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Abstract: Recent studies have proven that synthetic aperture radar (SAR) automatic target recogni- 1

tion (ATR) models based on deep neural networks (DNN) are vulnerable to adversarial examples. 2

However, existing attacks are easily failed in the case where adversarial perturbations cannot be fully 3

fed to victim models. We call this situation perturbation offset. Moreover, since background clutter 4

takes up most of the areas in SAR images and has low relevance to recognition results, fooling models 5

with global perturbations is quite inefficient. This paper proposes a semi-whitebox attack network, 6

called Universal Local Adversarial Network (ULAN), to generate universal adversarial perturbations 7

(UAP) for the target regions of SAR images. In the proposed network, we calculate the model’s 8

attention heatmaps through layer-wise relevance propagation (LRP), which is used to locate the 9

target regions of SAR images that have high relevance to recognition results. In particular, we utilize 10

a generator based on the U-Net to learn the mapping from noise to UAPs and craft adversarial 11

examples by adding the generated local perturbations to target regions. Experiments indicate that 12

the proposed method fundamentally prevents perturbation offset and achieves comparable attack 13

performance to conventional global UAPs by perturbing only a quarter or less of SAR image areas. 14

Keywords: deep neural network (DNN); synthetic aperture radar automatic target recognition (SAR- 15

ATR); universal adversarial perturbation (UAP); U-Net; attention heatmap; layer-wise relevance 16

propagation (LRP) 17

1. Introduction 18

Synthetic aperture radar (SAR) is widely used in military and civilian fields for its 19

ability to image targets with high resolution under all-time and all-weather conditions [1–3]. 20

However, unlike natural images, it is difficult for humans to intuitively understand SAR 21

images without resorting to interpretation techniques. The most popular interpretation 22

method at present is the SAR automatic target recognition (SAR-ATR) technology based 23

on deep neural networks (DNNs) [4–8]. With its powerful representation capabilities, the 24

DNN outperforms traditional supervised methods in image classification tasks. Yet, some 25

researchers have proved that DNN-based SAR target recognition models are vulnerable to 26

adversarial examples [9]. 27

Szegedy et al. [10] first propose the concept of adversarial examples, that is, a well- 28

designed tiny perturbation can lead to the misclassification of a well-trained recognition 29

model. This discovery makes adversarial attacks become one of the biggest threats to 30

artificial intelligence (AI) security. So far, researchers have proposed a series of adversarial 31

attack methods, which can be divided into two categories from the perspective of prior 32

knowledge: white-box attacks and black-box attacks. In white-box conditions, the attacker 33

has high access to the victim model, which means that the attacker can utilize lots of prior 34

information to craft adversarial examples. The typical white-box methods are gradient- 35

based attacks [11,12], boundary-based attacks [13], saliency map-based attacks [14], etc. 36

Conversely, in black-box conditions, the biggest challenge for attackers is that they can 37
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only access the output information of the victim model, or even less. The representative 38

black-box methods are probability label-based attacks [15,16], decision-based attacks [17], 39

and transferability-based attacks [18], etc. While the above methods achieve fantastic attack 40

performance, all of them fool DNNs with data-dependent perturbations, i.e., each input 41

corresponds to a different adversarial perturbation, which is hard to satisfy in real-world 42

deployments. Moosavi et al. [19] first propose a universal adversarial perturbation (UAP) 43

that can deceive DNNs independently of the input data. Subsequently, the work in [20] 44

designs a universal adversarial network to learn the mapping from noise to UAPs and 45

demonstrates the transferability of UAPs across different network structures. Mopuri et al. 46

[21] argue that it is difficult for attackers to obtain the training dataset of the victim model, 47

so to reduce the dependence on the dataset, they propose a data-free method to generate 48

UAPs by destroying the features extracted by convolutional layers. Another data-free work 49

[22] uses class impressions to simulate real data distribution, generating UAPs with high 50

transferability. In the field of remote sensing, Xu et al. [23] are the first to investigate the 51

adversarial attack and defense in safety-critical remote sensing tasks. Meanwhile, they also 52

propose the Mixup-Attack [24] to craft universal adversarial examples for remote sensing 53

data. Furthermore, researchers [25] have successfully attacked an advanced YOLOv2 54

detector in the real world with just a printed patch. Thus, a further study on adversarial 55

examples, especially UAPs, is necessary for both attackers and defenders. 56

With the wide application of DNNs in the field of SAR-ATR, researchers embark on 57

the adversarial examples of SAR images. In terms of data-dependent perturbations, Li et al. 58

[26] use the FGSM and BIM algorithms to produce abundant adversarial examples for the 59

CNN-based SAR image classification model and comprehensively analyze various factors 60

affecting the attack success rate. The work in [27] presents a Fast C&W algorithm for real- 61

time attacks that introduces an encoder network to generate adversarial examples through 62

one-step forward mapping of SAR images. To enhance the universality of adversarial 63

perturbations, Wang et al. [28] utilize the method proposed in [19] to craft UAPs for SAR 64

images and achieve high attack success rates. In addition, the latest research [29] has broken 65

through the limitations of the digital domain and implemented the UAP of SAR images in 66

the signal domain by transmitting a two-dimensional jamming signal. 67

Figure 1. Given an original SAR image in the dataset and a well-designed UAP, we display the
adversarial attacks with (bottom) and without (top) perturbation offset. Since we can only perturb
a limited region, the perturbation size is smaller than the image size but identical to the input size
of the victim model. Here, we attack the model by perturbing the green box region, that is, adding
the UAP to this region. The adversarial attack without perturbation offset means that the perturbed
(green box) region must be exactly fed to the model. However, suppose the model takes as input the
red box region that has an offset from the perturbed region, the incomplete adversarial perturbation
is likely to make the attack fail.

Although the above methods perform well in fooling SAR target recognition models, 68

they are vulnerable and inefficient in practical applications. Specifically, existing attack 69

methods are working on the assumption that the adversarial perturbations can be fully 70

fed to the victim model, while it is not always held in practice, i.e., in many cases the 71
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perturbations fed to the model are incomplete, resulting in the failure of the adversarial 72

attacks. We attribute the failure to the vulnerability of adversarial attacks and call this 73

situation perturbation offset. For ease of understanding, we detail a specific example in Figure 74

1. On the other hand, we calculate the model’s attention heatmaps [31] through layer-wise 75

relevance propagation (LRP) [32], which is used to analyze the relevance of each pixel in 76

the SAR image to the recognition results. The pixel-wise attention heatmaps can be found 77

in Section 4.3. The fact is that the background regions of SAR images have little relevance to 78

the model’s outputs, and the features that greatly impact the recognition results are mainly 79

concentrated in the target regions. However, existing attack methods fool DNN models by 80

global perturbations so that massive time and computing resources are allocated to design 81

perturbations for low-relevance background regions, which is undoubtedly inefficient. 82

Therefore, the vulnerability and inefficiency of adversarial attacks are pending to be solved 83

in real-world implementations. 84

In this paper, we propose a semi-whitebox [33] attack network − called Universal Local 85

Adversarial Network (ULAN) to generate UAPs for target regions of SAR images. Specifically, 86

we first calculate the model’s attention heatmaps through LRP to locate the target regions 87

in SAR images that have high relevance to the recognition results. Then, we utilize a 88

U-Net [30] to learn the mapping from noise to UAPs and craft the adversarial examples by 89

adding the generated local perturbations to the target regions. In this way, attackers can 90

focus perturbations on the high-relevance target regions, which significantly improves the 91

efficiency of adversarial attacks. Meanwhile, the proposed method also ensures that the 92

well-designed perturbations can be fully fed to the victim model along with the targets 93

such that perturbation offset is fundamentally prevented. 94

The main contributions of this paper are summarized as follows. 95

(1) We are the first to evaluate the adversarial attacks against DNN-based SAR-ATR 96

models in the case of perturbation offset and analyze the relevance of each pixel in 97

SAR images to the recognition results. Our research reveals the vulnerability and 98

inefficiency of existing adversarial attacks in SAR target recognition tasks. 99

(2) A semi-whitebox attack network is proposed to generate UAPs for the target regions 100

of SAR images. Once the proposed network is trained, it can real-time attack the 101

victim model without requiring access to the model itself anymore, and thus possesses 102

high potential in practical applications. 103

(3) Experiments on the moving and stationary target acquisition and recognition (MSTAR) 104

dataset show that the proposed method not only prevents perturbation offset effec- 105

tively, but also achieves comparable attack performance to the conventional global 106

UAPs by perturbing only a quarter or less of the SAR image area. Furthermore, we 107

evaluate the attack performance of the ULAN under small sample conditions, and the 108

result shows that given five images per class, our method can cause a misclassification 109

rate over 70%. 110

The rest of this paper is organized as follows. Section 2 introduces the relevant 111

preparation knowledge. In Section 3, we describe the proposed method in detail. The 112

experiment results are shown in Section 4. The conclusion is given in Section 5. 113

2. Preliminary 114

2.1. Universal Adversarial Perturbations for SAR Target Recognition 115

Suppose xn∈[0, 255]W×H is an 8-bit gray-scale image from the SAR image dataset X , 116

and f (·) is a DNN-based k-class SAR target recognition model without a softmax output 117

layer. Given a sample xn as input to f (·), the output is a k-dimensional logits vector 118

f (xn)=[ f (xn)1, f (xn)2, · · · , f (xn)k], where f (xn)i∈R denotes the score of xn belonging to 119

class i. Let Cp = arg maxi( f (xn)i) represent the predicted class of the model for xn. 120
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Universal adversarial perturbations (UAP) can fool the model independently of the 121

input data as follows: 122

for "most" xn ∈ X s.t.

arg max
i

( f (xn + δ)i) ̸= Cp

∥δ∥p ≤ ξ
(1)

where δ is a UAP, the Lp-norm is defined as ∥δ∥p=(∑i|δi|p)
1
p , and ξ controls the magnitude 123

of δ. Meanwhile, adversarial attacks can be divided into non-targeted and targeted attacks 124

in terms of attack modes. As the name suggests, the former just makes DNN models 125

misclassify, while the latter induces models to output specified results. From a military 126

perspective, targeted attacks are more challenging and threatening than non-targeted 127

attacks. In other words, UAPs can reduce the probability that DNN models correctly 128

recognize samples in non-targeted attack scenarios; conversely, they increase the probability 129

of models identifying samples as target classes in targeted attack scenarios. Therefore, we 130

transform (1) into the following optimization problems: 131

• for the non-targeted attack: 132

minimize(
∑N

n=1 D(arg max
i

( f (xn + δ)i)==Ctr)

N
), s.t.∥δ∥p ≤ ξ (2)

• for the targeted attack: 133

maximize(
∑N

n=1 D(arg max
i

( f (xn + δ)i)==Cta)

N
), s.t.∥δ∥p ≤ ξ (3)

where the discriminant function D(·) equals one if the equation holds; otherwise equals 134

zero. N is the total number of images in the dataset. Ctr and Cta represent the true and 135

target classes of the input data. Obviously, the above optimization problems are exactly the 136

opposite of a DNN’s training process, and the corresponding loss functions will be given in 137

the next chapter. 138

2.2. Attention Heatmaps 139

Figure 2. Attention heatmaps for AlexNet [34], MobileNet [35], ResNet18 [36], VGG11-BN, VGG16,
and VGG16-BN [37].
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When humans make judgments, they can reasonably allocate their attention to differ- 140

ent features of an object and get the desired semantic information efficiently. Coincidentally, 141

recent studies have shown that DNNs have similar characteristics when making decisions 142

[31]. For example, in image classification tasks, the pixels surrounding target regions tend 143

to have a much greater impact on the classification results than others. Researchers typically 144

utilize attention heatmaps to visualize the contribution of each pixel to the network output. 145

Nowadays, lots of algorithms have been proposed to calculate the DNN’s attention 146

heatmaps. In this paper, we employ layer-wise relevance propagation (LRP) [32] to obtain 147

the pixel-wise attention heatmaps, which is actually a backward visualization method 148

[38–40] that obtains the heatmap by calculating the relevance between adjacent layers from 149

outputs to inputs. Figure 2 displays the heatmaps of six DNNs calculated by LRP. As 150

we can see, the hotspots are mainly concentrated in the target regions, and the heatmaps 151

of different DNNs have similar structures, i.e., attention heatmaps may be the semantic 152

features shared by DNNs. Destroying the common semantic feature of DNNs is a promising 153

idea to enhance the transferability of adversarial examples. We will detail the principle of 154

LRP in Section 3.2. 155

3. The Proposed Universal Local Adversarial Network (ULAN) 156

The framework of the universal local adversarial network (ULAN) is shown in Figure 157

3. To describe the training process of the ULAN more clearly, we divide it into four steps. 158

The first step uses a generator to learn the mapping from normal distribution noise into 159

universal adversarial perturbations (UAPs). Next, the second step calculates the pixel-wise 160

attention heatmaps of the surrogate model through layer-wise relevance propagation (LRP). 161

Then, the third step utilizes UAPs and attention heatmaps to craft adversarial examples of 162

SAR images. Finally, the fourth step computes the training loss and updates the generator’s 163

parameters through backward propagation. Note that the victim model is a white-box 164

in the training phase, but in the testing phase it is a black-box, and thus we calculate the 165

heatmap of the surrogate model as an alternative to the victim network’s heatmap. This 166

chapter will introduce each of the above steps in detail. 167

Figure 3. Framework of the ULAN. The UAP δ generated by the generator G(·) is a local perturbation, and its size is much smaller than
the SAR image x. Attackers utilize the attention heatmap (hmap) of the surrogate model fs(·) to locate the target region, i.e., the green
box region, and obtain the adversarial example by adding δ to the target region. The victim model fv(·) takes the adversarial example
as input and outputs the attack loss La, plus the norm loss Ln to form the total loss Lt, which is used to update the parameters of G(·).

3.1. Structure of Generative Network 168

In order to craft UAPs independently of the input data, this paper trains a generative 169

network G(·) to transform the normal distribution noise Z into a UAP δ as follows: 170

δ = G(Z), Z ∼ N (0, 1) (4)
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where Z and δ have the same size, denoted as w× h. Meanwhile, we set the size of SAR 171

images to W × H. Since the generated δ is a local perturbation, the relationship between 172

w× h and W × H is that w× h≪W × H. 173

The characteristics of SAR images should be taken into account when choosing the 174

generative network. First of all, a SAR image mainly consists of the target and background 175

clutter. Yet, the features that have great impact on the recognition results are mainly 176

concentrated in the target region, which only occupies a tiny part of the SAR image. Second, 177

compared to natural images, the professionalism and confidentiality of SAR images make 178

them challenging to access. This means that we need to consider adversarial attacks 179

under small sample conditions, so a lightweight generator is necessary to prevent network 180

overfitting. In summary, this paper takes the U-Net as the generator to craft UAPs. 181

Figure 4. The structure of the U-Net.

Table 1. The network parameters. Here we set w× h to 32× 32 and abbreviate the combination
of two convolutional layers as DoubleConv. The parameters of the convolutional layer represent
the number of input and output channels and the kernel size, respectively. The parameter of the
max-pooling layer represents the kernel size.

Layer Shape

Input 1× 32× 32
DoubleConv(1, 64, 3)+Max pool(2) 64× 16× 16

DoubleConv(64, 128, 3)+Max pool(2) 128× 8× 8
DoubleConv(128, 256, 3)+Max pool(2) 256× 4× 4
DoubleConv(256, 512, 3)+Max pool(2) 512× 2× 2

DoubleConv(512, 1024, 3) 1024× 2× 2
ConvTrans(1024, 512, 2)+DoubleConv(1024, 512, 3) 512× 4× 4
ConvTrans(512, 256, 2)+DoubleConv(512, 256, 3) 256× 8× 8
ConvTrans(256, 128, 2)+DoubleConv(256, 128, 3) 128× 16× 16
ConvTrans(128, 64, 2)+DoubleConv(128, 64, 3) 64× 32× 32

Conv(64, 1, 1) 1× 32× 32

Figure 4 shows the detailed U-Net structure. It is first proposed to segment biomedical 182

images [30] and mainly consists of an encoder and a decoder. The encoder extracts features 183

by down-sampling the input data, while the decoder recovers the data by up-sampling 184

feature maps. The biggest difference between the U-Net and other common encoder- 185

decoder models is that the former introduces a skip connection operation to fuse features 186

from different layers. Specifically, both the encoder and the decoder consist of four sub- 187

blocks. The encoder block contains two 3× 3 convolutional layers and a 2× 2 max-pooling 188
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layer, while the decoder block contains a 2× 2 transposed convolutional layer and two 3× 3 189

convolutional layers. Note that the last layer of the decoder utilizes a 1× 1 convolutional 190

layer to make the number of input and output channels identical. The network parameters 191

are given in Table 1. 192

3.2. Layer-wise Relevance Propagation (LRP) 193

To analyze the relevance of each pixel in SAR images to the recognition results, we 194

need obtain the DNN model’s attention heatmaps first. In this paper, we use layer-wise 195

relevance propagation (LRP) [32] to calculate the pixel-wise attention heatmaps of the 196

surrogate model fs(·). For an easy explanation, we suppose fs(·) is an l-layer DNN without 197

the softmax output layer. Figure 5 illustrates the network’s forward propagation and LRP. 198

Figure 5. Forward propagation (left) and LRP (right) of the surrogate model fs(·).

The left of Figure 5 shows a standard forward propagation, which takes a SAR image 199

x as input and outputs a logits vector fs(x). A common mapping from one layer to the next 200

one can be expressed as follows: 201

x(l−1)
i = σ(z(l−1)

i ) (5)
202

z(l−1)
ij = w(l−1)

ij x(l−1)
i (6)

203

z(l)j = ∑
i

z(l−1)
ij + b(l)j (7)

where z(l−1)
i and x(l−1)

i denote the pre-activation and post-activation of the corresponding 204

node (superscript and subscript denote layer and node indices, respectively), σ(·) is an acti- 205

vation function, w(l−1)
ij and z(l−1)

ij can be understood as the weight and local pre-activation 206

between nodes x(l−1)
i and z(l)j , and b(l)j is a bias term. The activation function σ(·) is usually 207

nonlinear, such as the hyperbolic tangent tanh or the rectification function ReLU, which can 208

enhance the network’s representation capacity. Note that the input and output layers typi- 209

cally don’t include activation functions, and the output fs(x)=[ fs(x)1, fs(x)2, · · · , fs(x)Nl ] 210

is a logits vector without softmax operations. 211

As for LRP, given a target class output fs(x)j as input, its output is a pixel-wise 212

attention heatmap reflecting the image regions most relevant to fs(x)j. Specifically, we 213

sequentially decompose the relevance of each node for the target class output fs(x)j from 214

the neural network’s output layer to input layer. Meanwhile, the backward propagation of 215

the relevance must satisfy the following conservation property: 216

fs(x)j = R(l)
j = ∑

i
R(l−1)

i = · · · = ∑
n

R(1)
n (8)
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A common decomposition is to allocate the relevance according to the ratio of local to 217

global pre-activations in the forward propagation, as follows: 218

R(l−1,l)
i←j =

z(l−1)
ij

z(l)j

· R(l)
j (9)

where R(l−1,l)
i←j denotes the relevance assigned from node R(l)

j to node R(l−1)
i . This decom- 219

position can approximately satisfy the conservation property in (8): 220

∑
i

R(l−1,l)
i←j = R(l)

j · (1−
b(l)j

z(l)j

)

≈ R(l)
j

(10)

Additional, considering that if z(l)j goes to zero, then R(l−1,l)
i←j will close to infinity, so (9) can 221

be modified by introducing a stable term ϵ ≥ 0 as follows: 222

R(l−1,l)
i←j =

z(l−1)
ij

z(l)j + ϵ · sign(z(l)j )
· R(l)

j (11)

In summary, we can calculate the relevance of each node for the target class output 223

through the following recursion formula and backward pass the relevance until reaching 224

the input layer. 225

R(l−1)
i = ∑

j

z(l−1)
ij

z(l)j + ϵ · sign(z(l)j )
· R(l)

j (12)

3.3. Adversarial Examples of SAR Images 226

To add the local perturbations generated in Section 3.1 to the target regions of SAR 227

images, we determine the perturbation location through the attention heatmaps calculated 228

by Section 3.2. Therefore, we take the attention heatmap centroid as the perturbation center 229

and design a perturbation function to craft the adversarial examples. 230

First of all, the coordinates of the image centroid can be calculated by the following 231

formula [41]: 232

(uc, vc) = (
M10

M00
,

M01

M00
) (13)

where M00 is the zero-order moment of the image, M10 and M01 are the first-order moments 233

of the image. Here involves the calculation of higher-order moments, which are generally 234

defined as: 235

Mαβ =
∫ ∫

uαvβ f (u, v)dudv (14)

For a digital image, we regard the coordinates of the pixel as a two-dimensional random 236

variable (u, v), and the value of each pixel is regarded as the density of the point. Thus, 237

a gray-scale image can be represented by a two-dimensional gray-scale density function 238

V(u, v), and its higher-order moments can be expressed as: 239

Mαβ = ∑
u

∑
v

V(u, v) · uα · vβ (15)

Note that the premise here is a two-dimensional gray-scale image, so we convert the 240

attention heatmap hmap to a single-channel gray-scale image first, and then preprocess it 241

with Gaussian blur and binarization algorithms [42]. 242
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Then, we take the attention heatmap centroid as the perturbation center, so the pixel 243

coordinates corresponding to δ(0, 0), i.e., the perturbation origin, can be derived as: 244

(uo, vo) = (uc + ∆u−
⌊w

2

⌋
, vc + ∆v−

⌊
h
2

⌋
) (16)

where w and h are the width and height of δ,
⌊w

2
⌋

and
⌊

h
2

⌋
represent the displacement 245

difference between the perturbation center and the perturbation origin in the horizontal 246

and vertical directions, and ⌊·⌋means rounding down. Meanwhile, this paper adds a two- 247

dimensional random noise (∆u, ∆v) ∼ U (−5, 5) on the centroid coordinates to improve 248

the generalization of our attack. 249

Next, we add the UAP δ to the perturbed region through the following perturbation 250

function. Let Pert(uo, vo, δ, W, H) be a function that takes as input the perturbation origin 251

coordinates (uo, vo), a UAP δ, and the size of SAR images W×H, and outputs an adversarial 252

perturbation δ∗∈RW×H of the same size as SAR images, defined as: 253

δ∗(u, v)
0≤u≤W−1
0≤v≤H−1

=

δ(u− uo, v− vo) , if

{
uo ≤ u ≤ uo + w− 1
vo ≤ v ≤ vo + h− 1

0 , otherwise

(17)

In brief, the adversarial perturbation δ∗ = Pert(uo, vo, δ, W, H) equals zero at all pixels 254

except the pixels in the perturbed region. 255

Finally, the adversarial example x∗ can be expressed as: 256

x∗ = Clip[0,255](x + δ∗) (18)

The clipping operation restricts the pixel values of x∗ to the interval of [0, 255], ensuring 257

that x∗ is still an 8-bit gray-scale image. 258

3.4. Design of Loss Functions 259

To effectively fool the DNN model with a minor perturbation, we design a loss function 260

Lt consisting of an attack loss La and a norm loss Ln. This section will introduce them in 261

detail. 262

For the non-targeted attack: In this paper, we design an attack loss La on the basis of 263

the following standard cross-entropy loss. 264

loss( fv(x), Ctr) = − log

(
exp( fv(x)Ctr )

∑j exp( fv(x)j)

)
(19)

where fv(x) is the logits output of the victim model. The above formula actually contains 265

the following softmax operation: 266

softmax( fv(x)i) =

(
exp( fv(x)i)

∑j exp( fv(x)j)

)
∈[0, 1] (20)

Obviously, the cross-entropy loss in (19) has been widely used in network training 267

to improve the DNN model’s classification accuracy by increasing the confidence of true 268

classes. Instead, according to Formula 2, the non-targeted attack can minimize the classifi- 269
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cation accuracy by decreasing the confidence of true classes, i.e., increasing the confidence 270

of others, and thus, the attack loss La can be expressed as: 271

La( fv(x∗), Ctr) = − log

(
∑j ̸=Ctr exp( fv(x∗)j)

∑j exp( fv(x∗)j)

)

= − log

(
1−

exp( fv(x∗)Ctr )

∑j exp( fv(x∗)j)

) (21)

Meanwhile, a norm loss Ln is introduced to limit the perturbation magnitude. We use 272

the traditional Lp-norm to measure the degree of image distortion as follows: 273

Ln(x, x∗) = ∥x∗ − x∥p

= (∑
i
|∆xi|p)

1
p

(22)

Then, we apply the linear weighted sum method to balance the relationship between 274

La and Ln, so the total loss Lt can be represented as: 275

Lt = La( fv(x∗), Ctr) + ω · Ln(x, x∗)

= ω · ∥x∗ − x∥p − log

(
1−

exp( fv(x∗)Ctr )

∑j exp( fv(x∗)j)

)
(23)

where ω ≥ 0 is a constant that measures the relative importance of the attack effectiveness 276

and the attack stealthiness. 277

For the targeted attack: According to Formula 3, the targeted attack is to maximize 278

the probability that the victim model recognizes samples as target classes. In other words, 279

we need to increase the confidence of target classes. Thus, contrary to the non-targeted 280

attack, the attack loss La can be expressed as: 281

La( fv(x∗), Cta) = − log

(
exp( fv(x∗)Cta)

∑j exp( fv(x∗)j)

)
(24)

The norm loss Ln is the same as (22), so the total loss Lt of the targeted attack can be 282

derived as follows: 283

Lt = La( fv(x∗), Cta) + ω · Ln(x, x∗)

= ω · ∥x∗ − x∥p − log

(
exp( fv(x∗)Cta)

∑j exp( fv(x∗)j)

)
(25)

4. Experiments 284

4.1. Dataset and Implementation Details 285

4.1.1. Dataset 286

The moving and stationary target acquisition and recognition (MSTAR) dataset [43] 287

published by the U.S. Defence Advanced Research Projects Agency (DARPA) is employed 288

in our experiments. MSTAR is collected by the high-resolution spotlight SAR and contains 289

SAR images of Soviet military vehicle targets at different azimuth and depression angles. 290

All the experiments are performed under the standard operating condition (SOC), which 291

includes ten ground target classes, such as self-propelled howitzer (2S1); infantry fighting 292

vehicle (BMP2); armored reconnaissance vehicle (BRDM2); wheeled armored transport 293

vehicle (BTR60, BTR70); bulldozer (D7); main battle tanks (T62, T72); cargo truck (ZIL131); 294

self-propelled artillery (ZSU234). The training dataset contains 2747 images collected at 17◦ 295

depression angle, and the testing dataset contains 2426 images captured at 15◦ depression 296
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angle. More details about the dataset are shown in Table 2, and Figure 6 shows the optical 297

images and corresponding SAR images of ten ground target classes. 298

Table 2. Details of MSTAR under SOC, including target class, serial, depression angle, and number of training and testing images.

Target Class Serial Training Data Testing Data
Depression Angle Number Depression Angle Number

2S1 b01 17◦ 299 15◦ 274
BMP2 9566 17◦ 233 15◦ 196

BRDM2 E-71 17◦ 298 15◦ 274
BTR60 k10yt7532 17◦ 256 15◦ 195
BTR70 c71 17◦ 233 15◦ 196

D7 92v13015 17◦ 299 15◦ 274
T62 A51 17◦ 299 15◦ 273
T72 132 17◦ 232 15◦ 196

ZIL131 E12 17◦ 299 15◦ 274
ZSU234 d08 17◦ 299 15◦ 274

Figure 6. Optical images (top) and SAR images (bottom) of ten ground target classes.

4.1.2. Implementation Details 299

Due to the different sizes of SAR images in MSTAR, we first center-crop the image 300

to 128× 128. Meanwhile, in practice, the target is not necessarily located in the center of 301

the SAR image. Thus, we random-crop the cropped image to 88× 88 again, and finally 302

normalize it to N (0, 1). 303

For the victim models, we adopt six common DNNs, A-ConvNets-BN [44], VGG16- 304

BN [37], GoogLeNet [45], InceptionV3 [46], ResNet50 [36] and ResNeXt50 [47], which are 305

trained on the MSTAR dataset and have a classification accuracy of over 97%. The surrogate 306
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model employs a well-trained VGG16-BN network to approximate the pixel-wise attention 307

heatmap of the victim model. During the training phase, we form the validation dataset by 308

uniformly sampling 10% data from the training dataset, and use the Adam optimizer [48] 309

with the learning rate 0.001, the training epoch 15, and the training batch size 32. The size 310

of UAPs defaults to 44× 44, the norm type defaults to L2-norm, and the weight coefficient 311

ω defaults to 0.5. 312

Considering that most of the current research aims to craft global adversarial pertur- 313

bations for SAR images, few scholars focus on universal or local perturbations. Therefore, 314

in the comparative experiments, we take the methods proposed in [20,49] as baselines 315

to compare with the ULAN. Note that baseline methods generate global UAPs for SAR 316

images, while our method only needs to perturb local regions. All codes are written in 317

Pytorch and the experimental environment consists of Windows 10; GPU (NVIDIA GeForce 318

RTX 2080 Ti); and CPU (3.6GHz Intel(R) Core(TM) i9-9900K). 319

4.2. Evaluation Metrics 320

This paper takes into account two factors to comprehensively evaluate the perfor- 321

mance of adversarial attacks: the attack effectiveness and the attack stealthiness. In the 322

experiments, we craft adversarial examples for all samples in the SAR image dataset, so the 323

victim model’s classification accuracy directly reflects the attack effectiveness of UAPs: 324

Acc =


∑N

n=1 D(arg max
i

( f (xn+δ)i)==Ctr)

N Non-targeted Attack
∑k

Cta=1 ∑N
n=1 D(arg max

i
( f (xn+δ)i)==Cta)

k×N Targeted Attack

(26)

where Ctr and Cta represent the true and target classes of the input data, k is the number 325

of target classes, and D(·) is a discriminant function. The non-targeted attack effect is 326

inversely proportional to the classification accuracy, while the targeted attack performance 327

is proportional to the Acc metric. Moreover, to verify the reliability of attacks, we also 328

compare the confidence level of target classes before and after the attack. 329

When evaluating the attack stealthiness, in addition to using the Lp-norm to measure 330

the degree of image distortion, we also introduce the structural similarity (SSIM) [50], a 331

metric more in line with human visual perception, for a more objective evaluation, defined 332

as: 333

SSIM(a, b) =
(2µaµb + C1)(2σab + C2)

(µ2
a + µ2

b + C1)(σ2
a + σ2

b + C2)
(27)

where a and b are the images to be compared, µa, µb and σa, σb are the mean and standard 334

deviation of the corresponding image, σab is the covariance, and C1, C2 are the constants 335

used to keep the metric stable. The value of the SSIM ranges from −1 to 1, and the higher 336

the SSIM, the more imperceptible the adversarial perturbation. 337

4.3. Attention Heatmaps for DNN-based SAR Target Recognition Models 338

For the six victim models mentioned in Section 4.1.2, given ten SAR images from 339

different target classes as input, they all correctly classify the targets with high confidence. 340

Then, we calculate pixel-wise attention heatmaps for the victim models by LRP, as shown 341

in Figure 7. The result is similar to the natural image in Figure 2, i.e., the pixels that 342

have a great impact on the SAR image classifiers are mainly concentrated in the target 343

regions. Furthermore, we find that the attention heatmaps of different models have similar 344

structures, which proves the feasibility of our method. Specifically, since the victim model 345

is a black-box in the testing phase, attackers are unable to directly obtain its attention 346

heatmaps through LRP. However, due to the similarity of attention heatmaps between 347

different DNN models, we can calculate a white-box surrogate model’s attention heatmap 348

as an alternative. Meanwhile, since the attention heatmap of VGG16-BN best matches the 349

target shape and has the clearest boundary, the surrogate model adopts a well-trained 350

VGG16-BN network to approximate the attention heatmap of the victim model. 351
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Figure 7. Pixel-wise attention heatmaps for DNN-based SAR-ATR models. The true class of the SAR image is listed at the top, and the
DNN structure is shown on the left.

4.4. Adversarial Attacks without Perturbation Offset 352

In this experiment, we evaluate the non-targeted and targeted attack performance 353

of each method without perturbation offset. Specifically, we first crop the SAR image to 354

88× 88 as mentioned in Section 4.1.2, and then craft adversarial examples by adding the 355

well-designed perturbations to the cropped images, which ensures that the perturbations 356

can be fully fed to the victim model. Note that the structures and parameters of the model 357

are known in the training phase, while these details are unavailable in the testing phase. 358

Moreover, we emphasize that the UAPs generated by baseline methods cover the global 359

SAR images, but our method only needs to perturb target regions. The results of the 360

non-targeted and targeted attacks are shown in Table 3 and Table 4, respectively. There are 361

four metrics in the table to evaluate the attack performance: the classification accuracy and 362

target class confidence before and after the attack, the L2-norm of image distortion, and the 363

SSIM between clean and adversarial examples. 364

In the non-targeted attack, the classification accuracy of each DNN model on the 365

testing dataset exceeds 95%, and the target class confidence is over 0.9. However, after the 366

attack, the model’s classification accuracy decreases significantly, the maximum reduction 367

reaches 85%, and the minimum exceeds 60%; the drop in target class confidence varies 368

from 0.6 to 0.85. From the perspective of attack effectiveness, the UAN performs the best, 369

followed by the ULAN and U-Net, and the worst is the ResNet Generator. Yet, the biggest 370

drawback of baseline methods is that they need to perturb the global regions of size 88× 88, 371

but our method perturbs the target regions of size 44× 44. Even though the ULAN only 372
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perturbs a quarter of the SAR image area, it achieves comparable attack performance to the 373

global UAPs. We speculate the reason is that the features within target regions have stronger 374

relevance with the recognition results than others, so a focused perturbation on the target 375

region is more efficient than the global perturbation. In terms of the attack stealthiness, 376

Table 3 lists the L2-norm value of image distortion caused by each method and the SSIM 377

between the adversarial examples and clean SAR images. An interesting phenomenon is 378

that sometimes the ULAN causes a larger image distortion but still performs better on the 379

SSIM metric than baseline methods. We attribute this to the fact that the human eye is more 380

sensitive to large-range minor perturbations than small-range focused ones, resulting in 381

the superior performance of our method on the SSIM metric. It also illustrates that local 382

perturbations can enhance the imperceptibility of adversarial attacks. 383

Table 3. Non-targeted attacks of the ULAN (ours), UAN [20], U-Net, and ResNet Generator [49] against DNN models on the MSTAR
dataset. We report attack results on the testing dataset.

Victim Method Acc Confidence L2-norm SSIMClean Adv Gap Clean Adv Gap

A-Conv-BN

ULAN 98.19% 31.53% -66.66% 0.93 0.31 -0.62 2.03 0.96
UAN 98.23% 29.06% -69.17% 0.94 0.29 -0.65 2.54 0.93
U-Net 98.52% 28.07% -70.45% 0.94 0.28 -0.66 2.33 0.95
ResG 98.06% 35.04% -63.02% 0.93 0.33 -0.60 2.07 0.94

VGG16-BN

ULAN 96.17% 16.94% -79.23% 0.95 0.17 -0.78 2.45 0.95
UAN 95.75% 10.47% -85.28% 0.95 0.11 -0.84 3.63 0.86
U-Net 95.59% 12.94% -82.65% 0.94 0.13 -0.81 2.68 0.93
ResG 95.63% 18.51% -77.12% 0.95 0.18 -0.77 4.34 0.82

GoogLeNet

ULAN 97.28% 16.90% -80.38% 0.96 0.17 -0.79 3.11 0.95
UAN 97.11% 11.91% -85.20% 0.96 0.12 -0.84 3.68 0.88
U-Net 97.32% 15.87% -81.45% 0.97 0.17 -0.80 2.87 0.93
ResG 97.32% 19.62% -77.70% 0.97 0.20 -0.77 2.67 0.94

InceptionV3

ULAN 92.91% 23.00% -69.91% 0.91 0.23 -0.68 2.30 0.96
UAN 92.87% 14.59% -78.28% 0.92 0.15 -0.77 2.64 0.93
U-Net 93.16% 22.59% -70.57% 0.92 0.21 -0.71 2.30 0.95
ResG 93.45% 21.48% -71.97% 0.92 0.21 -0.71 2.66 0.93

ResNet50

ULAN 96.17% 16.08% -80.09% 0.96 0.16 -0.79 3.65 0.94
UAN 96.21% 14.39% -81.82% 0.96 0.14 -0.82 5.57 0.73
U-Net 95.67% 19.95% -75.72% 0.95 0.20 -0.75 3.57 0.91
ResG 96.08% 35.00% -61.08% 0.96 0.35 -0.61 3.70 0.91

ResNeXt50

ULAN 96.37% 17.35% -79.02% 0.96 0.18 -0.78 3.84 0.94
UAN 96.78% 10.96% -85.82% 0.96 0.11 -0.85 4.56 0.82
U-Net 96.58% 13.27% -83.31% 0.96 0.14 -0.82 3.43 0.91
ResG 96.70% 17.52% -79.18% 0.96 0.18 -0.78 3.19 0.92

In the targeted attack, we regard the target category as the correct class, so the classifi- 384

cation accuracy of DNN models on the testing dataset reflects the data distribution, i.e., each 385

category accounts for about one-tenth of the total dataset. According to Table 4, adversarial 386

examples lead to a sharp rise in the model’s classification accuracy, the maximum increase 387

reaches 84%, and the minimum exceeds 70%; the rise of target class confidence varies from 388

0.67 to 0.83. It means that the generated UAPs can induce DNN models to output specified 389

results with high confidence. Meanwhile, for the same victim model, the ULAN is slightly 390

inferior to the UAN and U-Net on the attack effectiveness but performs much better than 391

baseline methods on the attack stealthiness. Thus, we believe that given a fixed SSIM value, 392

the ULAN can achieve the best attack performance. 393

To visualize the adversarial examples generated by different methods, we take the 394

VGG16-BN-based SAR-ATR model as the victim network, and display the adversarial 395

examples for the non-targeted and targeted attacks in Figure 8 and Figure 9, respectively. We 396

list the prediction and confidence output by the victim model at the top of each adversarial 397

example, and the bottom of each figure shows the sizes of the corresponding image and 398
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perturbation. As we can see, the UAPs generated by baseline methods fully cover the 399

SAR images fed to the model, while the ULAN can locate and perturb the target (green 400

box) region effectively. Meanwhile, according to Figure 8 and Figure 9, there are apparent 401

shadow and texture traces in the adversarial examples crafted by baseline methods, which 402

also suggests that the global perturbations are more perceptible than the local ones. In 403

summary, compared to baseline methods, our method can achieve good attack performance 404

with smaller perturbed regions and lower perceptions. 405

Table 4. Targeted attacks of the ULAN (ours), UAN [20], U-Net, and ResNet Generator [49] against DNN models on the MSTAR
dataset. We report attack results on the testing dataset.

Victim Method Acc Confidence L2-norm SSIMClean Adv Gap Clean Adv Gap

A-Conv-BN

ULAN 9.99% 85.45% +75.46% 0.10 0.81 +0.71 4.28 0.90
UAN 9.97% 90.73% +80.76% 0.10 0.87 +0.77 3.56 0.88
U-Net 9.99% 91.63% +81.64% 0.10 0.88 +0.78 3.71 0.87
ResG 9.98% 90.23% +80.25% 0.10 0.87 +0.77 3.94 0.87

VGG16-BN

ULAN 9.98% 90.21% +80.23% 0.10 0.89 +0.79 4.71 0.90
UAN 10.02% 93.84% +83.82% 0.10 0.93 +0.83 4.99 0.80
U-Net 10.02% 94.15% +84.13% 0.10 0.93 +0.83 5.09 0.82
ResG 10.05% 88.19% +78.14% 0.10 0.86 +0.76 7.25 0.69

GoogLeNet

ULAN 10.02% 81.65% +71.63% 0.10 0.80 +0.70 4.47 0.92
UAN 10.03% 90.70% +80.67% 0.10 0.90 +0.80 4.80 0.85
U-Net 10.00% 91.33% +81.33% 0.10 0.89 +0.79 4.64 0.88
ResG 10.02% 77.74% +67.72% 0.10 0.77 +0.67 4.99 0.83

InceptionV3

ULAN 10.05% 80.06% +70.01% 0.10 0.79 +0.69 4.08 0.93
UAN 9.98% 91.10% +81.12% 0.10 0.90 +0.80 4.87 0.84
U-Net 9.95% 91.77% +81.82% 0.10 0.90 +0.80 4.91 0.87
ResG 9.90% 84.27% +74.37% 0.10 0.82 +0.72 4.99 0.84

ResNet50

ULAN 9.95% 85.31% +75.36% 0.10 0.84 +0.74 5.54 0.90
UAN 10.09% 90.41% +80.32% 0.10 0.90 +0.80 5.46 0.80
U-Net 10.01% 87.58% +77.57% 0.10 0.87 +0.77 5.34 0.83
ResG 10.04% 88.08% +78.04% 0.10 0.87 +0.77 6.70 0.75

ResNeXt50

ULAN 9.98% 86.53% +76.55% 0.10 0.86 +0.76 5.15 0.90
UAN 9.98% 91.77% +81.79% 0.10 0.91 +0.81 5.60 0.79
U-Net 10.00% 91.88% +81.88% 0.10 0.91 +0.81 5.28 0.83
ResG 9.98% 83.89% +73.91% 0.10 0.83 +0.73 6.73 0.75

Figure 8. (a) The original SAR image in MSTAR. (b) The clean SAR image fed to the model. The
first row shows the adversarial examples for non-targeted attacks, and the second row shows the
UAPs generated by different methods, corresponding to ULAN (c), UAN (d), U-Net (e), and ResNet
Generator (f), respectively. We list the prediction and confidence output by the victim model at the
top of each adversarial example, and the bottom of the figure shows the sizes of the corresponding
image and perturbation.
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Figure 9. (a) The original SAR image in MSTAR. (b) The clean SAR image fed to the model. From top
to bottom, the corresponding target classes are BRDM2, ZIL131, and ZSU234. For each target class,
the first row shows the adversarial examples for targeted attacks, and the second row shows the
UAPs generated by different methods, corresponding to ULAN (c), UAN (d), U-Net (e), and ResNet
Generator (f), respectively. We list the prediction and confidence output by the victim model at the
top of each adversarial example, and the bottom of the figure shows the sizes of the corresponding
image and perturbation.

4.5. Adversarial Attacks with Perturbation Offset 406

We now evaluate the adversarial attacks in the case of perturbation offset. Specifically, 407

we first recover the adversarial examples generated in Section 4.4 to 128× 128, and next 408

random-crop the recovered images to 88 × 88 again, such that the perturbation offset 409

condition is constructed. The results of non-targeted and targeted attacks in the case of 410

perturbation offset are shown in Table 5 and Table 6, respectively. 411

The experimental results suggest that perturbation offset severely impacts the attack 412

performance of baseline methods. In non-targeted attacks, the classification accuracy of 413

DNN models rises sharply, the maximum increase reaches 40%, and the minimum exceeds 414

10%; the rise of target class confidence varies from 0.10 to 0.38. A similar situation also 415

occurs in targeted attacks, where the UAPs generated by baseline methods are likely to 416

be ineffective in the case of perturbation offset. The decrease of the classification accuracy 417

varies from 30% to 48%, and the drop in target class confidence varies from 0.31 to 0.49. 418

In contrast, the attack performance of our method is hardly affected under the same 419

experimental condition. The detailed experimental data is displayed in Table 5 and Table 6. 420
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Table 5. Non-targeted attacks against DNN models in the case of perturbation offset. We report attack results on the testing dataset.

Victim Method Acc Confidence
No-offset Offset Gap No-offset Offset Gap

A-Conv-BN

ULAN 31.53% 32.09% +0.56% 0.31 0.33 +0.02
UAN 29.06% 59.65% +30.59% 0.29 0.53 +0.24
U-Net 28.07% 51.48% +23.41% 0.28 0.47 +0.19
ResG 35.04% 60.10% +25.06% 0.33 0.55 +0.22

VGG16-BN

ULAN 16.94% 17.31% +0.37% 0.17 0.18 +0.01
UAN 10.47% 26.26% +15.79% 0.11 0.26 +0.15
U-Net 12.94% 46.25% +33.31% 0.13 0.46 +0.33
ResG 18.51% 29.39% +10.88% 0.18 0.29 +0.11

GoogLeNet

ULAN 16.90% 18.92% +2.02% 0.17 0.19 +0.02
UAN 11.91% 40.40% +28.49% 0.12 0.39 +0.27
U-Net 15.87% 43.57% +27.70% 0.17 0.43 +0.26
ResG 19.62% 48.76% +29.14% 0.20 0.48 +0.28

InceptionV3

ULAN 23.00% 23.50% +0.50% 0.23 0.24 +0.01
UAN 14.59% 36.31% +21.72% 0.15 0.35 +0.20
U-Net 22.59% 46.17% +23.58% 0.21 0.44 +0.23
ResG 21.48% 39.20% +17.72% 0.21 0.38 +0.17

ResNet50

ULAN 16.08% 16.24% +0.16% 0.16 0.16 +0.00
UAN 14.39% 23.87% +9.48% 0.14 0.24 +0.10
U-Net 19.95% 50.62% +30.67% 0.20 0.50 +0.30
ResG 35.00% 51.65% +16.65% 0.35 0.51 +0.16

ResNeXt50

ULAN 17.35% 17.44% +0.09% 0.18 0.18 +0.00
UAN 10.96% 41.59% +30.63% 0.11 0.41 +0.30
U-Net 13.27% 46.21% +32.94% 0.14 0.46 +0.32
ResG 17.52% 57.05% +39.53% 0.18 0.56 +0.38

Table 6. Targeted attacks against DNN models in the case of perturbation offset. We report attack results on the testing dataset.

Victim Method Acc Confidence
No-offset Offset Gap No-offset Offset Gap

A-Conv-BN

ULAN 85.45% 82.23% -3.22% 0.81 0.79 -0.02
UAN 90.73% 43.80% -46.93% 0.87 0.42 -0.45
U-Net 91.63% 45.49% -46.14% 0.88 0.43 -0.45
ResG 90.23% 44.28% -45.95% 0.87 0.42 -0.45

VGG16-BN

ULAN 90.21% 86.72% -3.49% 0.89 0.86 -0.03
UAN 93.84% 56.72% -37.12% 0.93 0.56 -0.37
U-Net 94.15% 58.46% -35.69% 0.93 0.58 -0.35
ResG 88.19% 51.23% -36.96% 0.86 0.51 -0.35

GoogLeNet

ULAN 81.65% 78.71% -2.94% 0.80 0.78 -0.02
UAN 90.70% 49.18% -41.52% 0.90 0.49 -0.41
U-Net 91.33% 44.81% -46.52% 0.89 0.44 -0.45
ResG 77.74% 46.76% -30.98% 0.77 0.46 -0.31

InceptionV3

ULAN 80.06% 73.54% -6.52% 0.79 0.72 -0.07
UAN 91.10% 41.56% -49.54% 0.90 0.41 -0.49
U-Net 91.77% 44.46% -47.31% 0.90 0.44 -0.46
ResG 84.27% 42.35% -41.92% 0.82 0.41 -0.41

ResNet50

ULAN 85.31% 82.32% -2.99% 0.84 0.81 -0.03
UAN 90.41% 43.48% -46.93% 0.90 0.43 -0.47
U-Net 87.58% 40.07% -47.51% 0.87 0.40 -0.47
ResG 88.08% 46.32% -41.76% 0.87 0.46 -0.41

ResNeXt50

ULAN 86.53% 82.82% -3.71% 0.86 0.82 -0.04
UAN 91.77% 50.22% -41.55% 0.91 0.50 -0.41
U-Net 91.88% 50.59% -41.29% 0.91 0.50 -0.41
ResG 83.89% 41.28% -42.61% 0.83 0.41 -0.42
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In summary, the global UAPs generated by baseline methods are vulnerable to per- 421

turbation offset. They might be ineffective unless the victim model accurately takes the 422

perturbed region as input. However, the local perturbations generated by the ULAN only 423

cover the target regions of SAR images so that they can be fully fed to the model along with 424

the targets regardless of the input regions, which fundamentally prevents perturbation 425

offset. 426

4.6. Adversarial Attacks under Small Sample Conditions 427

Figure 10. The attack results of the ULAN against DNN models on MSTAR. (a): Non-targeted attacks;
(b): Targeted attacks. We vary the number of images the ULAN is trained on, and report results on
the testing dataset.

So far, we have assumed attackers share full access to any images used to train the 428

victim model. However, the professionalism and confidentiality of SAR images make 429

them challenging to access in practice. In other words, it is difficult for attackers to obtain 430

sufficient data to support the training of the ULAN. Therefore, we now evaluate the attack 431

performance of our method under stronger assumptions of attacker access to training data. 432

Figure 10 shows the non-targeted (a) and targeted (b) attack results of the ULAN 433

trained on subsets of the MSTAR training dataset. Specifically, we uniformly sample 50, 300, 434

1000, and 2000 images from the full training dataset to form the subsets and evaluate the 435

attack performance of the ULAN trained on subsets against different DNNs. As we can see, 436

for the same victim model, the difference in the attack performance of the ULAN trained 437
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on 50 images (5 per class) and the full training dataset is less than 5% − in other words, 438

there is virtually no fluctuation in the attack performance when the amount of training data 439

changes. The possible reason why the proposed method maintains good performance even 440

with few training samples might be due to the skip connection structure of the network and 441

the fixation structure of the SAR image. The decoder of the ULAN fuses the features from 442

different layers through the skip connection structure, which can help the generator learn 443

the data distribution sufficiently. Moreover, the low dependence on the training data also 444

attributes to the fixation structure of the SAR image itself such that its semantic features 445

are easier extracted and represented than natural images. Thus, the proposed method can 446

work well under small sample conditions. 447

4.7. Influence of Parameters 448

This section evaluates the attack performance of the ULAN trained on different pa- 449

rameter settings, providing guidance for attackers to achieve superior attack performance. 450

The parameters mainly include the perturbation size w× h, the weight coefficient ω, and 451

the type of Lp-norm. 452

4.7.1. Perturbation Size w× h 453

Figure 11. The influence of the perturbation size w× h on the attack performance. The Acc and SSIM
metrics of non-targeted attacks are shown in (a) and (b), and the corresponding metrics of targeted
attacks are shown in (c) and (d).

To investigate the influence of the perturbation size w× h on the attack performance, 454

we train the ULAN on seven different size settings: 22× 22, 33× 33, 44× 44, 55× 55, 455

66× 66, 77× 77, and 88× 88. Then, we evaluate the attack performance on the testing 456

dataset, and the results are shown in Figure 11. As expected, for both non-targeted and 457

targeted attacks, a larger perturbation size improves the attack effectiveness, while the 458

attack stealthiness is getting worse. Meanwhile, we find that when the perturbation size 459
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exceeds 55× 55, the SSIM metric of each DNN model shown in Figure 11(b) and 11(d) is 460

continuous decreasing, while the corresponding Acc metric shown in Figure 11(a) and 11(c) 461

tends to a stable value. We speculate the reason is that perturbation offset will inevitably 462

occur as the perturbation size increases, resulting in only partial perturbations can be fed 463

to the victim model such that the attack effectiveness is no longer improved. Therefore, the 464

advised perturbation size in this paper is between 44× 44 and 55× 55. 465

Furthermore, the ULAN has superior attack performance even in the case of perturba- 466

tion offset, which is quite different from baseline methods. Specifically, according to Table 467

5 and Table 6, a large number of global UAPs generated by baseline methods fail to attack 468

the victim model in the case of perturbation offset. Yet, when the perturbation size reaches 469

88× 88, more than 80% of the adversarial examples generated by the ULAN still work well. 470

This is because the perturbation size is too large to prevent perturbation offset during the 471

training phase. In other words, the ULAN itself is trained in the case of perturbation offset. 472

Thus, there is no doubt that a well-trained ULAN has already equipped with the ability to 473

fool models effectively in the case of perturbation offset. 474

4.7.2. Weight Coefficient ω 475

Figure 12. The influence of the weight coefficient ω on the attack performance. The Acc and SSIM
metrics of non-targeted attacks are shown in (a) and (b), and the corresponding metrics of targeted
attacks are shown in (c) and (d).

The weight coefficient ω is a constant measuring the relative importance of attack 476

effectiveness and stealthiness, which has a great impact on the attack performance. We 477

now train the ULAN on nine different weight coefficients: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 478

and 0.9, and report attack results on the testing dataset in Figure 12. As we can see, for both 479

non-targeted and targeted attacks, the attack stealthiness is improved as ω increasing, while 480

the attack effectiveness is getting worse. Meanwhile, Figure 12(a) and 12(c) suggest that the 481

Acc metric of each DNN model cannot converge to a stable value, and the corresponding 482
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SSIM metric shown in Figure 12(b) and 12(d) is also constantly changing. Thus, for superior 483

attack performance, attackers are supposed to choose an appropriate weight as needed in 484

the training phase of the ULAN. 485

4.7.3. Type of Lp-norm 486

So far, we have adopted the L2-norm to measure the image distortion caused by adver- 487

sarial attacks. However, in addition to the L2-norm, there are many distance metrics, such 488

as the L∞-norm and the L1-norm, etc. In this section, we evaluate the attack performance 489

of the ULAN trained on different distance metrics: the L2-norm and the L∞-norm. Note 490

that the values of image distortion calculated by the two metrics differ by several orders of 491

magnitude, so we set the weight ω of L2-norm to 0.5 and 10 for the L∞-norm. The results 492

of non-targeted and targeted attacks are shown in Table 7 and Table 8, respectively. We 493

can find that the ULAN trained on the L2-norm has better performance on both the attack 494

effectiveness and stealthiness. Therefore, to obtain a more threatening attack network, the 495

advised distance metric in this paper is the L2-norm. 496

Table 7. The non-targeted attacks that adopt different type of Lp-norm as the distance metric, and we
report attack results on the testing dataset.

Victim Acc SSIM
L2-norm L∞-norm L2-norm L∞-norm

A-Conv-BN 31.53% 28.85% 0.96 0.92
VGG16-BN 16.94% 21.19% 0.95 0.88
GoogLeNet 16.90% 17.60% 0.95 0.91
InceptionV3 23.00% 24.65% 0.96 0.91

ResNet50 16.08% 14.10% 0.94 0.88
ResNeXt50 17.35% 18.43% 0.94 0.90

Table 8. The targeted attacks that adopt different type of Lp-norm as the distance metric, and we
report attack results on the testing dataset.

Victim Acc SSIM
L2-norm L∞-norm L2-norm L∞-norm

A-Conv-BN 85.45% 84.33% 0.90 0.85
VGG16-BN 90.21% 87.25% 0.90 0.83
GoogLeNet 81.65% 81.39% 0.92 0.85
InceptionV3 80.06% 78.72% 0.93 0.86

ResNet50 85.31% 83.03% 0.90 0.82
ResNeXt50 86.53% 82.07% 0.90 0.85

5. Conclusions 497

In this paper, a semi-whitebox attack network called universal local adversarial net- 498

work is proposed to generate UAPs for the target regions of SAR images, with the benefit of 499

focusing perturbations on the target regions in SAR images that have high relevance to the 500

recognition results. A focused perturbation on the high-relevance target region significantly 501

improves the efficiency of adversarial attacks. Also, it ensures that the well-designed per- 502

turbations can be fully fed to the victim model along with the targets such that perturbation 503

offset is fundamentally prevented. To satisfy the feasibility requirement of adversarial 504

attacks, once the ULAN is trained, it can real-time generate adversarial examples for the 505

DNN-based SAR-ATR model without requiring access to the model itself anymore, and 506

thus possesses high potential in practical applications. Experimental results demonstrate 507

that the proposed method prevents perturbation offset effectively and achieves comparable 508

attack performance to the conventional global UAPs by perturbing only a quarter or less of 509

the SAR image area. Moreover, our experiments also indicate that the ULAN is insensitive 510
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to the amount of training data, which makes it still work well under small sample condi- 511

tions. Potential future work could consider replacing the victim model with a distillation 512

model to construct a black-box attack network. It is also of great interest to enhance the 513

transferability of adversarial examples between different DNN models. 514
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