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Abstract. In this note we, first, recall that the sets of all representatives of some special
ordinary residue classes become (m,n)-rings. Second, we introduce a possible p-adic
analog of the residue class modulo a p-adic integer. Then, we find the relations which
determine, when the representatives form a (m, n)-ring. a
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1. INTRODUCTION

The fundamental conception of p-adic numbers is based on a special extension of

rational numbers which is alternative to the real and complex numbers. The mainideaisa

completion of rational numbers with respect to the p-adic norm, which is non-Archimedian. 1
Nowadays, p-adic methods are widely used in number theory [1,2] and arithmetic geometry 12
[3,4], mathematical physics [5,6] and algorithmic computations [7]. For general reviews, 1
see [8-10]. 14

We have found that in the study of p-adic integers some polyadic structures, thatis s
(m, n)-rings, can appear naturally, if we introduce informally a p-adic analog of the residue 16
classes for ordinary integers and investigate the set of its representatives along the lines of 17
[11-13]. 1e

2. (m,n)-RINGS OF INTEGER NUMBERS FROM RESIDUE CLASSES 10
Here we recall that representatives of special residue (congruence) classes can form =

polyadic rings, as was found in [11,12] (see also notation from [13]). 2
Let us denote the residue (congruence) class of an integer a modulo b by

[a], = {re(a,b)} |k € Z,a€ Zy,b eN,0<a <b-1}, (2.1)

where 7y (a,b) = a + bk is a generic representative element of the class [a],. The canonical
representative is the least nonnegative number among these. Informally, a is the remainder
of ri.(a,b) when divided by b. The corresponding equivalence relation (congruence modulo

b) is denoted by
r = a(modb). (2.2)
Introducing the binary operations between classes (+., X;), the addition [a1], +, =2
[a2], = [a1 + az], and multiplication [a1], X [a2], = [a142];, the residue class (binary) =
finite commutative ring Z, bZ (with identity) is defined in the standard way (which was  za
named “external” [11]). If a # 0 and b is prime, then Z bZ becomes a finite field. 25

The set of representatives {r(a,b)} in a given class [a], does not form a binary ring,
because there are no binary operations (addition and multiplication) which are simulta-
neously closed for arbitrary a and b. Nevertheless, the following polyadic operations on
representatives ry = r(a,b), m-ary addition v,

Un [Tkys Thyr - 1Tk ) = Thy + Ty -+ T (2.3)
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and n-ary multiplication y,
Hn[Thy s Thyr 0Ty | = ThyThy -+ Thr Tk € [l ki €Z, (2.4)

can be closed, but only for special values of 2 = a; and b = b;, which defines the nonderived
(m,n)-ary ring

L) (19, bg) = < (3], | v P‘n> (2.5)
of polyadic integers (that was called the “internal” way [11]). The conditions of closure for

the operations between representatives can be formulated in terms of the (arity shape [12])
invariants (which may be seen as some kind of “quantization”)

a

(m — 1)bi = In(ag,by) €N, (2.6)
q
109 — 1

or, equivalently, using the congruence relations [11]

ma

ag(modby), (2.8)

aj = ag(modby), (2.9)

23 o

where we have denoted by a; and b, the concrete solutions of the “quantization” equa-
tions (2.6)=(2.9). The arity shape of the ring of polyadic integers Z,, ) (a4, bg) (2.5) is the
(surjective) mapping

(ag,by) = (m,n). (2.10)

The mapping (2.10) for the lowest values of a,, b, is given in TABLE 1 (I = I, (aq, bq), 26
J=1Tn (ﬂq/ bq))‘

Table 1. The arity shape mapping (2.10) for the polyadic ring Z,, , (ag,bq) (2.5).

[T ag\bg ] 2 3 4 5 6 7 [ 8 9 10 1]
m=3 m=4 m=>5 m==6 m=7 m=8 m=9 m =10 m=11
1 n=2 n=2 n=2 n=2 n=2 n=2 n=2 n=2 n=2
I=1 I=1 I=1 I=1 I=1 I=1 I=1 I=1 I=1
J=0 J=0 J=0 J=0 J=0 J=0 J=0 J=0 J=0
m=4 m=6 m=4 m=38 m =10 m=6
2 n=3 n=>5 n=3 n=4 n=7 n=>5
I=2 I=2 I=1 I=2 I=2 I=1
J=2 J=6 J=1 J=2 J=14 J=3
m=5 m=6 m=3 m=8 m=9 m =11
3 n=3 n=>5 n=2 n=7 n=3 n=>5
I=3 I1=3 I=1 I1=3 I=3 I1=3
J=6 J=48 J=1 J =312 J=3 J=24
m=6 m=4 m=8 m =10 m=6
4 n=3 n=2 n=4 n=4 n=3
I=4 I=2 I=4 I=4 I=2
J=12 J=2 ] =36 ] =28 J=6
m=7 m=38 m=9 m =10 m=3
5 n=3 n=7 n=3 n=7 n=2
I=5 I=11 I=5 I=5 I=1
J =20 J = 11160 J=15 J = 8680 J=2
m=38 m=6
n=3 n=2
6 =6 1=3
J=30 J=3
m=9 m =10 m =11
7 n=3 n=4 n=>5
1=7 1=7 I1=7
J=42 J =266 ] = 1680
m =10 m=6
n=23 n=>5
8 1=8 I=4
] =56 J =3276
m =11
n=3
J 1=9
J=72

27

The binary ring of ordinary integers Z corresponds to (2; = 0,b; = 1) = (2,2) or 2
Z:Z(zlz)(O,l),I:]:O 29
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3. REPRESENTATIONS OF p-ADIC INTEGERS

Let us explore briefly some well-known definitions regarding p-adic integers to estab-
lish notations (for reviews, see [8,9,14]).

A p-adic integer is an infinite formal sum of the form

x=x(p) =ap+ap+mp® +.. Fap Vg aapt L, €2, (3)

where the digits (denoted by Greek letters from the beginning of alphabet) 0 <wa; < p —1,
and p > 2 is a fixed prime number. The expansion (3.1) is called standard (or canonical),
and «; are the p-adic digits which are usually written from the right to the left (positional
notation) x = . ..a;j 1401 ... apap OF sometimes x = {ao, W1, 00, 0o, 0G_1, 0,047 .. }
The set of p-adic integers is a commutative ring (of p-adic integers) denoted by Z, = {x},
and the ring of ordinary integers (sometimes called “rational” integers) Z is its (binary)
subring.

The so called coherent representation of Z, is based on the (inverse) projective limit of
finite fields 7 p'Z, because the surjective map Ly — 1/ P'7Z defined by

ag+a1p+ap? . tap e (wo+¢x1p+o¢2p2+...+oq_1pl_1) modp!  (3.2)

is a ring homomorphism. In this case, a p-adic integer is the infinite Cauchy sequence that
converges to

x=x(p) = {xi(p)}i2 = {x(p), x2(p), .., xi(p) ...}, (3.3)
where
xi(p) = oc0+vc1p+tx2p2+...+tx1_1pl_1 (3.4)

with the coherency condition
xip1(p) = xi(p) mod p!, Vi>1, (3.5)

and the p-adic digitsare 0 < a; < p —1.

If0 < x;(p) < p' —1foralli > 1, then the coherent representation (3.3) is called
reduced. The ordinary integers x € Z embed into p-adic integers as constant infinite
sequences by x — {x,x,...,x,...}.

Using the fact that the process of reducing modulo p' is equivalent to vanishing the
last i digits, the coherency condition (3.5) leads to a sequence of partial sums [14]

x=x(p) = {yi(p)}21 = {ni(p),y2(p), - wi(p) -}, (3.6)

where

vi(p) = a0, y2(p) = ao+a1p, y3(p) = ao+a1p+azp?, ya(p) = ao+arp+aop”+azp®, ... .

3.7)
Sometimes the partial sum representation (3.6) is simpler for p-adic integer computa-
tions.

4. (m,n)-RINGS OF p-ADIC INTEGERS

As may be seen from SECTION 2 and [11,12], the construction of the nonderived (m, n)-
rings of ordinary (“rational”) integers Z,, , (44, bg) (2.5) can be done in terms of residue
class representatives (2.1). To introduce a p-adic analog of the residue class (2.1), one needs
some ordering concept, which does not exist for p-adic integers [14]. Nevertheless, one
could informally define the following analog of ordering.

do0i:10.20944/preprints202211.0182.v1
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Definition 1. A “componentwise strict order” <comp is a multicomponent binary relation between
p-adic numbers a = {a;}72(, 0 < a; < p—Tandb = {B;};>, 0 < B; < p— 1, such that

a <comp b = a; < B, foralli=0,...,00, a,b e Ly, i, Bi € L. 4.1)

A “componentwise nonstrict order” <comyp is defined in the same way, but using the nonstrict  s2
order < for component integers from 7. (digits). 53

Using this definition we can define a p-adic analog of the residue class informally by s
changing Z to Z; in (2.1). 55

Definition 2. A p-adic analog of the residue class of a modulo b is
[a], = {{r(a,b)} | a,b,k € Z,,0 < a < b}, (4.2)
and the generic representative of the class is
ri(a,b) =a+,be,k, (4.3)

where +, and e, are the binary sum and the binary product of p-adic integers (we treat them s
componentwise in the partial sum representation (3.7)), and the ith component of (4.3) r.hs. is s
computed by mod p'. 58

As with the ordinary (“rational”) integers (2.1), the p-adic integer a can be treated as
some kind of remainder for the representative ¢ (a, b) when divided by the p-adic integer
b. We denote the corresponding p-adic analog of (2.2) (informally, a p-adic analog of the
congruence modulo b) as

r=a(Mod,b). (4.4)

Remark 1. In general, to build a nonderived (m, n)-ring along the lines of SECTION 2, we do not  se
need any analog of the residue class at all, but only the concrete form of the representative (4.3). Then oo
demanding the closure of m-ary addition (2.3) and n-ary multiplication (2.4), we obtain conditions e
on the parameters (now digits of p-adic integers), similarly to (2.6)—(2.7). 62

In the partial sum representation (3.6), the case of ordinary (“rational”) integers s
corresponds to the first component (first digit «¢) of the p-adic integer (3.7), and higher s
components can be computed using the explicit formulas for sum and product of p-adic s
integers [15]. Because they are too cumbersome, we present here the “block-schemes” of 6
the computations, while concrete examples can be obtained componentwise using (3.7). o7

Lemma 1. The p-adic analog of the residue class (4.2) is a commutative m-ary group ([al, | vm), if
(m—1)a="be,l, (4.5)

where I is a p-adic integer (addition shape invariant), and the nonderived m-ary addition vy, is the
repeated binary sum of m representatives r, = ry(a,b)

Vi [Py s Pheys -+ Tk ] = Ty +p Phy Fp - - Fp Thon (4.6)

Proof. The condition of closure for the m-ary addition vy, is ri, +p 7, +p ... +p 7k, = K, in
the notation of (4.2). Using (4.3) it gives ma + b ey, (k1 +pka +p ... +pkm) = a+,be, ko,
which is equivalent to (4.5), where I = ko —p (k1 tpkaotp...+p km). The querelement r,
[16] satisfies

Vi [t Ther - T 1) = Tk, 4.7)

which has a unique solution k = (2 — m)k — I. Therefore, each element of [a], is invertible s
with respect to v, and ([a], | vi) is a commutative m-ary group. [ o
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Lemma 2. The p-adic analog of the residue class (4.2) is a commutative n-ary semigroup

(alp | pn), if
a"—a=be,], 4.8)

where ] is a p-adic integer (multiplication shape invariant), and the nonderived m-ary multiplication
Uy i the repeated binary product of n representatives

P[Py Thyr -0 TRy | = Ty TRy - - - Ty 4.9)
Proof. The condition of closure for the n-ary multiplication p;, is ry, @, 1y, @) ... @p 1, = 70
r,- Using (4.3) and opening brackets we obtain na + b e, J; = a+,be, kg, where J1is =
some p-adic integer, which gives (4.8) with ] = ko — J;. O 72
Combining the conditions (4.5) and (4.8), we arrive at 73

Theorem 1. The p-adic analog of the residue class (4.2) becomes a (m, n)-ring with m-ary addition
(4.6) and n-ary multiplication (4.9)

Z(m,ny(ag,bq) = <[“q]bq | Vm/,un>r (4.10)
when the p-adic integers ag, by € Zy are solutions of the equations

may = ag(Mod, by), (4.11)
ay = ag(Mod, by). (4.12)

Proof. The conditions (4.11)—(4.12) are equivalent to (4.5) and (4.8), respectively, which 7
shows that [aq} by (considered as a set of representatives (4.3)) is simultaneously an m-ary 7

group with respect to vy, and an n-ary semigroup with respect to p,;, and is thereforea 7
(m,n)-ring. O 77

If we work in the partial sum representation (3.7), the procedure of finding the digits s
of p-adic integers ay, b; € Z, such that [a,] by becomes a (m, n)-ring with initially fixed 7
arities is recursive. To find the first digits &g and By that are ordinary integers, we use  so
the equations (2.6)—-(2.9), and for their arity shape TABLE 1. Next we consider the second &
components of (3.7) to find the digits ay and B of a; and b, by solving the equations (4.5) =
and (4.8) (these having initially given arities m and #n from the first step) by application s
of the exact formulas from [15]. In this way, we can find as many digits («o,,a;, ) and e
(Bos s Bimax) Of a5 and by, as needed for our accuracy preferences in building the polyadic &5
ring of p-adic integers Z,, ) (a4, bg) (4.10). ss

Further development and examples will appear elsewhere. o7
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