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Abstract: Considering the actual world economical trends, one of the most important questions is 
now and in the future: how to reduce power consumption of electronic systems. Since the invention of 
computers, the electrical energy consumption step by step increased. Now when not only computers, 
but electric vehicles, robots, automation, and unmanned aerial vehicles play a very important role of 
our life, the main problem of system designers is how to reduce energy consumption in these systems. 
But also the existing already working systems must be revised in order to decrease their electric 
power consumption. The importance of this subject (energy control) shows that a huge number of 
research publications and survey papers deal with it. Just focusing on the last one or two years (2021 
and 2022) the search hit 221000 titles (103000 hits only in 2022). Analyzing all the research areas is 
almost impossible, but focusing on some important research subjects, where one of the main topic is 
“energy saving methods” can give an overview about the subject. The paper focuses on the area of 
industrial robotic systems, electric vehicles, and embedded systems.

Keywords: energy; renewable energy; robotics; drones; automation; embedded systems; system on 
chip 14

1. Introduction 15

Power consumption of electronic devices was always one of the main problems in 16

embedded system design, robotics, and vehicles. In the last time in the new "everything 17

electrically powered" era this is and will be the main problem. The field of energy produc- 18

tion and power consumption of electrical devices – in the case of this review: automation, 19

robotics, unmanned aerial vehicles (UAV), embedded systems, internet of things, and 20

Autonomous vehicles (AV) – became a controversial problem in light of the events of recent 21

years (such as pandemic, war, energy crisis, semiconductor industry crisis, etc.). 22

Humanity is facing the biggest challenge since the invention of steam engine or maybe 23

earlier other technology inventions. Certainly, every crisis can lead to new technology 24

inventions. Electrical power production probably now will focus on renewable energies 25

such as solar, wind, and hydro-power energy production. It is very difficult to overview 26

all the fields where robotics and process automation come to solve the increasing energy 27

demand or to overview the robotics and embedded systems energy problems. 28

The energy problem in control and robotics may have many aspects. This paper does 29

not intend to present a perfect survey about the "Energy Problems in Control and Robotics 30

Systems". If one just searches several sites then will realize that the subject is so huge, that it 31

is almost impossible to treat all the aspects of the subject. Just to mention that searching 32
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"scholar.google.com" for the following search "reduce energy consumption in robotics" arise 33

17100 titles, since 2021. Another search topic was "reduce energy consumption in embedded 34

systems" – this gave 16200 titles. Can conclude that in almost two years one of the major 35

problems of the research community was how to reduce the energy consumption of all 36

kinds of electrically powered devices. 37

This paper will try to give an overview about three main topics, which were considered 38

very important by the authors. These fields where reducing energy consumption is a hot 39

topic are as follows: 40

• industrial robotic systems; 41

• autonomous vehicles; 42

• embedded systems. 43

Since the subject treated had many reviews in the last years, the authors tried to concentrate 44

on the literature review of the last few years. Beside introduction, the paper is organized as 45

follows: Chapter 2 presents a background overview about the research topic of "reducing 46

electrical power consumption" based on some reviews published since 2017. Chapter 3 47

treats the energy problems in industrial robotic systems, while chapter 4 gives a review of 48

the energy problems in autonomous vehicle technology. chapter 5 presents an overview of 49

energy consumption problems in Unmanned Aerial Vehicles. Moreover, Energy consump- 50

tion problems in embedded systems and Internet of Things are presented in chapter 6 and 51

chapter 7, respectively. Finally, some conclusions and suggestions are given to inspire the 52

reader about the future directions can be taken in order to optimize the energy consumption 53

in different systems. 54

2. Background 55

In the last five years there can find many reviews of the treated subject [1], [2], [3] and 56

[4]. This chapter gives an overview of energy problems based on the mentioned reviews 57

in the field of robotics, Autonomous vehicles, and embedded systems. In [1] the authors 58

overview how to reduce the energy consumption in industrial robots. As the authors 59

state mechatronic industry use robots. Energy consumption can be reduced with several 60

methods [1]: 61

• Developing energy-efficient motion planning; 62

• Optimizing operating parameters of industrial robots; 63

• Optimizing industrial robot operations; 64

• Commercial and industrial solutions for reducing energy consumption of industrial 65

robots. 66

Paryanto et al. [1] also mention that modeling and simulating the industrial process can find 67

the weak points of the production line, where with a careful design the energy consumption 68

can be reduced. Finally, it concludes that the use of all mentioned methods is difficult to 69

apply because of many technical problems. But as a new possibility, the process simulation 70

can help the early design of energy reduction. As mentioned "The simulation approach 71

as a new trend in this field is a promising method due to its use in several manufacturing 72

systems’ development stages, from production planning to process optimization stages. 73

Therefore, in this research, a modular model of IR for analyzing their power consumption 74

and dynamic behavior is proposed" [1]. 75

Energy saving methods for robotic and automatic systems were treated also in [2]. 76

Carabin et al. [2] analyze deeply the energy saving methods in robotics and automation. 77

Energy saving must be considered from the design stage of the robots. The above mentioned 78

paper considers – correctly – that robots are embedded systems also. In this way, several 79

design considerations are presented and deeply analyzed [2]. The design considerations 80

are as follows: 81

• energy saving with hardware design: 82

– robot type, which select the optimal solution for energy-saving using mechatronic 83

solution; 84
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– hardware replacement with newer low power components. 85

– hardware addition for energy storing and recovering; 86

• energy saving with software methods: 87

– robot trajectory optimization; 88

– operation scheduling; 89

– optimal control strategies. 90

The authors [2] analyze the above mentioned methods. One thing should be added to the 91

methods above mentioned. The main hardware component of robots and automation sys- 92

tems are the micro-controllers and system on chip. These components are already capable 93

to reduce the energy consumption of the system by entering power-save mode when it is 94

necessary. One should mention that real-time operating systems used in the embedded 95

systems are capable also to save energy by reducing electrical power consumption when 96

the system allows it. Also note that the [2] is one of the most complete analyses of the 97

energy saving methods in robotics since 2017. 98

In [4] because of the increasing importance of electric vehicles (EVs), the authors 99

review the effects of the battery degradation process on energy saving in EVs. It is said that 100

electric vehicles have low-carbon and environmentally friendly attributes. But the truth is 101

that they move the environmental effects to the electric power plant from the place they 102

are in traffic. Certainly, we admit that extensive research has been undertaken to decrease 103

the changes in climatic conditions due to air pollution. Batteries are widespread in EVs as 104

excellent energy storage devices. EV may have the disadvantage of battery long recharge 105

time, "impact of additional strain on the grid, poor societal acceptance due to high initial 106

costs, and a lack of adequate charging infrastructure" [4]. Fanoro et al. [4] (paper published 107

in 2022) in their review article described battery degradation, degradation mechanisms, 108

and types of degradation. Based on all energy reduction solutions stand the embedded 109

systems. Embedded systems can reduce power consumption in the plant (system) since 110

they are integrated, but also fasten the energy optimization techniques [5]. In this paper 111

Richa et al. review the power consumption of Field Programmable Gate Arrays (FPGA) and 112

Application Specific Integrated Circuits (ASIC). In some applications, high speed and high 113

performance are the requirements of the embedded system then which will increase energy 114

consumption. The system designer has to consider keeping the speed/performance versus 115

the power consumption trade-off at a minimum. In [5] there are presented the optimization 116

methods for the following components: 117

• System components and integrated circuits all kinds. 118

• Intellectual Property (IP) modules known as reusable fully tested circuits, used in 119

FPGA and ASIC. 120

• Microprocessors, multiprocessor systems, System on chip; their power consumption 121

heavily depends on the system clock frequency and application software. 122

• Customized instruction set architecture circuits are highly optimized for hardware 123

implementation. 124

Embedded systems as the basis of control systems of robots, unmanned aerial vehicles, 125

and automation systems (since their introduction) had a very important design parameter, 126

which is to keep the power consumption as low as possible. For the embedded system 127

components there are presented several energy optimization methods in [5]: 128

• The energy optimization problem in embedded system hardware can be analyzed by 129

extensive system simulations. This possibility is given by all Computer Aided Design 130

(CAD) tools and also by the FPGA and SOC development tools. This possibility was 131

also analyzed in [5] and gives estimation error of power estimation between 5% to 132

55% or higher depending on the component types. 133

• Learning-based methods, which are subsets of artificial intelligent methods, provide 134

automatic power consumption estimation resulting from experience and using data 135

sets. This method uses neural networks for optimization. This method gives estimation 136

accuracy between 2% to 10% depending on the component. 137

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2022                   doi:10.20944/preprints202211.0238.v1

https://doi.org/10.20944/preprints202211.0238.v1


4 of 22

• Statistical-based methods, which have common features with the simulation method. 138

This method consists of applying test vector sequences on the circuits and the tests 139

are running until a power estimator gives satisfactory results. Estimation errors are 140

around 12.5% to 40% also depending on the component type. 141

• Measurement-based methods are a common approach for the already implemented 142

hardware and use several built-in onboard and on-chip sensors. The estimation error 143

is mentioned only for microprocessors and SOC – estimated to be higher than 30% for 144

one core and higher than 4% for 16 cores [5] 145

Richa et al. [5] gave a detailed discussion about the power estimation methods, which 146

were analyzed on several criteria such as: hardware and software dependency, circuit 147

characterization based on modeling, estimation effort, estimation error, modeling effort, 148

and modeling levels. Embedded system power consumption is divided into dynamic and 149

static power consumption. The paper [3] also starts from this premise and presents the 150

methods for energy saving in embedded systems. Without reducing the overall merit of 151

the authors, we do not agree with the opinion of [3] that the family of embedded systems 152

is included mobile phones. In our point of view, mobile phones today (2022) are much 153

more multitasking computers and less embedded systems. By definition – from many – 154

embedded systems execute always the same task, and can have (or not) an operating system. 155

Since 2015, mobile phones became for the large much more a general usage computer – 156

without enumerating a large number of applications, which are used in such complex 157

devices. 158

But the authors of this paper recognize that in [3] are reviewed the methods, which 159

contribute to the energy saving problems in embedded systems. Starting from the point of 160

embedded systems characteristics, such as the limited size of the battery, computation speed, 161

and limited ventilation possibilities result in the necessity to reduce energy consumption 162

in embedded systems. However when increasing computation speed (increasing clock 163

frequency) may result in electrical power consumption. But looking at the fact that FPGA 164

and SOC (System on Chip) can save energy and increase the computation speed by real 165

parallel data processing. In the meantime, one should mention that FPGAs and SOCs still 166

are not characterized by the lowest power consumption devices. M. Sparsh [3] based on the 167

referred literature presents the following energy reduction methods in embedded systems: 168

• dynamic voltage and frequency scaling and power-aware scheduling based tech- 169

niques; 170

• low power mode management – permitted by the chip technology and operating 171

systems; 172

• micro-architectural changes in memory management, sometimes adding extra compo- 173

nents; 174

• using non-conventional chips such as digital signal processors (DSP), Graphic Proces- 175

sor Units (GPU) and FPGA. – One should add also SOC or MPSOC (multi processor 176

system on chip); 177

• also we mention software methods for energy reduction in embedded systems. 178

The first three methods are deeply analyzed in the mentioned paper [3]. The author 179

highlights the advantages of using FPGA (we add SOC and MPSOC) and the important 180

role they occupy in the energy reduction methods in embedded systems. 181

3. Energy Consumption Problems in Industrial Robotic Systems 182

Due to its importance, reducing energy consumption and solving power problems 183

in robotic systems become the most important subject in the energy research field. Many 184

researchers tried to solve energy problems and improve the power efficiency of these 185

robotic systems. They used various methods, some of them depend on changing the whole 186

mechanism and others tried to improve this efficiency by using modern circuits (FPGA) and 187

Advanced machine learning Algorithms. In [6] the energy-saving methods of industrial 188

robots are divided as follows: 189
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• mechanical change of robotic system; 190

• after experiments change the characteristics of the existing robotic system, such as 191

acceleration, speed, and jerk; 192

• creating a virtual model of the robotic system to calculate the optimal parameters; 193

• using energy recuperation methods; 194

• optimal trajectory planning using modern control methods such as model predictive 195

control, neural networks or artificial intelligent methods, etc; 196

• process planning considering the energy optimal time for idle states. 197

Tomas et al. [6] searched for methods to decrease power consumption in industrial robotic 198

systems. One of these methods does not need to change the existing hardware (such as 199

robots or transporters) but to program the parameters of the system with an advanced 200

energy optimal movement or path. 201

Analyzing the above-mentioned saving method Thomas et al. [6] propose two methods 202

to find the best parameters to minimize power consumption: 203

• experimental method (testing parameters on the real system; 204

• simulates the robot operations with a virtual model. 205

Wei et al. [7] worked to build an optimal path for two nodes of a robotic arm by 206

optimizing the robot’s consumed energy and avoiding moving obstacles. They convert 207

the original optimization problem into a quadratic programming problem with equality 208

and inequality constraints, and they use neural networks AI (Artificial Intelligence) to find 209

and solve the optimal path problem. As a result of the simulation, the increased node 210

constraint can ensure the actual path of the generated path and improve the safety of the 211

actual operation and minimize the power consumption. 212

Hovgard, et al. [8] worked on a method to reduce the power consumption of robot 213

stations. The problem is defined as a convex mixed integer nonlinear optimization problem, 214

and the goal is to reduce the power by using the optimal operation time and order of the 215

robot movements. They used a simulation model of the station to find simplified power 216

models of the robot movements. After that, they used that model to solve the optimization 217

problem. And they tested different types of parameter settings such as reduced speed and 218

acceleration. With the same cycle time of the station, the results display about a 12% of 219

reduction in power consumption. 220

Pellegrinelli et al.[9] used Dijkstra algorithm (the principals of using the algorithm 221

and a probabilistic map are described in Karaman and Frazzoli [10] or Parketal.[11], which 222

identify the energy optimal path of every task and the energy consumption of overall mean 223

of series of movements decreased by 12% for the price of 38%time extension. After this 224

operation, they have energy optimal and collision free Path. It is important to say that 225

this optimal path comes from a probabilistic road map, so the accuracy depends on the 226

sampling of this road map. Finding the energy optimal path was tested in the simulation of 227

the robot manipulator COMAU NS16-165. The main problem of power optimal planning is 228

to calculate the consumption of every movement and find the power optimal path while it 229

is collision-free. With the Absence of the digital model of the robotic system, the only way 230

is to experimentally test movements and measure power consumption. The best option 231

is when exiting a virtual model of the robotic system, In this case, we can change speed, 232

acceleration, and complete path. This will need requirements to test if the final path is 233

collision-free. So this method must consider time-energy difficulty. The first task of the 234

optimization method is to find all collision-free paths, this can be done in robot software. 235

This task complexity is very high with the increasing number of degrees of freedom. It is 236

very important to set a criterion for path optimization. You can find Some methods to plan 237

a path in Pellegrinelli et al. [12], Lavalle [13], Benotsmane [16]. 238

Gadaleta et al.[15] controlled the Delmia Robotics with Python script, so we can change 239

parameters and calculate the path and the position of the robotic system with the time axis. 240

They determine the energy consumption of every activity with the knowledge of the path, 241

time the movement, parameters of speed and acceleration, and a sufficiently accurate model 242

of the robot. Figure 1 and 2 shows the simulated data obtained by Tomas et al. [6] and 243
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Figure 1. Energy consumption and movement time as a function of acceleration and speed [15] .

Figure 2. Energy signature (red line) compared to possible energy consumption variations when
varying speed and acceleration [15].

determined the optimal parameters of speed and acceleration, which can save up to 40% of 244

energy consumption when one takes minimal time against optimal energy consumption. 245

Figure 1 displays various settings of speed and acceleration, which can optimize energy 246

consumption without time losses. The optimal solution using this method can have a long 247

setup time because of the software given by the robot manufacturers. 248

Calculating the optimal path of the robot may be considered the most time difficult 249

issue and can be done by the robot software. The whole process of finding the best 250

parameters for every production line working robot is time-consuming because of the 251

updates of robot manufacturers’ software. If there is communication between cooperating 252

robots working on the same production line then further energy optimization results from 253

synchronizing the robots and minimizing the dead times Benotsmane [14]. 254

Ying, et al. [17] used an MD1200-YJ palletizing robot as a research object and tried to 255

improve the problem of power consumption using a path optimization method for the joint 256

driving system. They created a multi-factor dynamic model of the palletizing robot based 257

on the Fourier series approximation method and genetic algorithm. They constructed the 258

joint path definition and the minimum total power consumption as the optimization goal. 259

They used the coefficients of the Fourier series as improvement variables, the movement 260

parameters of the initial and final position, and the running time constant were taken as 261

the constraint conditions. As a result of the simulation analysis and using the optimized 262

Fourier series, the total energy consumption was reduced by 13.1%, and dissipation energy 263
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was reduced by 15.3% under the same conditions. Despite the reduced power consumption, 264

This method has many drawbacks and can be summarized as the following: 265

• the process had a very high jerk value and less motion stability; 266

• the process had very high computational complexity; 267

• the convergence speed to system stability was slow; 268

• the configuration requirements of the computing equipment were high. 269

Because of these reasons, the method presented by [17] may have limited usage in practical 270

engineering applications. One can conclude that the main problem in the industrial palletiz- 271

ing is power saving. Furthermore, power consumption and low flexibility are considered 272

the main problems, which most of robots suffer from. 273

Deng Y. et al. [18] give a novel differential advanced algorithm to solve the instability 274

of the initial path parameters and its bad effects on reducing energy consumption. They 275

developed a simplified analytical way of the palletizing robot. After that, they merge the 276

differential evolutionary algorithm with the simplified analytical model to form a method 277

to reduce power consumption. This power-saving method improves the initial parameters 278

of the paths collected by the bionic demonstration system to minimize operating power 279

consumption. Due to the actual experimental results and simulation, the optimized path 280

parameters could effectively minimize the energy consumption by 16% [18]. Pellicciari et 281

al. [19] searched the methods to measure the power consumption in an application used 282

in the automotive industry, which contains about 74% of the total amount of industrial 283

robots in the industry. The largest part of industrial robotic systems cannot measure 284

power consumption and cannot communicate with each other. The reason originates from 285

the problem that many methods were used to measure power consumption in industrial 286

robotics. One of these methods is measuring the whole energy consumption of the robotic 287

system, which can be done easily but measuring every node will become very difficult. 288

The main parameters – as mentioned before – that are needed to measure the energy 289

consumption of the whole system are acceleration and speed. In this case, the experimental 290

method is the only possible way to set up parameters, but this can be very difficult and 291

not accurate. So in [19], the authors used a virtual model of the robotic system. In this way, 292

the robot programmer can analyze to find the best parameters from a global point of view. 293

Nowadays every robot producer has its own software program, which can simulate at least 294

the movement of the robotic system and give the most important measurements needed to 295

determine the optimal parameters, which will be used to minimize the energy consumption 296

e.g. Dalmia Robotics (Dassalut Systems), KUKA.Sim (KUKA AG), and RobotStudio (ABB). 297

A few robot simulation models can calculate energy consumption. For other robot types, 298

one can use a script, which reads data of position from a robotic software program and send 299

it to software such as Matlab or any other one, which can compute energy consumption 300

from the robot model parameters. This method is called parameter analysis. Another 301

possibility is called parameter optimization if there is a possibility to send data back to 302

robotic software. Using Matlab, one can change speed and acceleration and calculate the 303

optimal parameters to achieve low power consumption. 304

4. Energy Consumption Problems in Autonomous Vehicles 305

The major ambition of the automotive industry is the marketing of autonomous vehicle 306

(AV) technology. Consequently, research in this area is swiftly expanding across the world. 307

However, despite this high level of research efforts, literature addressing straightforward 308

and efficient energy approaches to the development of an autonomous vehicle research 309

platform is sparse [20]. This review chapter highlights the main problems regarding 310

energy in automated vehicles in the scope of both standard autonomous vehicles (AV) and 311

electrified autonomous vehicles. 312

Autonomous vehicles (AVs) are emerging embedded systems, and of course, energy 313

may be considered one of the most important related issues. The biggest challenge facing 314

AV’s energy consumption is the requirements for attached sensors, control systems, com- 315

puter processing units, remote data transfer protocols, and networking hardware. These 316
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systems are needed to perceive the surrounding real-world circumstances and responding 317

real-time decisions [21], [22], Ȧdditionally, vehicle weight and probably higher drag may 318

raise the energy consumption of AVs compared to human-driven vehicles [23]. These 319

extra loads dilate the auxiliary load profile, therefore decreasing the range of an automated 320

vehicle. Furthermore, additional electrical loads can be appended for fully autonomous ve- 321

hicles due to fail-safe requirements from the sensor to vehicle control [21]. Thus, increasing 322

energy efficiency was the subject of numerous studies for decades. 323

Eco-Driving is an effective technology for realizing large energy efficiency and achiev- 324

ing sustainable transportation [24]. A more energy-efficient drive cycle is realized for 325

the same route by adopting a heuristic set of goals such as eliminating stops, preserving 326

a constant speed, limiting acceleration, and smoothing the velocity profile. In this way, 327

energy economy improvements can be achieved by 10% for modern vehicles and 30% for 328

fully autonomous vehicles [25]. Furthermore, applying Eco-driving can result in longer 329

battery life and slower battery degradation [23]. 330

The formulation of maximizing energy efficiency improvement problem as an optimal 331

control problem can be accomplished by predicting the driving circumstances along the 332

route through Eco-driving. These predictions can be sensed by the technology of vehicle 333

sensors, vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I). Many studies showed 334

that exploiting these factors can improve power efficiency. Predictions of traffic light signal 335

phase and timing (V2I technology) can raise the improvement to 12-14% [26]. The use 336

of V2I (enabling traffic light prediction) can decrease power consumption in Eco-driving 337

[27]. Other methods are proposed using information from the leading vehicle and the 338

data from traffic lights for red light avoidance and putting constraints on vehicles in green 339

light queues [28], and optimizing the distribution of speed and power between the motor 340

and engine under A/C load [29]. Furthermore, the implementation of Model Predictive 341

Control (MPC) and Dynamic Programming (DP) has been taken into consideration in a 342

leading vehicle following scenario [30]. Vehicle velocity prediction is an essential technique 343

for realizing improvements in the energy economy and determines the constraints of the 344

energy optimization problem [31], [32]. Energy saving can be degraded due to inaccurate 345

velocity prediction [33]. Self-driving vehicle possibilities have been recognized by many 346

researchers for adapting Artificial Neural Networks (ANN) prediction models in which 347

their outputs can improve the power economy through control strategy derivation [34], [35– 348

42]. Other approaches have shown remarkable performance using Deep Neural Networks 349

(DNN) [43], and the Long Short-Term Memory (LSTM) deep neural network [44]. 350

The energy required by AVs can be supplied from different sources like batteries, Ultra 351

Capacitors (UC), and Fuel Cells (FC). The two important criteria of energy sources are high- 352

energy density and high-power density. High energy sources can provide long ranges while 353

high power sources aid to maximize acceleration [45,46]. Other demanded characteristics 354

required for the perfect energy source like fast charging, long life cycle, long service and less 355

maintenance, and less cost [47]. Batteries are considered the most prominent energy source 356

for a long time for electrical vehicles (EVs) and have many different technologies that still 357

going under research and development. Some of the common battery technologies used in 358

EVs are Li-ion, Li-polymer, Ni-Cd Na-S, Ni-MH, Zn-air, Ni-Zn, lead-acid, and graphene. 359

Various battery kinds possess their advantages and disadvantages that should be carefully 360

studied while choosing. Batteries represent remarkable cause for concern because of the 361

pack size and how much weight they add to the vehicle. The battery has an impact on 362

range and charging time as well. In general, many preferable battery technologies have 363

been already invented, but until now they are limited and not being pursued due to their 364

exorbitant costs [48–55]. 365

UCs physically store charges in two electrodes separated by an ion-enriched liquid 366

dielectric. This technology can provide significantly high-power density. Also, while no 367

chemical reaction happened in the electrodes; the UCs life cycle is often long. However, the 368

absence of these reactions makes them lower energy density. Additionally, their internal 369

resistance is low, making them highly efficient, but if charged at an extremely low state; it 370
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can result in a large output current [56–58]. Fuel Cells consist of an anode, cathode, and 371

electrolyte between them and can generate electricity by the electro-chemical reaction after 372

applying fuel (i.e. hydrogen) to the anode. Electric Vehicles that are powered by FCs can 373

gain many advantages like fast refueling, low or no emissions, durability, and the capacity 374

to produce high-density current outputs [59]. On the other side, FUs technology is high 375

cost, requires larger fuel tanks since hydrogen has less density compared to petroleum, and 376

has lower response time compared to batteries and UCs [56]. Since hydrogen has no color, 377

leaking hydrogen can be seriously harmful and difficult to detect. Additionally, it is highly 378

flammable and explosive in the event of collisions. The car industry have taken steps to 379

assure the tank’s integrity in response to these issues; they have encased them with carbon 380

fibers. There are procedures to lock the tank outlet in case of a high-speed collision, and the 381

hydrogen handling components can be positioned outside the cabin, allowing the gas to 382

disperse easily in case of a leak [60]. 383

After mentioning all of the above regarding power problems, there is also an important 384

issue related to EVs which is charging. Since the charge is stored as DC in batteries and 385

UCs, various voltage and current configurations are available for AC or DC charging. AC 386

supply systems require AC-DC converter circuits to obtain the charging from the grid. DC 387

supply systems need special cabling and installation to be mounted on stations and garages 388

[61]. 389

EVs are regarded as high-power loads that influence the power distribution system [62– 390

64]. Therefore, random and uncoordinated charging actions can overwork the distribution 391

system by raising peak demands. It can also cause extreme voltage fluctuations, increasing 392

losses, hastening the aging of transformers and cables, lowering system efficiency and 393

economy, and raising the possibility of blackouts as a result of network overload [65–70]. 394

Load management and network energy efficiency can be improved with the integration of 395

smart grid functions in the field of networking, communication, and monitoring [71–76]. 396

The time required to reach full charge is one of the most important factors, long-time 397

charging of batteries and UCs represents the main downside issue in EVs [24]. Charging 398

might take anywhere from a few minutes to several hours, depending on the battery 399

pack and type of charger [77]. Uncontrolled charging (also referred to as dump charging) 400

occurs when there is no concern about the time of power drawn from the grid. This can 401

cause unbalancing load, instability, minimizing reliability, and reducing power quality 402

[64,78]. Nowadays, many fast-charging technologies exist now and are being researched 403

[77]. Wireless charging is the technology of transferring energy between primary and 404

secondary circuits without using cabling. However, due to health and safety issues with 405

this technique, it is not common for commercial EVs according to the standardization 406

organizations in each country. alternatively, FCs vehicles don’t need to be charged as other 407

EVs do. They need enough hydrogen filling stations and a practical method to produce the 408

hydrogen [79–81]. 409

5. Energy Consumption Problems in Unmanned Aerial Vehicle 410

UAV (acronym of "Unmanned Aerial Vehicle") known as a drone, is an uninhabited 411

aircraft in the field of aerial robotics; the system can be autonomous or remotely piloted 412

[82]. The drones can carry out various missions for civil or military uses depending on their 413

type: this is based on the characteristics and control capabilities in different environments. 414

The performance of a drone is measured by the way it reacts to the various factors of the 415

environment, such as aerodynamic phenomena, disturbances (winds), etc [83]. With the 416

evolution of technology in electronics and embedded systems, the production of minimized 417

embedded systems and sensors became possible. Therefore, the internal body of the drone 418

became small and optimized, in this context quadrotor type presents a great example of 419

mini drones, where its usage in the real life is increasing, especially in the last four years, 420

with the appearance of the pandemic and corona crisis, these systems became an excellent 421

solution for delivery purposes and fulfill logistics tasks [84], [85], [86]. 422
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Besides the advantages of UAVs in solving many problems in different fields, a 423

potential drawback arises with this technology regarding energy consumption where the 424

drone is an electric device powered by embedded batteries with a limited lifetime, this 425

has an effect on limiting the flight time of drones, therefore, most UAV applications are 426

unable to reach their entire target. Nowadays, researchers in many literature reviews are 427

conducting their focus on minimizing energy consumption in UAV missions to deal with 428

this topic. First, we should identify the proper and complete model energy consumption 429

for UAVs, this is by identifying the key factors that directly affect the energy profile of the 430

drone [87]. 431

Nowadays, UAVs manufacturers of professional drones are betting everything on a 432

great autonomy. The American drone Tailwind has broken all records by flying for 4h30 433

minutes in the Californian sky. Other models use fuel cells, kerosene or solar energy [88]. 434

In this paper, we mostly focus on electric type, the small entry-level models, the nano 435

drones or mini drones which are at the bottom of the scale with flight times between 5 436

and 10 minutes, where this type is still far from 1 hour autonomy. Some examples of the 437

most powerful models like the DJI Mavic 2 Pro, the Yunnec Mantis Q or the Fimi X8 SE, 438

can expect to fly for about thirty minutes as maximum. Apart from the capacity of the 439

battery capacity expressed in mAh, several factors are taking into account to affect the 440

power/energy consumption of the drone so the autonomy is limited [89]: 441

• Impact of taking off; 442

• Impact of movement (hovering - horizontal movement - vertical movement); 443

• Impact of payload, increasing the mass of the drone affect the gravitational force, 444

where an energy is needed to keep the drone flying by keeping the stability; 445

• Impact of speed, increasing the velocity of the drone is achieved by increasing the 446

torque of the rotors which require high current.; 447

• Impact of wind, where the wind is a disturbance that affect the movement of the drone, 448

therefore an opposite force should be applied to compensate it, this opposite force is 449

generated with higher energy consumption; 450

• Impact of communication, where an internal communication is executing with differ- 451

ent sensors, between the controller and sensors as GPS - Gyroscope - accelerometer - 452

etc. 453

5.1. Performance energy of power source in UAV 454

The power source system in the drone can be characterised by different types [90], 455

such as batteries, solar power, fuel cells, combustion engines, etc. Figure 3 shows drone 456

power sources with different types of material. 457

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2022                   doi:10.20944/preprints202211.0238.v1

https://doi.org/10.20944/preprints202211.0238.v1


11 of 22

Figure 3. Drone power sources with different types of material

UAV is usually powered by a 12V battery. It is composed of different motors controlled 458

by ESC motor controllers (electronic cards that allow to make the motors turn more or less 459

quickly). Thanks to the propellers connected to the axes, the drone can move with 6 degrees 460

of freedom according to the three axes [91]. Different sensors are board on the drone body: 461

• gyroscope measures the orientation of the drone; 462

• accelerometer measures the linear acceleration; 463

• ultrasonic measures the distance from a target. 464

These sensors send information to the flight controller. The telecommunication module 465

allows receiving the orders transmitted by the by the pilot’s remote control to indicate the 466

positioning and to transmit the video signal. Figure 4 shows the drone body components, 467

while Figure 5 shows the relation between these modules. 468

Figure 4. Drone body components
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Figure 5. Relation between the drone modules

In batteries for example we find several suggestions as Lithium-ion, nickel cadmium, 469

Lithium polymer, Lithium-air, Lithium-SOCl2. Every type depends on the usage and the 470

drone’s size. Li-SOCl2 – batteries afford two times higher energy density per kg compared 471

to others. While Li-air batteries can achieve up to seven times higher, however, they are 472

much more expensive than Li-Po and Li-ion. Usually Li-ion batteries are suitable for EV 473

applications. 474

The efficient battery type for a specific drone can be identified by analyzing the 475

following criteria: 476

• the power density affects the acceleration capabilities; 477

• energy density to identify the range; 478

• weight and volume which affect the range of the system; 479

• cycle life to find out how often the battery should be replaced; 480

• cost regarding the budget; 481

• safety and maintenance. 482

Where the power density is the value of power source, can provide at a specific instance, 483

whereas the energy density is the value that determines how long that amount of power 484

can be delivered. 485

Many literature reviews highlighted several solutions regarding the drawback of drone 486

battery system, and how to optimize energy consumption of drone. Different solutions 487

were proposed targeting the software and hardware level. 488

As software solutions, some of them were focus on trajectory planning, which presents 489

a reference input for the drone and based on the data received from that input, the drone 490

will execute the commands. Therefore generating an optimal trajectory from point to 491

point can be an effective solution, almost avoiding the singularities of the system and 492

the motions that require higher voltage for the rotors. Nowadays the optimal trajectory 493

is generated combining AI algorithms as genetic algorithm, Ta-bu search etc. Another 494

solution is adopted by researchers based on design an optimal control law, by generating 495

a cost function from velocity and try to minimize it. Different strategies are taken in this 496

field, some of them are linear [92] [93], [94], [95], as linear MPC (Model Predictive Control), 497

LQR (Linear Quadratic Regulator), H∞, some techniques are nonlinear as nonlinear MPC, 498

Back-stepping and slave mode [96]. 499

At the hardware level, a hybrid system implementation is recommended by using 500

different power sources instead to have one almost keeping the light weight of the drone. 501

As the drone market has different types of batteries, therefore the use of a good type can also 502

solve the problem, latest researches started to include the technology of super-capacitors 503

which presents a great solution to solve the energy storing problem. 504
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6. Energy Consumption Problems in Embedded Systems 505

Power consumption estimation of embedded systems is a very sensitive problem from 506

the beginning of embedded system design. This process is crucial for energy optimization. 507

Embedded design system parameter optimizations can result in design metric competition. 508

Decreasing power consumption will outcome in performance and size reduction. The 509

problem can be more critical when analyzing real-time embedded systems. Real-time 510

embedded systems with single or multiple processors need task scheduling. A good task 511

scheduler can save energy in the embedded system. The most critical performance parame- 512

ters of processor scheduling for real-time embedded systems are reliability, execution time, 513

and energy consumption. Optimizing the energy consumption of processor scheduling is 514

considered very useful to achieve the balance in the time limit requirements, reliability, and 515

increase power efficiency. In [97] is presented how to optimize the energy consumption of 516

the processor under three constraints: 517

• partial ordering relations between task modules, 518

• time limit, 519

• reliability. 520

Xiong et al. [97] developed algorithms for increasing power efficiency usage in multi- 521

ple processors real-time embedded systems. Based on DAG (Directed Acrylic Graph) and 522

QPSO (Quantum Particle Swarm Optimization), the operating mode can be determined 523

through a heuristic search algorithm for each processor. These algorithms were named 524

Directed Acrylic Graph Quantum Particle Swarm Optimization algorithm version I and II 525

(DAG_QPSO_I, and its improvement DAG_QPSO_ II). Using different operating modes, 526

every embedded processor has different voltage, frequency, and power consumption. This 527

results in different execution time, energy consumption, and reliability of the tasks, which 528

changes with the operating modes of the processors. In a system with multiple embedded 529

processors is critical the task scheduling, and to select the suitable operating mode of 530

the processors. The presented algorithms optimize the task scheduling and as a result 531

the power consumption is also optimized. Figure 6 shows a comparison between the 532

performance of the two algorithms in terms of number of nodes and power consumption. 533

Figure 6. Comparison between DAG-QPSO-I and DAG-QPSO-II

The conflict between the energy consumption demands of current modern processors 534

and the constrained battery capacity becomes more visible with the widespread use of 535

real-time embedded systems. One of the best technologies for energy management has 536

been identified the method called dynamic voltage scaling (DVS). The majority of current 537

researches shows that the use of DVS increased processor transient fault rates, which 538

is the result of size of logic gates (and their component transistors) gets smaller and 539
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smaller. Liu et al. [98] took into account the issue of allocating processing frequencies to 540

a collection of periodic real-time functions in order to reduce total energy usage while 541

maintaining reliability and timeliness. Depending on the meta-heuristic algorithms, Liu et 542

al [98] achieved the best energy consumption optimization and guaranteed the embedded 543

systems’ reliability by using a modern algorithm called ADWSOA (adaptive differential 544

whale swarm optimization) according to the optimization requirements. WSOA (Whale 545

Swarm Optimization Algorithm) is an algorithm for function optimization which is inspired 546

by the whales’ behavior of communicating with each other via ultrasound for hunting. 547

This algorithm is very powerful in solving multiprocessor scheduling problems [99], NP- 548

hard problems as such as the traveling salesman problem [100], vehicle routing [101], 549

classification problems [102], and routing problems of wireless sensor networks(WSN) 550

[103]. After applying the ADWSOA, they saved the optimized data from the algorithm on 551

a chain using the blockchain’s storable functionality, which could affect important queries 552

and result in a problem with the embedded system data security. Because of that, they 553

used DPCA (differential privacy on-chain creating) algorithm to safeguard the chain’s 554

data security. The experimental results proved that the ADWSOA can minimize energy 555

consumption in real-time embedded systems while maintaining security and reliability 556

[98]. 557

Because of the importance of deep learning applications in embedded systems, many 558

researchers have directed their attention toward enhancing energy efficiency by merging 559

neuromorphic accelerators (µBrain). Varshika et al. [104] aimed to increase the speed of 560

SDCNNs (computations of spiking deep conventional neural networks), by designing 561

multi-core neuromorphic hardware based on µBrain for improving energy efficiency. The 562

capacity of the neuron cores and synaptic connections must be heterogeneous in order 563

to reduce energy consumption (i.e., big vs. little cores). In comparison to mesh-based 564

Network-on-Chip (NOC), the run time and power consumption will be reduced due 565

to the manner the cores are connected to one another (using a parallel segmented bus 566

interconnect). In [104] suggested that using SentryOS (which is a compiler and run-time 567

scheduler) as a system software framework to link SDCNN inference applications in order 568

to improve the throughput of the system and optimising energy consumption for existing 569

previous design layouts. As a result of the study the improvements were: 570

• Energy consumption has been reduced between (37 and 98)% 571

• Latency has been reduced between (9 and 25)%, 572

• The application throughput has been increased between (20 and 36 )%. 573

Achieving reliability and optimal energy consumption is a vital goal in designing most 574

of the embedded systems MPSoC (multiprocessor systems on chip). Saberikia et al. [105] 575

searched for solutions to increase the efficiency and reliability of the Real-Time MPSoC 576

Systems by: 577

• Determining the safe range of speed for processors by finding the efficient points on 578

thee of energy-reliability versus processor speed. 579

• Calculating appropriate speeds for the processors that run the primary task, hot and 580

cold backups. 581

• Using the appropriate mapping to reduce the overlap of primary and backup tasks. 582

Comparing the proposed plan to the prior modern techniques, energy consumption is 583

reduced by 11% to 42% on average while maintaining a high level of reliability of 97%. 584

Multicore systems need a new point of view of software engineering when using 585

parallel computing methods. In [108] was analysed the effect of cache when using mul- 586

ticore systems in and embedded robot controller. From the processor-architecture level, 587

Frequent access to register files intensively can be considered a contemporary issue of 588

power consumption. A novel architecture is presented by [109] referred as a selective 589

register file cache incorporated with multi-banked register file organization. This caching 590

technique can lessen the load on the register file during read/write operations by capturing 591

the actively reused and short-lived operands in the register file. This architecture saves 592
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about 68% over conventional embedded processors and about 51% compared to Reduced 593

Instruction Set Computer (RISC) processor architectures. However, this saving is gained at 594

the expense of more additional hardware usage. 595

7. Energy Consumption Problems in the Field of Internet of Things 596

K. Parmenter in [107] deals with the energy consumption of data collection of the 597

Internet of Things (IoT). Internet of things can be looked as smart/intelligent interfaces 598

of embedded systems. Up to Business Insights the market for the Internet of Things (IoT) 599

products will be 1,463.19 billion USD by 2027, exhibiting a CAGR of 24.9% between now 600

and then. IoT can collect data and interconnected to the cloud or mobiles are useful. The 601

product range list is long when considering internet of things end products. Starting form 602

in the field environmental data collectors to auto electronics, collected data are processed 603

at the collection point or after transmission processed in a server, they are stored. Some 604

times the value of data must be cheaper than the cost of obtaining and processing data. 605

Tacking the vehicle data, or collecting someone health data with a mobile phone application 606

the cost of IoT system and associated fees to obtain the data might be more then the 607

information worth. IoT devices and all the interconnections needs highly efficient AC-DC 608

power supplies or DC-DC power modules with energy harvesting solutions. Power supply 609

devices should be efficient from the point of view of low and full load as stated in [107]. 610

Also the power supplies have to manage the dynamically fast transient load currents and 611

need to manage power down with very low sleep power level modes. Also IoT must be 612

able to acquire, store and/or transmit data potentially in burst modes [107]. 613

The Internet of Things (IoT) is a developed communication concept in which practically 614

every device in a real-world setting is given connectivity and intelligence [110]. IoT 615

systems need resource management strategies to guarantee service quality, avoid energy 616

consumption, and prevent resource fragmentation. Xu et al. [110] proposed a way to 617

manage IoT resources using a nature-inspired optimization algorithm (ABC Artificial 618

Bee Colony) and a Markov model (MM) to resolve these constraints in order to achieve 619

resource management strategy. In terms of execution time and energy consumption, the 620

results showed that the new strategy was effective. Figs. 7, 8 and 9 indicate how energy 621

consumption varies according to the number of activities, processing capacity, and nods. 622

According to these findings, the suggested technique operates better in IoT networks than 623

other similar strategies. Energy use is shown in Fig.7 based on the total number of tasks. 624

The amount of energy used increases as the number of tasks increases. The suggested 625

technique outperforms the GA (Genetic Algorithm), ACO (Ant Colony Optimization), and 626

ABC in terms of energy consumption (Artificial Bee Colony). 627

Figure 7. Comparison of energy consumption of the proposed method to ABC, ACO, and GA
algorithms in terms of the number of tasks
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Fig.8 displays the relationship between energy use and computational power. All 628

methods have drastically reduced their energy usage as processing power has grown. The 629

suggested approach distributes tasks to IoT devices depending on the resources that can be 630

used to process IoT devices, which utilizes the least amount of energy. 631

Figure 8. Comparison of energy consumption of the proposed method to ABC, ACO, and GA
algorithms in terms of computational capacity

The relationship between energy use and node count is seen in Figure 9. Energy 632

consumption rises continuously as the node count rises. It is clear that the proposed 633

strategy performs better than alternative methods. GA is superior to the ABC and ACO 634

approaches. ACO performs less well than other approaches, in addition. 635

Figure 9. Comparison of energy consumption of the proposed method to ABC, ACO, and GA
algorithms in terms of the number of nodes

8. Conclusions 636

In this paper, an overview about energy consumption of different robotic systems has 637

been discussed. The analyses of the energy consumption regarding different systems were 638

studied starting from the most complex systems (such as industrial robots, autonomous 639

robots, UAV) to the basic ones (embedded systems, IoT). Most of industrial robots suffer 640

from energy consumption, which is very hard to calculate. Due to that, all of the research 641

focused on solving this problem with saving the reliability and reducing the execution 642

time. The most common solution is to find the optimal path by finding the best speed and 643

accelerating parameters. Optimal trajectory generation can be executed using AI techniques 644

as genetic algorithm, Dijkstra algorithm, Ta-bu search, Fuzzy interpolation. 645
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Autonomous vehicles become very popular and fast spreading nowadays. However, 646

energy consumption is still a hot research area up to this day. Energy problems regarding 647

AVs can be summarized into power supply sources, the attached sensors and vision devices, 648

control systems, networking and communication devices. Batteries are still the dominant 649

power source, but the main drawbacks are the high cost, the limited range, and the charging 650

time. Super-capacitors can be a solution for energy storing but they are still under research. 651

Eco-driving is current energy technology and can reduce power effectively. Eco 652

driving combined with several methods like heuristic search of goals, predictive driving 653

circumstances, velocity prediction, model predictive control, artificial neural network 654

prediction model can upgrade the energy efficiency. 655

In case of UAVs, energy consumption depends on several factors related to environ- 656

mental parameters such as wind and gravity related to the payload of the drone, or the type 657

of power source which has a high effect on maintaining time flight and the communication 658

between the pilot and the drone. These factors can be compensated using different solutions 659

at software or hardware level. Software solutions generate an optimal path that avoids 660

the singularities of the drone and avoid also motions that consume higher voltage for the 661

rotors. Another solution is given by building an optimal control law that optimizes a cost 662

function related to the velocity. At the hardware level, a hybrid system implementation is 663

recommended by using different power sources instead to have one almost keeping the 664

light weight of the drone. The issue can also be resolved by using a good battery, or as said 665

for autonomous vehicle systems super-capacitors can solve the energy storing problem. 666

Energy optimisation problem in embedded systems will be always a problem for 667

real-time computing with or without operating systems. The problem leads to software and 668

hardware solutions also. Designing embedded systems is always an optimisation problem 669

between the design parameters, such as computation speed versus power dissipation. 670

Achieving the reliability and the optimal energy consumption is a vital goal in designing 671

most of the MPSoC. Furthermore, an analyses is necessary for a given application if is really 672

need to MPSoC (such as mobiles), instead to optimise the application using one processor 673

and consuming less energy. 674

Internet of Things is still suffering of several obstacles as information/price ration. A 675

good resource management strategy in data collection, store and transmission should be 676

the solution for energy. The needed information should be available at the right time in 677

the right place with the low cost of electric power. The resource management strategies 678

are used to guarantee service quality, avoid energy consumption, and prevent resource 679

fragmentation. 680

Finally one can conclude that can not propose a universal solution for solving the 681

energy problems in automation and robotic systems. The solution always depends on the 682

cost function of the problem in hand. 683
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