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Abstract: For a decade, the studies of dynamic control for unmanned aerial ve-
hicles took a large interest, where drones as a useful technology in different are-
as were always suffering from several issues like instability-high energy con-
sumption of batteries - inaccuracy of tracking targets. Different approaches are
proposed for dealing with the nonlinearity issues which present the most im-
portant features of this system. This paper describes our focus on the most
common control strategies, known as model predictive control MPC, by devel-
oping a model based on the sensors embedded in our Tello quadrotor used for
indoor purposes. The original controller of Tello quadrotor is supposed to be a
slave, where the designed model predictive controller is created in MATLAB
and imported to another embedded system, considered as a master; the objec-
tive of this model is to track the reference trajectory, almost keeping the stability
of the system and ensure the low energy consumption. In the first part, a pro-
found description of the modeling process of a dynamic model for drones is
presented, explaining the design of MPC controller with both linear and nonlin-
ear strategies built in MATLAB. In the final part, simulation and results are dis-
cussed regarding its behavior and performance, highlighting the MPC model's
important role on drones' energy consumption profile.

Keywords: dynamic control; UAV; model predictive control; nonlinear MPC;
trajectory tracking; energy consumption

1. Introduction

Drones, abbreviated as UAVs (Unmanned Aerial Vehicles), are
unmanned aircraft capable of carrying out a mission autonomously by
being self-piloted or semi-autonomous using a remote control [1], [2].
The primary function of these vehicles is to extend human vision be-
yond the natural horizon to accomplish works at risk or in hostile envi-
ronments. The military has implemented the first applications of drones
for surveillance or reconnaissance missions without the risk of human
losses. More recently, civil applications have appeared, such as the pre-
vention of forest fires, the inspection of engineering structures, the ener-
gy flow monitoring of motorway traffic, or the collection of meteorolog-
ical data. However, the use of civilian drones remains limited because
non-military drones still need to be fully integrated into civil airspace
(2], [3]-

The classification of the existing UAVs differs according to the
countries and their army [4]. The UAVs can be classified according to
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size, endurance, flight altitude, function, mass, payload, etc. The most
accepted classification divides UAVs according to their size and endur-
ance, where mostly five categories of UAVs exist, from aircraft UAVs
with a wingspan of about 30 meters to flapping wings a few millimeters
long.

In this paper, our interest mainly focuses on quadrotor UAVs,
known as drones with multiple rotors. Multi-rotor UAVs are certainly
the best-known and most widespread aeromechanics configuration
among autonomous aerial vehicles [5]. These aircraft are usually
equipped with four rotors, but there are also some with six or even eight
rotors. The mechanical simplicity of this type of vehicle makes it a wide-
ly used configuration for the realization of experimental platforms at
reduced costs [6]. The operation of multi-rotor drones is quite particular,
where the configuration ca be plus or cross configuration [7]. First, to
compensate for the torque reaction, the rotation of the rotors' direction is
reversed two by two. In addition, the translation and the rotation
movements according to the three axes are done carefully by manipulat-
ing the rotational speeds of the different rotors. In fact, it is the differ-
ence in the lift that determines the inclination of the aircraft around the
roll and pitch angles, allowing translational flight, Figure 1 shows the
movement states of a quadrotor with cross configuration regarding the
X, Y, and Z axes [8].
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Figure 1. The possible motions of quadrotor with cross configuration

Due to the very good distribution of lift in the horizontal plane,
multi-rotor UAVs are particularly suitable for hovering and low-speed
flights. On the other hand, this configuration is not recommended for
high-speed translational flights nor for driving in windy conditions.
Moreover, this rotor configuration is restricted to small-size aircraft be-
cause the size of the rotors increases with the increase of the mass of the
drone.
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The main goal of drones is to achieve a high degree of autonomy to
make decisions and be in a stable state, this can be done based on the
embedded systems in the body part, which are the measurement system
and the controller. The measurement system in the drone is responsible
for the collection of information on the state of the drone and its envi-
ronment, where in the drone, we can find three types of sensors [9], [10]:

e  Sensors for measuring attitude, such as Gyroscopes to measure an-
gular position and angular velocity, Accelerometers to measure ac-
celeration, Magnetometers to measure the direction of the magnetic
field and scan the area and detect metals in space,

e Sensors for measuring the velocity and position of the drone as an
Altimeter, GPS, and Camera,

e  Sensors for detecting obstacles around the drone as Ultrasonic sen-
sors and Telemeter laser.

The obtained information from the measurement system is trans-
ferred to the control part as digital signals, where the data is processed
by the control system. The control system based on a mathematical al-
gorithm generates the control signals allowing the drone to move in an
appropriate way. This is based on a mathematical representation of the
drone's mechanical body and on the measurement signals from the
onboard sensors. Its role is, above all, to guarantee the stability of the
device during the autonomous flight phase. Despite a general principle
that is relatively simple to understand, the design of such a system is ra-
ther complex and requires special attention. Indeed, UAVs, and more
particularly rotary wing UAVs such as quadrotors, are under-actuated
systems, sensitive to aerodynamic disturbances, and whose dynamics
are highly non-linear [11], [12]. Moreover, it presents a significant cou-
pling between the system's state variables and its control inputs. The
coupling characterizes the fact that any change in a control input affects
not only the variable of interest, but also the others [13].

Based on Equations of Newton Euler or Energetic Lagrange deriva-
tive, many scientists suggested how to design the dynamic modeling of
drones, where from literature review, we can find the mathematical
model for the kinematic and dynamic models, as it appears in [13]-[15];
taking into consideration the behavior of the quadrotor in different
flight conditions (stationary, in translation, or in rotation). However, the
main problem with these dynamic models is the difficulty to design a
"simple" control algorithm due to the complexity of the model which is
nonlinear. The first mission of the quadrotor is how to track a position
from one point to another point in the 3D environment respectively to
the given orientation. Under all the previous cited challenging criteria,
this task makes the object deal with the study of control theory, by de-
veloping controllers that can success to track the trajectory and avoiding
obstacles, all by optimizing the battery life of the drone.

The control strategy for the quadrotor scope represents a big issue
in this research field, where many scientists suggested different imple-
mentations, some of them were focusing on linear control strategies as
PID - LQ - H infinity — Linear MPC, where others preferred to deal with
nonlinear control approaches as Backstepping control — Sliding mode
control — Nonlinear MPC [16]-[21].
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At the energy profile, one of the biggest drawbacks of the quad-
rotor is presented in the battery life, where usually the fact that time av-
erage mission does not exceed 15 min. Since existing controllers are typ-
ically designed to maximize the performance of tracking while provid-
ing a sufficient margin of stability. However, extracting the maximum
performance generates greater consumption and, therefore, a reduction
in the duration of battery life. For this reason, several researchers have
focused on regulation using the linear quadratic controller since it min-
imizes, for its quadratic nature, energy consumption. In addition, sever-
al strategies can improve fuel efficiency. We can cite as an example:

e  Minimization of errors: indeed, this is the classic approach; the less
we commit errors in the pursuit of the desired trajectory, the less
energy is spent [22];

e  Fuzzy logic applied to the altitude control: Indeed, the fact of
climbing or descending consumes double and even more because
this movement causes the rotation of the four engines simultane-
ously, so one could think of establishing fuzzy logic between flight
height and battery state of charge [23];

e  The search for an optimal trajectory: energy consumption can be
reduced using or avoiding air currents and thus finding the flight
path least costly in terms of energy compared to a direct flight to
the destination [23].

This paper presents our focus on developing a customized, power-
ful embedded control system for Tello EDU quadrotor model [24] quad-
rotor already has a basic embedded system that fulfills simple com-
mands for take-off and landing motions with low accuracy and stability.

The paper includes the following parts: first, the process to identify
the dynamic mathematical model of Tello drone with the actual parame-
ters is presented, this model is purely nonlinear due to the strong cou-
pling between the state variables and the control inputs, but in addition,
its dynamics are under-actuated, i.e., the number of information which
is 4 is less than the number of outputs which is six that presents the de-
grees of freedom. In the second part, after getting the dynamic model,
we will show the methodology to build a control strategy. Two ap-
proaches are taken into consideration in our research: the first assumes
that the system is linear, so we apply model predictive control. This ap-
proach requires linearizing the dynamic model around an equilibrium
point hover position. The second approach assumes that we are dealing
with reality and that the system is nonlinear. So, we applied nonlinear
model predictive control to track the reference trajectory. A detailed
comparison will be presented regarding the motion tracking, stability,
and energy profile. We will show the reader how the inputs will lead to
the effect of predictive model control on energy consumption. The input
variables for the drone present the angular velocities of the four rotors.
Then in the last section, the simulation results are discussed, and a com-
parison is made to understand the potential of using a nonlinear con-
troller instead of a linear one.

2. Materials and Methods
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The main aim of this work is to build a customized embedded sys-
tem for Tello EDU quadrotor. The customized embedded system is
based on a System on Chip from Xilinx-AMD and implements a control
strategy based on MPC. Figure 2 presents the plan for our main target.
To start the process, the research began by developing a suitable model
predictive control for Tello EDU quadrotor. This type of drone is helpful
for education and research purposes. The control model is based on the
dynamic mathematical model of the drone and its fundamental parame-
ters; therefore, this paper presents a methodology for building a suitable
control strategy based on the following points:

e the conditions are taken into consideration to identify the dynamic
mathematical model.

e  parameter identification of Tello EDU quadrotor.
e use of linear and nonlinear model predictive control

e  deep comparison to show the effectiveness of a nonlinear controller
- how the optimization of energy consumption can be achieved re-
garding the control part.

The simulation is done using MATLAB Simulink, offering different
functions that could help us achieve the research target efficiently, espe-
cially since setting parameters and analyzing the results in Simulink is
more friendly than using MATLAB Script.

In the following, the paper will highlight the methods used to build
the optimal controller, starting by modeling the dynamics of Tello quad-
rotor, then dealing with the control strategy part by getting familiar
with a model predictive controller in general and how we succeed in
tuning both control types (linear and nonlinear).

Tello MPC
Model

Model Predictive Control

Foa} +
Align to Right ™ M,
Al b,

Tello Dynamic Import Simulink
Model model to SDK

)

Figure 2. The proposed plan for building the customized embedded system for
Tello Edu

Customize New
Embedded Controller

Implement Customized
Controller in Tello drone

2.1. Tello Quad-rotor Model

Tello EDU quadrotor model [24] is an impressive and programma-
ble valuable drone for educational purposes. The system is dedicated to
the students to learn programming languages such as Scratch, Python,
and Swift and develop Al functions like a fly-in swarm, upgraded with
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SDK 2.0, embedded with DJI's flight control technology, and supports
electronic image stabilization.

Figure 3 presents the Tello quadrotor with its specifications. The
drone features a vision positioning system and an onboard camera
based on an advanced flight controller to hover in a precise place, suita-
ble for flying indoors, in which its maximum time flight is around 13
minutes, and its maximum flight distance is 100 meters. These specifica-
tions are critical to see the advantages and the drawbacks that they
have. For example, when we say the drone is for indoor activities, this
characteristic will neglect the wind and gyroscopic effects as a disturb-
ance in the system. Also, it is a motivation for us to optimize the energy
profile of this drone where the time flight can be much longer in case of
using optimal control strategies.

From Tello drone, our interest, as we mentioned earlier, is to devel-
op a new predictive control model using its basic sensors identified as a
complete system: the vision positioning system helps the aircraft to
maintain its current position, where the main components are the cam-
era and the 3D infrared module located on the underside of the plane.

Propellers
Motors
Aircraft Status Indicator

Camera

o oo os W N
g
o
w
o
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Vision Positioning System

o =l

Flight Battery

Micro USB Port

. Propellers Guards

Figure 3. Tello drones basic components

2.2. Quadroto Mathematical Model

Designing a suitable controller for an appropriate drone requires
first modeling the mathematical dynamics of the plant. This helps to
understand how the drone moves and what forces and torques are ap-
plied. How many motions do we have? Which velocities are needed to
execute different flight modes? Therefore, one can identify the inputs,
outputs, the state’s variables, and the disturbances of the central system.

Figure 4 describes the dynamic structure of Tello drone in the body
and inertial frames, where the corresponding angular velocities, tor-
ques, and forces created by the four rotors (numbered from 1 to 4) are
presented. The drone's movement is generated by differential thrust
forces between F2 and F4 that generate the rotation around the X axis,
known as roll motion. On the other hand, differential thrust forces be-
tween F1 and F3 will generate the rotation around the Y axis, known as
pitch motion. In contrast, the rotation around the Z axis, the yaw mo-
tion, is caused by differential torques between clockwise and anticlock-
wise rotors, i.e., (T; — Ty + T3 — Tg).

The modeling of UAVs is a delicate task since the system's dynam-
ics are strongly nonlinear and fully coupled. Many literature reviews
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explained the methodology for modeling such systems (references?).
This paper presents the exact strategy to get both linear and nonlinear
dynamic models based on the Tello drone's main parameters. The calcu-
lation of the mathematical model is based on some simplifications; here
are the different working hypotheses [25]:

e  The structure of the quadrotor is assumed rigid and symmetrical,
which induces that the matrix of inertia will be assumed diagonal.

e  The propellers are assumed rigid in order to be able to neglect the
effect of their deformation during rotation.

e  The center of mass and the origin of the frame linked to the struc-
ture coincide.

e  The lift and drag forces are proportional to the squares of the ro-
tors' rotation speed, which is a very close approximation of the aer-
odynamic behavior.

e To evaluate the quadrotor's mathematical model, we use two
frames, a fixed inertial frame to the earth R; and the second mobile
frame fixed in the quadrotor Ry,. The transformation matrix gives
the passage between the body frame and the inertial frameT,
which contains the orientation and the mobile position reference
relative to the fixed reference.

Figure 4 shows the axis convention taken for Tello drone to model
the mathematical dynamic, where the forces, inertial moments, and an-
gular velocities are described.

Figure 4. Modeling frame assignments for Tello quadrotor [25]

The quadrotor system is a light structural flight vehicle. Therefore,
the gyroscopic effects resulting from the rotation of the rigid body and
the four propellers should be included in the dynamic model. However,
the dynamic model of the system is obtained under the assumption that
the vehicle is a rigid body in the spatial domain with different forces
and torques. The mathematical model presented here is based on New-
ton and Euler equations for the rigid body 3D motion [25].
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Let us describe [xy z ¢ 6 Y] Tthe vector containing the linear and
angular position of the quadrotor in the inertial frame F;, and
[uvwpqr] T the vector containing the linear and angular velocities in
the body frame F,. From 3D body dynamics, it follows that the two ref-
erence frames are linked by the following relations:

Ui v
o Bk u
V= v;,=y=R-vb=R-[v] (1)
vi] 1z w
Q81
Q= Qg’,=[q]=T-9 2)
ol '

where v is the linear velocity and Q the rotation velocity, R is the rota-
tion matrix describes the rotation from the body reference system to the
inertial reference, T is the matrix for angular transformation, where to
obtain [¢p 6 ] T, we need the inverse of matrix T.

CYCO CYSYSO — CHSY  CPHSOCY + SPSy
R =R} =|[COSY SpSOSY +CPCY CPpSOSY — SpCw|  3)
—S6 S¢Co CPpCo
1 0 —SO 1 SOTO C¢pTo
T=0 C$ cospf Tt=|0 (O =50 @)
0 —S¢ C¢Co o 2% 2

where C0 and S¢ and T¢ represent cosinus and sinus and tangant.
From the two relations, we can get the kinematic model for the quad-
rotor as follow:

% = u[CYCO] + v[CYSYSO — CPSP] + w[CPHSHCY + SPpS]
y = u[COSY] + v[SpSOSY + CHCY] + w[CHSOSY — SpC]
7z =u[—=S0] + v[SPLO] + w[CPHCO]
é = p+qlSPTO] + r[CHTH] (5)
6= qlCP] + r[—S¢]

-1 [ce] [ce]

The vector [uvwpqr] T is obtained using IMU system, with the
data obtained from the accelerometer and gyroscop sensors. In order to
get the dynamic model, let us call all the physical effects, forces and the
inertia moments applied on the system:

e  The weight force of the quadrotor given by:

e P=m-g (6)
e where m is the total mass of the rigid body and g is the gravity.
e The thrust forces created by the four rotors.

e  These forces are perpendicular to the plane of the propellers, and
are proportional to the square of the rotational speed of the motors,
the thrust forces are given by:
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e wherei=1..4; b is the coefficient of lift it depends on the shape
and the number of blades and the air density; w is the angular ve-
locity of the engine.

e  The drag force is the coupling between the pressure force and the
viscous frictional force.
In this case, two drag forces are acting on the system, the drag in the
propellers and the drag along the axes (x, y, z).
The drag in the propellers acts on the blades; it is proportional to
the density of the air, to the shape of the edges, and to the square of the
rotation velocity of the propeller, and given by the following relation:

Fug = d - w? (8)
where: d is the drag coefficient; it depends on the manufacture of the
propeller.

The drag along the axes (x, y, z) is due to the movement of the body
of the quadrotor:
Fdl = Kft v 9)

with: Ky, is the translational drag coefficient, and v is the linear velocity.

Regarding the inertial moments applied to the system, we have the fol-

lowing:

e  The inertial moments due to the thrust force: The rotation around
the x and y axes is due to the inertial moment created by the differ-
ence between the thrust forces of rotors 2 and 4 and 1 and 3, respec-
tively:

{Mx = I(Fy — F,) = Ib(w} — w3) w0

My, =1(F; —F,) = Ib(w5 — wf)
where: [ is the length of the arm between the rotor and the
center of gravity of the quadrotor.

e  The inertial moment due to the drag forces: The rotation around
the z axis is due to a reactive torque by the drag torques in each
propeller:

M, = d(w? — w3 + w3 — wf), (11)

e  The inertial moment resulting from aerodynamic friction is given
by:
Mg = Kpq - Q2 (12)

where: Kf, the coefficient of aerodynamic friction angular
velocity.

e Gyroscopic effect This effect is defined as the difficulty of modify-
ing the position or the orientation of the plane of rotation of a rotat-
ing mass. In our case there are two gyroscopic moments. The gyro-
scopic moment of the helices is given by the expression:

Mgh = E?:lﬂ AJ-[0 0 (_1)i+1 ) wi]T (13)

The gyroscopic moment due to the movements of the quadrotor
is written:


https://doi.org/10.20944/preprints202211.0181.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2022 d0i:10.20944/preprints202211.0181.v1

10 of 28

Mgy, = QAJQ (14)

where: |, is the moment of inertia of the rotor, J is the moment of inertia
of the system.

Other aerodynamic effects, which can disturb the movement of the
quadrotor, are not taking into consideration in this article, as their ef-
fects at low speed can be neglected as: blade flapping effect- air friction-
ground effect.

By using Newton — Euler equations, the dynamics of a rigid body
under external forces and moments in the fb can be formulated as fol-
lows:

¢  Dynamic equation of translation motion
MVinertial = % Fexternal, (15)

where m is the masse of the rigid body and Vinertiqr and Feyiernar are the
linear velocity and the forces projected in the inertial frame respectively.
By using the rotation matrix to transform forces from the rigid body

frame to the inertial body frame, we get:
mé=F,+Fq+Fg (16)
Fe=RI0 0 XAl Bp=[0 0 —mg]"  q7)
—Kpex 0 0

x
Fy=| 0 —Kpyy 0 |& ;whereé= [y] (18)
O 0 _Kftz Z

By replacing all the terms that we have presented, we get:

P CPHSOCY + SPpSy KpexX 0
m[y] = [C¢595¢—S¢C¢]Z?=1Fi— Krexy| = 0 |, (19)
Z CopCo KpixZ mg

4
o _ 1 Kftx .
i = — (CPSOCY + SPS) ( g Fi> -

i=1

4
ly = %(C(}SSGSI/) — SHCY) (Z FL-) - %y (20)

i=1

4
1 Krer
2’=;(C¢69)(2Fi>— Z i—g

i=1

e Dynamic equation of rotation motion
By application of Euler’s rotation equation, we have:

]Q + QX JQ= z M xternat (21)

where () in this equation represent the rotation velocity presented in the
inertial axes, ] is the inertial tensor of the symmetric rigid body around
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its center of mass. Megternal epresent the sum of moments acting on the

vehicle,
Jex 00
] =10 ] yy 0 (22)
0 0 Jz

where ], Jyy, ]2, are calculated according to the mass distribution, by
replacing the previous inertial moments, we get:

JO=-QXxJQ— M,— Mg, + My, (23)
M, = lb(w? — w?) Kfax®*

where: M, = =i -w) | Mg =Kay0%|  (24)
M, = d(w% - w% + w% - wf) Kfazll.)2

By replacing all the terms in equation, we get:

e 0 e 0 p —1,.Q, é Kfa"(i)z Ib(wi — w3)
0 Iyy “ ] —[9]/\< 0 Jyy O [ ) 1.0,¢ |~ | Krarb? +[ Ib(w} — wf) ] (25)
0 Ju 0 Jz 0 Krarh)? d(w? — w? + w? — w})
Such that:
d; _ _(]zz _]yy)él»b _]rﬁré - Kfaxqb2 + lb(wf - w%)
) B ].xx
J 9 _ _(]zz _]xx)d)l/) _]rﬂr¢ - Kfaye2 + lb(w% - w%) (26)
. ]yy
dj — _Uyy _]xx)d)e - Kfazl/)2 + d(w% - w% + w% - wZ)
Jaoz

Where: ?lr = (1)1 - (1)2 + (l)3 - (1)4_
e  The matrix that relies between forces/ inertial moments and angu-
lar velocities of four motors:

wy [F b b b bl
| _[Mx|_ |0 —ib Olb|2|
us| T My[T|=b 0 b 0 ||w?
ud | m, d —d d —dl J

(27)

w

The relation presented in this matrix is very useful for building
controllers, were uy, u,, us, u, are the four inputs parameters that con-
trol the system. In our case, Tello EDU quadrotor is dedicated to the in-
door application; therefore, in the following, the linear drag force Fy
and the inertial moment of the gyroscopic effect My, are considered as
external disturbances, which are totally neglected in order to simplify
the model.

To summarize the previous work, the model plant is based on 4 in-
puts U and 6 outputs Y expressed as follows:

Uq Ft

Inputs: ZZ = AA:II" Outputs: [x y z ¢ 0 P]7, (28)
y
Uy MZ

The model is simplified as follow:
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(% = 2 (CopSOCY + SpSY)(Sioy Fy)

!5) = —(CpSOSY — SPCP) (Tt Fi), (29)
i = (CHCO) (Tt Fi) — g

—Uzz _]yy)Q.lj) + lb(wf — w%)

( .
{ 9 — _(]zz _]xx)¢ll) + lb(a)?z’ — w%)

(30)

]yy
l « —Uyy — )P0 + d(w? — w3 + w} — w?)
Ve J

2.2.1. Identification parameters of Tello EDU drone

The mathematical dynamic model for the quadrotor taking into
consideration the six outputs [xyz¢0y] Tis standard, the main
change is reflected regarding the neglected disturbances and the param-
eter of every model, in our case, the main parameters that we had to
identify for the dynamic model are presented in Table 1:

Table 1. Parameters of Tello quadrotor

Parameters Values
Mass 0.8 [Kg]

Jxx 0.0097

Jyy 0.0097

Jzz 0.017

b 1

d 0.08

1 0.06 [m]
g 9.81

2.3. Control Strategy of Quadrotor System

The controller system is a mathematical algorithm that processes
how the quadrotor should act to maintain the measurement equal to the
set point. Despite its general principle being relatively simple, the de-
sign of such a system requires particular attention, given the complex
and under-actuated dynamics of the quadrotor [5]. The literature on this
subject is vast and very varied and can lead to a better understanding of
the performance of the proposed controllers [26]. This part is devoted to
some methods of linear and non-linear controls applied to the quad-
rotor.

e  Linear Control Strategy: Linear control techniques are the first used
for UAV flight control. Linear controllers are applied to a linear-
ized model of the quadrotor; the linearization is made around an
equilibrium point using Taylor series expansion and the Jacobean
method, which will be presented later; among the command's laws
known in this field [27]-[30]

e Nonlinear Control Strategy: Nonlinear controllers perform better
because they are applied to the accurate quadrotor model, which
presents all the critical nonlinearities of the dynamics. The follow-
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ing presents the most used method in UAV flight control. Usually,
the application of a nonlinear controller can achieve higher perfor-
mance with a nonlinear model of the UAV plant, but the main dis-
advantage is that it needs higher power computation [20], [31]-[33].

Table 2 summarizes the most linear and nonlinear control strategies
used in UAV flight control in the literature review. In our case, we are
using MPC strategy, where two scenarios can be taken:

e 1- the first scenario assumes that the dynamic model is linear, so
MPC is linear also; this is very familiar in science, where the dy-
namic model should be linearized around a defined point called
the equilibrium point.

e  2- the second scenario: suggests taking the nonlinear model as it is
and, according to the constraints, then building an efficient nonlin-
ear MPC. The second method presents different complications and
requires much more computation power.

Table 2. Parameters of Tello quadrotor

Controller . . Stability and Computation
Linearity type . .
type time response time
Low stability in higher disturb-

PID Controller Linear . Low
ances, acceptable response time.
Linear Quadratic . Good stability, with slow re-
Linear ) Very low
Regulator sponse time.
H-infinity Optimal Linear High stability, .medlum response . Lo
Control time.
Backstenbin Not robust when the uncertain-
pping Nonlinear ties are present in the model of Medium
Control
the plant
Sliding mode Nonlinear Robust e‘ve? with th? presence of High
Control uncertainties and disturbances.
T th th
Adaptive Control Nonlinear Good stability Wlt, t, © presence High
of uncertainties.
Model PRAIGNe 1 oty oprimisaton for diffrentcone Tigh
Control (MPC) P &

straints.

In this paper both extensions are presented in detail, to show the
reader the main differences and results obtained from the simulation,
especially at the energy profile level.

The obtained dynamic model shown above is purely nonlinear, to
go forward with the control field, first, we identify the states of the sys-
tem as follow, where we can have plenty suggestions. In This paper we
will go forward with this notation:

X=[x vy z ¢ 6 v x 3y z ¢ 6 ¥, @

X = f(X,%) (32)
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where ?(X) is the state variables function, and f(&) is the input control
variables function.

2.3.1. Model Predictive Control Concept

Model predictive control MPC is an advanced automatic control
technique useful mostly for industrial applications. MPC concept is
based on using the linear or nonlinear dynamic model of the plant in-
side the controller in real-time, this is to anticipate the future behavior of
the system. The main particularity of MPC is that the output calculation
must be solved online. The optimization process is based on the in-
puts/outputs of the system that minimize a cost function to predict the
future. The prediction is executed from the internal model of the con-
troller over a finite time window called the prediction horizon. The solu-
tion of the optimization problem is presented as a control vector. Using
updated system data, the controller can solve the problem again on the
next interval period, therefore MPC is called also moving horizon or re-
ceding horizon optimal control.

An MPC solves an optimization problem, specifically a quadratic
program (QP), it consists of the following three components: a state dy-
namics model; a cost function, which is the objective that we would like
to achieve; and constraints, which are presented as boundaries to limit
the future behavior for the inputs and outputs, where can set soft or
hard constraints.

MPC operates as follows: using the open-loop plant model and a
chosen prediction horizon N, calculate the set of future states
Xiep 1y vee oee Xg+nand control inputs uy,-, Ugin-; that minimizes a cost
function subject to state and input constraints. Then, the first element u;,
in the set of calculated inputs is used as the input to the plant, and the
sequence of calculations is repeated at the next sampling instant.

MPC controller has shown its efficiency in the application with
short sampling periods where in the field of numerical controls has giv-
en good results in terms of speed and accuracy [34]. Figure 5 shows the
internal closed loop of MPC with the plant, where Figure 6 shows the
internal behavior concept of MPC.

i~ Initial conditions

Cost function
" i~ Constraints
ref() Predictions e,
2t)
() Actuator Process Sensor

MPC Controller

Figure 5. MPC closed control loop
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Figure 6. Concept of Model Predictive Control

The standard cost function denotes © usually is the sum of four
terms, each focusing on a particular aspect of controller performance, as
follows:

Every term in @ represents an objective sub-function:

0(2k) = 0, (3k) + 0,(2K) + Opy(Bx) + O.(3k), (33)

where:
*  0y(3K): Cost function for Output Reference Tracking
e 0y(zyK): Cost function for Manipulated variable tracking
® 0y (3K): Cost function for manipulated variable move suppression
e  0.(zy): Cost function for constraint violation
e zy: The quadratic program

In our case we are interested in minimizing the following two
terms 0, (zy), ©,(2x), where we would like to track the reference output,
so the error between the reference and the output signal should be min-
imized, where the second term is minimized in order to the controller

keep selected manipulated variables (MVs) at or near specified target
values, in general the problem statement is written as follow:

min  {Z5 1) = Yewrll® + pllues —u O @4
Uty Ut+N-1
Subject to:
*  Xppker = [(Xpo Ugpk)  presents the dynamic of the system.
*  Vux = Xy Uk) presents the outputs of the system
° Upin < Ugtk = Umax
* Ymin S Ytk = Ymax
e x= x(t), k=0,...,N— 1 presents state variables
In the following, we will present the design of linear and Nonlinear
MPC using MATLAB. The software provides some facilities regarding
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MPC controller, where the optimization problem is solved using a
quadratic program (QP) — at each control interval. The solution deter-
mines the manipulated variables (MVs) to be used in the plant until the
next control interval. The definition of our cost function in the software
is written as follow:

0(zk) = 0, (zK) + 0y,(zk), (35)
Ny p w?. 2
0z =) ) {S—y’ [k + i1k) = ;e + i|k)]}
j=1i=1[\"J

(36)

y 2
wy.
+ {S_ly] [uj(k + ilk) - uj.target(k + llk)]}
J

where: k is the current control interval; p is the Prediction horizon
(number of intervals); ny: Number of plant output variables. z;: Quad-
ratic program decision given by:

2T = [uk|k)T .....utk +p — 11k)7 & ] (37)

yj(k + ilk): Predicted value of jth plant output at ith prediction horizon
step, in engineering units. rj(k + ilk): Reference value for jth plant out-
put at ith prediction horizon step, in engineering units; sjy: Scale factor
for jth plant output, in engineering units; wf_’].: Tuning weight for jth
plant output at ith prediction horizon step (dimensionless).

2.3.2. Linear Model Predictive Control

Linear MPC is the traditional model which the basic of its cost
function is a quadratic function, the model traits linear dynamic sys-
tems, and does not require higher computation to solve the optimization
problem. The basic step to continue with linear MPC is to linearize the
dynamic model of the quadrotor, so the methodology is presented as
follow:

e Linearization of the quadrotor system

Our aim from this part is to generate a linear state space represen-
tation from a nonlinear model written in eq (29) and eq (30) (The non-
linear model is linearized around an equilibrium point X, “ hover posi-
tion “, the linearization is performed on a simplified model, where small
oscillations are considered as: sin(angle) = angle and cos(angle) =1,
and using Taylor series expansion the new state space representation af-
ter the linearization is written in the following form:

7_ =, - ,_-’_-’
{X—AX + B X=X-X 68)

y=CX'+ D' i =1u-1,
where X is the ‘State vector’ of (n x 1), U is the ‘Input (or control) vec-
tor’of (m X 1), ¥ is the ‘Output vector’ of (p X 1), A is the ‘System Ma-
trix’ of (n X n), B is the ‘Input Matrix” of (n X p), C is the ‘Output Matrix’
of (g X n), D is the ‘Feed forward Matrix’ of (q X p).
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In hover position, we have the following state vector and input vec-
tor:

Xe=[* Y 22 0 0 0 0 0 0 0 0 0]", (3

u,=[mg 0 0 0]7 (40)

After the linearization calculation we get the following four matri-
ces for the state space representation:

000000 1000 0 O
000000 010000
000000 001000
000 000 000100
000 000 000010
A=U&W ~_looo 000 000001 11
ax |*=%~[0 00 0 g 000000 Of (41)
U=te 10 0 0 —g 0 0 0 0 0 0 0 O
000 0 00O0O0OO0O0O
000 000 00O0OTO0O
000 000 0O0O0TOTO OO
lo oo 000 00000 o
00 00
00 00
o o 0 0
oF o 0 0 0
— u _lo o 0o o0
B=—=—"F"l=x=0 o 0 0 (42)
u=ue |0 0o 0 0
1/m 1/, 0 0
0 0 1, O
L 0 0 0 1/J;

The outputs variable that we would like to track, and control are
the following: [xy z ¢ 8 ], therefore the matrix C and D are written as

follow:
1 000000000 0 0
[001 00 000O0GO0TO0O0 O
o o1 000000 0 0 o
=10 001 000000 0 of (43)
l000010000000J
000 0O0100U0UO0TO0O0
D = zero(6,4) (44)

If the disturbance is taking into consideration, so the matrix dist is
added to the equation of the state space as follow:

X = AR’ + B + distd, (45)
. f(Xu,d)
dist = T ad  |r=re (46)
U=U,

where d is the vector of the disturbances applied on the quadrotor. In
the case presented in this paper, we neglect all the disturbances.

e  Design Linear MPC for Tello Quadrotor System

Using MATLAB Simulink, we designed the dynamic system and
the linear MPC to track the following outputs variables: [xy z ¢ 6 ], we
started by reconfigure the main inputs and outputs of the controller.
Figure 7 shows the necessary inputs and outputs for MPC controller, as
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inputs we have: - mo: 6 measured outputs that present the state vector
[xyzd 6 Y], - md: 0 measured disturbances where we neglected all the
disturbances applied on the quadrotor, as outputs: - mv: 4 manipulated
variables [uy, uy, us, u,], which present the input control variables.

Inside MPC plant model, different recommendations can be taking
into consideration, depending on the characteristics of the dynamic sys-
tem that we have, in our case the constraints are the weights, and the
control horizon were setting as presented in the Table 3. The weight re-
fers to the priority of the variables, where the high weight indicates the

higher priority to track.
Reference trajectory .
———| i Cost function
Last6 MeasuredLrpmts. Linear dynamic i J 4 Manipulated variables
k29 6y] mode T

(41, Uz, U3, 4]

0 Measured disturbance
_

Constraint sets

Linear MPC

Figure 7. MPC controller inputs - outputs

Table 3. The required parameters of MPC for Tello quadrotor

MPC Parameters
Sample time (T) 0.1ls
Prediction Horizon (P) 20s
Control Horizon (M) 3s
MPC Constraints
Boundaries of u, [-10-12] N.m
Boundaries of u, [-10-12] N.m
Boundaries of ug [-10-12] N.m
Boundaries of u, [-10-12] N.m
MPC Weights
Translation motion along x 1
Translation motion along y 1
Translation motion along z 1
Pitch motion along ¢ 0.1
Roll motion along 6 0.1
Yaw motion along 0.1

2.3.3. Nonlinear Model Predictive Control

The principle of nonlinear model predictive control is the same as
the linear one, the key differences are:

e the prediction model can be nonlinear and include time-varying
parameters.
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e the equality and inequality constraints can be nonlinear.

e the scalar cost function to be minimized can be a nonquadratic (lin-
ear or nonlinear) function of the decision variables.

When the dynamic model is linear, the global analytical solution of
the optimization problem exists and is relatively simple to determine
[35]. But when this model is nonlinear, it is not certain that the optimiza-
tion algorithm converges to the global analytical solution and if a solu-
tion is found, there is not sure that it is fast enough. Indeed, the use of a
nonlinear model involves solving a nonlinear optimization problem
whose complexity is related to the degree of accuracy of the model.

Several numerical techniques were developed to guarantee the
convergence of the optimization algorithm towards an approximation of
the optimum overall. While some of these methods, such as Eleanor's
method, have proven their efficiency, they are however not appropriate
for control of drones due to their running time. Among the techniques
that can be carried on board vehicles we can cite the gradient method,
the quadratic programming method sequential or the particle swarm
method. Some techniques are based also on the approximation of certain
signals by their Taylor series expansion [36]-[40].

While traditional linear MPC controllers optimize control actions to
minimize a quadratic cost function, nonlinear MPC controllers support
generic custom cost functions. For example, the cost function can be
specified as a combination of linear or nonlinear functions of the system
states and inputs. To improve computational efficiency, we can also
specify an analytical Jacobian for the custom cost function [41].

Using a custom cost function, the algorithm of NMPC will be able
to maximize profitability and minimize energy consumption.

e  Design Nonlinear MPC for Tello quadrotor system

As we did in the previous part with linear MPC, the design of
NMPC was done in MATLAB Simulink environment, MATLAB Sim-
ulink already has a basic architecture block function of such controller.
We had to reconfigure the internal structure according to our system
and tune the main parameters to achieve high performance. According
to the nonlinear dynamic system of Tello quadrotor, the controller
should receive different input signals: the reference trajectory — 12 state
variables — last 4 manipulated variables that present the four control in-
puts variables[u;’,u,’, uz’, u,'] as presented in Figure 8, in our case we
neglected the gyroscopic effect and the other disturbances applied on
the system, whereas outputs we receive the new updated 4 manipulated
variables.

The design process for NMPC was as follows: - an object function
nlobj has been created in the internal block with setting the necessary
parameters and using nlmpc function a nonlinear MPC controller is de-
signed. As drawback of nonlinear controllers is the required huge time
simulation, to avoid this issue and guarantee a high performance for the
system an algorithm to calculate Jacobian function was inserted to the
controller block function, Jacobian function guarantee to have fast and
efficient simulation.
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Reference trajectory
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cost function

12 States variables
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dynamic model
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[y, ug", 0]

Nonlinear 6 Measured outputs
. constraint sets —
0 Measured disturbance [xyzg¢ay]
E— Linear MPC

Figure 8. Nonlinear MPC controller inputs — outputs

Table 4 identify the necessary parameters for the nonlinear MPC that fit
Tello quadrotor. The weight parameter in the controller refers to the
priority of the variables to track; usually in the quadrotor, we set higher
priority for the position variables than the orientation variables, in our
case we are looking for the best performance, so we set higher priority
for all six variables.

Table 4. The required parameters of Nonlinear MPC for Tello quadrotor

Nonlinear MPC Parameters

Sample time (T) 0.1ls
Prediction Horizon (P) 18s
Control Horizon (M) 3s

Nonlinear MPC Constraints

Boundaries of u, [0-12] N.m
Boundaries of u, [0-10] N.m
Boundaries of uz [0-10] N.m
Boundaries of u, [0-10] N.m

Nonlinear MPC Weights

Translation motion along x

Translation motion along y

Translation motion along z

Pitch motion along ¢

Roll motion along 8

Rl ]|PR

Yaw motion along i

3. Simulation Results

In this section, several simulations for three different trajectories
are presented to validate the comparison between linear and nonlinear
MPC based on the performance analyses of the following inputs and
outputs:

e  error position tracking
e  velocity tracking

e  control inputs tracking.
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The design of the linear and nonlinear dynamic model of the drone
beside the linear and nonlinear MPC models were designed in
MATLAB Simulink, where different functions were written in MATLAB
Script as: trajectory function, which provides to the control loop the ref-
erence desired trajectory; Jacobian function, which guarantees solving
the optimization problem and avoiding the singularities.

Three generated trajectories are defined: the first represents a
straight curvature motion of the drone, the second trajectory is present-
ed as a circle motion, while the third trajectory is a helical motion, the
initial states for both controllers were set as follow: X;=
0220000000 0 0.

For Linear MPC, the control input bounds were set as presented in
Table 3 between minimum value of -10 and maximum value of 12. This
choice leads to give the controller more freedom to track the trajectory,
where if the minimum value is set to 0. The controller will behave in an
aggressive scenario. For Nonlinear MPC the control input boundaries
were set between minimum value of 0 and maximum value of 12. An-
other setting was made regarding the control inputs tracking, where for
Nonlinear MPC, the tracking control inputs can be done successfully so
the track values where set to [4.9 4.9 4.9 4.9], while for Linear MPC, this
option was neglected because it will definitely disturb the controller to
achieve the most priority task, which is tracking the position and orien-
tation outputs. From the first attempt and without looking to the simu-
lation results, the recognition of these limitations could identify that
Nonlinear MPC is more flexible than Linear MPC in term of setting
conditions.

3.1. Straight Curvature Reference Trajectory

Figure 9 presents the simulation results of the straight curvature ref-
erence trajectory, the error position tracking, the velocity tracking, and
the control inputs tracking for linear and nonlinear MPC. From Figure 9,
we observe that regarding error position tracking LMPC performs better
regarding the three axis X, Y, and Z, where for orientations angles, the
signal is disturbed comparing to NLMPC where the oscillations are
minimized. These oscillations describe the instability of the drone. Also,
at level of tracking velocity, where both of controllers are behaving
nearly the same but always NMPC is able to minimize the peak ampli-
tude of the oscillations. From the energy profile perspective, the com-
parison of the control inputs tracking leads to identify that both control-
lers reach the maximum and the minimum boundaries set earlier, to
know which controller is using more torque, the mean value of Au for
every execution is calculated, this will be presented in the following ta-
ble (Table 5).

3.2. Circle Reference Trajectory

Figure 10 presents the simulation results of circle motion as refer-
ence trajectory. From this Figure, the differences start to rise clearly,
where it is obvious that NLMP is tracking the positions and the veloci-
ties in stable behavior, where the oscillations are more presented with
LMPC, otherwise NLMP has succeed to minimize them. Also at control
inputs tracking level, LMPC is using the maximum and minimum
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Figure 9. Straight curvature trajectory there is problem in the picture

boundaries so it can reach the minimum value — 10 N.m where NMPC is
acting well with a limited boundaries with minimum value 0 N.m. Also
NMPC is able to track the set target control inputs [4.9 4.9 4.9 4.9].

3.3. Helical Reference Trajectory

Figure 11 presents the simulation results of helical motion as refer-
ence trajectory. This motion describes typically the real life, where the
motion is depending on the three axes simultaneously, therefore we ob-
serve that NMPC succeed to track the three positions smoothly and with
minimum peak amplitude, while in the orientation tracking an over-
shoot is appeared in the first two seconds, regarding the velocity track-
ing. NMPC also provide good results comparing to LMPC, where the
tracking control inputs is well achieved by NMPC. LMPC is always us-
ing all the boundaries to execute the suitable control behavior.
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Figure 10. Circle reference trajectory

3.4. Performance measurments Au and ExTime

In order to analyze the energy profile of both controllers, a calcula-
tion of the mean average value of the control effort Au and the execution
time of the simulation Exy;,,, was made.

Table 5 shows the results of the two values when every trajectory is
executed. These two parameters identify the consumption energy for
both controllers, where regarding the execution time, we found that
LMPC is very slow comparing to NMPC, meanwhile the average of con-
trol effort for LMPC is less than the control effort required by NMPC
with average differences. This can be explained by the fact that NMPC
has different missions to achieve where it is tracked not only the trajec-
tory but also try to maintain a target value for the control inputs. A solu-
tion can be highlighted in the future by optimizing a cost function that
minimizes the energy consumption of the drone, by minimizing the ap-
plied control efforts directed to the four motors.

The calculation of Au was by mean function, where the execution
simulation time was calculated by timeit function.
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Figure 11. Circle reference trajectory

Table 5. Calculation of the average control effort value and the execution time

Trajectory / Con-  1st Trajectory1l 2 Trajectory 3t Trajectory
troller

Au[N.m]/Exrime[ms] Au ExTime Au ExXTime Au ExXTime

LMPC 3.1678 64 2.7054 63 1.4229 62

NLMPC 5.9188 6.8 5.2379 6 4.8955 5.7

4. Summary and Conclusion

This paper presented a methodology to design MPC controller with
the purpose to track trajectory of the quadrotor system. The dynamic
mathematical modeling part for the quadrotor was deeply described in
the first section, where in the second section a theoretical comparison
between linear and nonlinear MPC was presented, which conducted us
to look after the efficiency of these both control laws especially regard-
ing the energy profile. The design of both controller models was built
and configured using MATLAB Script and Simulink, the controllers
were simulated under the execution of three different trajectories, to see
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the resulted behavior. As a conclusion, we sum up that NMPC can pro-
vide a very promoting results comparing to LMPC, which is not flexible
and rise different limitations in the control drone field.

As future work, our main goal is to build a master controller hard-
ware embedded system for Tello quadrotor, the hardware will be em-
bedded by such a control law, as we identified how NMPC is fast to
process the commands, it would be great to increase the potential of it
regarding the optimization of energy consumption, which presents a
drawback of the quadrotor system, the target would be to add to NMPC
a new cost function that minimize the voltage from the control efforts
which is directed to the four rotors.

Author Contributions: “Conceptualization, R.B., V.J.; methodology, R.B.,
V.]J.; formal analysis, R.B., V.].; invited author by guest editor, V.J.; writing—
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