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Abstract: For a decade, the studies of dynamic control for unmanned aerial ve-
hicles took a large interest, where drones as a useful technology in different are-
as were always suffering from several issues like instability-high energy con-
sumption of batteries - inaccuracy of tracking targets. Different approaches are 
proposed for dealing with the nonlinearity issues which present the most im-
portant features of this system. This paper describes our focus on the most 
common control strategies, known as model predictive control MPC, by devel-
oping a model based on the sensors embedded in our Tello quadrotor used for 
indoor purposes. The original controller of Tello quadrotor is supposed to be a 
slave, where the designed model predictive controller is created in MATLAB 
and imported to another embedded system, considered as a master; the objec-
tive of this model is to track the reference trajectory, almost keeping the stability 
of the system and ensure the low energy consumption. In the first part, a pro-
found description of the modeling process of a dynamic model for drones is 
presented, explaining the design of MPC controller with both linear and nonlin-
ear strategies built in MATLAB. In the final part, simulation and results are dis-
cussed regarding its behavior and performance, highlighting the MPC model's 
important role on drones' energy consumption profile.  

Keywords: dynamic control; UAV; model predictive control; nonlinear MPC; 
trajectory tracking; energy consumption 

 

1. Introduction 
Drones, abbreviated as UAVs (Unmanned Aerial Vehicles), are 

unmanned aircraft capable of carrying out a mission autonomously by 
being self-piloted or semi-autonomous using a remote control [1], [2]. 
The primary function of these vehicles is to extend human vision be-
yond the natural horizon to accomplish works at risk or in hostile envi-
ronments. The military has implemented the first applications of drones 
for surveillance or reconnaissance missions without the risk of human 
losses. More recently, civil applications have appeared, such as the pre-
vention of forest fires, the inspection of engineering structures, the ener-
gy flow monitoring of motorway traffic, or the collection of meteorolog-
ical data. However, the use of civilian drones remains limited because 
non-military drones still need to be fully integrated into civil airspace 
[2], [3].  

The classification of the existing UAVs differs according to the 
countries and their army [4]. The UAVs can be classified according to 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 November 2022                   doi:10.20944/preprints202211.0181.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202211.0181.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 28 

 

 

size, endurance, flight altitude, function, mass, payload, etc. The most 
accepted classification divides UAVs according to their size and endur-
ance, where mostly five categories of UAVs exist, from aircraft UAVs 
with a wingspan of about 30 meters to flapping wings a few millimeters 
long. 

In this paper, our interest mainly focuses on quadrotor UAVs, 
known as drones with multiple rotors. Multi-rotor UAVs are certainly 
the best-known and most widespread aeromechanics configuration 
among autonomous aerial vehicles [5]. These aircraft are usually 
equipped with four rotors, but there are also some with six or even eight 
rotors. The mechanical simplicity of this type of vehicle makes it a wide-
ly used configuration for the realization of experimental platforms at 
reduced costs [6]. The operation of multi-rotor drones is quite particular, 
where the configuration ca be plus or cross configuration [7]. First, to 
compensate for the torque reaction, the rotation of the rotors' direction is 
reversed two by two. In addition, the translation and the rotation 
movements according to the three axes are done carefully by manipulat-
ing the rotational speeds of the different rotors. In fact, it is the differ-
ence in the lift that determines the inclination of the aircraft around the 
roll and pitch angles, allowing translational flight, Figure 1 shows the 
movement states of a quadrotor with cross configuration regarding the 
X, Y, and Z axes [8].  

 
Figure 1. The possible motions of quadrotor with cross configuration 

Due to the very good distribution of lift in the horizontal plane, 
multi-rotor UAVs are particularly suitable for hovering and low-speed 
flights. On the other hand, this configuration is not recommended for 
high-speed translational flights nor for driving in windy conditions. 
Moreover, this rotor configuration is restricted to small-size aircraft be-
cause the size of the rotors increases with the increase of the mass of the 
drone. 
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The main goal of drones is to achieve a high degree of autonomy to 
make decisions and be in a stable state, this can be done based on the 
embedded systems in the body part, which are the measurement system 
and the controller. The measurement system in the drone is responsible 
for the collection of information on the state of the drone and its envi-
ronment, where in the drone, we can find three types of sensors [9], [10]:  
• Sensors for measuring attitude, such as Gyroscopes to measure an-

gular position and angular velocity, Accelerometers to measure ac-
celeration, Magnetometers to measure the direction of the magnetic 
field and scan the area and detect metals in space,  

• Sensors for measuring the velocity and position of the drone as an 
Altimeter, GPS, and Camera,  

• Sensors for detecting obstacles around the drone as Ultrasonic sen-
sors and Telemeter laser. 
The obtained information from the measurement system is trans-

ferred to the control part as digital signals, where the data is processed 
by the control system. The control system based on a mathematical al-
gorithm generates the control signals allowing the drone to move in an 
appropriate way. This is based on a mathematical representation of the 
drone's mechanical body and on the measurement signals from the 
onboard sensors. Its role is, above all, to guarantee the stability of the 
device during the autonomous flight phase. Despite a general principle 
that is relatively simple to understand, the design of such a system is ra-
ther complex and requires special attention. Indeed, UAVs, and more 
particularly rotary wing UAVs such as quadrotors, are under-actuated 
systems, sensitive to aerodynamic disturbances, and whose dynamics 
are highly non-linear [11], [12]. Moreover, it presents a significant cou-
pling between the system's state variables and its control inputs. The 
coupling characterizes the fact that any change in a control input affects 
not only the variable of interest, but also the others [13]. 

Based on Equations of Newton Euler or Energetic Lagrange deriva-
tive, many scientists suggested how to design the dynamic modeling of 
drones, where from literature review, we can find the mathematical 
model for the kinematic and dynamic models, as it appears in [13]–[15]; 
taking into consideration the behavior of the quadrotor in different 
flight conditions (stationary, in translation, or in rotation). However, the 
main problem with these dynamic models is the difficulty to design a 
"simple" control algorithm due to the complexity of the model which is 
nonlinear. The first mission of the quadrotor is how to track a position 
from one point to another point in the 3D environment respectively to 
the given orientation. Under all the previous cited challenging criteria, 
this task makes the object deal with the study of control theory, by de-
veloping controllers that can success to track the trajectory and avoiding 
obstacles, all by optimizing the battery life of the drone. 

The control strategy for the quadrotor scope represents a big issue 
in this research field, where many scientists suggested different imple-
mentations, some of them were focusing on linear control strategies as 
PID – LQ – H infinity – Linear MPC, where others preferred to deal with 
nonlinear control approaches as Backstepping control – Sliding mode 
control – Nonlinear MPC [16]–[21]. 
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At the energy profile, one of the biggest drawbacks of the quad-
rotor is presented in the battery life, where usually the fact that time av-
erage mission does not exceed 15 min. Since existing controllers are typ-
ically designed to maximize the performance of tracking while provid-
ing a sufficient margin of stability. However, extracting the maximum 
performance generates greater consumption and, therefore, a reduction 
in the duration of battery life. For this reason, several researchers have 
focused on regulation using the linear quadratic controller since it min-
imizes, for its quadratic nature, energy consumption. In addition, sever-
al strategies can improve fuel efficiency. We can cite as an example: 
• Minimization of errors: indeed, this is the classic approach; the less 

we commit errors in the pursuit of the desired trajectory, the less 
energy is spent [22];  

• Fuzzy logic applied to the altitude control: Indeed, the fact of 
climbing or descending consumes double and even more because 
this movement causes the rotation of the four engines simultane-
ously, so one could think of establishing fuzzy logic between flight 
height and battery state of charge [23]; 

• The search for an optimal trajectory: energy consumption can be 
reduced using or avoiding air currents and thus finding the flight 
path least costly in terms of energy compared to a direct flight to 
the destination [23].  
This paper presents our focus on developing a customized, power-

ful embedded control system for Tello EDU quadrotor model [24] quad-
rotor already has a basic embedded system that fulfills simple com-
mands for take-off and landing motions with low accuracy and stability.  

The paper includes the following parts: first, the process to identify 
the dynamic mathematical model of Tello drone with the actual parame-
ters is presented, this model is purely nonlinear due to the strong cou-
pling between the state variables and the control inputs, but in addition, 
its dynamics are under-actuated, i.e., the number of information which 
is 4 is less than the number of outputs which is six that presents the de-
grees of freedom. In the second part, after getting the dynamic model, 
we will show the methodology to build a control strategy. Two ap-
proaches are taken into consideration in our research: the first assumes 
that the system is linear, so we apply model predictive control. This ap-
proach requires linearizing the dynamic model around an equilibrium 
point hover position. The second approach assumes that we are dealing 
with reality and that the system is nonlinear. So, we applied nonlinear 
model predictive control to track the reference trajectory. A detailed 
comparison will be presented regarding the motion tracking, stability, 
and energy profile. We will show the reader how the inputs will lead to 
the effect of predictive model control on energy consumption. The input 
variables for the drone present the angular velocities of the four rotors. 
Then in the last section, the simulation results are discussed, and a com-
parison is made to understand the potential of using a nonlinear con-
troller instead of a linear one. 

 

2. Materials and Methods 
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The main aim of this work is to build a customized embedded sys-
tem for Tello EDU quadrotor. The customized embedded system is 
based on a System on Chip from Xilinx-AMD and implements a control 
strategy based on MPC. Figure 2 presents the plan for our main target. 
To start the process, the research began by developing a suitable model 
predictive control for Tello EDU quadrotor. This type of drone is helpful 
for education and research purposes. The control model is based on the 
dynamic mathematical model of the drone and its fundamental parame-
ters; therefore, this paper presents a methodology for building a suitable 
control strategy based on the following points:  
• the conditions are taken into consideration to identify the dynamic 

mathematical model.  
• parameter identification of Tello EDU quadrotor.  
• use of linear and nonlinear model predictive control 
• deep comparison to show the effectiveness of a nonlinear controller 

- how the optimization of energy consumption can be achieved re-
garding the control part. 
The simulation is done using MATLAB Simulink, offering different 

functions that could help us achieve the research target efficiently, espe-
cially since setting parameters and analyzing the results in Simulink is 
more friendly than using MATLAB Script.  

In the following, the paper will highlight the methods used to build 
the optimal controller, starting by modeling the dynamics of Tello quad-
rotor, then dealing with the control strategy part by getting familiar 
with a model predictive controller in general and how we succeed in 
tuning both control types (linear and nonlinear). 

 
Figure 2. The proposed plan for building the customized embedded system for 
Tello Edu 

2.1. Tello Quad-rotor Model 
Tello EDU quadrotor model [24] is an impressive and programma-

ble valuable drone for educational purposes. The system is dedicated to 
the students to learn programming languages such as Scratch, Python, 
and Swift and develop AI functions like a fly-in swarm, upgraded with 
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SDK 2.0, embedded with DJI’s flight control technology, and supports 
electronic image stabilization.  

Figure 3 presents the Tello quadrotor with its specifications. The 
drone features a vision positioning system and an onboard camera 
based on an advanced flight controller to hover in a precise place, suita-
ble for flying indoors, in which its maximum time flight is around 13 
minutes, and its maximum flight distance is 100 meters. These specifica-
tions are critical to see the advantages and the drawbacks that they 
have. For example, when we say the drone is for indoor activities, this 
characteristic will neglect the wind and gyroscopic effects as a disturb-
ance in the system. Also, it is a motivation for us to optimize the energy 
profile of this drone where the time flight can be much longer in case of 
using optimal control strategies.  

From Tello drone, our interest, as we mentioned earlier, is to devel-
op a new predictive control model using its basic sensors identified as a 
complete system:  the vision positioning system helps the aircraft to 
maintain its current position, where the main components are the cam-
era and the 3D infrared module located on the underside of the plane. 

 
Figure 3. Tello drones basic components 

2.2. Quadroto Mathematical Model  
Designing a suitable controller for an appropriate drone requires 

first modeling the mathematical dynamics of the plant. This helps to 
understand how the drone moves and what forces and torques are ap-
plied. How many motions do we have? Which velocities are needed to 
execute different flight modes? Therefore, one can identify the inputs, 
outputs, the state’s variables, and the disturbances of the central system.  

Figure 4 describes the dynamic structure of Tello drone in the body 
and inertial frames, where the corresponding angular velocities, tor-
ques, and forces created by the four rotors (numbered from 1 to 4) are 
presented. The drone's movement is generated by differential thrust 
forces between F2 and F4 that generate the rotation around the X axis, 
known as roll motion. On the other hand, differential thrust forces be-
tween F1 and F3 will generate the rotation around the Y axis, known as 
pitch motion. In contrast, the rotation around the Z axis, the yaw mo-
tion, is caused by differential torques between clockwise and anticlock-
wise rotors, i.e., (𝜏𝜏1 − 𝜏𝜏2 + 𝜏𝜏3 − 𝜏𝜏4). 

The modeling of UAVs is a delicate task since the system's dynam-
ics are strongly nonlinear and fully coupled. Many literature reviews 
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explained the methodology for modeling such systems (references?). 
This paper presents the exact strategy to get both linear and nonlinear 
dynamic models based on the Tello drone's main parameters. The calcu-
lation of the mathematical model is based on some simplifications; here 
are the different working hypotheses [25]:  
• The structure of the quadrotor is assumed rigid and symmetrical, 

which induces that the matrix of inertia will be assumed diagonal.  
• The propellers are assumed rigid in order to be able to neglect the 

effect of their deformation during rotation. 
• The center of mass and the origin of the frame linked to the struc-

ture coincide. 
• The lift and drag forces are proportional to the squares of the ro-

tors' rotation speed, which is a very close approximation of the aer-
odynamic behavior.  

• To evaluate the quadrotor's mathematical model, we use two 
frames, a fixed inertial frame to the earth Rf and the second mobile 
frame fixed in the quadrotor Rm. The transformation matrix gives 
the passage between the body frame and the inertial frame T, 
which contains the orientation and the mobile position reference 
relative to the fixed reference.  
Figure 4 shows the axis convention taken for Tello drone to model 

the mathematical dynamic, where the forces, inertial moments, and an-
gular velocities are described. 

 
Figure 4. Modeling frame assignments for Tello quadrotor  [25] 

The quadrotor system is a light structural flight vehicle. Therefore, 
the gyroscopic effects resulting from the rotation of the rigid body and 
the four propellers should be included in the dynamic model. However, 
the dynamic model of the system is obtained under the assumption that 
the vehicle is a rigid body in the spatial domain with different forces 
and torques. The mathematical model presented here is based on New-
ton and Euler equations for the rigid body 3D motion [25].  
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Let us describe [x y z ϕ θ ψ]  Tthe vector containing the linear and 
angular position of the quadrotor in the inertial frame Fi, and 
[u v w p q r]  T the vector containing the linear and angular velocities in 
the body frame Fb. From 3D body dynamics, it follows that the two ref-
erence frames are linked by the following relations: 

𝑣𝑣 = �
𝑣𝑣𝑥𝑥𝑖𝑖

𝑣𝑣𝑦𝑦𝑖𝑖

𝑣𝑣𝑧𝑧𝑖𝑖
� = �

𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� = 𝑅𝑅 ∙ 𝑣𝑣𝑏𝑏 = 𝑅𝑅 ∙ �

𝑢𝑢
𝑣𝑣
𝑤𝑤
� (1) 

Ω = �
Ω𝑥𝑥𝑏𝑏

Ω𝑦𝑦𝑏𝑏

Ω𝑧𝑧𝑏𝑏
� = �

𝑝𝑝
𝑞𝑞
𝑟𝑟
� = 𝑇𝑇 ∙ �

𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
� (2) 

where v is the linear velocity and Ω the rotation velocity, R is the rota-
tion matrix describes the rotation from the body reference system to the 
inertial reference, T is the matrix for angular transformation, where to 
obtain [ϕ̇ θ̇ ψ̇]  T , we need the inverse of matrix T.  

𝑅𝑅 = 𝑅𝑅𝑏𝑏𝑖𝑖 = �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
−𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

� (3)  

T = �
1 0 −𝑆𝑆𝑆𝑆
0 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
0 −𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

�,  𝑇𝑇−1 =  �
1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝜙𝜙𝜙𝜙𝜙𝜙
0 𝐶𝐶𝐶𝐶 −𝑆𝑆𝑆𝑆
0 𝑆𝑆𝑆𝑆

𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶

� (4) 

where Cθ  and Sϕ and Tϕ  represent cosinus and sinus and tangant. 
From the two relations, we can get the kinematic model for the quad-
rotor as follow: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑥̇𝑥 = 𝑢𝑢[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] + 𝑣𝑣[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] + 𝑤𝑤[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]
𝑦̇𝑦 = 𝑢𝑢[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] + 𝑣𝑣[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] + 𝑤𝑤[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]

𝑧̇𝑧 = 𝑢𝑢[−𝑆𝑆𝑆𝑆] + 𝑣𝑣[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] + 𝑤𝑤[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
𝜙̇𝜙 =  𝑝𝑝 + 𝑞𝑞[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] + 𝑟𝑟[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] 

𝜃̇𝜃 = 𝑞𝑞[𝐶𝐶𝐶𝐶] + 𝑟𝑟[−𝑆𝑆𝑆𝑆]

𝜓̇𝜓 = 𝑞𝑞 �
𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶
� +  𝑟𝑟 �

𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶

�

 (5) 

The vector [u v w p q r]  T is obtained using IMU system, with the 
data obtained from the accelerometer and gyroscop sensors. In order to 
get the dynamic model, let us call all the physical effects, forces and the 
inertia moments applied on the system: 
• The weight force of the quadrotor given by:  
• P = m ∙ g (6) 
• where m is the total mass of the rigid body and g is the gravity. 
• The thrust forces created by the four rotors. 
• These forces are perpendicular to the plane of the propellers, and 

are proportional to the square of the rotational speed of the motors, 
the thrust forces are given by: 

• Fi = b ∙ ωi
2 (7) 
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• where i = 1 … 4; b is the coefficient of lift it depends on the shape 
and the number of blades and the air density; ω is the angular ve-
locity of the engine. 

• The drag force is the coupling between the pressure force and the 
viscous frictional force. 

In this case, two drag forces are acting on the system, the drag in the 
propellers and the drag along the axes (x, y, z).  

The drag in the propellers acts on the blades; it is proportional to 
the density of the air, to the shape of the edges, and to the square of the 
rotation velocity of the propeller, and given by the following relation:  

𝐹𝐹𝑑𝑑𝑑𝑑 = 𝑑𝑑 ∙ 𝜔𝜔2 (8) 
where: d is the drag coefficient; it depends on the manufacture of the 
propeller. 

The drag along the axes (x, y, z) is due to the movement of the body 
of the quadrotor: 
𝐹𝐹𝑑𝑑𝑑𝑑 = 𝐾𝐾𝑓𝑓𝑓𝑓 ∙ v (9) 

with: Kft is the translational drag coefficient, and v is the linear velocity.  
Regarding the inertial moments applied to the system, we have the fol-
lowing:  
• The inertial moments due to the thrust force: The rotation around 

the x and y axes is due to the inertial moment created by the differ-
ence between the thrust forces of rotors 2 and 4 and 1 and 3, respec-
tively: 

�
𝑀𝑀𝑥𝑥 = 𝑙𝑙(𝐹𝐹4 − 𝐹𝐹2) = 𝑙𝑙𝑙𝑙(𝜔𝜔42 − 𝜔𝜔2

2)
𝑀𝑀𝑦𝑦 = 𝑙𝑙(𝐹𝐹3 − 𝐹𝐹1) = 𝑙𝑙𝑙𝑙(𝜔𝜔3

2 − 𝜔𝜔12) (10)  

where: l is the length of the arm between the rotor and the 
center of gravity of the quadrotor. 

• The inertial moment due to the drag forces: The rotation around 
the z axis is due to a reactive torque by the drag torques in each 
propeller:  

𝑀𝑀𝑧𝑧 = 𝑑𝑑(𝜔𝜔12 − 𝜔𝜔2
2 +𝜔𝜔3

2 − 𝜔𝜔42), (11) 

• The inertial moment resulting from aerodynamic friction is given 
by:  

𝑀𝑀𝑎𝑎 = 𝐾𝐾𝑓𝑓𝑓𝑓 ∙ Ω2 (12)  

where: 𝐾𝐾𝑓𝑓𝑓𝑓 the coefficient of aerodynamic friction angular 
velocity. 

• Gyroscopic effect This effect is defined as the difficulty of modify-
ing the position or the orientation of the plane of rotation of a rotat-
ing mass. In our case there are two gyroscopic moments. The gyro-
scopic moment of the helices is given by the expression: 

                    𝑀𝑀𝑔𝑔ℎ = ∑ Ω ∧4
𝑖𝑖=1 𝐽𝐽𝑟𝑟[0 0 (−1)𝑖𝑖+1 ⋅ 𝜔𝜔𝑖𝑖]𝑇𝑇 (13) 

The gyroscopic moment due to the movements of the quadrotor 
is written: 
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𝑀𝑀𝑔𝑔𝑔𝑔 = Ω ∧ 𝐽𝐽Ω (14) 

where: Jr is the moment of inertia of the rotor, J is the moment of inertia 
of the system. 

Other aerodynamic effects, which can disturb the movement of the 
quadrotor, are not taking into consideration in this article, as their ef-
fects at low speed can be neglected as: blade flapping effect- air friction- 
ground effect. 

By using Newton – Euler equations, the dynamics of a rigid body 
under external forces and moments in the fb can be formulated as fol-
lows:  
• Dynamic equation of translation motion 

𝒎𝒎𝐯̇𝐯𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = ∑𝑭𝑭𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆, (15)  

where m is the masse of the rigid body and v𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  are the 

linear velocity and the forces projected in the inertial frame respectively. 

By using the rotation matrix to transform forces from the rigid body 

frame to the inertial body frame, we get: 

𝒎𝒎𝝃̈𝝃 = 𝑭𝑭𝒕𝒕 + 𝑭𝑭𝒅𝒅𝒅𝒅 + 𝑭𝑭𝒈𝒈, (16)  

𝐹𝐹𝑡𝑡 = 𝑅𝑅[0 0 ∑ 𝐹𝐹𝑖𝑖4
𝑖𝑖=1 ]𝑇𝑇;   𝐹𝐹𝑔𝑔 = [0 0 −𝑚𝑚𝑚𝑚]𝑇𝑇 (17) 

𝐹𝐹𝑑𝑑𝑑𝑑 = �
−𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓 0 0

0 −𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓 0
0 0 −𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓

� 𝜉̇𝜉    ; where 𝜉𝜉 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� (18) 

  
By replacing all the terms that we have presented, we get: 

𝑚𝑚 �
𝑥̈𝑥
𝑦̈𝑦
𝑧̈𝑧
� =  �

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
�∑ 𝐹𝐹𝑖𝑖4

𝑖𝑖=1 − �
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝑥̇𝑥
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝑦̇𝑦
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝑧̇𝑧

� − �
0
0
𝑚𝑚𝑚𝑚

�, (19)  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑥̈𝑥 =

1
𝑚𝑚

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)��𝐹𝐹𝑖𝑖

4

𝑖𝑖=1

� −
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓
𝑚𝑚

𝑥̇𝑥

𝑦̈𝑦 =
1
𝑚𝑚

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)��𝐹𝐹𝑖𝑖

4

𝑖𝑖=1

� −
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓
𝑚𝑚

𝑦̇𝑦

𝑧̈𝑧 =
1
𝑚𝑚

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)��𝐹𝐹𝑖𝑖

4

𝑖𝑖=1

� −
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓
𝑚𝑚

𝑧̇𝑧 − 𝑔𝑔

 (20) 

• Dynamic equation of rotation motion 
By application of Euler’s rotation equation, we have: 

𝐉𝐉𝛀̇𝛀+ 𝛀𝛀 × 𝑱𝑱𝛀𝛀 = �𝑴𝑴𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 (21) 

where Ω in this equation represent the rotation velocity presented in the 
inertial axes, J is the inertial tensor of the symmetric rigid body around 
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its center of mass. Mexternal represent the sum of moments acting on the 
vehicle,  

𝐽𝐽 = �
𝐽𝐽𝑥𝑥𝑥𝑥 0 0
0 𝐽𝐽𝑦𝑦𝑦𝑦 0
0 0 𝐽𝐽𝑧𝑧𝑧𝑧

� (22) 

where Jxx, Jyy, Jzz are calculated according to the mass distribution, by 
replacing the previous inertial moments, we get: 

𝐉𝐉𝛀̇𝛀 = −𝛀𝛀× 𝑱𝑱𝛀𝛀 −  𝑴𝑴𝒂𝒂− 𝑴𝑴𝒈𝒈𝒈𝒈  +  𝑴𝑴𝒇𝒇, (23) 

where: 𝑀𝑀𝑓𝑓 = �
𝑀𝑀𝑥𝑥 = 𝑙𝑙𝑙𝑙(𝜔𝜔42 − 𝜔𝜔2

2)
𝑀𝑀𝑦𝑦 = 𝑙𝑙𝑙𝑙(𝜔𝜔3

2 − 𝜔𝜔12)
𝑀𝑀𝑧𝑧 = 𝑑𝑑(𝜔𝜔12 − 𝜔𝜔2

2 + 𝜔𝜔3
2 − 𝜔𝜔42)

�; 𝑀𝑀𝑎𝑎 = �
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜙̇𝜙2

𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜃̇𝜃2

𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜓̇𝜓2
� (24) 

By replacing all the terms in equation, we get:  

�
𝐽𝐽𝑥𝑥𝑥𝑥 0 0
0 𝐽𝐽𝑦𝑦𝑦𝑦 0
0 0 𝐽𝐽𝑧𝑧𝑧𝑧

� �
𝜙̈𝜙
𝜃̈𝜃
𝜓̈𝜓
� = −�

𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
� ∧ ��

𝐽𝐽𝑥𝑥𝑥𝑥 0 0
0 𝐽𝐽𝑦𝑦𝑦𝑦 0
0 0 𝐽𝐽𝑧𝑧𝑧𝑧

� �
𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
�� − �

−𝐽𝐽𝑟𝑟Ω�𝑟𝑟𝜃̇̇𝜃
𝐽𝐽𝑟𝑟Ω�𝑟𝑟𝜙̇𝜙

0
� − �

𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜙̇𝜙2

𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜃̇𝜃2

𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜓̇𝜓2
� + �

𝑙𝑙𝑙𝑙(𝜔𝜔42 − 𝜔𝜔2
2)

𝑙𝑙𝑙𝑙(𝜔𝜔3
2 − 𝜔𝜔12)

𝑑𝑑(𝜔𝜔12 − 𝜔𝜔2
2 + 𝜔𝜔3

2 − 𝜔𝜔42)
� (25) 

Such that:  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜙̈𝜙 =

−(𝐽𝐽𝑧𝑧𝑧𝑧 − 𝐽𝐽𝑦𝑦𝑦𝑦)𝜃̇𝜃𝜓̇𝜓 − 𝐽𝐽𝑟𝑟Ω�𝑟𝑟𝜃̇𝜃 − 𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜙̇𝜙2 + 𝑙𝑙𝑙𝑙(𝜔𝜔42 − 𝜔𝜔2
2)

𝐽𝐽𝑥𝑥𝑥𝑥

𝜃̈𝜃 =  
−(𝐽𝐽𝑧𝑧𝑧𝑧 − 𝐽𝐽𝑥𝑥𝑥𝑥)𝜙̇𝜙𝜓̇𝜓 − 𝐽𝐽𝑟𝑟Ω�𝑟𝑟𝜙̇𝜙 − 𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜃̇𝜃2 + 𝑙𝑙𝑙𝑙(𝜔𝜔3

2 − 𝜔𝜔12)
𝐽𝐽𝑦𝑦𝑦𝑦

𝜓̈𝜓 =
−(𝐽𝐽𝑦𝑦𝑦𝑦 − 𝐽𝐽𝑥𝑥𝑥𝑥)𝜙̇𝜙𝜃̇𝜃 − 𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝜓̇𝜓2 + 𝑑𝑑(𝜔𝜔12 − 𝜔𝜔2

2 + 𝜔𝜔3
2 − 𝜔𝜔42)

𝐽𝐽𝑧𝑧𝑧𝑧

 (26) 

where:  Ω� 𝑟𝑟 =  𝜔𝜔1 − 𝜔𝜔2 +𝜔𝜔3 − 𝜔𝜔4  
• The matrix that relies between forces/ inertial moments and angu-

lar velocities of four motors: 

�

𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4

� = �

𝐹𝐹𝑡𝑡
𝑀𝑀𝑥𝑥
𝑀𝑀𝑦𝑦
𝑀𝑀𝑧𝑧

� = �
𝑏𝑏 𝑏𝑏
0 −𝑙𝑙𝑙𝑙

𝑏𝑏 𝑏𝑏
0 𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙 0
𝑑𝑑 −𝑑𝑑

𝑙𝑙𝑙𝑙 0
𝑑𝑑 −𝑑𝑑

�

⎣
⎢
⎢
⎢
⎡𝜔𝜔1

2

𝜔𝜔2
2

𝜔𝜔3
2

𝜔𝜔42⎦
⎥
⎥
⎥
⎤
, (27) 

The relation presented in this matrix is very useful for building 
controllers, were u1, u2, u3, u4 are the four inputs parameters that con-
trol the system. In our case, Tello EDU quadrotor is dedicated to the in-
door application; therefore, in the following, the linear drag force Fdl 
and the inertial moment of the gyroscopic effect Mgh, are considered as 
external disturbances, which are totally neglected in order to simplify 
the model.  

To summarize the previous work, the model plant is based on 4 in-
puts U and 6 outputs Y expressed as follows:  

Inputs: �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4

� = �

𝐹𝐹𝑡𝑡
𝑀𝑀𝑥𝑥
𝑀𝑀𝑦𝑦
𝑀𝑀𝑧𝑧

�  Outputs: [𝑥𝑥 𝑦𝑦 𝑧𝑧 𝜙𝜙 𝜃𝜃 𝜓𝜓]𝑇𝑇, (28) 

The model is simplified as follow: 
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⎩
⎪
⎨

⎪
⎧𝑥̈𝑥 = 1

𝑚𝑚
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�∑ 𝐹𝐹𝑖𝑖4

𝑖𝑖=1 �

𝑦̈𝑦 = 1
𝑚𝑚

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�∑ 𝐹𝐹𝑖𝑖4
𝑖𝑖=1 �

𝑧̈𝑧 = 1
𝑚𝑚

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)�∑ 𝐹𝐹𝑖𝑖4
𝑖𝑖=1 � − 𝑔𝑔

, (29) 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜙̈𝜙 =

−(𝐽𝐽𝑧𝑧𝑧𝑧 − 𝐽𝐽𝑦𝑦𝑦𝑦)𝜃̇𝜃𝜓̇𝜓 + 𝑙𝑙𝑙𝑙(𝜔𝜔42 − 𝜔𝜔2
2)

𝐽𝐽𝑥𝑥𝑥𝑥

𝜃̈𝜃 =  
−(𝐽𝐽𝑧𝑧𝑧𝑧 − 𝐽𝐽𝑥𝑥𝑥𝑥)𝜙̇𝜙𝜓̇𝜓 + 𝑙𝑙𝑙𝑙(𝜔𝜔3

2 − 𝜔𝜔12)
𝐽𝐽𝑦𝑦𝑦𝑦

𝜓̈𝜓 =
−(𝐽𝐽𝑦𝑦𝑦𝑦 − 𝐽𝐽𝑥𝑥𝑥𝑥)𝜙̇𝜙𝜃̇𝜃 + 𝑑𝑑(𝜔𝜔12 − 𝜔𝜔2

2 + 𝜔𝜔3
2 − 𝜔𝜔42)

𝐽𝐽𝑧𝑧𝑧𝑧

 (30) 

2.2.1. Identification parameters of Tello EDU drone 
The mathematical dynamic model for the quadrotor taking into 

consideration the six outputs [x y z ϕ θ ψ]  T is standard, the main 
change is reflected regarding the neglected disturbances and the param-
eter of every model, in our case, the main parameters that we had to 
identify for the dynamic model are presented in Table 1: 

Table 1. Parameters of Tello quadrotor 

Parameters Values 
Mass 0.8 [Kg] 

Jxx 0.0097 
Jyy 0.0097 
Jzz 0.017 
b 1 
d 0.08 
l 0.06 [m] 
g 9.81 

2.3. Control Strategy of Quadrotor System  
The controller system is a mathematical algorithm that processes 

how the quadrotor should act to maintain the measurement equal to the 
set point. Despite its general principle being relatively simple, the de-
sign of such a system requires particular attention, given the complex 
and under-actuated dynamics of the quadrotor [5]. The literature on this 
subject is vast and very varied and can lead to a better understanding of 
the performance of the proposed controllers [26]. This part is devoted to 
some methods of linear and non-linear controls applied to the quad-
rotor. 
• Linear Control Strategy: Linear control techniques are the first used 

for UAV flight control.  Linear controllers are applied to a linear-
ized model of the quadrotor; the linearization is made around an 
equilibrium point using Taylor series expansion and the Jacobean 
method, which will be presented later; among the command's laws 
known in this field [27]–[30] 

• Nonlinear Control Strategy: Nonlinear controllers perform better 
because they are applied to the accurate quadrotor model, which 
presents all the critical nonlinearities of the dynamics. The follow-
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ing presents the most used method in UAV flight control. Usually, 
the application of a nonlinear controller can achieve higher perfor-
mance with a nonlinear model of the UAV plant, but the main dis-
advantage is that it needs higher power computation [20], [31]–[33]. 
Table 2 summarizes the most linear and nonlinear control strategies 

used in UAV flight control in the literature review. In our case, we are 
using MPC strategy, where two scenarios can be taken:  

• 1- the first scenario assumes that the dynamic model is linear, so 
MPC is linear also; this is very familiar in science, where the dy-
namic model should be linearized around a defined point called 
the equilibrium point.  

• 2- the second scenario: suggests taking the nonlinear model as it is 
and, according to the constraints, then building an efficient nonlin-
ear MPC. The second method presents different complications and 
requires much more computation power.  

Table 2. Parameters of Tello quadrotor 

Controller 
type 

Linearity type 
Stability and 
time response 

       Computation 
       time 

PID Controller Linear 
Low stability in higher disturb-
ances, acceptable response time. 

Low 

Linear Quadratic 
Regulator 

Linear 
Good stability, with slow re-

sponse time. 
Very low 

H-infinity Optimal 
Control 

Linear 
High stability, medium response 

time. 
Medium 

Backstepping  
Control 

Nonlinear 
Not robust when the uncertain-
ties are present in the model of 

the plant 
Medium 

Sliding mode 
Control 

Nonlinear 
Robust even with the presence of 
uncertainties and disturbances. 

High 

Adaptive Control Nonlinear 
Good stability with the presence 

of uncertainties. 
High 

Model Predictive 
Control (MPC) 

It can be both 
Stability is not guaranteed, high 
optimization for different con-

straints. 
High 

In this paper both extensions are presented in detail, to show the 
reader the main differences and results obtained from the simulation, 
especially at the energy profile level.  

The obtained dynamic model shown above is purely nonlinear, to 
go forward with the control field, first, we identify the states of the sys-
tem as follow, where we can have plenty suggestions. In This paper we 
will go forward with this notation: 

𝑋𝑋 = [𝑥𝑥 𝑦𝑦 𝑧𝑧 𝜙𝜙 𝜃𝜃 𝜓𝜓 𝑥̇𝑥 𝑦̇𝑦 𝑧̇𝑧 𝜙̇𝜙 𝜃̇𝜃 𝜓̇𝜓]𝑇𝑇, (31) 

𝑋⃗̇𝑋 = 𝑓𝑓(𝑋⃗𝑋,𝑢𝑢�⃗ ) (32) 
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where f̂�X��⃗ � is the state variables function, and f̂(u�⃗ ) is the input control 
variables function. 

2.3.1. Model Predictive Control Concept 
Model predictive control MPC is an advanced automatic control 

technique useful mostly for industrial applications. MPC concept is 
based on using the linear or nonlinear dynamic model of the plant in-
side the controller in real-time, this is to anticipate the future behavior of 
the system. The main particularity of MPC is that the output calculation 
must be solved online. The optimization process is based on the in-
puts/outputs of the system that minimize a cost function to predict the 
future. The prediction is executed from the internal model of the con-
troller over a finite time window called the prediction horizon. The solu-
tion of the optimization problem is presented as a control vector. Using 
updated system data, the controller can solve the problem again on the 
next interval period, therefore MPC is called also moving horizon or re-
ceding horizon optimal control.  

An MPC solves an optimization problem, specifically a quadratic 
program (QP), it consists of the following three components: a state dy-
namics model; a cost function, which is the objective that we would like 
to achieve; and constraints, which are presented as boundaries to limit 
the future behavior for the inputs and outputs, where can set soft or 
hard constraints. 

MPC operates as follows: using the open-loop plant model and a 
chosen prediction horizon N, calculate the set of future states 
xk+1, … … xk+N and control inputs uk,⋯, uk+N−1 that minimizes a cost 
function subject to state and input constraints. Then, the first element uk 
in the set of calculated inputs is used as the input to the plant, and the 
sequence of calculations is repeated at the next sampling instant. 

MPC controller has shown its efficiency in the application with 
short sampling periods where in the field of numerical controls has giv-
en good results in terms of speed and accuracy [34]. Figure 5 shows the 
internal closed loop of MPC with the plant, where Figure 6 shows the 
internal behavior concept of MPC. 

 
Figure 5. MPC closed control loop 
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Figure 6. Concept of Model Predictive Control 

The standard cost function denotes Θ usually is the sum of four 
terms, each focusing on a particular aspect of controller performance, as 
follows: 

Every term in Θ represents an objective sub-function:  

        Θ(𝓏𝓏𝑘𝑘) = Θ𝑦𝑦(𝓏𝓏𝑘𝑘)  + Θ𝑢𝑢(𝓏𝓏𝑘𝑘)  + Θ∆𝑢𝑢(𝓏𝓏𝑘𝑘)  +  Θ𝜀𝜀(𝓏𝓏𝑘𝑘), (33) 

where: 
• Θy(𝓏𝓏k): Cost function for Output Reference Tracking  
• Θu(𝓏𝓏k): Cost function for Manipulated variable tracking  
• Θ∆u(𝓏𝓏k): Cost function for manipulated variable move suppression 
• Θε(𝓏𝓏k): Cost function for constraint violation 
• 𝓏𝓏k: The quadratic program 

In our case we are interested in minimizing the following two 
terms Θy(𝓏𝓏k),Θu(𝓏𝓏k), where we would like to track the reference output, 
so the error between the reference and the output signal should be min-
imized, where the second term is minimized in order to the controller 
keep selected manipulated variables (MVs) at or near specified target 
values, in general the problem statement is written as follow: 

min
𝑢𝑢𝑡𝑡,....,𝑢𝑢𝑡𝑡+𝑁𝑁−1   

{∑ ‖𝑟𝑟(𝑡𝑡) −  𝑦𝑦𝑡𝑡+𝑘𝑘‖2 + 𝜌𝜌‖𝑢𝑢𝑡𝑡+𝑘𝑘 − 𝑢𝑢𝑟𝑟(𝑡𝑡)‖2𝑁𝑁−1
𝑘𝑘=0 }  (34) 

Subject to: 
• xt+k+1  =  f(xt+k, ut+k)     presents the dynamic of the system. 
• yt+k      =  g(xt+k, ut+k)     presents the outputs of the system  
• umin ≤  ut+k  ≤  umax 
• ymin ≤  yt+k  ≤  ymax 
• xt =  x(t), k = 0, … . , N − 1 presents state variables  

In the following, we will present the design of linear and Nonlinear 
MPC using MATLAB. The software provides some facilities regarding 
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MPC controller, where the optimization problem is solved using a 
quadratic program (QP) – at each control interval. The solution deter-
mines the manipulated variables (MVs) to be used in the plant until the 
next control interval. The definition of our cost function in the software 
is written as follow:  

Θ(𝓏𝓏𝑘𝑘) = Θ𝑦𝑦(𝓏𝓏𝑘𝑘)  +  Θ𝑢𝑢(𝓏𝓏𝑘𝑘), (35) 

Θ(𝓏𝓏𝑘𝑘) = ����
𝑤𝑤𝑖𝑖,𝑗𝑗
𝑦𝑦

𝑠𝑠𝑗𝑗
𝑦𝑦 �𝑟𝑟𝑗𝑗(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) − 𝑦𝑦𝑗𝑗(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)��

2𝑝𝑝

𝑖𝑖=1

𝑛𝑛𝑦𝑦

𝑗𝑗=1

+  �
𝑤𝑤𝑖𝑖,𝑗𝑗
𝑦𝑦

𝑠𝑠𝑗𝑗
𝑦𝑦 �𝑢𝑢𝑗𝑗(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)− 𝑢𝑢𝑗𝑗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)��

2

� 
(36) 

where: k is the current control interval; p is the Prediction horizon 
(number of intervals); ny: Number of plant output variables. 𝓏𝓏k: Quad-
ratic program decision given by:  

𝓏𝓏𝑘𝑘𝑇𝑇 =  [𝑢𝑢(𝑘𝑘|𝑘𝑘)𝑇𝑇 … . .𝑢𝑢(𝑘𝑘 + 𝑝𝑝 − 1|𝑘𝑘)𝑇𝑇   𝜀𝜀𝑘𝑘  ] (37) 

 yj(k + i|k): Predicted value of jth plant output at ith prediction horizon 
step, in engineering units.  rj(k + i|k): Reference value for jth plant out-
put at ith prediction horizon step, in engineering units; sj

y: Scale factor 
for jth plant output, in engineering units; wi,j

y : Tuning weight for jth 
plant output at ith prediction horizon step (dimensionless). 

2.3.2. Linear Model Predictive Control 
Linear MPC is the traditional model which the basic of its cost 

function is a quadratic function, the model traits linear dynamic sys-
tems, and does not require higher computation to solve the optimization 
problem. The basic step to continue with linear MPC is to linearize the 
dynamic model of the quadrotor, so the methodology is presented as 
follow:  

• Linearization of the quadrotor system 
Our aim from this part is to generate a linear state space represen-

tation from a nonlinear model written in eq (29) and eq (30) (The non-
linear model is linearized around an equilibrium point Xe “ hover posi-
tion “, the linearization is performed on a simplified model, where small 
oscillations are considered as: sin(angle) = angle and cos(angle) = 1, 
and using Taylor series expansion the new state space representation af-
ter the linearization is written in the following form:  

�𝑋⃗̇𝑋 = 𝐴𝐴𝑋⃗𝑋′ + 𝐵𝐵𝑢𝑢�⃗ ′

𝑦⃗𝑦 = 𝐶𝐶𝑋⃗𝑋′ + 𝐷𝐷𝑢𝑢�⃗ ′
   where   𝑋⃗𝑋

′ = 𝑋⃗𝑋 − 𝑋⃗𝑋𝑒𝑒
𝑢𝑢�⃗ ′ = 𝑢𝑢�⃗ − 𝑢𝑢�⃗ 𝑒𝑒

, (38) 

where X��⃗  is the ‘State vector’ of (n × 1), u�⃗  is the ‘Input (or control) vec-
tor’of (m × 1), y�⃗  is the ‘Output vector’ of (p × 1), A is the ‘System Ma-
trix’ of (n × n), B is the ‘Input Matrix’ of (n × p), C is the ‘Output Matrix’ 
of (q × n), D is the ‘Feed forward Matrix’ of (q × p). 
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In hover position, we have the following state vector and input vec-
tor: 

𝑋𝑋𝑒𝑒 = [𝑥𝑥𝑒𝑒 𝑦𝑦𝑒𝑒 𝑧𝑧𝑒𝑒 0 0 0 0 0 0 0 0 0]𝑇𝑇, (39) 

𝑢𝑢𝑒𝑒 = [𝑚𝑚𝑚𝑚 0 0 0]𝑇𝑇 (40) 

After the linearization calculation we get the following four matri-
ces for the state space representation:  

𝐴𝐴 =  𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢)
𝜕𝜕𝜕𝜕

�𝑥𝑥=𝑥𝑥𝑒𝑒
𝑢𝑢=𝑢𝑢𝑒𝑒

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 𝑔𝑔 0
−𝑔𝑔 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (41) 

𝐵𝐵 =  𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢)
𝜕𝜕𝜕𝜕

�𝑥𝑥=𝑥𝑥𝑒𝑒
𝑢𝑢=𝑢𝑢𝑒𝑒

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
0 0

0 0
0 0

0 0
0
0
0
0

1/𝑚𝑚
0
0

0
0
0
0

1/𝐽𝐽𝑥𝑥𝑥𝑥
0
0

0 0
0
0
0
0
0

1/𝐽𝐽𝑦𝑦𝑦𝑦
0

0
0
0
0
0
0

1/𝐽𝐽𝑧𝑧𝑧𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (42) 

The outputs variable that we would like to track, and control are 
the following: [x y z ϕ θ ψ], therefore the matrix C and D are written as 
follow:  

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0
0 1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0
0
0
0

0
0
0

1 0 0 0 0 0 0 0 0 0
0
0
0

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

, (43) 

𝐷𝐷 = 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧(6,4) (44) 

If the disturbance is taking into consideration, so the matrix dist is 
added to the equation of the state space as follow: 

𝑋⃗̇𝑋 = 𝐴𝐴𝑋⃗𝑋′ + 𝐵𝐵𝑢𝑢�⃗ ′ + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (45) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝜕𝜕𝜕𝜕(𝑋𝑋, 𝑢𝑢,𝑑𝑑)

𝜕𝜕𝜕𝜕 �𝑥𝑥=𝑥𝑥𝑒𝑒
𝑢𝑢=𝑢𝑢𝑒𝑒

 (46) 

where d�⃗  is the vector of the disturbances applied on the quadrotor. In 
the case presented in this paper, we neglect all the disturbances.  
• Design Linear MPC for Tello Quadrotor System  

Using MATLAB Simulink, we designed the dynamic system and 
the linear MPC to track the following outputs variables: [x y z ϕ θ ψ], we 
started by reconfigure the main inputs and outputs of the controller. 
Figure 7 shows the necessary inputs and outputs for MPC controller, as 
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inputs we have: - mo: 6 measured outputs that present the state vector 
[x y z ϕ θ ψ], - md: 0 measured disturbances where we neglected all the 
disturbances applied on the quadrotor, as outputs: - mv: 4 manipulated 
variables [u1, u2, u3, u4], which present the input control variables. 

Inside MPC plant model, different recommendations can be taking 
into consideration, depending on the characteristics of the dynamic sys-
tem that we have, in our case the constraints are the weights, and the 
control horizon were setting as presented in the Table 3. The weight re-
fers to the priority of the variables, where the high weight indicates the 
higher priority to track. 

 
Figure 7. MPC controller inputs - outputs 

Table 3. The required parameters of MPC for Tello quadrotor 

MPC Parameters 

Sample time (𝑇𝑇𝑠𝑠) 0.1 s 

Prediction Horizon (P) 20 s 

Control Horizon (M) 3 s 

MPC Constraints 

Boundaries of 𝑢𝑢1 [-10 – 12] N.m 

Boundaries of 𝑢𝑢2 [-10 – 12] N.m 

Boundaries of 𝑢𝑢3 [-10 – 12] N.m 

Boundaries of 𝑢𝑢4 [-10 – 12] N.m 

MPC Weights 

Translation motion along 𝑥𝑥 1 

Translation motion along 𝑦𝑦 1 

Translation motion along 𝑧𝑧 1 

Pitch motion along 𝜙𝜙 0.1 

Roll motion along 𝜃𝜃 0.1 

Yaw motion along 𝜓𝜓 0.1 

2.3.3. Nonlinear Model Predictive Control 
The principle of nonlinear model predictive control is the same as 

the linear one, the key differences are:  
• the prediction model can be nonlinear and include time-varying 

parameters. 
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• the equality and inequality constraints can be nonlinear.  
• the scalar cost function to be minimized can be a nonquadratic (lin-

ear or nonlinear) function of the decision variables. 
When the dynamic model is linear, the global analytical solution of 

the optimization problem exists and is relatively simple to determine 
[35]. But when this model is nonlinear, it is not certain that the optimiza-
tion algorithm converges to the global analytical solution and if a solu-
tion is found, there is not sure that it is fast enough. Indeed, the use of a 
nonlinear model involves solving a nonlinear optimization problem 
whose complexity is related to the degree of accuracy of the model.  

Several numerical techniques were developed to guarantee the 
convergence of the optimization algorithm towards an approximation of 
the optimum overall. While some of these methods, such as Eleanor's 
method, have proven their efficiency, they are however not appropriate 
for control of drones due to their running time. Among the techniques 
that can be carried on board vehicles we can cite the gradient method, 
the quadratic programming method sequential or the particle swarm 
method. Some techniques are based also on the approximation of certain 
signals by their Taylor series expansion [36]–[40]. 

While traditional linear MPC controllers optimize control actions to 
minimize a quadratic cost function, nonlinear MPC controllers support 
generic custom cost functions. For example, the cost function can be 
specified as a combination of linear or nonlinear functions of the system 
states and inputs. To improve computational efficiency, we can also 
specify an analytical Jacobian for the custom cost function [41]. 

Using a custom cost function, the algorithm of NMPC will be able 
to maximize profitability and minimize energy consumption.  
• Design Nonlinear MPC for Tello quadrotor system  

As we did in the previous part with linear MPC, the design of 
NMPC was done in MATLAB Simulink environment, MATLAB Sim-
ulink already has a basic architecture block function of such controller. 
We had to reconfigure the internal structure according to our system 
and tune the main parameters to achieve high performance. According 
to the nonlinear dynamic system of Tello quadrotor, the controller 
should receive different input signals: the reference trajectory – 12 state 
variables – last 4 manipulated variables that present the four control in-
puts variables[u1′, u2′, u3′, u4′] as presented in Figure 8, in our case we 
neglected the gyroscopic effect and the other disturbances applied on 
the system, whereas outputs we receive the new updated 4 manipulated 
variables.  

The design process for NMPC was as follows: - an object function 
nlobj has been created in the internal block with setting the necessary 
parameters and using nlmpc function a nonlinear MPC controller is de-
signed. As drawback of nonlinear controllers is the required huge time 
simulation, to avoid this issue and guarantee a high performance for the 
system an algorithm to calculate Jacobian function was inserted to the 
controller block function, Jacobian function guarantee to have fast and 
efficient simulation. 
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Figure 8. Nonlinear MPC controller inputs – outputs 

Table 4 identify the necessary parameters for the nonlinear MPC that fit 
Tello quadrotor. The weight parameter in the controller refers to the 
priority of the variables to track; usually in the quadrotor, we set higher 
priority for the position variables than the orientation variables, in our 
case we are looking for the best performance, so we set higher priority 
for all six variables. 

Table 4. The required parameters of Nonlinear MPC for Tello quadrotor 

Nonlinear MPC Parameters 

Sample time (𝑇𝑇𝑠𝑠) 0.1 s 

Prediction Horizon (P) 18 s 

Control Horizon (M) 3 s 

Nonlinear MPC Constraints 

Boundaries of 𝑢𝑢1 [0 – 12] N.m 

Boundaries of 𝑢𝑢2 [0 – 10] N.m 

Boundaries of 𝑢𝑢3 [0 – 10] N.m 

Boundaries of 𝑢𝑢4 [0 – 10] N.m 

Nonlinear MPC Weights 

Translation motion along 𝑥𝑥 1 

Translation motion along 𝑦𝑦 1 

Translation motion along 𝑧𝑧 1 

Pitch motion along 𝜙𝜙 1 

Roll motion along 𝜃𝜃 1 

Yaw motion along 𝜓𝜓 1 

3. Simulation Results 
In this section, several simulations for three different trajectories 

are presented to validate the comparison between linear and nonlinear 
MPC based on the performance analyses of the following inputs and 
outputs:  
• error position tracking  
• velocity tracking  
• control inputs tracking. 
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The design of the linear and nonlinear dynamic model of the drone 
beside the linear and nonlinear MPC models were designed in 
MATLAB Simulink, where different functions were written in MATLAB 
Script as: trajectory function, which provides to the control loop the ref-
erence desired trajectory; Jacobian function, which guarantees solving 
the optimization problem and avoiding the singularities. 

Three generated trajectories are defined: the first represents a 
straight curvature motion of the drone, the second trajectory is present-
ed as a circle motion, while the third trajectory is a helical motion, the 
initial states for both controllers were set as follow: 𝑋𝑋𝑖𝑖 =
[0 2 2 0 0 0 0 0 0 0 0 0]𝑇𝑇 . 

For Linear MPC, the control input bounds were set as presented in 
Table 3 between minimum value of -10 and maximum value of 12. This 
choice leads to give the controller more freedom to track the trajectory, 
where if the minimum value is set to 0. The controller will behave in an 
aggressive scenario. For Nonlinear MPC the control input boundaries 
were set between minimum value of 0 and maximum value of 12. An-
other setting was made regarding the control inputs tracking, where for 
Nonlinear MPC, the tracking control inputs can be done successfully so 
the track values where set to [4.9 4.9 4.9 4.9], while for Linear MPC, this 
option was neglected because it will definitely disturb the controller to 
achieve the most priority task, which is tracking the position and orien-
tation outputs. From the first attempt and without looking to the simu-
lation results, the recognition of these limitations could identify that 
Nonlinear MPC is more flexible than Linear MPC in term of setting 
conditions.  

3.1. Straight Curvature Reference Trajectory   
Figure 9 presents the simulation results of the straight curvature ref-

erence trajectory, the error position tracking, the velocity tracking, and 
the control inputs tracking for linear and nonlinear MPC. From Figure 9, 
we observe that regarding error position tracking LMPC performs better 
regarding the three axis X, Y, and Z, where for orientations angles, the 
signal is disturbed comparing to NLMPC where the oscillations are 
minimized. These oscillations describe the instability of the drone. Also, 
at level of tracking velocity, where both of controllers are behaving 
nearly the same but always NMPC is able to minimize the peak ampli-
tude of the oscillations. From the energy profile perspective, the com-
parison of the control inputs tracking leads to identify that both control-
lers reach the maximum and the minimum boundaries set earlier, to 
know which controller is using more torque, the mean value of ∆𝑢𝑢 for 
every execution is calculated, this will be presented in the following ta-
ble (Table 5).  

3.2. Circle Reference Trajectory   
Figure 10 presents the simulation results of circle motion as refer-

ence trajectory. From this Figure, the differences start to rise clearly, 
where it is obvious that NLMP is tracking the positions and the veloci-
ties in stable behavior, where the oscillations are more presented with 
LMPC, otherwise NLMP has succeed to minimize them. Also at control 
inputs tracking level, LMPC is using the maximum and minimum  
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Figure 9. Straight curvature trajectory there is problem in the picture 

boundaries so it can reach the minimum value – 10 N.m where NMPC is 
acting well with a limited boundaries with minimum value 0 N.m. Also 
NMPC is able to track the set target control inputs [4.9 4.9 4.9 4.9].  

3.3. Helical Reference Trajectory   
Figure 11 presents the simulation results of helical motion as refer-

ence trajectory. This motion describes typically the real life, where the 
motion is depending on the three axes simultaneously, therefore we ob-
serve that NMPC succeed to track the three positions smoothly and with 
minimum peak amplitude, while in the orientation tracking an over-
shoot is appeared in the first two seconds, regarding the velocity track-
ing. NMPC also provide good results comparing to LMPC, where the 
tracking control inputs is well achieved by NMPC. LMPC is always us-
ing all the boundaries to execute the suitable control behavior.  
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Figure 10. Circle reference trajectory 

3.4. Performance measurments ∆𝑢𝑢 and ExTime 
In order to analyze the energy profile of both controllers, a calcula-

tion of the mean average value of the control effort ∆𝑢𝑢 and the execution 
time of the simulation 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 was made. 

Table 5 shows the results of the two values when every trajectory is 
executed. These two parameters identify the consumption energy for 
both controllers, where regarding the execution time, we found that 
LMPC is very slow comparing to NMPC, meanwhile the average of con-
trol effort for LMPC is less than the control effort required by NMPC 
with average differences. This can be explained by the fact that NMPC 
has different missions to achieve where it is tracked not only the trajec-
tory but also try to maintain a target value for the control inputs. A solu-
tion can be highlighted in the future by optimizing a cost function that 
minimizes the energy consumption of the drone, by minimizing the ap-
plied control efforts directed to the four motors.  

The calculation of ∆𝑢𝑢 was by mean function, where the execution 
simulation time was calculated by timeit function. 
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Figure 11. Circle reference trajectory  

Table 5. Calculation of the average control effort value and the execution time  

Trajectory / Con-
troller 

1st Trajectory 1 2nd Trajectory 3rd Trajectory 

Δu[N.m]/ExTime[ms] Δu ExTime Δu ExTime Δu ExTime 

LMPC 3.1678  64  2.7054 63 1.4229 62 

NLMPC 5.9188 6.8 5.2379 6 4.8955 5.7 

4. Summary and Conclusion 
This paper presented a methodology to design MPC controller with 

the purpose to track trajectory of the quadrotor system. The dynamic 
mathematical modeling part for the quadrotor was deeply described in 
the first section, where in the second section a theoretical comparison 
between linear and nonlinear MPC was presented, which conducted us 
to look after the efficiency of these both control laws especially regard-
ing the energy profile. The design of both controller models was built 
and configured using MATLAB Script and Simulink, the controllers 
were simulated under the execution of three different trajectories, to see 
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the resulted behavior. As a conclusion, we sum up that NMPC can pro-
vide a very promoting results comparing to LMPC, which is not flexible 
and rise different limitations in the control drone field.  

As future work, our main goal is to build a master controller hard-
ware embedded system for Tello quadrotor, the hardware will be em-
bedded by such a control law, as we identified how NMPC is fast to 
process the commands, it would be great to increase the potential of it 
regarding the optimization of energy consumption, which presents a 
drawback of the quadrotor system, the target would be to add to NMPC 
a new cost function that minimize the voltage from the control efforts 
which is directed to the four rotors. 
Author Contributions: “Conceptualization, R.B., V.J.; methodology, R.B., 
V.J.; formal analysis, R.B., V.J.; invited author by guest editor, V.J.; writing—
original draft preparation, R.B., V.J.; writing—review and editing; R.B., V.J.” 
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