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Abstract: “A Picture is worth a thousand words”. Given an image, humans are able to deduce 1

various cause-and-effect captions of past, current, and future events beyond the image. The task of 2

visual commonsense generation aims at generating three cause-and-effect captions (1) what needed 3

to happen before, (2) what is the current intent, and (3) what will happen after for a given image. 4

However, such a task is challenging for machines owing to two limitations: existing approaches 5

(1) directly utilize conventional vision-language transformers to learn relationships between input 6

modalities, and (2) ignore relations among target cause-and-effect captions but consider each caption 7

independently. We propose Cause-and-Effect BART (CE-BART) which is based on (1) Structured 8

Graph Reasoner that captures intra- and inter-modality relationships among visual and textual 9

representations, and (2) Cause-and-Effect Generator that generates cause-and-effect captions by 10

considering the causal relations among inferences. We demonstrate the validity of CE-BART on 11

VisualCOMET and AVSD benchmarks. CE-BART achieves SOTA performances on both benchmarks, 12

while extensive ablation study and qualitative analysis demonstrate the performance gain and 13

improved interpretability. 14

Keywords: Deep Learning; Visual-Language Reasoning; Visual Commonsense Generation; Video- 15

grounded Dialogue; VisualCOMET; AVSD 16

1. Introduction 17

Visual Commonsense Generation (VCG) [1] is a challenging task that requires generat- 18

ing commonsense and cause-and-effect captions regarding visual and textual information. 19

To be specific, given a still image and a description about the event shown in that image, the 20

goal is to understand the cause-and-effect relations within the event and generate free-form 21

natural language sentences that describe the inferred past/future events and the present 22

intents of characters in the image. For example in Fig 1, given an image on the left of a 23

woman approaching to a man at the table, agent generates three kinds of cause-and-effect 24

captions: (1) sometime in the past, she walked into the room and have seen a man sitting at 25

the table, (2) the intent of woman is to talk to the man, (3) sometime in the future, she will 26

sit down at the table and speak with him about a serious topic. While reasoning about the 27

rich dynamic story of the visual scene is easy for humans, it is difficult for machines since it 28

requires higher-order cognitive-level understanding of the world. 29

In recent years, several visual reasoning tasks [2–4] were proposed and drew attention 30

in computer vision and natural language processing communities. To elaborate a few, the 31

visual question answering (VQA) task defines a question-answering paradigm as a test to 32

measure a machine’s reasoning abilities for a given image or video. Visual dialog (VisDial) 33

task asks a series of questions in the form of dialogue grounded on image or video. Visual 34

commonsense reasoning (VCR) task further requires the machine to provide a rationale 35

explaining why its answer is correct. While above visual reasoning tasks are defined 36
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Figure 1. Illustration on Visual Commonsense Generation. Given a person in image and correspond-
ing textual event, agent is required to generate (1) what needed to happen before, (2) what is the
current intent of person, and (3) what will happen after.

at recognition-level understanding and only consider the concepts and relations within 37

the provided image or video, VCG focuses on reasoning about the rich cognitive-level 38

dynamic story that goes beyond the directly visible contents by requiring the cause-and- 39

effect caption generation. Piaget’s cognitive development theory [5] describes the strive of 40

human intelligence to know in two forms: as a form of states or as a form of transformations, 41

suggesting that people must possess functions to represent both static and transformational 42

aspects of realities. If former tasks represent reasoning in a stationary situation, then VCG 43

represents reasoning in a transforming situation. Hence, the research on VCG opens the 44

door for a major leap from recognition-level understanding to cognition-level reasoning. 45

Only a few works on VCG have been published. Park et al. [1] constructed benchmark 46

for visual commonsense generation, VisualCOMET, and proposed the baseline method. 47

Xing et al. [6] proposed knowledge enhanced multimodal BART (KM-BART) that leverages 48

the knowledge from external corpora to pre-train BART. Previous approaches only operate 49

on conventional learning scheme of visual and textual information, overlooking the distinc- 50

tiveness of cause-and-effect generation task. Two major limitations on previous approaches 51

are: (1) directly utilize conventional vision-language transformers to learn relationships 52

between input modalities, and (2) ignore relations among target captions, but consider 53

each caption independently. Due to the former limitation, previous approaches ignore 54

the intra- and inter-modality relationship that have proven to be beneficial to transformer- 55

based generation [7]. Due to the latter limitation, the exiting models pay no attention to 56

the intrinsic structure of the task or dataset. As the goal of the VCG is to generate the 57

cause-and-effect captions, it is essential to consider causal relations among each inference 58

for before, intent and after. While existing approaches consider these inferences as a separate 59

case and train independently, we argue that the generation of three captions should be 60

considered holistically. 61

In this paper, we address the aforementioned limitations with our novel cause-and- 62

effect Bart (CE-BART) which is composed of (1) structured graph reasoner (SGR) and (2) 63

cause-and-effect generator (CEG). SGR first builds semantic graphs for each modality to 64

interpret the intra-modality relationships from spatial or token domain via graph structures, 65

then it captures higher-order semantic relations among graphs (i.e., inter-modality relation- 66

ships) via tripartite graph attention and strengthens the multi-modal graph representations. 67

As SGR comprehends the intra- and inter-relationships interspersed in multi-modal repre- 68

sentations beforehand, the latter workload of the transformer-based CEG is unburdened, 69

allowing it to focus more on understanding the commonsense and cause-and-effect infer- 70
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ence of the given input. CEG generate cause-and-effect captions for before, intent and after 71

situations. While all existing approaches on visual commonsense generation are trained to 72

generate each cause-and-effect captions separately (i.e., there are no connection between 73

the generation of before, intent, after even for the same image), the proposed CEG infers all 74

three cause-and-effect captions holistically by considering the causal relations. It consists of 75

one transformer encoder for modeling multi-modal representations, and three transformer 76

decoders each for the generating before, intent, and after captions. To consider causal rela- 77

tions among cause-and-effect inferences, decoders for intent and after are connected to that 78

of before and intent, respectively. Through causal connections between three decoders, it 79

can attend to hidden states of former decoder which take role of cause to generate effect 80

captions (i.e., the proposed intent/after decoder can attend to not only the hidden states of 81

transformer encoder, but also the hidden states of before/intent decoder). 82

2. Related Works 83

2.1. Commonsense Reasoning 84

Commonsense knowledge has been attracted lots of attention in both computer vision 85

and natural language communities. Commonsense or causality knowledge refers to the 86

basic level of practical knowledge and reasoning about everyday situations and events 87

commonly shared among most people [6,8]. For example, if the sun is out, it’s not likely to 88

rain; if we drop a cup, it is likely to broke. Such causality knowledge has been shown to 89

be beneficial for many tasks [9,10], thus it is essential for machines to learn to understand 90

causality [11]. 91

In the field of natural language processing, several commonsense knowledge base 92

(KB) have been constructed to help machines better understand the causality commonsense. 93

ConceptNet [12] and ATOMIC [13] are widely used commoonsense KBs that leverages 94

human-annotations to provide high quality causality knowledge. These KBs are built based 95

on tuples (s, r, o) where s, o are subject, object phrases, and r defines the relation between 96

them. Relations in commonsense KB includes causes, because, before, as a result, etc which is 97

essential for learning causality. Bosselut et al. [14] proposed COMET, a transformer-based 98

architecture, for automatic commonsense knowledge base completion. COMET is trained 99

to predict the object o, given subject s and relation r. In the field of computer vision, visual 100

commonsense reasoning (VCR) task [4] has been proposed which is a visual question 101

answering benchmark that requires the machine to provide a rationale explaining why its 102

answer is correct. 103

2.2. Visual Commonsense Generation 104

Park et al. [1] proposes the task of visual commonsense generation and corresponding 105

benchmark, VisaulCOMET, which aims at generating cause-and-effect descriptions for 106

a given image and corresponding textual event and place. VisualCOMET is a visual 107

commonsense knowledge base where image and corresponding textual event and place 108

take place of the object in ATOMIC. There exists only a few works [1,6] dealing with 109

the task of the visual commonsense generation. Park et al. [1] first proposed a baseline 110

model based on GPT-2 [15]. The baseline model feeds visual and textual context as inputs 111

and is trained to predict each of the cause-and-effect descriptions. Xing et al. [6] propose 112

knowledge enhanced multimodal BART (KM-BART) utilizes BART [16] to pretrain on 113

large external datasets and leverages knowledge from them. KM-BART is first pre-trained 114

with knowledge-based commonsense generation by leveraging knowledge from COMET 115

[14], attribute & relation prediction using Visual Genome benchmark [17], and masked 116

language & region modeling using various pre-training benchmarks. It then is fine-tuned 117

on VisualCOMET benchmark to achieve state-of-the-art performance on VisualCOMET 118

benchmark. However, we argue that these systems operate on conventional learning 119

scheme of visual and textual information, overlooking the distinctiveness of cause-and- 120

effect generation task and possesses two major limitations: (1) conventional vision-language 121
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Figure 2. Illustration of Cause-and-Effect BART (CE-BART) which is composed of Multi-modal Input
Encoder, Structured Graph Reasoner, and Cause-and-Effect Generator. (1) Multi-modal Input Encoder:
we first obtain multi-modal features (F v,F e,F p) using pre-trained models; Mask R-CNN for visual,
and BART word embedding layer for textual inputs, (2) Structured Graph Reasoner (SGR): we then
build semantic graphs (Gv,Ge,G p) and strengthens their representations (Sv,S e,S p) via capturing
intra- and inter-modality relations, (3) Cause-and-Effect Generator (CEG): we finally generate cause-
and-effect descriptions (Ob,Oi,Oa) using BART-based transformer architecture which considers
causal relations among inferences.

transformers are directly utilized to learn relationships between input modalities, (2) every 122

training examples are trained independently without considering relations with others. 123

3. Cause-and-Effect BART 124

First, we provide a formal definition of the visual commonsense generation task [1] 125

as follows. We are given tuples of (v, e, p), consisting of an image v, the event description 126

e, and place description p. The goal of visual commonsense generation is to generate the 127

three cause-and-effect captions corresponding to (1) what needed to happen before, (2) what 128

is the current intent of the person, and (3) what will happen after. 129

3.1. Multi-modal Input Encoder 130

Following the previous work on visual commonsense generation, we use the Mask 131

R-CNN [18] to detect the visual person, which extracts N v number of appearance features 132

A = {ai}N
v

i=1, and their corresponding location features B = {bi}N
v

i=1. Each location 133

feature bi = [xi, yi, wi, hi] represents a spatial coordinate, where [xi, yi] denotes the relative 134

coordinate of top-left point the the bounding box while [wi, hi] denotes the width and 135

height of the box. We calculate the final visual feature as: F v = {vi}N
v

i=1 ∈ RN v×dv , where 136

vi = waai + wbbi, and wa, wb are learnable weights that embeds both features into visual 137

feature dimension dv. 138

We have two types of text for each image (i.e., event e and place p). Each sentence for 139

event and place is fed into the word embedding layer of pre-trained BART to be further 140

utilized. We obtain the textual feature as: F e = {ei}N
e

i=1, F p = {pi}N
p

i=1, where N v,N p are 141

the number of token features, and ei, pi ∈ Rdt are the embedding of the i-th token in the 142

event and place, respectively. 143

3.2. Structured Graph Reasoner 144

In order to capture the intra-modality relationships from individual modalities (i.e., 145

image, event, and place) and inter-modality relationships among input modalities, struc- 146

tured graph reasoner first builds semantic graphs for each modality; image semantic graph 147

Gv, event semantic graph Ge, and place semantic graph G p. Motivated by [19] that projects 148
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visual features in spatial domain into graph domain for relational reasoning over global 149

context, structured graph reasoner performs graph convolutions to capture intra-modality 150

relations. It then captures the higher-order semantic relations among graphs (i.e., inter- 151

modality relationships) via tripartite graph attention to strengthens the multi-modal graph 152

representations. The final strengthened semantic representations (Sv,S e,S p) are fed into 153

the following cause-and-effect generator. 154

For simplicity, we denote the feature representation as F x and semantic graph as Gx

for each modality x ∈ {v, e, p}. We first project the feature representation F x into semantic
graph Gx which is a lightweight fully-connected graph. Basically, the projection into graph
domain is formulated as a linear combination (i.e., weighted global pooling):

Gx = f proj(F x; W f proj)times f reduc(F x; W f reduc) ∈ RN x×dg , (1)

where the dimension reduction function f reduc parameterized by W f reduc projects each 155

feature into graph feature dimension dg and graph projection function f proj parameterized 156

by W f proj produces the weights for linear combination. Here, both function f reduc, f proj are 157

1D convolution layers with a kernel size of 1. 158

In order to capture intra-modality relations in individual semantic graph, we utilize
graph convolution [20] to update node representations and obtain Ḡx. Given a fully con-
nected graph Gx, graph convolution learns edge weights that correspond to the correlations
between node representations. A single layer of graph convolution is formulated as:

Ḡx
= ΛGxWx = ((I −Ax)Gx)Wx, (2)

where Λ and Ax are N x ×N x adjacency matrix for diffusing information across nodes of 159

Gx, Wx ∈ Rdg×dg denotes the state update weight, and I ∈ RN x×N x
is the identity matrix. 160

Here, adjacency matrix Ax is randomly initialized and learned during training, together 161

with Wx, and the identity matrix serves as a shortcut connection. We can implement 162

Equation 2 using two consecutive 1D convolution layers along different directions: channel- 163

wise convolution (i.e., modeling (I −Ax)) and node-wise convolution (i.e., modeling 164

Wx). 165

Finally, we capture inter-modality relations among three semantic graphs (Ḡv, Ḡe, Ḡ p)
via tripartite graph attention and calculates the strengthened semantic representations
(Sv,S e,S p). We perform graph attention over tripartite graph that connects all of the
nodes in individual modalities to all of the nodes belonging to the other modalities. By
doing so, every node in each modality learns to integrate informative semantics from
the other modality to its representation effectively to capture inter-modality relations.
First, we concatenate Ḡv, Ḡe, Ḡ p along node-axis to make a tripartite graph structure ḠT ,
which each node is connected to all the other nodes that belonged to different modality:
ḠT

= [Ḡv||Ḡe||Ḡ p
] ∈ RN T×dg . We perform graph attention [21] over ḠT that calculates the

multi-head attention to capture relations between each node and its neighboring nodes (i.e.,
inter-modality relations):

ST = GAT(ḠT
), (3)

Sv,S e,S p = slice(ST), (4)

where slice(·) operation slices the multi-modal representations along node-axis with corre- 166

sponding length of each modality. 167

3.3. Cause-and-Effect Generator 168

A cause-and-effect generator (CEG) is proposed to generate cause-and-effect captions
by considering the causal relationships among inferences. It is a sequence-to-sequence
transformer architecture that feeds the strengthened semantic graph (Sv,S e,S p) and
decodes cause-and-effect captions (before Ob, intent Oi and after Oa) in autoregressive
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manner. Different from existing approaches that treat the generation of each caption as
separate objectives, the cause-and-effect generator infers all three cause-and-effect captions
holistically. Formally, we have the function of CEG fCEG with its parameter W fCEG whose
goal is:

Ob,Oi,Oa = fCEG(Sv,S e,S p;W fCEG ). (5)

3.3.1. Encoder 169

The encoder of CEG is based on a multi-layer bidirectional Transformer as in the 170

BART and its variant in the visual commonsense generation, KM-BART. Different from the 171

encoder in KM-BART whose input sequence starts with one of the special tokens <before>, 172

<intent>, <after> to indicate the model which cause-and-effect caption should be gener- 173

ated, CEG only takes the three sets of semantic graph representations (i.e., Sv,S e,S p) as it 174

infers all three captions holistically. To inform the start and end of different input modalities 175

to the encoder, we add three sets of special tokens; <b_img>, <e_img> for image embedding 176

Sv, <b_ev>, <e_ev> for event embedding S e and <b_pl>, <e_pl> for place embedding S p. 177

3.3.2. Decoder 178

The decoders of CEG are based on multi-layer unidirectional Transformer as it works 179

in an autoregressive manner during generation. There are total three of decoders for CEG, 180

each for the generation of before, intent and after captions. To inform each decoder about 181

the start of generation, we add three special starting tokens for each decoder <before>, 182

<intent> and <after>. Further, we add a special end inference token <e_inf> at the end 183

of the target sequence to indicating the stop of a decoding process. During training, we use 184

teacher-forcing [22] to supervise each decoding steps, i.e., ground truth tokens are used 185

as decoder input. The decoders of CEG only take a right-shifted target token sequence as 186

input. 187

To consider causal relations among cause-and-effect captions, decoders for intent and
after are connected to that of before and intent, respectively. Through causal connections
between three decoders, it can attend to hidden states of former decoder which take role of
cause to generate effect captions (i.e., the proposed intent/after decoder can attend to not only
the hidden states of transformer encoder, but also the hidden states of before/intent decoder),
as shown in Figure 2. Formally, we divide the function of CEG fCEG in Equation 5 as
encoder ECEG and a set of decoders Dx

CEG where x ∈ {b, i, a}. The conventional approaches
[1,6] generate the cause-and-effect captions separately without considering causal relations:

Ob = Dcon(Econ(v, e, p)), (6)

Oi = Dcon(Econ(v, e, p)), (7)

Oa = Dcon(Econ(v, e, p)), (8)

where Econ and Dcon represents the function of encoder and decoder of existing approaches
which feeds the image v, event e, and place p. On the other hand, the proposed CEG has
sequential connections among decoders to keep causal relations among cause-and-effect
captions:

Ob = Db
CEG(ECEG(Sv,S e,S p)), (9)

Oi = Di
CEG(ECEG(·), Db

CEG(·)), (10)

Oa = Da
CEG(ECEG(·), Di

CEG(·)). (11)

4. Experiments 188

4.1. Benchmark Dataset 189

VisualCOMET [1] is a large-scale benchmark dataset for visual commonsense genera- 190

tion, which is the only available dataset of its kind at present. It consists of over 1.4 million 191

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2022                   doi:10.20944/preprints202211.0134.v1

https://doi.org/10.20944/preprints202211.0134.v1


7 of 12

Table 1. Comparison with State-of-the-art methods in VisualCOMET benchmark. Here, “Proj-SGR”
denotes the graph projection (i.e., Equation 1), “Intra-SGR” denotes the intra-modality reasoning (i.e.,
Equation 2), and “Iner-SGR” stands for the inter-modality reasoning (i.e., Equation 3). “CEG” stands
for the cause-and-effect generator with three decoder (i.e., Equations 9-11).

Methods Validation set Test set
BLEU2 METEOR CIDEr BLEU2 METEOR CIDEr

Baseline [1] 13.50 11.55 18.27 12.71 11.13 17.36
KM-BART [6] 23.47 15.02 39.76 - - -

Variants on CE-BART

BART-base 22.51 14.73 37.86 - - -
+ Proj-SGR 22.47 14.97 38.91 - - -
+ Intra-SGR 23.85 15.72 39.59 - - -
+ Inter-SGR 25.07 18.24 41.07 - - -
+ CEG 28.60 19.32 43.58 - - -

CE-BART 28.60 19.32 43.58 28.14 18.91 42.64

Table 2. Analysis conducted on validation split of VisualCOMET. We provide an analysis of the
behavior of CEG by observing separate performance evaluation for with and wihtout CEG.

Methods Before Intent After
B2 M C B2 M C B2 M C

w/o CEG 29.7 20.4 45.1 19.4 15.4 40.7 26.1 18.9 37.7
w/ CEG 30.9 20.9 45.9 25.5 16.6 42.4 29.6 20.2 41.9

textual captions of visual commonsense inferences carefully annotated over a diverse set of 192

59,000 images paired with 139,000 event descriptions. Visual commonsense inferences are 193

divided into 1,174K, 146K, 145K examples for training, validation, and test, respectively. 194

Audio Visual Scene-aware Dialogue (AVSD) [23] provides video, caption, and dialogue 195

history consisting of a series of textual QA pairs, and follow-up question about the video. 196

The goal is to generate a free-form natural language answer to the question. As both tasks 197

share similar input-output relations, CE-BART can be easily applied to video-grounded 198

dialogue, and transfer causal knowledge learned from a visual commonsense generation 199

for better video understanding. 200

4.2. Experimental Details 201

We initialize the cause-and-effect generator with a pre-trained BART-base model with 202

6 transformer layers in each of the encoder and decoder, and a hidden size of 768. For 203

tripartite graph attention in structured graph reasoner, the number of heads in multi-head 204

attention is set to 8. We trained using 4 NVIDIA Quadro RTX 8000 (48GB of memory) and 205

Adam optimizer with β1 = 0.9 and β2 = 0.999. The learning rate is initially set to 0.0001 206

and trained the model up to 30 epochs with an effective training batch size of 512. During 207

inference, we adopt a beam search and for each set of input, we decode before, intent and 208

after captions sequentially. 209

4.3. Experimental Results on VisualCOMET 210

We compare our proposed Cause-and-Effect BART (CE-BART) with state-of-the-art 211

methods on VisualCOMET benchmark. Table 1 summarizes the experimental results on 212

VisualCOMET benchmark on both validation and test split, since the current state-of-the-art 213

method, KM-BART [6], only provides the results on validataion split. Also, we provide 214

the results on ablation study in Table 1 with several variants of CE-BART in order to 215

measure the effectiveness of the proposed key components of CE-BART. All the reported 216
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Table 3. Comparison with State-of-the-art methods in AVSD benchmark. We compare CE-BART with
various state-of-the-art systems on AVSD benchmark; Baseline [24], STSGR [25], MTN[26], MTN-TMT
[27], VX2TEXT [28].

Methods BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr

Baseline [24] - - - 0.078 0.113 0.277 0.727
STSGR [25] - - - 0.133 0.165 0.362 1.272
MTN [26] 0.356 0.242 0.174 0.135 0.165 0.365 1.366
MTN-TMT [27] - - - 0.142 0.171 0.371 1.357
VX2TEXT [28] 0.361 0.260 0.197 0.154 0.178 0.393 1.605

CE-BART 0.364 0.266 0.203 0.158 0.181 0.400 1.681
CE-BART w/ pre-train 0.365 0.268 0.205 0.161 0.183 0.404 1.721

performances in Table 1 are the average value of 5 independently trained models with 217

different seed. 218

Starting from direct fine-tuning of BART-base model in VisualCOMET which shows 219

slightly lower performance compared to previous SOTA method, KM-BART, every com- 220

ponent of proposed CE-BART boosts performance on all three metrics. The results of the 221

ablation study suggest that the limitations of existing approaches that we have introduced 222

are valid; (1) conventional vision-language transformers are directly utilized to learn rela- 223

tionships between input modalities, (2) every training examples are trained independently 224

without considering relations with others. 225

Structured graph reasoner is proposed to capture intra- and inter-modality relations 226

among visual and textual representations. Inclusion of graph reasoning shows 3.21 point 227

boost in CIDEr metric compared to BART-base model. Among the components of structured 228

graph reasoner, intra-modality reasoning provides 0.68 point and inter-modality reasoning 229

provides 1.48 point gain in CIDEr. As our inter-modality reasoning module performs 230

multi-head attention over tripartite graph, whose neighborhood is defined as the nodes 231

of heterogeneous modality, each node reinforces its representation with the information 232

from other modalities, thus it is able to comprehend inter-modality relations effectively. 233

Our design of structured graph reasoning is effective in capturing intra- and inter-modality 234

relations which is essential in visual commonsense generation. 235

Cause-and-effect generator is proposed to generate cause-and-effect descriptions 236

holistically by considering the causal relationships among inferences. It improves CIDEr 237

score by 2.51 points. Through causal connections between three decoders, cause-and-effect 238

generator looks at the former decoder which take role of cause to generate effect description. 239

Our design of cause-and-effect generator is effective in modeling causal relations among 240

generated descriptions which is essential in visual commonsense generation. 241

Through ablation study, we suggest that proposed CE-BART can effectively capture 242

intra- and inter-modality relationships interspersed in multi-modal input representations, 243

and effectively generate cause-and-effect descriptions holistically by considering causal 244

relations through cause-and-effect generator with causal connections between decoders. 245

CE-BART surpasses the other state-of-the-art methods on both validation and test split of 246

VisualCOMET benchmark. Compared to KM-BART [6], which is state-of-the-art method in 247

validation split, CE-BART reaches a CIDEr score of 43.58, which improves almost 4 points. 248

Compared to baseline [1], which is state-of-the-art method in test split, CE-BART achieves 249

a CIDEr score of 42.64, which is more than double compared to 17.36. In the meantime, 250

CE-BART also managed to improve BLEU-2 score by almost 16 points and METEOR score 251

by more than 7 points. 252

We also provide an in-depth quantitative analysis of CEG in Table 2 to show the 253

significance of dependencies among three decoders. The motivation behind capturing 254

relations between training samples is to consider the relations among before, intent, after 255

descriptions while generating them for an image: current intent is related to the situation 256

before and situation after is related to current intent. As CEG has connections among 257
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Baseline
Before  Intent After

Before  Intent After Before  Intent After

Before  Intent After

CE-BARTCE-BART

Baseline

Walk into the foyer

Lean towards Person4
Instruct Person4 on 

what to do next
Chat with Person4

Walk into the room with 
everyone

See what was in the 
doorway

Ask Person2 to look at 
the picture

Ask Person2 what she 
thinks of the picture

Discuss the content of 
the locket

Talk with Person2 Admire the locket Get off the bus

Place : Outdoors
Event : Person4 looks horrified as he watches events unfold

Place : On a bus
Event : Person1 studies the picture in Person2’s locket

Baseline
Before  Intent After

Before  Intent After Before  Intent After

Before  Intent After

CE-BARTCE-BART

Baseline

Be called to the scene

Walk towards Person1 Pursue a fugitive Make Person5 feel secure 

Put Person5 in a police carSearch Person5 for 
weapons

See something disturbing 
in front of him

Run away from the sceneCapture the moment

Find someone he wants 
to record

Record footage of the 
events from the field

Take footage from the 
scene

Place : In the foyer of a house
Event : Person1 is a father holding the shoulder of his daughter Person4

Place : In a street
Event : Person5 has his hands out being searched by the police

Figure 3. Four examples from the test split of VisualCOMET benchmark.

decoders, intent decoder can operate by using not only the image but also the information 258

from before decoder. Similarly, after decoder can generate predictions with the help of 259

intent decoder. We conduct separate evaluations for before/intent/after captions. Without 260

connections among decoders (i.e., w/o CEG), before prediction shows superior performance 261

compared to intent and after predictions. But with connections among decoders (i.e., w/ 262

CEG), we can observe performance boost in intent and after predictions as expected via 263

considering relations. 264

4.4. Experimental Results on AVSD 265

We conducted additional experiments to validate the generalizability of the proposed 266

CE-BART in other VL tasks. We have conducted experiments in the task of video-grounded 267

dialogue, which is a multi-turn question answering task. Formal definition of video- 268

grounded dialogue is as follows: we are given a video, a dialogue history consisting of 269

a series of textual QA pairs, and a follow-up question about the video, and goal is to 270

generate a free-form natural language answer. As we can see, both tasks share similar 271

input-output relations; therefore, CE-BART can be easily applied to the new task, video- 272

grounded dialogue, and transfer causal knowledge learned from a visual commonsense 273

generation for better video understanding. We trained CE-BART for video-grounded 274

dialogue in two settings: (1) CE-BART without pre-training in VisualCOMET, (2) CE-BART 275

with pre-training in VisualCOMET. Through this comparative experiment, we are able to 276

observe that causal information learned from VisualCOMET can help with understanding 277

the video. Table 3 summarizes the results on AVSD benchmark. It is observed that CE-BART 278

improves over existing methods and achieves SOTA performance on all of the metrics. By 279

pre-training CE-BART on VisualCOMET, we can further boost performance which indicates 280

that causal knowledge trained from VisualCOMET can be successfully transferred for better 281

video understanding in AVSD. We could validate that our proposed CE-BART can benefit 282

other VL tasks by effectively transferring causal knowledge learned from VisualCOMET. 283

4.5. Qualitative Analysis 284

Figure 3 visualizes examples from test split of VisualCOMET and compare predictions 285

of CE-BART and Baseline. CE-BART successfully utilizes SGR that captures intra- and 286

inter-modality relationship, which is flexible in selecting important information regardless 287

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2022                   doi:10.20944/preprints202211.0134.v1

https://doi.org/10.20944/preprints202211.0134.v1


10 of 12

of rather it is textual or visual information. In first example, CE-BART notices that text of 288

father holding his daughter’s shoulder is not the crucial information and focuses more on 289

the image. With this ability to consider and select crucial information, in second example, 290

CE-BART focuses on the key object in the scene and people’s interaction centered around 291

that object and avoid stating the obvious. Further, as CEG is trained successively generate 292

captions through causal connections, it has the information from the former decoder which 293

take the role of cause to generate effect caption. In third example, CE-BART is continuous 294

regarding the contents, where baseline model produces discontinuous caption. In the lower- 295

right example, the baseline model produces the overlapping captions, while CE-BART can 296

effectively generate the rich dynamic story of the visual scene. 297

5. Limitations 298

We believe that our proposed CE-BART contains several limitations that can be re- 299

moved through further experiments in the future. First, its scalability is limited due to 300

requirement of large GPU resources. We have conducted experiments using 4 NVIDIA 301

Quadro RTX 8000 (48GB of memory) which are extremely expensive. Second, its scalability 302

to control time scale is limited. There is no factor in current task setting that selects how 303

much of a past / future situation it requires. We will further develop our methods to 304

overcome several limitations. 305

6. Conclusion 306

We proposed a novel Cause-and-Effect BART for the task of visual commonsense 307

generation. The proposed CE-BART consists of two major components: (1) Structured 308

Graph Reasoner, and (2) Cause-and-Effect Generator. Structured graph reasoner builds 309

semantic graphs for individual modalities and strengthens their representations via captur- 310

ing intra- and inter-modality relations among graph structures. Cause-and-effect generator 311

is a transformer architecture with three decoder, each for generating before, intent, and 312

after captions. The experimental results on VisualCOMET and AVSD benchmark shows 313

that CE-BART achieves new state-of-the-art performance. 314
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VCG Visual Commonsense Generation
VQA Visual Question Answerig
VCR Visual Commonsense Reasoning
CE-BART Cuase-and-Effect BART
SGR Structured Graph Reasoner
CEG Cause-and-Effect Generator
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