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Abstract. In this note we, first, recall that the sets of all representatives of some special 
ordinary residue classes become (m, n)-rings. Second, we introduce a possible p-adic 
analog of the residue class modulo a p-adic integer. Then, we find the relations which 
determine, when the representatives form a (m, n)-ring.
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1. INTRODUCTION

The fundamental conception of p-adic numbers is based on a special extension of 
rational numbers which is alternative to the real and complex numbers. The main idea is a

10

completion of rational numbers with respect to the p-adic norm, which is non-Archimedian. 11

Nowadays, p-adic methods are widely used in number theory [1,2] and arithmetic geometry 12

[3,4], mathematical physics [5,6] and algorithmic computations [7]. For general reviews, 13

see [8–10]. 14

We have found that in the study of p-adic integers some polyadic structures, that is 15

(m, n)-rings, can appear naturally, if we introduce informally a p-adic analog of the residue 16

classes for ordinary integers and investigate the set of its representatives along the lines of 17

[11–13]. 18

2. (m, n)-RINGS OF INTEGER NUMBERS FROM RESIDUE CLASSES 19

Here we recall that representatives of special residue (congruence) classes can form 20

polyadic rings, as was found in [11,12] (see also notation from [13]). 21

Let us denote the residue (congruence) class of an integer a modulo b by

[a]b = {{rk(a, b)} | k ∈ Z, a ∈ Z+, b ∈ N, 0 ≤ a ≤ b − 1}, (2.1)

where rk(a, b) = a + bk is a generic representative element of the class [a]b. The canonical
representative is the least nonnegative number among these. Informally, a is the remainder
of rk(a, b) when divided by b. The corresponding equivalence relation (congruence modulo
b) is denoted by

r = a(mod b). (2.2)

Introducing the binary operations between classes (+cl ,×cl), the addition [a1]b +cl 22

[a2]b = [a1 + a2]b and multiplication [a1]b ×cl [a2]b = [a1a2]b, the residue class (binary) 23

finite commutative ring Z⧸bZ (with identity) is defined in the standard way (which was 24

named “external” [11]). If a ̸= 0 and b is prime, then Z⧸bZ becomes a finite field. 25

The set of representatives {rk(a, b)} in a given class [a]b does not form a binary ring,
because there are no binary operations (addition and multiplication) which are simulta-
neously closed for arbitrary a and b. Nevertheless, the following polyadic operations on
representatives rk = rk(a, b), m-ary addition νm

νm
[
rk1 , rk2 , . . . , rkm

]
= rk1 + rk2 + . . . + rkm , (2.3)
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and n-ary multiplication µn

µn
[
rk1 , rk2 , . . . , rkn

]
= rk1 rk2 . . . rkn , rki

∈ [a]b, ki ∈ Z, (2.4)

can be closed, but only for special values of a = aq and b = bq, which defines the nonderived
(m, n)-ary ring

Z(m,n)
(
aq, bq

)
=

〈[
aq
]

bq
| νm, µn

〉
(2.5)

of polyadic integers (that was called the “internal” way [11]). The conditions of closure for
the operations between representatives can be formulated in terms of the (arity shape [12])
invariants (which may be seen as some kind of “quantization”)

(m − 1)
aq

bq
= Im

(
aq, bq

)
∈ N, (2.6)

an−1
q

aq − 1
bq

= Jn
(
aq, bq

)
∈ N, (2.7)

or, equivalently, using the congruence relations [11]

maq ≡ aq
(
mod bq

)
, (2.8)

an
q ≡ aq

(
mod bq

)
, (2.9)

where we have denoted by aq and bq the concrete solutions of the “quantization” equa-
tions (2.6)–(2.9). The arity shape of the ring of polyadic integers Z(m,n)

(
aq, bq

)
(2.5) is the

(surjective) mapping (
aq, bq

)
=⇒ (m, n). (2.10)

The mapping (2.10) for the lowest values of aq, bq is given in TABLE 1 (I = Im
(
aq, bq

)
, 26

J = Jn
(
aq, bq

)
).

Table 1. The arity shape mapping (2.10) for the polyadic ring Z(m,n)
(
aq, bq

)
(2.5).

aq \ bq 2 3 4 5 6 7 8 9 10

1

m = 3
n = 2
I = 1
J = 0

m = 4
n = 2
I = 1
J = 0

m = 5
n = 2
I = 1
J = 0

m = 6
n = 2
I = 1
J = 0

m = 7
n = 2
I = 1
J = 0

m = 8
n = 2
I = 1
J = 0

m = 9
n = 2
I = 1
J = 0

m = 10
n = 2
I = 1
J = 0

m = 11
n = 2
I = 1
J = 0

2

m = 4
n = 3
I = 2
J = 2

m = 6
n = 5
I = 2
J = 6

m = 4
n = 3
I = 1
J = 1

m = 8
n = 4
I = 2
J = 2

m = 10
n = 7
I = 2
J = 14

m = 6
n = 5
I = 1
J = 3

3

m = 5
n = 3
I = 3
J = 6

m = 6
n = 5
I = 3
J = 48

m = 3
n = 2
I = 1
J = 1

m = 8
n = 7
I = 3

J = 312

m = 9
n = 3
I = 3
J = 3

m = 11
n = 5
I = 3
J = 24

4

m = 6
n = 3
I = 4
J = 12

m = 4
n = 2
I = 2
J = 2

m = 8
n = 4
I = 4
J = 36

m = 10
n = 4
I = 4
J = 28

m = 6
n = 3
I = 2
J = 6

5

m = 7
n = 3
I = 5
J = 20

m = 8
n = 7
I = 11

J = 11160

m = 9
n = 3
I = 5
J = 15

m = 10
n = 7
I = 5

J = 8680

m = 3
n = 2
I = 1
J = 2

6

m = 8
n = 3
I = 6
J = 30

m = 6
n = 2
I = 3
J = 3

7

m = 9
n = 3
I = 7
J = 42

m = 10
n = 4
I = 7

J = 266

m = 11
n = 5
I = 7

J = 1680

8

m = 10
n = 3
I = 8
J = 56

m = 6
n = 5
I = 4

J = 3276

9

m = 11
n = 3
I = 9
J = 72

27

The binary ring of ordinary integers Z corresponds to
(
aq = 0, bq = 1

)
=⇒ (2, 2) or 28

Z = Z(2,2)(0, 1), I = J = 0. 29
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3. REPRESENTATIONS OF p-ADIC INTEGERS 30

Let us explore briefly some well-known definitions regarding p-adic integers to estab- 31

lish notations (for reviews, see [8,9,14]). 32

A p-adic integer is an infinite formal sum of the form

x = x(p) = α0 + α1 p + α2 p2 + . . . + αi−1 pi−1 + αi pi + αi+1 pi+1 + . . . , αi ∈ Z, (3.1)

where the digits (denoted by Greek letters from the beginning of alphabet) 0 ≤ αi ≤ p − 1, 33

and p ≥ 2 is a fixed prime number. The expansion (3.1) is called standard (or canonical), 34

and αi are the p-adic digits which are usually written from the right to the left (positional 35

notation) x = . ...αi+1αiαi−1 . . . α2α1α0 or sometimes x = {α0, α1, α2, . . . , αi−1, αi, αi+1 . . .}. 36

The set of p-adic integers is a commutative ring (of p-adic integers) denoted by Zp = {x}, 37

and the ring of ordinary integers (sometimes called “rational” integers) Z is its (binary) 38

subring. 39

The so called coherent representation of Zp is based on the (inverse) projective limit of
finite fields Z⧸plZ, because the surjective map Zp −→ Z⧸plZ defined by

α0 + α1 p + α2 p2 + . . . + αi pi + . . . 7→
(

α0 + α1 p + α2 p2 + . . . + αl−1 pl−1
)

mod pl (3.2)

is a ring homomorphism. In this case, a p-adic integer is the infinite Cauchy sequence that
converges to

x = x(p) = {xi(p)}∞
i=1 = {x1(p), x2(p), . . . , xi(p) . . .}, (3.3)

where
xi(p) = α0 + α1 p + α2 p2 + . . . + αl−1 pl−1 (3.4)

with the coherency condition

xi+1(p) ≡ xi(p)mod pi, ∀i ≥ 1, (3.5)

and the p-adic digits are 0 ≤ αi ≤ p − 1. 40

If 0 ≤ xi(p) ≤ pi − 1 for all i ≥ 1, then the coherent representation (3.3) is called 41

reduced. The ordinary integers x ∈ Z embed into p-adic integers as constant infinite 42

sequences by x 7→ {x, x, . . . , x, . . .}. 43

Using the fact that the process of reducing modulo pi is equivalent to vanishing the
last i digits, the coherency condition (3.5) leads to a sequence of partial sums [14]

x = x(p) = {yi(p)}∞
i=1 = {y1(p), y2(p), . . . , yi(p) . . .}, (3.6)

where

y1(p) = α0, y2(p) = α0 + α1 p, y3(p) = α0 + α1 p+ α2 p2, y4(p) = α0 + α1 p+ α2 p2 + α3 p3, . . . .
(3.7)

Sometimes the partial sum representation (3.6) is simpler for p-adic integer computa- 44

tions. 45

4. (m, n)-RINGS OF p-ADIC INTEGERS 46

As may be seen from SECTION 2 and [11,12], the construction of the nonderived (m, n)- 47

rings of ordinary (“rational”) integers Z(m,n)
(
aq, bq

)
(2.5) can be done in terms of residue 48

class representatives (2.1). To introduce a p-adic analog of the residue class (2.1), one needs 49

some ordering concept, which does not exist for p-adic integers [14]. Nevertheless, one 50

could informally define the following analog of ordering. 51
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Definition 1. A “componentwise strict order” <comp is a multicomponent binary relation between
p-adic numbers a = {αi}∞

i=0, 0 ≤ αi ≤ p − 1 and b = {βi}∞
i=0, 0 ≤ βi ≤ p − 1, such that

a <comp b ⇐⇒ αi < βi, for all i = 0, . . . , ∞, a, b ∈ Zp, αi, βi ∈ Z. (4.1)

A “componentwise nonstrict order” ≤comp is defined in the same way, but using the nonstrict 52

order ≤ for component integers from Z (digits). 53

Using this definition we can define a p-adic analog of the residue class informally by 54

changing Z to Zp in (2.1). 55

Definition 2. A p-adic analog of the residue class of a modulo b is

[a]b =
{
{rk(a, b)} | a, b, k ∈ Zp, 0 ≤ a < b

}
, (4.2)

and the generic representative of the class is

rk(a, b) = a +p b •p k, (4.3)

where +p and •p are the binary sum and the binary product of p-adic integers (we treat them 56

componentwise in the partial sum representation (3.7)), and the ith component of (4.3) r.h.s. is 57

computed by mod pi. 58

As with the ordinary (“rational”) integers (2.1), the p-adic integer a can be treated as
some kind of remainder for the representative rk(a, b) when divided by the p-adic integer
b. We denote the corresponding p-adic analog of (2.2) (informally, a p-adic analog of the
congruence modulo b) as

r = a
(
Modp b

)
. (4.4)

Remark 1. In general, to build a nonderived (m, n)-ring along the lines of SECTION 2, we do not 59

need any analog of the residue class at all, but only the concrete form of the representative (4.3). Then 60

demanding the closure of m-ary addition (2.3) and n-ary multiplication (2.4), we obtain conditions 61

on the parameters (now digits of p-adic integers), similarly to (2.6)–(2.7). 62

In the partial sum representation (3.6), the case of ordinary (“rational”) integers 63

corresponds to the first component (first digit α0) of the p-adic integer (3.7), and higher 64

components can be computed using the explicit formulas for sum and product of p-adic 65

integers [15]. Because they are too cumbersome, we present here the “block-schemes” of 66

the computations, while concrete examples can be obtained componentwise using (3.7). 67

Lemma 1. The p-adic analog of the residue class (4.2) is a commutative m-ary group ⟨[a]b | νm⟩, if

(m − 1)a = b •p I, (4.5)

where I is a p-adic integer (addition shape invariant), and the nonderived m-ary addition νm is the
repeated binary sum of m representatives rk = rk(a, b)

νm
[
rk1 , rk2 , . . . , rkm

]
= rk1 +p rk2 +p . . . +p rkm . (4.6)

Proof. The condition of closure for the m-ary addition νm is rk1 +p rk2 +p . . .+p rkm = rk0 in
the notation of (4.2). Using (4.3) it gives ma + b •p

(
k1 +p k2 +p . . . +p km

)
= a +p b •p k0,

which is equivalent to (4.5), where I = k0 −p
(
k1 +p k2 +p . . . +p km

)
. The querelement rk̄

[16] satisfies
νm[rk, rk, . . . , rk, rk̄] = rk, (4.7)

which has a unique solution k̄ = (2 − m)k − I. Therefore, each element of [a]b is invertible 68

with respect to νm, and ⟨[a]b | νm⟩ is a commutative m-ary group. 69
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Lemma 2. The p-adic analog of the residue class (4.2) is a commutative n-ary semigroup
⟨[a]b | µn⟩, if

an − a = b •p J, (4.8)

where J is a p-adic integer (multiplication shape invariant), and the nonderived m-ary multiplication
νm is the repeated binary product of n representatives

µn
[
rk1 , rk2 , . . . , rkn

]
= rk1 rk2 . . . rkn . (4.9)

Proof. The condition of closure for the n-ary multiplication µn is rk1 •p rk2 •p . . . •p rkm = 70

rk0 . Using (4.3) and opening brackets we obtain na + b •p J1 = a +p b •p k0, where J1 is 71

some p-adic integer, which gives (4.8) with J = k0 −p J1. 72

Combining the conditions (4.5) and (4.8), we arrive at 73

Theorem 1. The p-adic analog of the residue class (4.2) becomes a (m, n)-ring with m-ary addition
(4.6) and n-ary multiplication (4.9)

Z(m,n)
(
aq, bq

)
=

〈[
aq

]
bq

| νm, µn

〉
, (4.10)

when the p-adic integers aq, bq ∈ Zp are solutions of the equations

maq = aq
(
Modp bq

)
, (4.11)

an
q = aq

(
Modp bq

)
. (4.12)

Proof. The conditions (4.11)–(4.12) are equivalent to (4.5) and (4.8), respectively, which 74

shows that
[
aq

]
bq

(considered as a set of representatives (4.3)) is simultaneously an m-ary 75

group with respect to νm, and an n-ary semigroup with respect to µn, and is therefore a 76

(m, n)-ring. 77

If we work in the partial sum representation (3.7), the procedure of finding the digits 78

of p-adic integers aq, bq ∈ Zp such that
[
aq

]
bq

becomes a (m, n)-ring with initially fixed 79

arities is recursive. To find the first digits α0 and β0 that are ordinary integers, we use 80

the equations (2.6)–(2.9), and for their arity shape TABLE 1. Next we consider the second 81

components of (3.7) to find the digits α1 and β1 of aq and bq by solving the equations (4.5) 82

and (4.8) (these having initially given arities m and n from the first step) by application 83

of the exact formulas from [15]. In this way, we can find as many digits (α0, , αimax) and 84

(β0, , βimax) of aq and bq, as needed for our accuracy preferences in building the polyadic 85

ring of p-adic integers Z(m,n)
(
aq, bq

)
(4.10). 86

Further development and examples will appear elsewhere. 87
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