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Abstract: The emerging advancements in separation and classification of various biological matters 

(e.g., living cells and proteins) using magnetic levitation (MagLev) technology have proven to be 

effective for improving disease diagnostics. MagLev technique has the capacity to detect and sepa-

rate useful diagnostic biomarkers from biocomplex environments (e.g., blood and plasma), mini-

mizing the unpleasant daunting task of sample preparations and labeling procedures. Here, we 

demonstrate the capability of this technique combined with image analysis and machine learning 

approaches for discriminating the various types of multiple sclerosis (MS) as an important model 

disease. To arrive at a systematic expert system, we combined robust statistical analysis with ma-

chine learning to (1) detect and remove outliers from the raw MagLev image datasets; then (2) pro-

cess the images and output a low dimensional representation of massive data without losing the 

main statistical features; and finally (3) predict the MS clinical disease type (Relapsing-Remitting, 

Primary–Progressive, or Secondary–Progressive) using a classifier. This is expected to improve MS 

diagnostics since the current practices rely solely on clinical observation and central nervous system 

imaging, making management approaches are often reactional and inefficient. Thus, there is a need 

to identify the disease type early on. MagLev is expected to improve MS diagnostics, thereby aiding 

in prognosis and guiding adequate treatment choices before the patient exhibits signs of permanent 

neurological deficits. 

Keywords: magnetic levitation; multiple sclerosis; diagnostics; robust machine learning; pattern 

recognition 

 

1. Introduction  

Multiple sclerosis (MS) disease is the most widespread chronic progressive neuro-

logical disorder affecting young patients in the world (Lublin, 2014; Wallin et al., 2019), 

with the mean age affected being 30 (Reich et al., 2018). It is estimated that 2.3 million 

people were affected by MS worldwide in 2019, and 1 million were living in the US (Nel-

son et al., 2019), more than twice the reported number in 1975. Its debilitating nature is 

related to multiple disease relapses and accumulated deficits over the patient’s lifetime, 

leading some to be wheelchair-bound in the early years of adulthood. Research over the 

past few years helped shed light on the underlying pathology and resulted in 20 available 

agents for the treatment of MS disease (Hauser and Cree, 2020). Despite the advances, we 

still face ambiguity in early disease identification, management and selection of the best 

personalized treatment. Identifying biomarkers for diagnosis and prognosis has long been 

investigated at various stages of development. The clinicians, however, still rely on 
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clinical acumen in identifying neurological examination changes, monitoring for relapses 

or progression, performing a series of central nervous system (CNS) imaging, and adjust-

ing the medications accordingly. The goal is to get to a stage where no disease activity is 

detectable, commonly referred to as “No Evidence of Disease Activity” (NEDA) (Alastair 

Compston Ian McDonald John Noseworthy Hans Lassmann David Miller Kenneth Smith 

Hartmut Wekerle Christian Confavreux, 2005; Axtell et al., 2010). While the common ap-

proach is either induction or escalation of therapy to delay progression, there is much 

room for interrater variability in practice resulting in missing the early time window of 

intervention and accumulation of irreversible damage and triggering slowly progressive 

CNS neurodegeneration. Various types of MS have been reported so far including relaps-

ing-remitting MS (RRMS), secondary-progressive MS (SPMS),  primary-progressive MS 

(PPMS) and progressive-relapsing MS (PRMS) (Axtell et al., 2010). For the final diagnosis 

of PPMS, the McDonald criteria require one year of observation and for secondary pro-

gressive the diagnostic may take years. There is a strong need for an early, fast and robust 

prognostic tool where the type of multiple sclerosis and the progression profile can be 

predicted and guide the choice of disease modifying therapy before irreversible clinical 

deficit accumulation manifests (Alastair Compston Ian McDonald John Noseworthy Hans 

Lassmann David Miller Kenneth Smith Hartmut Wekerle Christian Confavreux, 2005; Ax-

tell et al., 2010).  

MagLev is already known to be a low-cost separation technique based on matter den-

sity that takes advantage of gravitational and magnetic forces acting on diamagnetic par-

ticles suspended in a paramagnetic liquid medium. Recent developments in MagLev tech-

nologies have yielded new applications in biomedical engineering including cell separa-

tion and density analysis of biosystems (Ashkarran et al., 2020a; Ge et al., 2020, 2017; Hen-

nek et al., 2015; Ilievski et al., 2011; Lockett et al., 2013; Mirica et al., 2011, 2010; Nemiroski 

et al., 2016; Subramaniam et al., 2014). Our recent case studies (Ashkarran et al., 2020a, 

2020c, 2020b) showed that MagLev optic images of levitated proteins, subjected to ma-

chine-learning analysis, could offer valuable information on the individual’s health status 

(Ashkarran et al., 2020b) and serve as “fingerprints”, to discriminate between healthy and 

opioid use disorder (OUD) individuals (Ashkarran et al., 2020c). However, potential error 

sources encountered from practical applications of the method, e.g., errors in the biologi-

cal preprocessing steps and/or during camera recordings, have not been addressed in the 

previous studies. Additionally, the analysis of MagLev images so far has been solely based 

on binary data cases (Ashkarran et al., 2020b).  

To fill these gaps, here in this study, we aim to develop a MagLev-based robust pre-

dictive analytics framework that can not only diagnose MS from healthy controls but also 

classify them based on their types. Our findings revealed that levitating plasma proteins 

result in the formation of ellipsoidal patterns over time upon injection into the MagLev 

system containing superparamagnetic solution. This serves as a proof-of-concept study 

into the utility of this technique in the clinical setting. 

2. Overall framework 

Fig. 1 summarizes the steps in this study schematically. Fig. 1a-c shows the experi-

mental setup (see Methods) and Fig. 1d illustrates the proposed modeling framework. 

Initially, normalized intensity histograms of MagLev images are derived to provide low-

dimensional fingerprints of plasma samples. Next, the desired levitation time-frame in the 

process of MagLev is identified by a statistical distance technique. Finally, once the outlier 

MagLev images are identified and removed, a learning model is developed to classify the 

type of MS. The modeling framework was developed and trained using Python 3.7, 

OpenCV 4.2.0 (https://opencv.org/) and scikit-learn 0.24.1 (https://scikit-learn.org/) on a 

PC with Intel Core i7-8700 CPU 3.6 GHz, and 32G RAM.  
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Figure 1. Representation of MagLev system configuration and proposed ML-based framework 

for detecting MS types. (A) Schematic showing the configuration of representative MagLev system. 

(B) Calibration curves of the MagLev system showing the linear relation between density of stand-

ard density glass beads and their corresponding levitation heights at different concentrations of 

SPIONs. (C) The pattern of the magnetic field lines between the magnets with like poles facing each 

other. (D) An overview of the detail of the proposed analysis pipeline. 

The optical images of healthy individuals (n=2) as control and various MS patients 

(PPMS: n=3, RRMS: n=14, SPMS: n=5) were collected using the MagLev system (see Fig. 2 

for levitation patterns of various types of MS plasma proteins over the time, as 

D 
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representatives). No sample related to PRMS was available in our collected clinical da-

taset. In each experiment, 36 images were captured every 5 minutes (total levitation 

time=180 minutes). All stored images were then cropped into the same region of interest 

to obtain the normalized intensity histogram of each image (Fig. 1d, part 1). Fig. 3 shows 

the histogram of a representative image obtained from MagLev system. The red curves in 

this figure are the cumulative distribution functions (CDF) of histograms. Two peaks ap-

pearing on this histogram represent plasma content and dark background. The horizontal 

axis shows 256 total variations and the vertical axis represents the normalized number of 

pixels in each greyscale tone. The stretched normalized histogram for the representative 

image (namely using a percentile stretching by clipping 2% of the data from both ends) is 

presented in Fig. 3b. As can be inferred by comparing the MagLev images in Fig. 3, the 

contrast stretching has enhanced the visual differentiation of features in the original im-

age. The sharp rise in Fig. 3a is moderated by contrast stretching in Fig. 3b which stretches 

the horizontal axis and yields more distinct peaks. 

 

Figure 2. Photographs of the levitation patterns of plasma protein samples over time. Formation 

of various ellipsoidal patterns over the time upon injection of three types of various MS and healthy 

individual human plasma proteins into the MagLev system. 

 

Figure 3. Effect of contrast stretching on MagLev images. (A) Representative normalized (relative 

to the total number of pixels in each image) intensity histogram of a MagLev image. The very low 

intensity peaks (black regions) correspond to no-protein content, whereas higher color intensities 

correspond to the protein content regions. (B) The stretched normalized histogram (normalization 

is done after contrast stretching) within 2nd and 98th percentiles. Comparing the cumulative distri-

bution of bins in the histograms (shown as red curve), notice how the stretching transforms the 

abrupt change in the original histogram to a more gradual variation with more distinct peak, which 

can be particularly useful for outlier detection. 

A                                         B                    
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As the levitation proceeds, the samples tend to preserve their shapes, especially when 

reaching the final stages of the levitation process (Fig. 2). Studying not-fully shaped (sta-

bilized) layers’ profiles can lead to an immature inference about the data and not suitable 

for reliable machine learning. Thus, deciding which time step should be selected for fur-

ther analysis is vital. In other words, given each type of disease, a preprocessing pipeline 

needs to be designed for MagLev in order to detect the time step at which the samples 

physically reach to an equilibrium, and their geometrical features are statistically stabi-

lized (Fig. 1d, part 2). To do so, at each time step, the grayscale histograms of each sample 

over time were compared with their preceding image using Bhattacharyya distance (BD) 

(Derpanis, 2008). A decrease in the value of the distance metric suggests that the sample 

is reaching to its stable profile. 

The normalized histograms derived from the raw images were 255-dimensional vec-

tors. Considering the limited number of available samples, the complex and high-dimen-

sional feature space resulted from the histograms can drastically decline the performance 

of the ML models (i.e., the curse of dimensionality). Once the optimum time step is deter-

mined, the dimensions of the corresponding normalized images are reduced by imple-

menting Principal Component Analysis (PCA) (Jolliffe and Cadima, 2016) (Fig. 1d, part 

3). 

In practice, the images captured from the plasma samples are uncontrollably sub-

jected to different sources of noise and errors, such as those in the biological preprocessing 

steps and/or during camera recordings. Such outliers can have destructive effects on the 

performance of the predictive models as they convey faulty information which is not rep-

resentative of the real data distribution(Hodge and Austin, 2004). Here, the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) (Emadi and Mazinani, 2018), a 

hierarchical clustering algorithm, was employed as a data preprocessing step to detect 

and remove potential image outliers (Fig. 1d, part 4). 

Once the outliers are detected and removed, the preprocessed data is used to train a 

supervised classification model, namely, Support Vector Machines (SVM) (Vapnik et al., 

1997). In order to investigate the effect of the nonlinear behavior in the MS dataset on the 

performance of the learning models, two kernel functions, namely, Radius Basis Function 

(RBF) and Linear, were selected in the SVM model (Fig. 1d, part 5). 

3. Materials and methods  

3.1. Experimental setup 

A 30 mg/ml superparamagnetic solution (SPIONs, purchased from Feraheme, 

www.feraheme.com)  was used as a MagLev medium and diluted with phosphate buff-

ered saline (PBS 1X, HyClone) solution to 0.06 mg/ml for all experiments. Plasma from 

healthy individuals and MS patients was provided through our collaboration with the 

Multiple Sclerosis Center at the University of Massachusetts Medical Center, Worcester, 

MA. For all experiments 100 µ l of as received human plasma proteins with different types 

of MS diseases, was spiked into the plastic cuvette containing SPIONs solution, placed 

into the MagLev system and levitated for 3 hours until they reached their equilibrium 

positions within the MagLev system. It is noteworthy that after 3 hours no changes in 

levitation pattern of protein samples were observed. Fluorescent polyethylene micropar-

ticles (www.cospheric.com) with known densities and standard density solid glass parti-

cles (www.americandensitymaterials.com) were used for calibration of the MagLev sys-

tem (Fig. 1b and S3 of Supplementary Information (SI)). All conventional MagLev sys-

tems have a pair of similar permanent magnets with similar poles face to face and a sepa-

ration distance of d. We have used a standard MagLev platform using two blocks of N42-

grade neodymium (NdFeB) cubic magnets (25.4 mm length, 25.4 mm width, and 50.8 mm 

height) and a separation distance of 25 mm in the present work, which is depicted in Fig. 

1a. Disposable plastic cuvettes were cut to fit exactly between two magnets to serve as a 

levitation container. The principles of the MagLev technique and details of the underlying 

equations are reported by others and our group (Ashkarran et al., 2020c, 2020a; Ge et al., 

2020; Nemiroski et al., 2016). Two blocks of cubic-shape NdFeB permanent magnets 
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(grade N42, Model # NB044) were provided from magnet4less (Fig. 1b). Levitation pro-

files of the particles were recorded by a Nikon D750 digital camera containing a 105 mm 

Nikkor Microlense and a millimeter scale ruler. A gauss meter (vector/magnitude Gauss 

meter model VGM, Alphalab), was used to measure the magnetic field strength between 

the magnets (~ 0.5 T on both magnet’s surfaces).  

3.2. Data preparation and analysis pipeline  

3.2.1. Sampling and image processing 

The histograms represent the distribution of tonal variations in images. The peaks 

and valleys appearing on the histograms provide useful information about the different 

phases in each image and the phases can be separated by thresholding (Solomon and 

Breckon, 2011). Despite their simple implementation, histograms are frequently used for 

addressing complex problems such as over/under exposure, brightness and contrast in 

image processing methods. In addition, they are effective tools for edge detection, image 

segmentation and classification; for example, brain tumor detection with histogram equal-

ization (Ulku and Camurcu, 2013). The normalization at this step is calculated based on 

the relative values of the vertical axis to the total number of pixels in each image. In other 

words, it changes the range of the vertical axis in the histogram, to be consistent among 

all images. There is another type of normalization in image processing known as ‘contrast 

stretching’ (Solomon and Breckon, 2011), that stretches the range of pixel intensity values 

(horizontal axis) to fill the entire dynamic range. Contrast stretching is usually imple-

mented for improving quality of blurry images (or when the phases in an image are very 

close to each other in terms of greyscale tone).  

3.2.2. Identification of a stabilized time-frame from MagLev recordings 

More specifically, the Bhattacharyya distance (BD), which measures the dissimilarity 

of two histograms using the Bhattacharyya coefficient – a divergence-type metric between 

two distributions – was employed (Derpanis, 2008). Given two probability distributions, 

𝑝 and 𝑞 over the same domain 𝑋, the BD, which can take a value from 0 to 1, is defined 

as:  

 𝑑(𝑝, 𝑞) =  √1 − 𝜌(𝑝, 𝑞)                                                                                                                 (1) 
 

 

where 𝜌 is the Bhattacharyya coefficient: 

 𝜌(𝑝, 𝑞) =  ∑ √1 − 𝑝(𝑥)𝑞(𝑥)𝑁
𝑥  (2) 

 

and 𝑥 is a class drawn from the domain 𝑥. 

3.2.3. Dimensionality reduction 

A common and powerful practice to tackle the dimensionality of the input spaces is 

PCA. This tool converts a set of correlated variables into a set of uncorrelated ones using 

an orthogonal transformation while preserving data variability to the greatest extend pos-

sible. While the first principal component (PC1) projects the observations onto the direc-

tion with the largest variance, the second principal component (PC2) is fully uncorrelated 

with the first one and has the second-largest variance; and accordingly, other principal 

components can be defined. Since the new variables (PCs) better describe the overall var-

iance in the dataset, by plotting the principal components, distinct clusters of samples may 

appear. 

3.2.4. Outlier detection using unsupervised machine learning 

Clustering, as an unsupervised machine learning method, separates and groups the 

samples based on their similarities and differences in the feature space. The DBSCAN is a 

powerful clustering method widely used in a variety of applications (Emadi and 

Mazinani, 2018). It has been shown that DBSCAN is able to successfully detect both 
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clusters and noise (outliers) while maintaining a robust performance in the presence of 

limited data (Schubert et al., 2017). Unlike partitioning clustering algorithms (e.g., k-

means), the hierarchical algorithms do not require the number of clusters to be specified 

beforehand and they are able to capture complex cluster shapes (e.g., non-convex) (Ester 

et al., 1996). Particularly, in DBSCAN, a cluster forms when within a neighborhood of a 

given radius for a point (called 𝜖-neighborhood), there is at least a preset minimum num-

ber of points (called 𝑀𝑖𝑛𝑃𝑡𝑠). Additionally, a point belongs to a cluster whether it has 

𝑀𝑖𝑛𝑃𝑡𝑠 within its 𝜖-neighborhood (core point) or it is located in the 𝜖-neighborhood of a 

core point (border point). Once a cluster is initiated, it can grow if the neighbor points 

satisfy the density requirements of either core or border points. Finally, in a DBSCAN 

model, an outlier (noise) is defined as the point that does not belong to any identified 

cluster (Ester et al., 1996). The performance of DBSCAN is governed by its above described 

two parameters (𝑀𝑖𝑛𝑃𝑡𝑠 and 𝜖) and identifying their appropriate values (given an appli-

cation) is crucial for obtaining a useful modeling outcome. Hypothetically, finding optima 

of these parameters requires knowledge about every cluster existing in the dataset. As 

such information is often lacking in practice (e.g., the number of clusters is not known as 

in unsupervised setting; or when the sample size within each cluster is small), empirical 

approaches need to be implemented. Some heuristic methods have been proposed in the 

literature which provide an estimate of the optimal parameters setting for DBSCAN. Bi-

rant and Kut (Birant and Kut, 2007) has proposed an equation which estimates the 𝑀𝑖𝑛𝑃𝑡𝑠 

as a function of sample size:  

𝑀𝑖𝑛𝑃𝑡𝑠 = ln (𝑁) (3) 
 

 

where N is the total number of data points. In the same direction, as elaborated in the 

original DBSCAN paper (Ester et al., 1996), the proper value for 𝜖 can be approximated 

by plotting the sorted k-dist graph. The point in the graph on which the “plain” area is 

transformed into a “valley” (called “elbow” region) is mapped to the y-axis (k-distance) 

to find an estimate of optimal 𝜖. 

3.2.5. Supervised classification model for MS data 

Introduced by Vapnik (Vapnik et al., 1997), SVM is known as a powerful and versatile 

supervised learning algorithm, which has been successfully utilized in a wide range of 

applications (Meng et al., 2019; Pławiak et al., 2019). SVM exhibits a robust performance 

against nonlinear datasets, as it employs kernel functions to simplify the feature space by 

mapping the complex input data to a high-dimensional space. In turn, it transforms the 

nonlinear structure of the data into linearly separable classes. The classification decision 

boundary in the SVM is defined by maximizing its distance from the edge instances (clos-

est instances to the decision boundary) of each class (i.e., minimizing the structural risk) 

(Vapnik et al., 1997).  RBF uses similarity features to generate the high-dimensional 

space, making it a suitable choice when the relation between the input variables and class 

labels is nonlinear (e.g., MS dataset). The RBF kernel is defined as: 

𝐾(𝑥, 𝑥𝑗) = exp(−𝛾‖𝑥 − 𝑥𝑗‖
2

 ) (4) 
 

where 𝛾 (inverse of the RBF kernel standard deviation) indicates how far the effect 

of each point reaches for measuring similarity features.  

4. Results  

4.1. Levitated plasma proteins of MS patients in MagLev system 

To levitate human plasma proteins in our MagLev system, we have used a suspen-

sion of SPIONs for the MagLev medium. Toxicity of conventional paramagnetic solutions 

(e.g., GdCl3 and gadobutrol) particularly at high concentrations (i.e., ~ 100 mM and higher) 

prevents the use of common paramagnetic liquids as MagLev medium for most biological 
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applications. We have previously shown that the plasma proteins denature and sediment 

in the conventional paramagnetic liquids due to interactions with the high concentration 

of gadolinium complex ions (Ashkarran et al., 2020c). To solve the biocompatibility issue 

of the most common MagLev media, we introduced ferumoxytol (an FDA-approved su-

perparamagnetic liquid) as a new biocompatible MagLev medium for levitation of human 

plasma proteins. Superparamagnetic solutions not only are biocompatible with human 

plasma proteins but also provide a larger magnetic susceptibility as a MagLev medium 

compared to common paramagnetic liquids, and therefore, a significantly faster separa-

tion of protein molecules in solution (Kandasamy and Maity, 2015; Li et al., 2017). Conse-

quently, the exposure time of the levitating biomolecules to the MagLev medium will be 

significantly reduced which is a great advantage for most biomedical applications and 

diagnostic purposes. Fig. 2 shows levitation profiles of human plasma proteins of various 

healthy individuals and MS patients containing three different types of MS as represent-

atives (optical images of the levitation patterns of representative MS plasma proteins in 

the MagLev system are presented in Fig. S1-S3 of SI). The plasma proteins created ellip-

soidal patterns within the MagLev system during the levitation process. Formation of el-

lipsoidal patterns starts in a few minutes and changes in pronounced patterns over three 

hours (see for examples plasma patterns and their appearance differences at 20 and 120 

minutes in Fig. 2 and Fig. S2-S4 of SI). We tested 24 human plasma samples from male 

and female individuals with various ethnicities and ages who were diagnosed with RR, 

PP, or SP MS and monitored their corresponding levitation patterns. We observed a dis-

tinct pattern in all levitated MS human plasma proteins as compared to healthy plasma. 

The observed patterns from levitated plasma proteins were highly reproducible, as all 

experiments were repeated at least three times and yielded identical patterns.  

4.2. Identification of stabilized time-frames of MagLev images 

Optical images of levitated plasma proteins of healthy and MS patient plasma donors 

were extracted from the MagLev system and used to develop a classification prediction 

model to determine whether the appeared plasma patterns in the MagLev system can 

provide “fingerprints” which can be processed with machine learning to differentiate be-

tween healthy individuals and MS patients as well as differentiate MS subtypes. Finding 

a stabilized time-frame using levitation profiles of plasma proteins in the MagLev system, 

is one of the crucial parameters which affect the data processing and the selection of inap-

propriate time-frames can cause unreliable machine learning analysis. The histograms 

comparison was performed using the OpenCV python library. As illustrated in Fig. 4b, 

on average, the Bhattacharyya distance (BD) is at its lowest value (<0.2; i.e., an 80% relative 

match between two subsequent histograms) when comparing time-steps 135 min and 180 

min, suggesting that the samples have been fairly stabilized at levitation time of 135 min. 

This could also be confirmed by visually comparing the images in Fig. 4a in which time-

steps 135 min and 180 min exhibit very similar profiles (see also Fig. S2-S4 for the progress 

of levitation patterns of various plasma proteins). Additionally, two other distance met-

rics, namely, chi-square distance and Pearson’s correlation, were employed and both ver-

ified the results attained by the BD analysis (see Fig. S5 and Fig. S6 of SI) [11]. Therefore, 

the levitation pattern of all samples at t=135 min was selected for all further statistical 

analysis and modeling.  
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Figure 4. BD calculates the MagLev images similarities over time as a measure for identifying the 

stabilization time. (A) Greyscale images of selected samples of each group (healthy, PPMS, RRMS 

and SPMS) over the time. (B) Variation of the BD of MagLev images at different time steps (5-45-90-

135-180 min) with respect to previous timestep. For both control and MS groups, timesteps 135 and 

180 exhibit highest similarities (lowest distances) suggesting that samples reach to a stable state at 

t=135 min. 

4.3. PCA and Dissimilarity Analysis 

PCA plot of the histograms of MagLev images after outlier removal is shown in Fig. 

5a and results demonstrated two disguisable clusters between the healthy group and MS 

sub-groups. Pairwise PERMANOVA test also confirms this conclusion with the most sig-

nificant difference being between healthy and RRMS groups (p-value of 0.021). This dif-

ference results from the far distance between the peaks in average intensity histograms of 

healthy and MS groups illustrated in Fig. 5b.  
 

 

Figure 5. Reduced-order representation of different groups of samples. (A) PCA score plot after 

automated outlier detection at t=135 min. The retained variance by the two principal components is 

about 75%. (B) Average intensity histograms of each group of healthy, PPMS, RRMS, and SPMS at 

t=135 min, showing differences between the groups. 

 

4.4. Outlier detection 

A                                    B                    
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Considering the number of samples used in this study, we applied the DBSCAN sep-

arately to the classes with at least four samples; namely, RRMS and SPMS. The 𝑀𝑖𝑛𝑃𝑡𝑠 

for the RRMS dataset was calculated as: 𝑙𝑛(13) = 2.56. Therefore, DBSCAN was per-

formed with 𝑀𝑖𝑛𝑃𝑡𝑠 ∈ {2,3}. Additionally, the sorted k-distance graph was plotted for 

different values of k (including the values of 𝑀𝑖𝑛𝑃𝑡𝑠 found above) to determine 𝜖. As 

illustrated in Fig. 6a, for all values of k, the elbow region collectively appeared in the same 

spot (shown by the dashed circle) and thereby the optimal value of 𝜖 could be approxi-

mated as 0.045. DBSCAN analysis resulted in a cluster of normal images at the center and 

corrupted samples (distanced from the main cluster) as outliers (Fig. 6b), similarly when 

using 𝑀𝑖𝑛𝑃𝑡𝑠  2 or 3. A visual comparison of MagLev images also confirmed that 

DBSCAN was able to successfully distinguish the faulty images from normal samples (see 

Fig. S7 of SI). Subsequently, detected outliers were removed from the rest of the analysis.  

 

 

Figure 6. Graphs showing the DBSCAN’s hyperparameter tuning and outlier detection on Mag-

Lev samples. (A) Identifying the optimal  𝜖 hyperparameter in DBSCAN using the K-distance plot. 

The figure shows the distance for three different values for the kth nearest neighbors (2, 3 and 4). 

The optimal  𝜖 value corresponds to the sudden shift in the curve slope (called ‘elbow region’, 

shown by the dashed circle). (B) Example of automated outlier detection for RRMS data using 

DBSCAN method. 

4.5. SVM classification model 

The hyperparameters of the SVM model, namely 𝑪 (controlling the soft margins in 

the cost function) and 𝜸 (only used for RBF kernel), were selected using a grid search 

algorithm followed by cross-validation. The hyper-parameters were tuned by optimizing 

the F1-score over Leave-One-Out cross-validation and set to 𝑪 = 𝟏𝟎𝟎𝟎  and 𝜸 = 𝟑  for 

RBF kernel SVM and 𝑪 = 𝟏𝟎𝟎 for linear SVM. Receiver Operating Characteristic (ROC) 

curves (Fig. 7a) suggested that the RBF kernel SVM (with the Area Under Curve 

(AUC)=0.77 and F1 score=71%) exhibits a noticeably better classification performance than 

the linear SVM (AUC=0.52 and F1 score=44%). Fig. 7b illustrates the class regions via de-

cision boundaries predicted by the RBF kernel SVM. For comparing the classes statisti-

cally, pairwise PERMANOVA was then performed among MS groups. The result shows 

a significant distinction between PPMS-SPMS and RRMS-SPMS with p-values of 0.031 

and 0.033, respectively. However, RRMS and PPMS observations were not found signifi-

cantly different. It can also be inferred from Figure 5a that the centers of these two groups 

are very close. Hypothetically, this could be because small N and clinically, RRMS has a 

wide range of disease diversity (Figure 5a) depending on age, medical history of patients, 

etc. which would make its exact identification fuzzy.   
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Figure 7. Generalization performance of linear and kernel SVM trained on limited 

MagLev images of MS samples. (A) ROC of linear SVM and kernel (RBF) SVM mod-

els. SVM with RBF transformation demonstrates a better overall performance 

(higher area under curve). (B) The produced classified feature space by the kernel 

SVM prediction model. In contrast to linear SVM, the kernel SVM allows non-linear 

decision boundaries. Darker (lighter) regions in each class corresponds to the higher 

(lower) prediction scores (higher (lower) classification confidence). 

 

5. Conclusions 

We demonstrated a proof-of-concept study that the combination of optical images of 

levitation plasma proteins and machine learning technique enables us to classify three 

types of MS: RRMS, SPMS, and PPMS. Particularly, using the developed expert system, 

we were able to enhance (based on histogram normalization and contrast stretching) the 

MagLev images, detect and remove the outlier images, and classify the different types of 

MS disease. The current preliminary results showed that even with a small clinical dataset 

available, a fair prediction model can be achieved with an F1 score of 71% and this should 

be improved as the sample size become larger. Using omic technologies, it will vbe valu-

able to identify specific biomarkers that can differentiate MS subtypes and lack of such 

analyses are part of  study limitations. However, one can hypothesize that magLev tech-

nique is more sensitive at distinguishing MS subtypes than conventional plasma protein 

measurements, and we hypothesize this difference in sensitivity is dependent upon taking 

all of the charges and composition of the blood plasma into account for differentiations of 

MS subtypes, rather than a curated set of biomarkers. Also, this should be noted that 

futrtehr works are needed to investigate wheather any other disease can lead to similar 

plasma image structures or not. For these,  the presented preliminary framework herein 

may not be used as a full screening tool for the population level, as more plasma samples 

and system optimization are required. Regardless, the proposed analysis and data pro-

cessing framework remains a valuable future application of MagLev for MS and other 

diagnosis purposes. 
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