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Abstract: The emerging advancements in separation and classification of various biological matters
(e.g., living cells and proteins) using magnetic levitation (MagLev) technology have proven to be
effective for improving disease diagnostics. MagLev technique has the capacity to detect and sepa-
rate useful diagnostic biomarkers from biocomplex environments (e.g., blood and plasma), mini-
mizing the unpleasant daunting task of sample preparations and labeling procedures. Here, we
demonstrate the capability of this technique combined with image analysis and machine learning
approaches for discriminating the various types of multiple sclerosis (MS) as an important model
disease. To arrive at a systematic expert system, we combined robust statistical analysis with ma-
chine learning to (1) detect and remove outliers from the raw MagLev image datasets; then (2) pro-
cess the images and output a low dimensional representation of massive data without losing the
main statistical features; and finally (3) predict the MS clinical disease type (Relapsing-Remitting,
Primary-Progressive, or Secondary—Progressive) using a classifier. This is expected to improve MS
diagnostics since the current practices rely solely on clinical observation and central nervous system
imaging, making management approaches are often reactional and inefficient. Thus, there is a need
to identify the disease type early on. MagLev is expected to improve MS diagnostics, thereby aiding
in prognosis and guiding adequate treatment choices before the patient exhibits signs of permanent
neurological deficits.

Keywords: magnetic levitation; multiple sclerosis; diagnostics; robust machine learning; pattern
recognition

1. Introduction

Multiple sclerosis (MS) disease is the most widespread chronic progressive neuro-
logical disorder affecting young patients in the world (Lublin, 2014; Wallin et al., 2019),
with the mean age affected being 30 (Reich et al., 2018). It is estimated that 2.3 million
people were affected by MS worldwide in 2019, and 1 million were living in the US (Nel-
son et al., 2019), more than twice the reported number in 1975. Its debilitating nature is
related to multiple disease relapses and accumulated deficits over the patient’s lifetime,
leading some to be wheelchair-bound in the early years of adulthood. Research over the
past few years helped shed light on the underlying pathology and resulted in 20 available
agents for the treatment of MS disease (Hauser and Cree, 2020). Despite the advances, we
still face ambiguity in early disease identification, management and selection of the best
personalized treatment. Identifying biomarkers for diagnosis and prognosis has long been
investigated at various stages of development. The clinicians, however, still rely on
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clinical acumen in identifying neurological examination changes, monitoring for relapses
or progression, performing a series of central nervous system (CNS) imaging, and adjust-
ing the medications accordingly. The goal is to get to a stage where no disease activity is
detectable, commonly referred to as “No Evidence of Disease Activity” (NEDA) (Alastair
Compston Ian McDonald John Noseworthy Hans Lassmann David Miller Kenneth Smith
Hartmut Wekerle Christian Confavreux, 2005; Axtell et al., 2010). While the common ap-
proach is either induction or escalation of therapy to delay progression, there is much
room for interrater variability in practice resulting in missing the early time window of
intervention and accumulation of irreversible damage and triggering slowly progressive
CNS neurodegeneration. Various types of MS have been reported so far including relaps-
ing-remitting MS (RRMS), secondary-progressive MS (SPMS), primary-progressive MS
(PPMS) and progressive-relapsing MS (PRMS) (Axtell et al., 2010). For the final diagnosis
of PPMS, the McDonald criteria require one year of observation and for secondary pro-
gressive the diagnostic may take years. There is a strong need for an early, fast and robust
prognostic tool where the type of multiple sclerosis and the progression profile can be
predicted and guide the choice of disease modifying therapy before irreversible clinical
deficit accumulation manifests (Alastair Compston lan McDonald John Noseworthy Hans
Lassmann David Miller Kenneth Smith Hartmut Wekerle Christian Confavreux, 2005; Ax-
tell et al., 2010).

MagLev is already known to be a low-cost separation technique based on matter den-
sity that takes advantage of gravitational and magnetic forces acting on diamagnetic par-
ticles suspended in a paramagnetic liquid medium. Recent developments in MagLev tech-
nologies have yielded new applications in biomedical engineering including cell separa-
tion and density analysis of biosystems (Ashkarran et al., 2020a; Ge et al., 2020, 2017; Hen-
nek et al., 2015; Ilievski et al., 2011; Lockett et al., 2013; Mirica et al., 2011, 2010; Nemiroski
et al., 2016; Subramaniam et al., 2014). Our recent case studies (Ashkarran et al., 2020a,
2020c, 2020b) showed that MagLev optic images of levitated proteins, subjected to ma-
chine-learning analysis, could offer valuable information on the individual’s health status
(Ashkarran et al., 2020b) and serve as “fingerprints”, to discriminate between healthy and
opioid use disorder (OUD) individuals (Ashkarran et al., 2020c). However, potential error
sources encountered from practical applications of the method, e.g., errors in the biologi-
cal preprocessing steps and/or during camera recordings, have not been addressed in the
previous studies. Additionally, the analysis of MagLev images so far has been solely based
on binary data cases (Ashkarran et al., 2020b).

To fill these gaps, here in this study, we aim to develop a MagLev-based robust pre-
dictive analytics framework that can not only diagnose MS from healthy controls but also
classify them based on their types. Our findings revealed that levitating plasma proteins
result in the formation of ellipsoidal patterns over time upon injection into the MagLev
system containing superparamagnetic solution. This serves as a proof-of-concept study
into the utility of this technique in the clinical setting.

2. Overall framework

Fig. 1 summarizes the steps in this study schematically. Fig. 1a-c shows the experi-
mental setup (see Methods) and Fig. 1d illustrates the proposed modeling framework.
Initially, normalized intensity histograms of MagLev images are derived to provide low-
dimensional fingerprints of plasma samples. Next, the desired levitation time-frame in the
process of MagLev is identified by a statistical distance technique. Finally, once the outlier
MagLev images are identified and removed, a learning model is developed to classify the
type of MS. The modeling framework was developed and trained using Python 3.7,
OpenCV 4.2.0 (https://opencv.org/) and scikit-learn 0.24.1 (https://scikit-learn.org/) on a
PC with Intel Core i7-8700 CPU 3.6 GHz, and 32G RAM.
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Figure 1. Representation of MagLev system configuration and proposed ML-based framework
for detecting MS types. (A) Schematic showing the configuration of representative MagLev system.
(B) Calibration curves of the MagLev system showing the linear relation between density of stand-
ard density glass beads and their corresponding levitation heights at different concentrations of
SPIONS. (C) The pattern of the magnetic field lines between the magnets with like poles facing each
other. (D) An overview of the detail of the proposed analysis pipeline.

The optical images of healthy individuals (n=2) as control and various MS patients
(PPMS: n=3, RRMS: n=14, SPMS: n=5) were collected using the MagLev system (see Fig. 2
for levitation patterns of various types of MS plasma proteins over the time, as
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representatives). No sample related to PRMS was available in our collected clinical da-
taset. In each experiment, 36 images were captured every 5 minutes (total levitation
time=180 minutes). All stored images were then cropped into the same region of interest
to obtain the normalized intensity histogram of each image (Fig. 1d, part 1). Fig. 3 shows
the histogram of a representative image obtained from MagLev system. The red curves in
this figure are the cumulative distribution functions (CDF) of histograms. Two peaks ap-
pearing on this histogram represent plasma content and dark background. The horizontal
axis shows 256 total variations and the vertical axis represents the normalized number of
pixels in each greyscale tone. The stretched normalized histogram for the representative
image (namely using a percentile stretching by clipping 2% of the data from both ends) is
presented in Fig. 3b. As can be inferred by comparing the MagLev images in Fig. 3, the
contrast stretching has enhanced the visual differentiation of features in the original im-
age. The sharp rise in Fig. 3a is moderated by contrast stretching in Fig. 3b which stretches
the horizontal axis and yields more distinct peaks.

PPMS

RRMS

Figure 2. Photographs of the levitation patterns of plasma protein samples over time. Formation
of various ellipsoidal patterns over the time upon injection of three types of various MS and healthy
individual human plasma proteins into the MagLev system.
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Figure 3. Effect of contrast stretching on MagLev images. (A) Representative normalized (relative
to the total number of pixels in each image) intensity histogram of a MagLev image. The very low
intensity peaks (black regions) correspond to no-protein content, whereas higher color intensities
correspond to the protein content regions. (B) The stretched normalized histogram (normalization
is done after contrast stretching) within 2nd and 98th percentiles. Comparing the cumulative distri-
bution of bins in the histograms (shown as red curve), notice how the stretching transforms the
abrupt change in the original histogram to a more gradual variation with more distinct peak, which
can be particularly useful for outlier detection.
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As the levitation proceeds, the samples tend to preserve their shapes, especially when
reaching the final stages of the levitation process (Fig. 2). Studying not-fully shaped (sta-
bilized) layers’ profiles can lead to an immature inference about the data and not suitable
for reliable machine learning. Thus, deciding which time step should be selected for fur-
ther analysis is vital. In other words, given each type of disease, a preprocessing pipeline
needs to be designed for MagLev in order to detect the time step at which the samples
physically reach to an equilibrium, and their geometrical features are statistically stabi-
lized (Fig. 1d, part 2). To do so, at each time step, the grayscale histograms of each sample
over time were compared with their preceding image using Bhattacharyya distance (BD)
(Derpanis, 2008). A decrease in the value of the distance metric suggests that the sample
is reaching to its stable profile.

The normalized histograms derived from the raw images were 255-dimensional vec-
tors. Considering the limited number of available samples, the complex and high-dimen-
sional feature space resulted from the histograms can drastically decline the performance
of the ML models (i.e., the curse of dimensionality). Once the optimum time step is deter-
mined, the dimensions of the corresponding normalized images are reduced by imple-
menting Principal Component Analysis (PCA) (Jolliffe and Cadima, 2016) (Fig. 1d, part
3).

In practice, the images captured from the plasma samples are uncontrollably sub-
jected to different sources of noise and errors, such as those in the biological preprocessing
steps and/or during camera recordings. Such outliers can have destructive effects on the
performance of the predictive models as they convey faulty information which is not rep-
resentative of the real data distribution(Hodge and Austin, 2004). Here, the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) (Emadi and Mazinani, 2018), a
hierarchical clustering algorithm, was employed as a data preprocessing step to detect
and remove potential image outliers (Fig. 1d, part 4).

Once the outliers are detected and removed, the preprocessed data is used to train a
supervised classification model, namely, Support Vector Machines (SVM) (Vapnik et al.,
1997). In order to investigate the effect of the nonlinear behavior in the MS dataset on the
performance of the learning models, two kernel functions, namely, Radius Basis Function
(RBF) and Linear, were selected in the SVM model (Fig. 1d, part 5).

3. Materials and methods
3.1. Experimental setup

A 30 mg/ml superparamagnetic solution (SPIONs, purchased from Feraheme,
www.feraheme.com) was used as a MagLev medium and diluted with phosphate buff-
ered saline (PBS 1X, HyClone) solution to 0.06 mg/ml for all experiments. Plasma from
healthy individuals and MS patients was provided through our collaboration with the
Multiple Sclerosis Center at the University of Massachusetts Medical Center, Worcester,
MA. For all experiments 100 pl of as received human plasma proteins with different types
of MS diseases, was spiked into the plastic cuvette containing SPIONs solution, placed
into the MagLev system and levitated for 3 hours until they reached their equilibrium
positions within the MagLev system. It is noteworthy that after 3 hours no changes in
levitation pattern of protein samples were observed. Fluorescent polyethylene micropar-
ticles (www.cospheric.com) with known densities and standard density solid glass parti-
cles (www.americandensitymaterials.com) were used for calibration of the MagLev sys-
tem (Fig. 1b and S3 of Supplementary Information (SI)). All conventional MagLev sys-
tems have a pair of similar permanent magnets with similar poles face to face and a sepa-
ration distance of d. We have used a standard MagLev platform using two blocks of N42-
grade neodymium (NdFeB) cubic magnets (25.4 mm length, 25.4 mm width, and 50.8 mm
height) and a separation distance of 25 mm in the present work, which is depicted in Fig.
1a. Disposable plastic cuvettes were cut to fit exactly between two magnets to serve as a
levitation container. The principles of the MagLev technique and details of the underlying
equations are reported by others and our group (Ashkarran et al., 2020c, 2020a; Ge et al.,
2020; Nemiroski et al.,, 2016). Two blocks of cubic-shape NdFeB permanent magnets
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(grade N42, Model # NB044) were provided from magnet4less (Fig. 1b). Levitation pro-
files of the particles were recorded by a Nikon D750 digital camera containing a 105 mm
Nikkor Microlense and a millimeter scale ruler. A gauss meter (vector/magnitude Gauss
meter model VGM, Alphalab), was used to measure the magnetic field strength between
the magnets (~ 0.5 T on both magnet’s surfaces).

3.2. Data preparation and analysis pipeline
3.2.1. Sampling and image processing

The histograms represent the distribution of tonal variations in images. The peaks
and valleys appearing on the histograms provide useful information about the different
phases in each image and the phases can be separated by thresholding (Solomon and
Breckon, 2011). Despite their simple implementation, histograms are frequently used for
addressing complex problems such as over/under exposure, brightness and contrast in
image processing methods. In addition, they are effective tools for edge detection, image
segmentation and classification; for example, brain tumor detection with histogram equal-
ization (Ulku and Camurcu, 2013). The normalization at this step is calculated based on
the relative values of the vertical axis to the total number of pixels in each image. In other
words, it changes the range of the vertical axis in the histogram, to be consistent among
all images. There is another type of normalization in image processing known as ‘contrast
stretching’ (Solomon and Breckon, 2011), that stretches the range of pixel intensity values
(horizontal axis) to fill the entire dynamic range. Contrast stretching is usually imple-
mented for improving quality of blurry images (or when the phases in an image are very
close to each other in terms of greyscale tone).

3.2.2. Identification of a stabilized time-frame from MagLev recordings

More specifically, the Bhattacharyya distance (BD), which measures the dissimilarity
of two histograms using the Bhattacharyya coefficient — a divergence-type metric between
two distributions — was employed (Derpanis, 2008). Given two probability distributions,
p and q over the same domain X, the BD, which can take a value from 0 to 1, is defined
as:

dlp,q) = y1-p® q) 1)

where p is the Bhattacharyya coefficient:

p(p,q) = X¥J1-pH)q(x) (2)

and x is a class drawn from the domain x.

3.2.3. Dimensionality reduction

A common and powerful practice to tackle the dimensionality of the input spaces is
PCA. This tool converts a set of correlated variables into a set of uncorrelated ones using
an orthogonal transformation while preserving data variability to the greatest extend pos-
sible. While the first principal component (PC1) projects the observations onto the direc-
tion with the largest variance, the second principal component (PC2) is fully uncorrelated
with the first one and has the second-largest variance; and accordingly, other principal
components can be defined. Since the new variables (PCs) better describe the overall var-
iance in the dataset, by plotting the principal components, distinct clusters of samples may

appear.

3.2.4. Outlier detection using unsupervised machine learning

Clustering, as an unsupervised machine learning method, separates and groups the
samples based on their similarities and differences in the feature space. The DBSCAN is a
powerful clustering method widely used in a variety of applications (Emadi and
Mazinani, 2018). It has been shown that DBSCAN is able to successfully detect both
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clusters and noise (outliers) while maintaining a robust performance in the presence of
limited data (Schubert et al., 2017). Unlike partitioning clustering algorithms (e.g., k-
means), the hierarchical algorithms do not require the number of clusters to be specified
beforehand and they are able to capture complex cluster shapes (e.g., non-convex) (Ester
et al., 1996). Particularly, in DBSCAN, a cluster forms when within a neighborhood of a
given radius for a point (called e-neighborhood), there is at least a preset minimum num-
ber of points (called MinPts). Additionally, a point belongs to a cluster whether it has
MinPts within its e-neighborhood (core point) or it is located in the e-neighborhood of a
core point (border point). Once a cluster is initiated, it can grow if the neighbor points
satisfy the density requirements of either core or border points. Finally, in a DBSCAN
model, an outlier (noise) is defined as the point that does not belong to any identified
cluster (Ester et al., 1996). The performance of DBSCAN is governed by its above described
two parameters (MinPts and e€) and identifying their appropriate values (given an appli-
cation) is crucial for obtaining a useful modeling outcome. Hypothetically, finding optima
of these parameters requires knowledge about every cluster existing in the dataset. As
such information is often lacking in practice (e.g., the number of clusters is not known as
in unsupervised setting; or when the sample size within each cluster is small), empirical
approaches need to be implemented. Some heuristic methods have been proposed in the
literature which provide an estimate of the optimal parameters setting for DBSCAN. Bi-
rant and Kut (Birant and Kut, 2007) has proposed an equation which estimates the MinPts
as a function of sample size:

MinPts = In (N) (3)

where N is the total number of data points. In the same direction, as elaborated in the
original DBSCAN paper (Ester et al., 1996), the proper value for € can be approximated
by plotting the sorted k-dist graph. The point in the graph on which the “plain” area is
transformed into a “valley” (called “elbow” region) is mapped to the y-axis (k-distance)
to find an estimate of optimal e.

3.2.5. Supervised classification model for MS data

Introduced by Vapnik (Vapnik et al., 1997), SVM is known as a powerful and versatile
supervised learning algorithm, which has been successfully utilized in a wide range of
applications (Meng et al., 2019; Plawiak et al., 2019). SVM exhibits a robust performance
against nonlinear datasets, as it employs kernel functions to simplify the feature space by
mapping the complex input data to a high-dimensional space. In turn, it transforms the
nonlinear structure of the data into linearly separable classes. The classification decision
boundary in the SVM is defined by maximizing its distance from the edge instances (clos-
est instances to the decision boundary) of each class (i.e., minimizing the structural risk)
(Vapnik et al.,, 1997). RBF uses similarity features to generate the high-dimensional
space, making it a suitable choice when the relation between the input variables and class
labels is nonlinear (e.g., MS dataset). The RBF kernel is defined as:

K(x,%) = exp(—y|lx — x| ") @

where y (inverse of the RBF kernel standard deviation) indicates how far the effect
of each point reaches for measuring similarity features.

4. Results
4.1. Levitated plasma proteins of MS patients in MagLev system

To levitate human plasma proteins in our MagLev system, we have used a suspen-
sion of SPIONSs for the MagLev medium. Toxicity of conventional paramagnetic solutions

(e.g., GACls and gadobutrol) particularly at high concentrations (i.e., ~ 100 mM and higher)
prevents the use of common paramagnetic liquids as MagLev medium for most biological
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applications. We have previously shown that the plasma proteins denature and sediment
in the conventional paramagnetic liquids due to interactions with the high concentration
of gadolinium complex ions (Ashkarran et al., 2020c). To solve the biocompatibility issue
of the most common MagLev media, we introduced ferumoxytol (an FDA-approved su-
perparamagnetic liquid) as a new biocompatible MagLev medium for levitation of human
plasma proteins. Superparamagnetic solutions not only are biocompatible with human
plasma proteins but also provide a larger magnetic susceptibility as a MagLev medium
compared to common paramagnetic liquids, and therefore, a significantly faster separa-
tion of protein molecules in solution (Kandasamy and Maity, 2015; Li et al., 2017). Conse-
quently, the exposure time of the levitating biomolecules to the MagLev medium will be
significantly reduced which is a great advantage for most biomedical applications and
diagnostic purposes. Fig. 2 shows levitation profiles of human plasma proteins of various
healthy individuals and MS patients containing three different types of MS as represent-
atives (optical images of the levitation patterns of representative MS plasma proteins in
the MagLev system are presented in Fig. S1-S3 of SI). The plasma proteins created ellip-
soidal patterns within the MagLev system during the levitation process. Formation of el-
lipsoidal patterns starts in a few minutes and changes in pronounced patterns over three
hours (see for examples plasma patterns and their appearance differences at 20 and 120
minutes in Fig. 2 and Fig. S2-54 of SI). We tested 24 human plasma samples from male
and female individuals with various ethnicities and ages who were diagnosed with RR,
PP, or SP MS and monitored their corresponding levitation patterns. We observed a dis-
tinct pattern in all levitated MS human plasma proteins as compared to healthy plasma.
The observed patterns from levitated plasma proteins were highly reproducible, as all
experiments were repeated at least three times and yielded identical patterns.

4.2. Identification of stabilized time-frames of MagLev images

Optical images of levitated plasma proteins of healthy and MS patient plasma donors
were extracted from the MagLev system and used to develop a classification prediction
model to determine whether the appeared plasma patterns in the MagLev system can
provide “fingerprints” which can be processed with machine learning to differentiate be-
tween healthy individuals and MS patients as well as differentiate MS subtypes. Finding
a stabilized time-frame using levitation profiles of plasma proteins in the MagLev system,
is one of the crucial parameters which affect the data processing and the selection of inap-
propriate time-frames can cause unreliable machine learning analysis. The histograms
comparison was performed using the OpenCV python library. As illustrated in Fig. 4b,
on average, the Bhattacharyya distance (BD) is at its lowest value (<0.2; i.e., an 80% relative
match between two subsequent histograms) when comparing time-steps 135 min and 180
min, suggesting that the samples have been fairly stabilized at levitation time of 135 min.
This could also be confirmed by visually comparing the images in Fig. 4a in which time-
steps 135 min and 180 min exhibit very similar profiles (see also Fig. 52-54 for the progress
of levitation patterns of various plasma proteins). Additionally, two other distance met-
rics, namely, chi-square distance and Pearson’s correlation, were employed and both ver-
ified the results attained by the BD analysis (see Fig. S5 and Fig. S6 of SI) [11]. Therefore,
the levitation pattern of all samples at =135 min was selected for all further statistical
analysis and modeling.
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Figure 4. BD calculates the MagLev images similarities over time as a measure for identifying the
stabilization time. (A) Greyscale images of selected samples of each group (healthy, PPMS, RRMS
and SPMS) over the time. (B) Variation of the BD of MagLev images at different time steps (5-45-90-
135-180 min) with respect to previous timestep. For both control and MS groups, timesteps 135 and
180 exhibit highest similarities (lowest distances) suggesting that samples reach to a stable state at
t=135 min.

4.3. PCA and Dissimilarity Analysis

PCA plot of the histograms of MagLev images after outlier removal is shown in Fig.
5a and results demonstrated two disguisable clusters between the healthy group and MS
sub-groups. Pairwise PERMANOVA test also confirms this conclusion with the most sig-
nificant difference being between healthy and RRMS groups (p-value of 0.021). This dif-
ference results from the far distance between the peaks in average intensity histograms of
healthy and MS groups illustrated in Fig. 5b.
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Figure 5. Reduced-order representation of different groups of samples. (A) PCA score plot after
automated outlier detection at t=135 min. The retained variance by the two principal components is
about 75%. (B) Average intensity histograms of each group of healthy, PPMS, RRMS, and SPMS at
t=135 min, showing differences between the groups.

4.4, Outlier detection
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Considering the number of samples used in this study, we applied the DBSCAN sep-
arately to the classes with at least four samples; namely, RRMS and SPMS. The MinPts
for the RRMS dataset was calculated as: in(13) = 2.56. Therefore, DBSCAN was per-
formed with MinPts € {2,3}. Additionally, the sorted k-distance graph was plotted for
different values of k (including the values of MinPts found above) to determine €. As
illustrated in Fig. 6a, for all values of k, the elbow region collectively appeared in the same
spot (shown by the dashed circle) and thereby the optimal value of € could be approxi-
mated as 0.045. DBSCAN analysis resulted in a cluster of normal images at the center and
corrupted samples (distanced from the main cluster) as outliers (Fig. 6b), similarly when
using MinPts 2 or 3. A visual comparison of Maglev images also confirmed that
DBSCAN was able to successfully distinguish the faulty images from normal samples (see
Fig. S7 of SI). Subsequently, detected outliers were removed from the rest of the analysis.
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Figure 6. Graphs showing the DBSCAN’s hyperparameter tuning and outlier detection on Mag-
Lev samples. (A) Identifying the optimal € hyperparameter in DBSCAN using the K-distance plot.
The figure shows the distance for three different values for the kth nearest neighbors (2, 3 and 4).
The optimal € value corresponds to the sudden shift in the curve slope (called ‘elbow region’,
shown by the dashed circle). (B) Example of automated outlier detection for RRMS data using
DBSCAN method.

4.5. SVM classification model

The hyperparameters of the SVM model, namely € (controlling the soft margins in
the cost function) and y (only used for RBF kernel), were selected using a grid search
algorithm followed by cross-validation. The hyper-parameters were tuned by optimizing
the Fl-score over Leave-One-Out cross-validation and set to € = 1000 and y =3 for
RBF kernel SVM and € = 100 for linear SVM. Receiver Operating Characteristic (ROC)
curves (Fig. 7a) suggested that the RBF kernel SVM (with the Area Under Curve
(AUC)=0.77 and F1 score=71%) exhibits a noticeably better classification performance than
the linear SVM (AUC=0.52 and F1 score=44%). Fig. 7b illustrates the class regions via de-
cision boundaries predicted by the RBF kernel SVM. For comparing the classes statisti-
cally, pairwise PERMANOVA was then performed among MS groups. The result shows
a significant distinction between PPMS-SPMS and RRMS-SPMS with p-values of 0.031
and 0.033, respectively. However, RRMS and PPMS observations were not found signifi-
cantly different. It can also be inferred from Figure 5a that the centers of these two groups
are very close. Hypothetically, this could be because small N and clinically, RRMS has a
wide range of disease diversity (Figure 5a) depending on age, medical history of patients,
etc. which would make its exact identification fuzzy.
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Figure 7. Generalization performance of linear and kernel SVM trained on limited
MagLev images of MS samples. (A) ROC of linear SVM and kernel (RBF) SVM mod-
els. SVM with RBF transformation demonstrates a better overall performance
(higher area under curve). (B) The produced classified feature space by the kernel
SVM prediction model. In contrast to linear SVM, the kernel SVM allows non-linear
decision boundaries. Darker (lighter) regions in each class corresponds to the higher
(lower) prediction scores (higher (lower) classification confidence).

5. Conclusions

We demonstrated a proof-of-concept study that the combination of optical images of
levitation plasma proteins and machine learning technique enables us to classify three
types of MS: RRMS, SPMS, and PPMS. Particularly, using the developed expert system,
we were able to enhance (based on histogram normalization and contrast stretching) the
MagLev images, detect and remove the outlier images, and classify the different types of
MS disease. The current preliminary results showed that even with a small clinical dataset
available, a fair prediction model can be achieved with an F1 score of 71% and this should
be improved as the sample size become larger. Using omic technologies, it will vbe valu-
able to identify specific biomarkers that can differentiate MS subtypes and lack of such
analyses are part of study limitations. However, one can hypothesize that magLev tech-
nique is more sensitive at distinguishing MS subtypes than conventional plasma protein
measurements, and we hypothesize this difference in sensitivity is dependent upon taking
all of the charges and composition of the blood plasma into account for differentiations of
MS subtypes, rather than a curated set of biomarkers. Also, this should be noted that
futrtehr works are needed to investigate wheather any other disease can lead to similar
plasma image structures or not. For these, the presented preliminary framework herein
may not be used as a full screening tool for the population level, as more plasma samples
and system optimization are required. Regardless, the proposed analysis and data pro-
cessing framework remains a valuable future application of MagLev for MS and other
diagnosis purposes.
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