adversarial perturbation. 337

4.3. Attention Heatmaps for DNN-based SAR Target Recognition Models 338

For the six victim models mentioned in Section 4.1.2, given ten SAR images from 3o
different target classes as input, they all correctly classify the targets with high confidence. a0
Then, we calculate pixel-wise attention heatmaps for the victim models by LRP, as shown s
in Figure 7. The result is similar to the natural image in Figure 2, i.e., the pixels that s
have a great impact on the SAR image classifiers are mainly concentrated in the target s
regions. Furthermore, we find that the attention heatmaps of different models have similar sas
structures, which proves the feasibility of our method. Specifically, since the victim model s
is a black-box in the testing phase, attackers are unable to directly obtain its attention s
heatmaps through LRP. However, due to the similarity of attention heatmaps between s
different DNN models, we can calculate a white-box surrogate model’s attention heatmap 4
as an alternative. Meanwhile, since the attention heatmap of VGG16-BN best matches the 34
target shape and has the clearest boundary, the surrogate model adopts a well-trained  sso
VGG16-BN network to approximate the attention heatmap of the victim model. 351
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281 BMP-2 BRDM-2 BTR-60 BTR-70 D7 T-62 T-72 ZIL-131 ZSU-234

SAR image

A-Conv-BN

ResNet50 InceptionV3 GoogLeNet VGG16-BN

ResNeXt50

Figure 7. Pixel-wise attention heatmaps for DNN-based SAR-ATR models. The true class of the SAR image is listed at the top, and the
DNN structure is shown on the left.

4.4. Adversarial Attacks without Perturbation Offset 352

In this experiment, we evaluate the non-targeted and targeted attack performance sss
of each method without perturbation offset. Specifically, we first crop the SAR image to  :sa
88 x 88 as mentioned in Section 4.1.2, and then craft adversarial examples by adding the sss
well-designed perturbations to the cropped images, which ensures that the perturbations  sss
can be fully fed to the victim model. Note that the structures and parameters of the model s
are known in the training phase, while these details are unavailable in the testing phase. sss
Moreover, we emphasize that the UAPs generated by baseline methods cover the global s
SAR images, but our method only needs to perturb target regions. The results of the se0
non-targeted and targeted attacks are shown in Table 3 and Table 4, respectively. There are e
four metrics in the table to evaluate the attack performance: the classification accuracy and e
target class confidence before and after the attack, the Ly-norm of image distortion, and the ses
SSIM between clean and adversarial examples. 364

In the non-targeted attack, the classification accuracy of each DNN model on the ses
testing dataset exceeds 95%, and the target class confidence is over 0.9. However, after the se6
attack, the model’s classification accuracy decreases significantly, the maximum reduction sez
reaches 85%, and the minimum exceeds 60%; the drop in target class confidence varies ses
from 0.6 to 0.85. From the perspective of attack effectiveness, the UAN performs the best, 6o
followed by the ULAN and U-Net, and the worst is the ResNet Generator. Yet, the biggest 370
drawback of baseline methods is that they need to perturb the global regions of size 88 x 88, s
but our method perturbs the target regions of size 44 x 44. Even though the ULAN only 7
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perturbs a quarter of the SAR image area, it achieves comparable attack performance to the s
global UAPs. We speculate the reason is that the features within target regions have stronger a7
relevance with the recognition results than others, so a focused perturbation on the target s7s
region is more efficient than the global perturbation. In terms of the attack stealthiness, 7
Table 3 lists the Ly-norm value of image distortion caused by each method and the SSIM  s7s
between the adversarial examples and clean SAR images. An interesting phenomenon is  svs
that sometimes the ULAN causes a larger image distortion but still performs better on the 37
SSIM metric than baseline methods. We attribute this to the fact that the human eye is more  so
sensitive to large-range minor perturbations than small-range focused ones, resulting in = e
the superior performance of our method on the SSIM metric. It also illustrates that local s
perturbations can enhance the imperceptibility of adversarial attacks. 383

Table 3. Non-targeted attacks of the ULAN (ours), UAN [20], U-Net, and ResNet Generator [49] against DNN models on the MSTAR
dataset. We report attack results on the testing dataset.

N Acc Confidence
Victim Method Clean Adv Gap Clean Adv Gap Ly-norm SSIM
ULAN 98.19% 31.53% -66.66% 0.93 0.31 -0.62 2.03 0.96
A-Conv-BN UAN 98.23% 29.06% -69.17% 0.94 0.29 -0.65 2.54 0.93
U-Net 98.52% 28.07% -70.45% 0.94 0.28 -0.66 2.33 0.95
ResG 98.06% 35.04% -63.02% 0.93 0.33 -0.60 2.07 0.94
ULAN 96.17% 16.94% -79.23% 0.95 0.17 -0.78 2.45 0.95
UAN 95.75% 10.47% -85.28% 0.95 0.11 -0.84 3.63 0.86
VGG16-BN U-Net 95.59% 12.94% -82.65% 0.94 0.13 -0.81 2.68 0.93
ResG 95.63% 18.51% -77.12% 0.95 0.18 -0.77 4.34 0.82
ULAN 97.28% 16.90% -80.38% 0.96 0.17 -0.79 3.11 0.95
GoogLeNet UAN 97.11% 11.91% -85.20% 0.96 0.12 -0.84 3.68 0.88
U-Net 97.32% 15.87% -81.45% 0.97 0.17 -0.80 2.87 0.93
ResG 97.32% 19.62% -77.70% 0.97 0.20 -0.77 2.67 0.94
ULAN 92.91% 23.00% -69.91% 091 0.23 -0.68 2.30 0.96
InceptionV3 UAN 92.87% 14.59% -78.28% 0.92 0.15 -0.77 2.64 0.93
U-Net 93.16% 22.59% -70.57% 0.92 0.21 -0.71 2.30 0.95
ResG 93.45% 21.48% -71.97% 0.92 0.21 -0.71 2.66 0.93
ULAN 96.17% 16.08% -80.09% 0.96 0.16 -0.79 3.65 0.94
ResNet50 UAN 96.21% 14.39% -81.82% 0.96 0.14 -0.82 5.57 0.73
U-Net 95.67% 19.95% -75.72% 0.95 0.20 -0.75 3.57 0.91
ResG 96.08% 35.00% -61.08% 0.96 0.35 -0.61 3.70 091
ULAN 96.37% 17.35% -79.02% 0.96 0.18 -0.78 3.84 0.94
ResNeXt50 UAN 96.78% 10.96% -85.82% 0.96 0.11 -0.85 4.56 0.82
U-Net 96.58% 13.27% -83.31% 0.96 0.14 -0.82 3.43 0.91
ResG 96.70% 17.52% -79.18% 0.96 0.18 -0.78 3.19 0.92

In the targeted attack, we regard the target category as the correct class, so the classifi- ses
cation accuracy of DNN models on the testing dataset reflects the data distribution, i.e., each s
category accounts for about one-tenth of the total dataset. According to Table 4, adversarial sse
examples lead to a sharp rise in the model’s classification accuracy, the maximum increase s
reaches 84%, and the minimum exceeds 70%; the rise of target class confidence varies from  sss
0.67 to 0.83. It means that the generated UAPs can induce DNN models to output specified e
results with high confidence. Meanwhile, for the same victim model, the ULAN is slightly  se0
inferior to the UAN and U-Net on the attack effectiveness but performs much better than = se:
baseline methods on the attack stealthiness. Thus, we believe that given a fixed SSIM value, 302
the ULAN can achieve the best attack performance. 393

To visualize the adversarial examples generated by different methods, we take the 304
VGG16-BN-based SAR-ATR model as the victim network, and display the adversarial sos
examples for the non-targeted and targeted attacks in Figure 8 and Figure 9, respectively. We 306
list the prediction and confidence output by the victim model at the top of each adversarial o7
example, and the bottom of each figure shows the sizes of the corresponding image and  ses
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perturbation. As we can see, the UAPs generated by baseline methods fully cover the s
SAR images fed to the model, while the ULAN can locate and perturb the target (green ao0
box) region effectively. Meanwhile, according to Figure 8 and Figure 9, there are apparent 4o
shadow and texture traces in the adversarial examples crafted by baseline methods, which 402
also suggests that the global perturbations are more perceptible than the local ones. In 403
summary, compared to baseline methods, our method can achieve good attack performance o4
with smaller perturbed regions and lower perceptions. 408

Table 4. Targeted attacks of the ULAN (ours), UAN [20], U-Net, and ResNet Generator [49] against DNN models on the MSTAR
dataset. We report attack results on the testing dataset.

. . Acc Confidence
Victim Method Clean Adv Gap Clean Adv Gap Lz-norm SSIM
ULAN 9.99% 85.45% +75.46% 0.10 0.81 +0.71 4.28 0.90
A-Conv-BN UAN 9.97% 90.73% +80.76% 0.10 0.87 +0.77 3.56 0.88
U-Net 9.99% 91.63% +81.64% 0.10 0.88 +0.78 3.71 0.87
ResG 9.98% 90.23% +80.25% 0.10 0.87 +0.77 3.94 0.87
ULAN 9.98% 90.21% +80.23% 0.10 0.89 +0.79 4.71 0.90
UAN 10.02% 93.84% +83.82% 0.10 0.93 +0.83 4.99 0.80
VGGI6-BN U-Net 10.02% 94.15% +84.13% 0.10 0.93 +0.83 5.09 0.82
ResG 10.05% 88.19% +78.14% 0.10 0.86 +0.76 7.25 0.69
ULAN 10.02% 81.65% +71.63% 0.10 0.80 +0.70 447 0.92
GoogLeNet UAN 10.03% 90.70% +80.67% 0.10 0.90 +0.80 4.80 0.85
U-Net 10.00% 91.33% +81.33% 0.10 0.89 +0.79 4.64 0.88
ResG 10.02% 77.74% +67.72% 0.10 0.77 +0.67 4.99 0.83
ULAN 10.05% 80.06% +70.01% 0.10 0.79 +0.69 4.08 0.93
InceptionV3 UAN 9.98% 91.10% +81.12% 0.10 0.90 +0.80 4.87 0.84
U-Net 9.95% 91.77% +81.82% 0.10 0.90 +0.80 491 0.87
ResG 9.90% 84.27% +74.37% 0.10 0.82 +0.72 4.99 0.84
ULAN 9.95% 85.31% +75.36% 0.10 0.84 +0.74 5.54 0.90
ResNet50 UAN 10.09% 90.41% +80.32% 0.10 0.90 +0.80 5.46 0.80
U-Net 10.01% 87.58% +77.57% 0.10 0.87 +0.77 5.34 0.83
ResG 10.04% 88.08% +78.04% 0.10 0.87 +0.77 6.70 0.75
ULAN 9.98% 86.53% +76.55% 0.10 0.86 +0.76 5.15 0.90
ResNeXt50 UAN 9.98% 91.77% +81.79% 0.10 0.91 +0.81 5.60 0.79
U-Net 10.00% 91.88% +81.88% 0.10 0.91 +0.81 5.28 0.83
ResG 9.98% 83.89% +73.91% 0.10 0.83 +0.73 6.73 0.75
- . Prediction: BTR70 Prediction: T62 Prediction: BTR70 Prediction: BTR70
Truth: 251 Confidence: 99.32%  Confidence: 53.47%  Confid 98.76%  Confidence: 98.54%

128x128 88x88 44x44 88x88 88x88 88x88
(a) (b) (© (d) (e) ®

Figure 8. (a) The original SAR image in MSTAR. (b) The clean SAR image fed to the model. The
first row shows the adversarial examples for non-targeted attacks, and the second row shows the
UAPs generated by different methods, corresponding to ULAN (c), UAN (d), U-Net (e), and ResNet
Generator (f), respectively. We list the prediction and confidence output by the victim model at the
top of each adversarial example, and the bottom of the figure shows the sizes of the corresponding
image and perturbation.
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Prediction: BRDM2 Prediction: BRDM2 Prediction: BRDM2 Prediction: BRDM2
Confidence: 94.57% Confidence: 92.20% Conlfid, 97.34% Confi 86.27%

Truth:BTR60

rediction: ZIL131 Prediction: ZIL131 Prediction: ZIL131
: 99.99% C 90.80% Confid 54.16%

Prediction: ZIL131
Confidence: 59.20%

Truth:ZSU234

[
P,
C

Prediction: ZSU234 Prediction: ZSU234 Prediction: ZSU234 Prediction: ZSU234

Truth:2S1 Confidence: 99.12%  Confidence: 99.55%  Confidence: 98.67%  Confidence: 99.01%

128x128 88x88 44x44 88x88 88x88 88x88
(@) (b) (© (@ (e) ®

Figure 9. (a) The original SAR image in MSTAR. (b) The clean SAR image fed to the model. From top
to bottom, the corresponding target classes are BRDM2, ZIL131, and ZSU234. For each target class,
the first row shows the adversarial examples for targeted attacks, and the second row shows the
UAPs generated by different methods, corresponding to ULAN (c), UAN (d), U-Net (e), and ResNet
Generator (f), respectively. We list the prediction and confidence output by the victim model at the
top of each adversarial example, and the bottom of the figure shows the sizes of the corresponding
image and perturbation.

4.5. Adversarial Attacks with Perturbation Offset 406

We now evaluate the adversarial attacks in the case of perturbation offset. Specifically, 4o
we first recover the adversarial examples generated in Section 4.4 to 128 x 128, and next  4os
random-crop the recovered images to 88 x 88 again, such that the perturbation offset 400
condition is constructed. The results of non-targeted and targeted attacks in the case of 410
perturbation offset are shown in Table 5 and Table 6, respectively. a1

The experimental results suggest that perturbation offset severely impacts the attack a2
performance of baseline methods. In non-targeted attacks, the classification accuracy of
DNN models rises sharply, the maximum increase reaches 40%, and the minimum exceeds 414
10%; the rise of target class confidence varies from 0.10 to 0.38. A similar situation also as
occurs in targeted attacks, where the UAPs generated by baseline methods are likely to 416
be ineffective in the case of perturbation offset. The decrease of the classification accuracy a7
varies from 30% to 48%, and the drop in target class confidence varies from 0.31 to 0.49. 4.
In contrast, the attack performance of our method is hardly affected under the same 410
experimental condition. The detailed experimental data is displayed in Table 5 and Table 6. 420
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Table 5. Non-targeted attacks against DNN models in the case of perturbation offset. We report attack results on the testing dataset.

. Acc Confidence
Victim Method No-offset Offset Gap No-offset Offset Gap
ULAN 31.53% 32.09% +0.56% 0.31 0.33 +0.02
A-Conv-BN UAN 29.06% 59.65% +30.59% 0.29 0.53 +0.24
U-Net 28.07% 51.48% +23.41% 0.28 0.47 +0.19
ResG 35.04% 60.10% +25.06% 0.33 0.55 +0.22
ULAN 16.94% 17.31% +0.37% 0.17 0.18 +0.01
UAN 10.47% 26.26% +15.79% 0.11 0.26 +0.15
VGG16-BN U-Net 12.94% 46.25% +33.31% 0.13 0.46 +0.33
ResG 18.51% 29.39% +10.88% 0.18 0.29 +0.11
ULAN 16.90% 18.92% +2.02% 0.17 0.19 +0.02
GoogLeNet UAN 11.91% 40.40% +28.49% 0.12 0.39 +0.27
U-Net 15.87% 43.57% +27.70% 0.17 0.43 +0.26
ResG 19.62% 48.76% +29.14% 0.20 0.48 +0.28
ULAN 23.00% 23.50% +0.50% 0.23 0.24 +0.01
InceptionV3 UAN 14.59% 36.31% +21.72% 0.15 0.35 +0.20
U-Net 22.59% 46.17% +23.58% 0.21 0.44 +0.23
ResG 21.48% 39.20% +17.72% 0.21 0.38 +0.17
ULAN 16.08% 16.24% +0.16% 0.16 0.16 +0.00
ResNet50 UAN 14.39% 23.87% +9.48% 0.14 0.24 +0.10
U-Net 19.95% 50.62% +30.67% 0.20 0.50 +0.30
ResG 35.00% 51.65% +16.65% 0.35 0.51 +0.16
ULAN 17.35% 17.44% +0.09% 0.18 0.18 +0.00
ResNeXt50 UAN 10.96% 41.59% +30.63% 0.11 0.41 +0.30
U-Net 13.27% 46.21% +32.94% 0.14 0.46 +0.32
ResG 17.52% 57.05% +39.53% 0.18 0.56 +0.38

Table 6. Targeted attacks against DNN models in the case of perturbation offset. We report attack results on the testing dataset.

. L. Acc Confidence
Victim Method No-offset Offset Gap No-offset Offset Gap
ULAN 85.45% 82.23% 3.22% 0.81 0.79 20.02
A-Conv-BN UAN 90.73% 43.80% -46.93% 0.87 0.42 0.45
U-Net 91.63% 45.49% -46.14% 0.88 0.43 -0.45
ResG 90.23% 44.28% -45.95% 0.87 0.42 045
ULAN 90.21% 86.72% 3.49% 0.89 0.86 20.03
UAN 93.84% 56.72% -37.12% 0.93 0.56 037
VGG16-BN U-Net 94.15% 58.46% -35.69% 0.93 0.58 0.35
ResG 88.19% 51.23% -36.96% 0.86 0.51 0.35
ULAN 81.65% 78.71% 2.94% 0.80 0.78 20.02
GoogLeNet UAN 90.70% 49.18% -41.52% 0.90 0.49 041
U-Net 91.33% 44.81% -46.52% 0.89 0.44 0.45
ResG 77.74% 46.76% -30.98% 0.77 0.46 031
ULAN 80.06% 73.54% 6.52% 0.79 0.72 20.07
InceptionV3 UAN 91.10% 41.56% -49.54% 0.90 0.41 -0.49
U-Net 91.77% 44.46% -47.31% 0.90 0.44 -0.46
ResG 84.27% 42.35% -41.92% 0.82 0.41 041
ULAN 85.31% 82.32% 2.99% 0.84 0.81 20.03
ResNet50 UAN 90.41% 43.48% -46.93% 0.90 0.43 047
U-Net 87.58% 40.07% -47.51% 0.87 0.40 047
ResG 88.08% 46.32% -41.76% 0.87 0.46 041
ULAN 86.53% 82.82% 371% 0.86 0.82 20.04
UAN 91.77% 50.22% -41.55% 0.91 0.50 041
ResNeXt50 U-Net 91.88% 50.59% -41.29% 0.91 0.50 041

ResG 83.89% 41.28% -42.61% 0.83 0.41 -0.42
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Figure 10. The attack results of the ULAN against DNN models on MSTAR. (a): Non-targeted attacks;

(b): Targeted attacks. We vary the number of images the ULAN is trained on, and report results on
Figure 10 shows the non-targeted (a) and targeted (b) attack results of the ULAN

So far, we have assumed attackers share full access to any images used to train the
victim model. However, the professionalism and confidentiality of SAR images make
them challenging to access in practice. In other words, it is difficult for attackers to obtain
trained on subsets of the MSTAR training dataset. Specifically, we uniformly sample 50, 300, 34

attack performance of the ULAN trained on subsets against different DNNs. As we can see, 436
for the same victim model, the difference in the attack performance of the ULAN trained

sufficient data to support the training of the ULAN. Therefore, we now evaluate the attack
1000, and 2000 images from the full training dataset to form the subsets and evaluate the

performance of our method under stronger assumptions of attacker access to training data.

the testing dataset.
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on 50 images (5 per class) and the full training dataset is less than 5% — in other words,
there is virtually no fluctuation in the attack performance when the amount of training data
changes. The possible reason why the proposed method maintains good performance even
with few training samples might be due to the skip connection structure of the network and
the fixation structure of the SAR image. The decoder of the ULAN fuses the features from
different layers through the skip connection structure, which can help the generator learn
the data distribution sufficiently. Moreover, the low dependence on the training data also
attributes to the fixation structure of the SAR image itself such that its semantic features
are easier extracted and represented than natural images. Thus, the proposed method can
work well under small sample conditions.

4.7. Influence of Parameters

This section evaluates the attack performance of the ULAN trained on different pa-
rameter settings, providing guidance for attackers to achieve superior attack performance.
The parameters mainly include the perturbation size w X h, the weight coefficient w, and
the type of Ly-norm.

4.7.1. Perturbation Size w x h
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Figure 11. The influence of the perturbation size w x h on the attack performance. The Acc and SSIM
metrics of non-targeted attacks are shown in (a) and (b), and the corresponding metrics of targeted
attacks are shown in (c) and (d).

To investigate the influence of the perturbation size w x h on the attack performance,
we train the ULAN on seven different size settings: 22 x 22, 33 x 33, 44 x 44, 55 x 55,
66 x 66, 77 x 77, and 88 x 88. Then, we evaluate the attack performance on the testing
dataset, and the results are shown in Figure 11. As expected, for both non-targeted and
targeted attacks, a larger perturbation size improves the attack effectiveness, while the
attack stealthiness is getting worse. Meanwhile, we find that when the perturbation size
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exceeds 55 x 55, the SSIM metric of each DNN model shown in Figure 11(b) and 11(d) is  4so
continuous decreasing, while the corresponding Acc metric shown in Figure 11(a) and 11(c) 46
tends to a stable value. We speculate the reason is that perturbation offset will inevitably 42
occur as the perturbation size increases, resulting in only partial perturbations can be fed es
to the victim model such that the attack effectiveness is no longer improved. Therefore, the  aca
advised perturbation size in this paper is between 44 x 44 and 55 x 55. a65

Furthermore, the ULAN has superior attack performance even in the case of perturba- se
tion offset, which is quite different from baseline methods. Specifically, according to Table 67
5 and Table 6, a large number of global UAPs generated by baseline methods fail to attack 4ss
the victim model in the case of perturbation offset. Yet, when the perturbation size reaches 4so
88 x 88, more than 80% of the adversarial examples generated by the ULAN still work well. 470
This is because the perturbation size is too large to prevent perturbation offset during the 47
training phase. In other words, the ULAN itself is trained in the case of perturbation offset. 472
Thus, there is no doubt that a well-trained ULAN has already equipped with the ability to  47s

fool models effectively in the case of perturbation offset. aza
4.7.2. Weight Coefficient w 475
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Figure 12. The influence of the weight coefficient w on the attack performance. The Acc and SSIM
metrics of non-targeted attacks are shown in (a) and (b), and the corresponding metrics of targeted
attacks are shown in (c) and (d).

The weight coefficient w is a constant measuring the relative importance of attack a7
effectiveness and stealthiness, which has a great impact on the attack performance. We 477
now train the ULAN on nine different weight coefficients: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, a7s
and 0.9, and report attack results on the testing dataset in Figure 12. As we can see, for both 47
non-targeted and targeted attacks, the attack stealthiness is improved as w increasing, while  4so
the attack effectiveness is getting worse. Meanwhile, Figure 12(a) and 12(c) suggest that the 4s:
Acc metric of each DNN model cannot converge to a stable value, and the corresponding  as2
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SSIM metric shown in Figure 12(b) and 12(d) is also constantly changing. Thus, for superior asss
attack performance, attackers are supposed to choose an appropriate weight as needed in  ass
the training phase of the ULAN. a8s

4.7.3. Type of Ly-norm age

So far, we have adopted the Ly-norm to measure the image distortion caused by adver- ez
sarial attacks. However, in addition to the Ly-norm, there are many distance metrics, such  ass
as the Leo-norm and the Li-norm, etc. In this section, we evaluate the attack performance aso
of the ULAN trained on different distance metrics: the Ly-norm and the Lo-norm. Note e
that the values of image distortion calculated by the two metrics differ by several orders of 4o
magnitude, so we set the weight w of Ly-norm to 0.5 and 10 for the Lo-norm. The results a0z
of non-targeted and targeted attacks are shown in Table 7 and Table 8, respectively. We 403
can find that the ULAN trained on the Ly-norm has better performance on both the attack ss
effectiveness and stealthiness. Therefore, to obtain a more threatening attack network, the 405
advised distance metric in this paper is the Ly-norm. 296

Table 7. The non-targeted attacks that adopt different type of L,-norm as the distance metric, and we
report attack results on the testing dataset.

Victim Acc SSIM
Ly-norm Leo-norm Lr-norm Leo-norm

A-Conv-BN 31.53% 28.85% 0.96 0.92
VGG16-BN 16.94% 21.19% 0.95 0.88
GoogLeNet 16.90% 17.60% 0.95 0.91
InceptionV3 23.00% 24.65% 0.96 0.91
ResNet50 16.08% 14.10% 0.94 0.88
ResNeXt50 17.35% 18.43% 0.94 0.90

Table 8. The targeted attacks that adopt different type of L,-norm as the distance metric, and we
report attack results on the testing dataset.

Victim Acc SSIM
¢ Ly-norm Leo-norm Lr-norm Leo-norm
A-Conv-BN 85.45% 84.33% 0.90 0.85
VGG16-BN 90.21% 87.25% 0.90 0.83
GoogLeNet 81.65% 81.39% 0.92 0.85
InceptionV3 80.06% 78.72% 0.93 0.86
ResNet50 85.31% 83.03% 0.90 0.82
ResNeXt50 86.53% 82.07% 0.90 0.85
5. Conclusions 407

In this paper, a semi-whitebox attack network called universal local adversarial net- 408
work is proposed to generate UAPs for the target regions of SAR images, with the benefit of s
focusing perturbations on the target regions in SAR images that have high relevance to the  soo
recognition results. A focused perturbation on the high-relevance target region significantly s
improves the efficiency of adversarial attacks. Also, it ensures that the well-designed per- so:
turbations can be fully fed to the victim model along with the targets such that perturbation  sos
offset is fundamentally prevented. To satisfy the feasibility requirement of adversarial sos
attacks, once the ULAN is trained, it can real-time generate adversarial examples for the sos
DNN-based SAR-ATR model without requiring access to the model itself anymore, and  sos
thus possesses high potential in practical applications. Experimental results demonstrate sor
that the proposed method prevents perturbation offset effectively and achieves comparable sos
attack performance to the conventional global UAPs by perturbing only a quarter or less of  sos
the SAR image area. Moreover, our experiments also indicate that the ULAN is insensitive  sio
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to the amount of training data, which makes it still work well under small sample condi- s
tions. Potential future work could consider replacing the victim model with a distillation s
model to construct a black-box attack network. It is also of great interest to enhance the s
transferability of adversarial examples between different DNN models. s14
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