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Abstract: At present, diversified and highly concurrent businesses in the Internet industry often 
require heterogeneous databases formed by multiple databases to meet the needs. This report intro-
duces database kernel SG-ColBase we developed. After achieving read and write concurrency con-
trol, data rollback, atomic log writing, and downtime data redo to ensure complete transaction sup-
port. The parallelism of database kernel execution is extended through field level locks and snapshot 
reads. Use the Bloom filter, resource cache pool, memory pool, skip list, non blocking log cache, and 
asynchronous data writing mechanism to improve the overall execution efficiency of the system. In 
terms of data storage, column storage, logical key and LSM-tree are introduced. While improving 
the data compression ratio and reducing data gaps, all disk data operations are written in incremen-
tal order. With the characteristics of asynchronous batch operation, the data writing speed is greatly 
improved. Thanks to the continuous feature of vertical data brought by column storage, the disk 
scanning brought by vertical traversal is reduced, which is a qualitative leap in efficiency compared 
with traditional relational databases in the big data analysis scenario. SG-ColBase can reduce the 
use of heterogeneous databases in business and improve R&D efficiency. 
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1. Introduction 
With the rapid development of the Internet. With the proliferation of users and the 

continuous expansion of business, the traditional row relational database is often unable 
to respond well to the following ultra-high concurrency and large data analysis and oper-
ation requirements due to its own architecture design, but the business with high data 
consistency requirements (OLTP) can not be separated from the row relational database 
that supports complete transactions for the time being[1]. Therefore, many Internet com-
panies choose to use some NoSQL databases to assist row relational databases to form 
heterogeneous databases[2] to meet various needs. For example, Redis is used as an out 
of process cache to reduce requests for row relational databases and improve system con-
currency[3]. HBase is used for online big data analysis and statistics (OLAP) to make up 
for the lack of large data operation and retrieval in row relational databases[4]. However, 
such assistance comes at a cost. The first thing is to set up services for these NoSQL data-
bases. It is not enough to set up a small number of instances of such services. A single data 
partition often requires multiple instances for high availability, which increases the ser-
vice operation cost enormously. Secondly, the introduction of databases requires addi-
tional consideration of data consistency, which also increases the difficulty of team devel-
opment. This is a great pressure for small and medium-sized Internet companies. 

Improving the concurrency of database systems is an eternal topic in the database 
field, and researchers have proposed many methods. In terms of reducing the mutual ex-
clusion of read and write operations, MVCC (Multi version Concurrency Control)  uses 
redundant multi version data, operation version number and deletion version number to 
locate the data version that the transaction should read to achieve read and write paral-
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lelism. In addition, the big data analysis and statistics needs are often met by using a col-
umn database, which uses column storage[5]. Compared with row storage, it is more com-
pact, and because column data is stored continuously, it has natural advantages in column 
oriented statistical analysis. C-Store first applies column storage to the database. It redun-
dantly divides data into different projects by column. This allows C-Store to select the 
optimal group of projects when querying, minimizing the cost of query execution. 
BigTable[6] innovatively proposed the concept of column clustered storage, which to 
some extent has the advantages and disadvantages of column storage with high data com-
pression ratio and row storage with convenient data tuple extraction. However, it can only 
have one sort key in the same logical table. This structure limits some search performance. 

This project has completed the module implementation and system combination of 
SG-ColBase, A Relational column database kernel. The project is independently devel-
oped using C++. It surpasses traditional relational databases in parallelism, execution ef-
ficiency, big data operation analysis, etc. 

2. System Design 
In order to surpass traditional relational databases in parallelism, execution effi-

ciency, big data operation analysis and other aspects, we need to make improvements in 
some key modules and components. 

In terms of extending concurrency, use field level locks instead of row level locks, 
which makes it possible for multiple transactions to operate on the same row of data with-
out competition. An additional snapshot data is maintained so that reads and writes to 
the same resource can be performed in parallel between transactions. 

In terms of improving execution efficiency, each column of data automatically main-
tains a bloom filter. Before accessing specific data, use the bloom filter to filter requests to 
reduce data access. Set up cache pool and memory pool in user space to reduce system 
calls. Use skip list instead of red black tree as the memory structure of the index to im-
prove the speed of index retrieval and modification. Build a non blocking log cache to 
eliminate the blocking of transaction commit when the log cache is written to disk. Asyn-
chronous data writing mechanism to reduce transaction submission time. The commit op-
eration ends after the synchronized log is appended to the disk. 

In the aspect of big data operation analysis, because of B+ Tree index, the data in 
traditional relational databases are stored in primary key order. A large number of data 
insertion operations will result in a large number of random disk accesses and disk node 
splitting. We choose to use the column data storage structure and LSM-tree disk index 
structure, so that all operations are written in incremental order, which improves the data 
writing speed. It also brings faster analysis speed of large amount of data. 

In addition, consider the future distributed cluster version. In the distributed cluster 
scenario, data is stored in partitions, and many operations need to be completed jointly 
by multiple data partitions. The upper layer needs a proxy service to coordinate calls. 
Therefore, our stand-alone database kernel only provides some basic functions of addi-
tion, deletion, modification and query. Multiple simple functions can be used together to 
realize various complex queries. 

To sum up, the system architecture is divided into three layers: 
1. Organization calling layer. Check the parameter format and data type, and make 

encapsulation calls for each module component. 
2. Module component layer. Perform various operations, such as data extraction, 

data retrieval, data writing, and data filtering. 
3. Infrastructure layer. Provide underlying services, such as resource cache pool and 

buddy memory allocation pool established in user mode. 
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Figure 1. System architecture. 

3. Module Design 
Resource Cache Pool. As an IO intensive application, the database kernel must use 

cache to reduce disk IO. However, if you use the page cache provided by the operating 
system to cache resources, you need to make a system call every time you get resources, 
and copy the data from the kernel space to the user space. Therefore, we choose to disable 
page caching and cache resources in user space to reduce the overhead of kernel mode 
user mode switching. We choose to use the LRU algorithm[7] for cache elimination to 
balance cache hit ratio and cache elimination efficiency. In order to improve the parallel-
ism of resource cache pools, we store resource partitions in different resource cache pools 
according to the unique ID of the resource, and lock the partitions to control access. The 
consistent hash algorithm[8] is used to reduce the impact on the overall resource pool 
operation when the resource pool expands partitions. 

Data Architecture. To reduce the data footprint, we use logical keys instead of phys-
ical keys. And partition resources (units loaded into memory from disk) on the column. 
When accessing data, it will be obtained from the resource cache pool in column segments, 
and the data in the column segments will be continuously stored in memory. This design, 
in combination with the user mode resource cache pool, makes large-scale column access 
almost equal to sequential memory access, greatly improving the efficiency of large-scale 
data analysis and statistics. The deletion of data requires additional segment records. This 
logical deletion design reduces data movement. All data modification operations are writ-
ten in incremental order. 

Index Architecture. The index uses partition design to improve execution efficiency 
and parallelism. During access, the system will perform a binary search in the partition 
information table based on the key value to determine the index partition where the key 
value is located. 

Disk organization structure. Traditional relational disk databases often use B+ Tree 
as the disk structure of the index, but it is not friendly to the index modification of large 
amounts of data[9]. For example, writing a large amount of data in the middle of B+ Tree 
will cause a large number of disk moves and random accesses. Therefore, we choose to 
use LSM-tree with high write performance. Each time the index is modified, only the write 
operation record list (key order) needs to be appended at the end of the file. LSM-tree also 
has its own problems. Every time it reads into the disk, it needs to merge and sort the 
operation record lists of multiple key orders and restore them to the key value list of the 
key order. However, thanks to the partition mechanism, the workload is not too large each 
time. For further optimization, this partition will be fully merged when the number of 
operation record lists reaches the threshold to improve the reading efficiency[10]. 

Memory organization structure. To better match LSM-tree, skip list[11] is used as 
the data structure indexed in memory. It can directly build the index node on the ordered 
key value linked list given by LSM-tree. Compared with red black tree, hop table has 
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higher performance. The implementation also provides parameters such as layer node 
multiple to balance the data retrieval performance and index modification performance. 

Bloom filter architecture. In order to reduce the full reading of the bloom filter data, 
the bloom filter is stored in segments. When judging data, you only need to read the data 
in the data partition. This can improve execution efficiency and parallelism. Partition ac-
cording to the hash value of the key, and use the binary search algorithm to locate the 
partition. Since the hash value is far greater than the range represented by the partition 
bloom filter, it is necessary to map by taking the maximum value of the modulus range 
interval of the hash value. When the maximum value of the range interval is the power of 
2, the mapping is uniform. We use Bitmap[12] as the underlying data structure of the 
Bloom filter. When checking whether the data exists, obtain the bit at the location of Bit-
map data hash value to determine whether the data exists. Due to data collision, it is dif-
ficult to delete the bloom filter. Therefore, the bloom filter does not delete data. In order 
to prevent the false positive rate of the bloom filter from being too high, all data will be re 
scanned regularly to reconstruct the bloom filter. 

Transaction. (1)Isolation: Multiple methods are used to isolate the impact of multiple 
users on each other when operating the database. In the scenario with high requirements 
for real-time data, access to data is controlled through the read/write lock on the data. In 
the scenario where only legal data is required to be read, read snapshot data to isolate 
read/write concurrency. The isolation level of transactions during snapshot read is read 
commit. (2)Atomicity: Atomicity in memory is realized by locking. In disk operations, 
atomicity refers to that there are only two states of disk data modification: success and 
failure, and there is no intermediate state. This is difficult to achieve in the scattered data 
on the disk. We choose to use an atomic log appending mechanism to achieve this. The 
appended log may exceed the size of a disk sector, which makes the log writing in an 
intermediate state. Select to remove the intermediate state by adding the valid file length 
field to the file header. (3)Durability: When submitting, the logs are written to the disk 
first and then to the memory, with an effective downtime data redo mechanism. The data 
will not be lost after the commit function is executed successfully. 

Asynchronous incremental write. When a transaction is committed, the log is writ-
ten to the disk and the data is not synchronously waiting to be written to the disk. Instead, 
the task is handed over to the asynchronous incremental write thread. This thread will 
batch write data when the number of logs in the cache exceeds the threshold, and update 
the data writing progress. The problem with this mechanism is to ensure that all opera-
tions on the resource have been written to the disk before it is loaded into the disk. De-
layed updates are always advocated to improve performance. Therefore, we choose to 
determine whether there are logs in the cache that have not been written by this resource 
before reading resources from the disk. If there are logs in the cache, all logs in the cache 
will be written to the disk. In order to achieve a high level of delayed updates. 

Non-blocking log cache. After the log cache is full, the asynchronous write thread 
will lock the log cache and start writing based on the log increment in the cache. This often 
takes a long time, during which the log cache cannot provide caching services for trans-
actions. In order to reduce the impact on transaction commit, a non blocking cache pool is 
developed. The two internal cache pools alternately provide external log caching services. 
When one cache is full, it writes data to the disk, and the other cache provides external log 
caching services. 

Data redo after downtime. During downtime recovery, read logs that have not been 
updated to disk according to the effective log progress and data write progress. Because 
the data writing progress may not be updated in time, the downtime data recovery needs 
to achieve idempotence. 

Data snapshot read. Traditional Copy-On-Write copies a snapshot before the opera-
tion, then reads the snapshot during the operation, and then points the pointer to the 
snapshot after modification. This is used to isolate read and write operations. Under this 
mechanism, there is no need to use locks for serial read and write operations, which in-
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creases the parallelism of the system. But it will bring a lot of copy and memory applica-
tion operations, and there may be no concurrent read operations during the write opera-
tion, which makes many operations useless. We choose to maintain a snapshot data all 
the time to completely isolate the current data and snapshot data. Update the snapshot 
incrementally every time the data is submitted, reduce the full copy of the data, and re-
quest memory only once when creating the snapshot. 

Memory Management. We create memory pool in the user space to reduce memory 
requests in kernel mode. And use buddy allocation algorithm to reduce memory fragmen-
tation. Synchronous memory release will also consume a lot of service thread time. There-
fore, when a large amount of memory is released, we submit the task to the thread pool 
for asynchronous execution to reduce the blocking of service threads[13]. 

Flow Control. During business operation, excessive requests may occur at some time. 
If not limited, slow response and heavy system load will occur due to a large number of 
thread switches. Traditional flow control methods, such as sliding window and leaky 
bucket algorithm [14], limit the number of requests accepted per unit time. It does not take 
into account the problem that a large number of requests are piled up in the system be-
cause the request has not ended for a long time. We have developed an improved token 
bucket algorithm to limit the number of parallel service threads in the system: transac-
tions correspond to tokens, and transaction pools correspond to token buckets. When the 
database kernel is initialized, build a transaction pool with a specified number of transac-
tion objects. When users request, they first need to request a transaction object from the 
transaction pool. If there is no transaction object in the transaction pool, block until the 
transaction object appears in the transaction pool and gets successfully. The database op-
eration starts. After execution, put the transaction object back into the transaction pool. 
This allows the maximum number of parallel service threads in the database kernel to not 
exceed the threshold set at initialization. The thread safety of the transaction pool is guar-
anteed by mutex, and the semaphore is used to limit the number of parallel accesses. 

4. Data Storage Implementation 
Data in SG-ColBase is stored in columns. Compared with row storage, multiple 

threads in column storage can access different fields of a row of data at the same time 
without data competition. BigTable model is based on traditional KV database storage, 
which leads to a large number of redundant physical key storage, and the actual data only 
occupies a small part of the storage space. Data in SG-ColBase is organized by logical keys, 
which increases the proportion of effective data in the storage space. To reduce the load 
on a single data storage module, we divide the data on the column into multiple segments. 
Each segment serves as a resource (unit of disk storage and loading into memory). Because 
column data is stored tightly according to the number of bytes occupied by the data type 
of the field. This feature enables you to directly locate the location of data on the disk and 
modify it through subscripts when modifying data. Because the data is stored in an unor-
dered and decentralized way, the free column segments can be randomly selected for in-
sertion at the end of the data insertion operation. In order to prevent the relative position 
of the key value from moving during data deletion, additional resources are needed to 
incrementally record the subscript of the deleted data (i.e. logical deletion). 
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Figure 2. Data structure of column storage. 

Because column data is stored tightly according to the number of bytes occupied by 
the data type of the field. This feature enables you to directly locate the location of data 
on the disk and modify it through subscripts when modifying data. Because the data is 
stored in an unordered and decentralized way, the free column segments can be randomly 
selected for insertion at the end of the data insertion operation. In order to prevent the 
relative position of key values from moving when deleting data, additional resources are 
needed to incrementally record the subscripts of deleted data (i.e. logical deletion). 

In batch operation, there may be some operations that can be simplified. For example, 
the same data can be modified to one value first and then to another. Another example is 
to add a data first and then modify the data to another value. The result of such multi-
step continuous operation is the same as that of the final value. For this kind of operation, 
we have implemented a simplification algorithm, which can identify and simplify the op-
eration chain of data. To reduce unnecessary random writes during incremental data 
writes. Sort data by disk location before writing. 

5. Index Storage Implementation 
In order to avoid the cost of node splitting and random access caused by using B+Tree 

as the disk index, we use LSM-tree as the index disk storage structure; Use skip list as 
ordered collections in memory. This allows for faster operation. 
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5.1. LSM-Tree 
From a macro perspective, the storage structure of LSM-tree in disk is multiple or-

dered operation sequences. This allows us to modify the data by appending the operation 
record sequence to the end of the file. Compared with random writing in the overall or-
dered set, the efficiency of incremental data writing has been greatly improved. However, 
such a storage structure brings disadvantages to reading. In B+ Tree, because the data is 
globally ordered, you can only read some of the data. But in LSM-tree, data is divided into 
multiple ordered operation sequences. Reading only some of them will not get correct 
results. Therefore, every time we read, we need to read all the data and merge and restore 
multiple ordered operation sequences. 

To reduce the cost of LSM-tree reading. First, we partition the index on the column 
by value range. When retrieving data, we only need to read the partition of the data to be 
retrieved. This greatly reduces the data to be read for data retrieval. In order to keep the 
complexity of data retrieval unchanged, binary search algorithm is used to locate parti-
tions. When there are too many ordered operation sequences in the LSM-tree disk storage 
of a single partition, the deserialization will result in a long merge operation. We have 
developed a merging mechanism. When the number of ordered operation sequences ex-
ceeds the threshold, the disk storage will be merged as a whole. Finally, build a resource 
cache pool in the user space to reduce the number of disk reads. 

5.2. Skip List 
The biggest problem with red black trees as indexed memory storage structures is 

that the time complexity of building them is O(nlogn). Even if it is created based on sorted 
collections read from disk, the complexity remains the same. skip list is actually an or-
dered linked list with indexes. Compared with traditional ordered linked lists, data access 
can be accelerated through index nodes. And it still retains the advantage that linked lists 
are easy to modify. Therefore, it can directly generate index nodes on the ordered linked 
list provided by LSM-tree after deserialization, so as to achieve O(n) complexity of build-
ing skip list. The layer multiple parameter is provided in the implementation to balance 
the efficiency between modification and query. After testing, compared with red black 
trees. The execution speed of skip list is improved by about 30% in both modification and 
query operations. 

6. Resource Cache Pool Implementation 
To reduce the cost of system calls, we disable the page cache of the operating system 

and establish a resource cache pool in the user space. 
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Figure 3. Resource cache pool architecture. 

6.1. LRU Cache Elimination Mechanism 
LRU generally need a queue to maintain access information and a hash table to 

quickly extract resources. The key to improving the execution efficiency of the cache pool 
is to let the data in the two data structures access each other with O(1) complexity. The 
hash value is used as the linked list node, so that the hash table can access the queue O(1). 
The resource pool can efficiently maintain its position in the queue when extracting re-
sources. Then, access the hash table through the key value O(1) in the node through re-
dundant keys. In this way, when resources are eliminated, the storage of the least fre-
quently accessed elements in the queue in the hash table can also be quickly deleted. 

 
Figure 4. Data structure of LRU. 

6.2. Partition Parallelism 
When concurrent operations exist in the resource pool, some measures are needed to 

ensure data consistency. For example, the non-lock CAS operation. It can ensure con-
sistency in user mode and reduce system calls. It is suitable for data concurrency with less 
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competition and short operation time. However, the resource cache pool will have ex-
tremely high concurrency due to a large number of calls made by a large number of user 
threads, and if the cache page is missing, triggering IO will result in long-term operations. 
Therefore, CAS does not apply to resource pools. The other is to lock data access to ensure 
consistency. However, when a large number of threads compete for a lock, the parallelism 
is too low, resulting in a large number of threads blocking. In order to improve the paral-
lelism of resource pools, we separate data partitions. Access to data in the same partition 
competes for a lock. When locating partitions, binary search algorithm is used. In this way, 
the parallelism of the resource pool can be controlled by the partition isolation number 
under the condition that the resource extraction efficiency is almost unchanged. 

Hash modulus is usually used as the partition basis, which has the lowest execution 
complexity. However, when you want to increase partitions to expand the overall concur-
rency of the resource pool (increase partitions), you need to re hash modulus. This makes 
almost all data need to move partitions, which will make the entire resource pool unavail-
able during the move process. In order to reduce the impact of extended parallelism on 
the overall availability of the resource pool, we use a consistent hash algorithm[8] as the 
partition basis. This algorithm is based on the range of hash values as resource partitions, 
and will split an original partition when the degree of parallelism expands. This operation 
only affects the partition where the split operation is performed, and has little impact on 
the overall availability of the resource pool. 

6.3. Resources Asynchronous Release 
When the LRU performs cache elimination, the eliminated resources may still be 

used by user threads. Therefore, we need a mechanism. Wait for all users to use before 
releasing. If a variable that guarantees memory visibility is used to mark and wait in a 
loop. Although waiting can be completed in user mode, other user threads often operate 
on resources for a long time. This will result in a large amount of CPU time. Therefore, we 
use read/write locks: all resource pool acquisition operations will apply read locks to the 
acquired resources. Before releasing resources, we need to obtain the write locks of the 
resources to be released. In this way, when acquiring resources, there will be no blocking 
because the read lock and the read lock are shared. The resource release operation will 
also block until all read locks are released, that is, all user threads use the resource. During 
specific operations, the operation of removing data from the data structure is performed 
synchronously to ensure that other user threads cannot obtain obsolete resources. Block-
ing, waiting and resource release are handed over to the thread pool for asynchronous 
execution, reducing the lock occupying the resource pool partition. 

7. Transaction Implementation 
7.1. Concurrency Control based on Read-Write Lock 

The operations on resources are divided into read operations and write operations. 
Multiple read operations can be executed in parallel, but read-write and write-write op-
erations cannot be executed in parallel due to data competition. Based on the above situ-
ation, read/write locks are used to obtain resource locks before accessing resources to con-
trol concurrent access of multiple user threads to the same resource. In order to balance 
the consistency and execution efficiency of transactions, different isolation levels are pro-
vided through different invocation methods. For example, the read commit isolation level 
(current read) releases the resource lock immediately after access, and the repeatable read 
isolation level releases the resource lock after transaction commit. The locking mechanism 
will ensure the atomicity, visibility and orderliness of resource access, thus further ensur-
ing the atomicity and isolation of data in the database memory. 

Considering that OLAP scenarios need to access all data in a single column. Getting 
a lock once for each data in the column will result in a significant performance degrada-
tion. Therefore, the lock granularity is not refined to the level of each row and field, while 
the resource level is locked (each column segment and field). 
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7.2. Concurrency Control based on Snapshot 
Generally, the Copy-On-Write mechanism is used to solve the problem that the above 

read and write operations cannot be concurrent. The data will be copied before the write 
operation, and the copied data will be written. Finally, the modified data will be overwrit-
ten. It is generally used in business scenarios where more reads and less writes are needed. 
In the large-scale data writing scenario, the execution efficiency will drop sharply due to 
a large number of memory application operations. MVCC multi version concurrency con-
trol used in traditional relational databases will bring the same problem. 

In order to solve the above problems, a data snapshot mechanism is developed. The 
data snapshot is created when the resource is read into memory. It has the same life cycle 
as the resource and is completely isolated from the resource. Users do not need to make 
copies before writing resources. When the user can accept the transaction isolation level 
of read commit (snapshot read), the snapshot data will be read during the read operation. 
Because snapshot data is completely isolated from resources, read operations on snapshot 
data and write operations on resources can be performed in parallel. The snapshot data 
will be updated incrementally according to the log when each transaction is committed. 
This snapshot mechanism can support both parallel read and write operations and large-
scale data writes. Snapshot data requires a read/write lock to control access. The write lock 
is applied when the snapshot is updated, and the read lock is applied when the snapshot 
is read. 

7.3. Ensure Atomicity of Log Writing 
The operation log of the transaction will be written when the transaction is commit-

ted. If the operation log is too long, multiple sector writes may be involved. This causes 
the log write operation to be non atomic. This will lead to data inconsistency during down-
time. In order to make appending and writing atomic, a field is set in the file header to 
record the effective length of the file (8 bytes, atomic read and write). After appending 
and writing, atomic log appending and writing can be realized by modifying the effective 
length field of the file. 

 
Figure 5. Sequence structure of logs on disk. 

7.4. Non-blocking Log Cache 
When a transaction is committed, the log and log cache are written to disk. After the 

logs accumulate to the threshold, the changes to the data will be synchronized to the disk 
according to the logs. For the log cache, the transaction commit operation is a write oper-
ation, and the read operation is to read the log and synchronize the data changes to the 
disk. Therefore, data synchronization and submission operations cannot be performed in 
parallel. In order to reduce the blocking of transaction commit operations during data 
synchronization, we developed a non blocking cache. It is internally composed of two 
caches, namely service cache and synchronization cache. The service cache provides log 
caching services for transaction objects. When logs accumulate to the threshold, the cache 
switches. The service cache is switched to synchronous cache, and the data changes are 
synchronized to the disk according to the log. The synchronization cache is switched to 
the service cache to provide services to the transaction object. 

In the implementation, we considered that when the cache switch is triggered, the 
synchronization cache may not have finished synchronizing changes to disk. Therefore, 
we choose to block and wait for the synchronization cache to complete before the cache 
switch. 
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Figure 6. Double Cache Service. 

7.5. Asynchronous Data Writing 
To reduce the blocking during transaction commit, the commit thread returns imme-

diately after the log and log cache are written to disk. Give the data synchronization task 
to the dedicated thread for asynchronous execution. Use semaphores to control thread 
data synchronization. Specifically, the semaphore of the number of logs will be released 
after the transaction is committed, and the synchronization thread needs to obtain this 
semaphore before each data synchronization. When there is no acquisition, the CPU will 
be released. Update the data synchronization progress field in the file after the batch data 
synchronization is completed. 

Asynchronous data writing may result in data changes not being synchronized to 
disk before resources are re read into memory. To prevent this, we have developed a 
mechanism to determine whether there are changes in the log cache that have not been 
synchronized to the disk before each resource is read into the disk. If it exists, the sema-
phore will be released directly to force data changes to be synchronized to the disk. Read 
resources into memory after successful synchronization. To achieve efficient and secure 
asynchronous data writing. 

Long log files may cause insufficient disk space. Therefore, after each data synchro-
nization, if the log file length exceeds the threshold and all data changes in the file are 
synchronized to the disk, the log file is cleared. Reduce the disk space occupied by log 
files. 

7.6. Data Redo after Downtime 
Based on the previous work, we have made many preparations for downtime data 

recovery: atomic logs are written to disk, logs are written to disk first and then to memory, 
and idempotent data synchronization. During downtime data recovery, the effective file 
length field and data synchronization progress field are used to determine the logs that 
are not synchronized to the disk. Read and synchronize data changes to disk to update 
data synchronization progress. Because the data synchronization operation is idempotent, 
even after the data synchronization, the data synchronization progress field is not suc-
cessfully updated due to downtime, resulting in the synchronization of the same data 
during data recovery. Data consistency can still be guaranteed. 

8. Experiment 
We compare SG-ColBase with MySQL and HBase. SG-ColBase and MySQL run on 

Windows PC with i7-9750H CPU / 16G memory. HBase runs on AliCloud ESC with five 
regional servers. 

In order to facilitate the experiment, the test table only has two fields: name and age, 
which are fixed length strings and four byte integers. And create an index in the age field. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2022                   doi:10.20944/preprints202211.0220.v2

https://doi.org/10.20944/preprints202211.0220.v2


 

 

MySQL additionally creates a self increasing primary key field. Since SG-ColBase has its 
own logical primary key, it does not need to be created. 

When SG-ColBase creates a table, each column of data is stored in 1000 segments, 
and the auxiliary resources of the field have 10 and 50 partitions respectively. 

8.1. Stress Test for Transaction 
Test scenario: Each transaction inserts 100 rows of random data into the database, 

totaling 10000 transactions.  
Because MySQL's transaction features are relatively complete. This experiment uses 

MySQL compare with SG-ColBase. 

Table 1. Transaction test results. 

Database 1 Thread 4 Thread 16 Thread 
SG-ColBase 238 353 436 

MySQL 119 104 87 
1 The data displayed in cells is TPS (transactions per second). 

As a whole, there is a TPS gap between MySQL and SG-ColBase. MySQL and SG-
ColBase transactions adopt asynchronous write mechanism. However, because MySQL 
uses B+ Tree indexes, when inserting random data asynchronously, it will cause random 
disk writes, or even disk data moves. This causes asynchronous write threads to occupy 
disk time for a long time, affecting transaction submission. SG-ColBase uses LSM-tree in-
dexes, which are written incrementally in sequence. It greatly reduces the consumption of 
asynchronous disk time and the impact on transaction submission. MySQL SQL parsing 
is also the reason for the gap. 

The TPS of SG-ColBase increases with the increase of the number of threads. This is 
because the index files are written in batches in order at an extremely fast speed, making 
the CPU the bound of TPS. And the data insertion mechanism randomly selects data seg-
ments, reducing the competition of resources between threads. Therefore, the increase of 
threads improves the TPS. 

The TPS of MySQL decreases with the increase of the number of threads. This is be-
cause the random writing speed of index files is slow, and disk IO is the bound of trans-
actions. The increase in the number of threads will block due to data competition. 

8.2. Stress Test for Query 
Test scenario: In the test table of 10000k pieces of data, the test randomly queries 

1000k times according to the age field (indexed). In order to simulate real business scenar-
ios, some query databases do not exist.  

In this experiment, HBase was compared with SG-ColBase. 

Table 2. Query test results. 

Database 1 Thread 4 Thread 16 Thread 
SG-ColBase 114942 256410 154320 

HBase 61266 142654 265394 
2 The data displayed in cells is QPS(queries per second). 

The QPS of SG-ColBase is significantly ahead of HBase when it is single threaded. 
This is mainly because SG-ColBase uses the data architecture of the logical primary key, 
which saves a lot of memory and allows the memory to hold more effective data. The 
cluster network IO of HBase is also the cause of the gap. This lead continues at 4 threads. 
When the number of threads reaches 16, the QPS of SG-ColBase starts to decline. The rea-
son is that the system cannot allocate enough threads for the process, resulting in a large 
number of thread switches. HBase benefits from the distributed cluster architecture, and 
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queries are allocated to multiple machines. The future distributed SG-ColBase will im-
prove this problem. 

8.3. Stress Test for Big data Writing 
Test scenario: Single thread writes a large amount of random data to the database. 

Table 2. Writing test results. 

Database 150k Data 15000k Data 
SG-ColBase 7 603 

HBase 23 417 
3 The data displayed in cells is time required (seconds). 

Under the scale of 150k data, the write performance of SG-ColBase is significantly 
better than that of HBase. In addition to the network overhead under the distributed ar-
chitecture, SG-ColBase's index file segmentation technology has also played a great role. 
In the scenario where 15000k pieces of data are written, HBase is faster than SG-ColBase. 
It’s because the distributed architecture allocates the disk write pressure during large-
scale writes. 

9. Conclusions 
With the rapid development of the Internet industry. In order to save operating costs, 

we hope to reduce the use of heterogeneous databases. It is hoped that one database can 
solve both OLTP and OLAP services. This report shows our self-developed solutions. 

In terms of data storage structure, we innovatively use logical keys and store the data 
in an unordered manner by column segment. To achieve the purpose of improving the 
proportion of effective data in memory and accelerating the retrieval and analysis of large 
quantities of data. In terms of index storage structure, we choose to use the combination 
of skip list and LSM-tree, and store them in segments on the disk. It improves the speed 
of asynchronous database writing and reduces the occupation of disk. And use the strat-
egy of regular merging to improve the loading speed. 

In terms of improving the running speed. We have developed a highly concurrent 
and scalable resource cache pool in the process to reduce disk access and system calls. 
Implemented an in-process buddy memory pool to reduce system calls for memory. A 
non blocking log cache is developed to eliminate the blocking of transaction submission 
during asynchronous writing. A snapshot data maintenance and read mechanism is de-
veloped to make read and write parallel. Implemented the Bloom filter to reduce the in-
valid execution of the database. 

According to the experimental results, the performance of SG ColBase in some sce-
narios exceeds that of MySQL and HBase. However, in terms of reading and writing large 
amounts of data, it is limited to the current stand-alone architecture and still slightly infe-
rior to HBase. Future distributed versions will address this issue. 

Access Project 
SG-ColBase: 一种高效的列式数据库 (gitee.com) 
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