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Abstract: In the field of low power wireless networks, one of the techniques on which many re-
searchers are putting their efforts is related to positioning methodologies such as fingerprinting
in dense urban areas. This paper presents an experimental study aimed at quantifying the mean
location estimation error in densely urbanized areas.Using a dataset made available by the Univer-
sity of Antwerp, a neural network was implemented with the aim of providing the position of the
end-devices. In this way it was possible to measure the mean location estimation error in an area
with high urban density. The results obtained show an accuracy in the localization of the end-device
of less than 150 meters.This result would make it possible to use the fingerprint instead of alternative,
energy consuming, methodologies such as GPS in IoT (Internet of Things) applications where battery
life is the primary requirement to be met.
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1. Introduction

The growing interest of the telecommunications market for IoT technologies is driv-
ing research to develop different Low Power Wide Area Network (LPWAN) standards.
Colloquially speaking, an LPWAN is supposed to be to the IoT what WiFi was to con-
sumer networking: offering radio coverage over a (very) large area by way of base stations
and adapting transmission rates, transmission power, modulation, duty cycles, etc., such
that end-devices incur a very low energy consumption due to their being connected [13].
Ultra-low power consumption as well as ubiquitous outdoor and indoor connectivity are
fundamental aspects to ensure that the network of IoT devices is reliable over the years.
To ensure smooth operations on IoT network, it is necessary to take into account various
elements such as network topology, modulation techniques, complexity of the hardware,
the use of the radio spectrum and regulations [10]. From this point of view it follows
that context-awareness is a key element in IoT applications. In order to set-up context-
awareness, the location of the device must be identified with minimal location error. The
simplest way to achieve this would be to use the GPS tracker. Unfortunately, however, the
GPS receiver can consume up to 50 mA when detecting the position [6]. Added to this is the
fact that once the position has been obtained it is necessary to transmit it to the gateway and
this further step produces an additional energy consumption. A further element to consider
is the high accuracy of a GPS measurement, an accuracy that is often not required in an IoT
sensor network. So in the face of a high energy consumption we would have an excessively
detailed measure in the context under analysis. A particularly interesting technique has
been developed in [12], in which a simplified implementation of interferometry is presented
obtaining high accuracies. This technique does not require additional hardware, but it
cannot be implemented with all communication devices as it strongly depends on the
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modulation mechanisms used and the freedoms left to users. Hence, wireless localization 36
based on LPWAN communication is an interesting alternative for localization in low power 57
networks. These techniques estimate the position of a transceiver by analyzing the physical  ss
properties of the transmission link such as the value of the received signal strength (RSS), s
information on the packet time of arrival, etc ... This paper aims to demonstrate that by 4
applying deep learning methodologies to fingerprint techniques it is possible to obtain 4
interesting results in terms of minimizing the localization error. The performance of the 4
fingerprint-based methods depends on the number of the reference points (RPs) in unit 43
space. However, as RSS measurement is time-consuming and laborious, an increase in the 44
number of RPs will increase positioning costs [8]. The remainder of the paper is structured s
as follows. Section 2 describes the LoRaWan standard used to collect the dataset. Section 3 46
shows how the dataset has been built. Section 4 illustrates the machine learning approach 47
that we used to estimate the location of end-devices. Section 5 does show the results of our 4
technique. In Section 6 we discuss those results. Finally, Section 7 shows the conclusions 4
and the intended future work. 50

2. LoRaWAN Standard 51

LoRaWAN technology provides a two-way communication, but the transmission s
from node (also known as motes) to gateway (also known as concentrator or base station) s
or Uplink message is the most frequent one compared to that from gateway to node or s
Downlink, since usually the purpose of the nodes is to collect data and then send them to =5
the Network Server and then to the Application Server. 56

The nodes send Uplink messages to the gateways in radio frequency through Lo- =7
RaWAN modulation. Gateways forward messages to the Network Server by adding  ss
information regarding the quality of communication through an IP connection routed over o
Ethernet, Wi-Fi or 3/4/5G. 60

The nodes send messages in Uplink to all gateways in their transmission range in e
broadcast mode, the Network Server takes care of the management of duplicate Uplink 2
messages and the selection of the best gateway to use if a Downlink message is to be sent s
to the node . o4

The Network Server also manages the transmission speed of the nodes through the s
ADR (Adaptive Data Rate) mechanism to maximize the network capacity and extend the  «s
battery life of the node. For example, the TTN Network Server uses the 20 most recent o
Uplink messages, starting from the moment the ADR bit is set, to determine the optimal s
Data Rate, these measurements contain the frame counter, the signal-to-noise ratio (SNR) s

and the number of gateways that received each Uplink message. 70
The Application Server instead takes care of receiving and analyzing the data sentby 2
the nodes and determining the actions that must be performed by the nodes. 72

LoRaWAN is based on Chirp Spread Spectrum (CSS) technology, where chirps (also 7
known as symbols) are the data carrier. The spread factor controls the frequency of 7
the chirp and thus controls the data transmission rate. Lower spreading factors mean s
faster chirps and therefore higher data rates. For each increase in the spreading factor, 7
the sweep rate of the chirp is halved and thus the data transmission rate is halved. [2]. 7
LoRaWAN uses the ISM (Industrial, Scientific and Medical) frequency bands reserved 7
for non-commercial radio communication applications, but for industrial, scientificand 7
medical use. In particular, depending on the geographic area and related regulations, the s
two most common frequencies are 868 MHz in Europe and 915 MHz in North America. &
Figure 1 shows a picture of the LoORaWAN network architecture. 82
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Figure 1. LoRaWAN network architecture
3. Dataset Analysis 83

In the period between November 2017 and February 2018, the dataset on which our e«
study is based was collected by the Faculty of Applied Engineering of the University s
of Antwerp [1]. Hardware consisting of a GPS receiver and LoRaWAN end-device was s
installed on about twenty cars from the Antwerp postal service. While the 20 cars drove &
around in the city center, the location information was sent in a LoORaWAN message. On s
the LoRaWAN backend server a callback function was configured to forward the payload e
of each message, with additional network information attached, to the local data server. In s
the dense urban area explored, 72 LoRaWAN gateways were detected. Figure 2 showsa o
picture of the Antwerp Urban Area and message locations. 02

51°14'N

51°13'N - 7

Latitude

51°12'N

51°11'N - 7

1km
0.5mi
L I I

4°20'E 4°22'E 4°24'E 4°26'E
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Esri, HERE, Garmin, GeoTecnnologies. Inc., USGS

Figure 2. LoRaWAN Dataset collected in the City Center of Antwerp

Table 1. The Structure of the urban LoRaWAN dataset. Each row is a LoRaWAN message showing
its receiving base stations (BS) with the RSSI value, the receiving time of the message (RX Time), the
LoRa Spreading Factor, latitude and longitude of the transmitter at transmission time.

BS1 BS 2 BS 72 RX Time SF Latitude Longitude

-200 -200 -200 -200 "2019-01" 8 51.23399... 4.42610...
-200 -118 -200 -97 "2019-01" 7 51.20718... 4.40368...



https://doi.org/10.20944/preprints202211.0130.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2022 d0i:10.20944/preprints202211.0130.v1

40f11

The urban dataset contains 130,429 messages and is available at [2]. All rows represent o3
one of the 130,429 messages in the urban dataset, the last three columns represent the s
receiving time, latitude and longitude of a message. The columns before indicate which of s
the 72 base stations in the urban area have received the message. If a base station has not e
received the message, an RSSI of -200 dB is inserted in the cell. Received Signal Strength o7
Indicator (RSSI) is basically a measurement of the power present in a received radio signal. s
This does not require additional bandwidth, energy or hardware. These features of RSS o
measurements make it relatively inexpensive, simple to implement and make this technique 100
appealing [14]. In previous works basic kNN fingerprinting localization technique was 10
used. A parameter sweep has been analyzed, varying k from 1 to 15. Considering that the 102
optimal value of k was the one which produces the lowest mean location error, it emerged 103
that optimal value for k was 11 nearest neighbors. Applying this value of k the LoRaWAN 104
dataset returned a mean error of 398.4 m and a median error of 273.03 m. 105

By reproducing the same approach, it is possible to find the matrix of the centroids 1oe
locations. Plotting the centroids on a map, Figure 3, it emerges that the resolution achievable 1o
with this technique is exactly the one indicated above. Calculating the distance of the 1os
centroids in the most densely urbanized area, it can be seen, in fact, that the values are 100
around 796 meters. This result confirms what we have seen so far, namely that in this 110
densely urban context, using the kNN resolution technique, resolution does not drop below 111
398 meters. 112

Is it possible to obtain a mean location error lower than that obtained with the KNN 113
technique, using the dataset as input in a neural network for deep learning feature data 114
classification? With the aim of answering this question, we started with a detailed analysis 115
of the densely urbanized area. This area, in the specific case of Antwerp, is contained in 16
a rectangle whose vertices have coordinates between [4° 20" East, 4° 27’ East] and [51° 11" w1~
North, 51° 15" North]. We have therefore divided the area subtended by the rectangle into  11s

sub-areas. Within each of these sub-areas we can place a subset of the original dataset. 110
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Figure 3. Geometrical Medians of Clusters obtained with kNN Technique

This allows us to reconstruct the dataset with a further column whose information 120
is related to the sub-area which our message belongs to. For each of these sub-areas we 121
have used the function for distance-based clustering of a set of XY coordinates [7]. This 122
function finds clusters in a set of spatial points expressed in XY coordinates. The clustering 12s
is based on the distance between the points and it does not require the number of clusters iza
to be known beforehand. Each point is clustered with the closest neighbouring point if the 125
distance between the two points is shorter than the user-defined threshold, that we fixed to 126
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150 meters. The function outputs basic summary statistics (number of clusters, minimum, 127
maximum and average cluster sizes, etc.) on the screen and figures showing the clusters, 12s
the centroid points and the geometric median points of each clusters. It also creates two 120
text files that contain the coordinates of all centroid points and geometric median points. 130
The output variables return, for every cluster, the XY coordinates of the centroid and of the 1
geometric median point, as well as the XY coordinates of every point that form the cluster. 132
See an example in Tab 2 133

Table 2. Output of the distance-based clustering function in the central area of Antwerp Lat €
[4°23/00",4°24'00"] — Long € [51°12/00”,51°13/00".

Size of Size of Number of
Number of Mean cluster Median points not
smallest largest . .
clusters size cluster size part of any
cluster cluster
cluster
13 14 880 212 78 10
51.218 |-
51.217 |
51.216 |- °
[ 3
51.215 1 2 .‘
[ d
51214 ’ . L
¢
51.213 - ‘ t Se
3 2
51212 w Y
51.211 F .‘ ’ :'
51.21
51.209
51.208 & L L L L I I
4.394 4.396 4.398 4.4 4.402 4.404

Figure 4. Number of clusters in the central Area of Antwerp Lat € [4°23/00”,4°24'00"] — Long €
[51°12'00",51°13/00"]
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Figure 5. Centroids of clusters in the central Area of Antwerp Lat € [4°23'00"”,4°24’00"] — Long €
[51°12/00”,51°13/00"]

4. Machine Learning Approach 134

Deep neural networks rely on massive and high-quality data to gain satisfying perfor- 1ss
mance. When training a large and complex architecture, data volume and quality are very s
important, as deeper model usually has a huge set of parameters to be learned and con- 1s7
figured. This issue remains true in mobile network applications [11]. Using the MATLAB 138
suite, we then configured, a neural network that would take as input the RSSI data received 130
from each of the 72 base stations, the values of the coordinates (Latitude and Longitude) of 140
the message and the categorical value of the assigned sub-area. This operation has been 14
recursively applied to all the sub-areas. To train a network using categorical features, we 142
had to first convert the categorical features to numeric using the convertvars function by 14
specifying a string array containing the names of all the categorical input variables. The 144
data set has been partitioned into training, validation, and test set using 15% of the data for 1as
validation, and 15% for testing. The neural network was defined with a feature input layer 14
(BS1, BS2,..., BS72, 1at, long, subarea), normalizing the data using Z-score procedure. Next, 17
a fully connected layer was included with output size 70 followed by a batch normalization 1ss
layer and a ReLU layer. For classification, another fully connected layer was specified with 14
output size corresponding to the number of classes, followed by a softmax layer and a s
classification layer. 151
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Figure 6. Architecture of the Neural Network

In Figure 6 is showed a piece of the architecture of the Neural Network used in this
work.

Table 3. Neural Network Architecture and Training Options.

layers = [
featureInputLayer(numFeatures,'Normalization’, "zscore”)
fullyConnectedLayer(70)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

miniBatchSize = 20;

options = trainingOptions('adam’, ...
'InitialLearnRate’,0.0007,...
"MiniBatchSize’,miniBatchSize, ...
’Shuffle’,’every-epoch’, ...
"ValidationData’,tblValidation, ...
"Plots’,"training-progress’, ...
"Verbose’ false);

The software trained the network on the training data and calculated the accuracy on
the validation data at regular intervals during training.

5. Results

The results obtained do show that it is possible to reach an average localization error
lower than that obtained with the kNN technique. In fact, we got an error of less than 150
meters. The keystone is linked to the ratio between the number of clusters and the mean
cluster size.

152
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number_of_clusters

A= 1)

mean_cluster_size

If this ratio, named as "crowding index", is greater than 10%, the accuracy is not ie
guaranteed because the number of clusters is too high compared to the mean cluster size. 1e2
On the other hand, when the value is less than 10% we find a very high accuracy. Accuracy 1es
is the ratio of correct predictions and the total number of classes. That is: 168

TruePositive + TrueNegative

Accuracy = — : : py 2
Y= TruePositive + TrueNegative 4 FalseNegative + FalsePositive
5.1. Low Accuracy 165
When A, the crowding indeX, is greater than 15% the poor accuracy in the localization  1ee
measurement emerges. The results are distributed as the following example: 167
1. Number of clusters: 4 108
2. Size of smallest cluster: 13 169
3.  Size of largest cluster: 123 170
4. Mean cluster size: 50.500000 17
5. Median cluster size: 33 172
6.  Number of points that are not part of any cluster: 9 173
'YX ) Training Progress (06-Sep-2022 14:40:06)
Training Progress (06-Sep-2022 14:40:06) Results
Validation accuracy: 86.67%
Training finished: Max epochs completed
100
% 3 Training Time.
o~ @ Final Start time: 06-Sep-2022 14:40:06
80 B Elapsed time: 3sec
O [N T ame—e=————— T Training Cycle
L w0 Epoch: 300f 30
g Hteration: 210.0f 210
§ £l Iterations per epoch: 7
< 4 Maximum ferations: 210
30 Validation
w8 Frequency: 50 iterations
10— Other Information
| 10 20 ) . 30 Hardware resource: Single CPU
00 50 100 150 200 Learning rate schedule: Constant
Iteration Learning rate: 0.0007

Learn more

Accuracy

Training (smoothed)

Loss

Training

— —e— - Validation

Loss

Training (smoothed)

Iteration Training

— —e— - Validation

Figure 7. Training Process Low Accuracy
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Figure 8. Confusion Matrix Low Accuracy

In Figure 7 and Figure 8 we can see respectively the behavior of the training process 174
and the confusion matrix in case of A = 20%. The Confusion Matrix Table briefly describes 175
the predicted outcome for the classification problem. In this case it shows that it predicts 176

86% of data correctly and 14% of data was miss labeled in the validation data set. 177
5.2. High Accuracy 178
In the case of high accuracy in the localization measurement the results are distributed 17
as the following example: 180
1.  Number of clusters: 15 181
2. Size of smallest cluster: 16 182
3. Size of largest cluster: 1175 183
4. Mean cluster size: 359 184
5.  Median cluster size: 350 185
6.  Number of points that are not part of any cluster: 6 186
[ ] [ ) Training Progress (08-Sep-2022 15:00:23)
Training Progress (08-Sep-2022 15:00:23) Results
Validation accuracy: 95.57%
Training finished: Max epochs completed
100 —
il ) y 1l AR el e Training Time
sor | LA ) eI L) Fel i ‘1‘ R (e 1l s Stantir:e 08-Sep-2022 15:00:23
g0 ] | out i i Elapsed time: 34 sec
70 i Training Cycle
£ sl Epoch: 300f 30
g Iteration: 5850 of 5850
§ sor Iterations per epoch: 195
< a2 Maximum iterations: 5850
30 Validation
20 Frequency: 50 iterations
10% Other Information
] 10 . . 20 . 30 Hardware resource: Single CPU
00 1000 2000 3000 4000 5000 6000 Learning rate schedule: Constant
Iteration Learning rate: 0.0007
89 Learn more
3,
28 Accuracy
§ 2 Training (smoothed)
=13 Training
1 — —@— - Validation
ki | ® Final Loss
% w‘ao 20‘00 3000 4000 5000 6000 Training (smoothed)
Iteration Training

— -— - Validation

Figure 9. Training Process High Accuracy
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Figure 10. Confusion Matrix High Accuracy

In this case, Figure 9 and Figure 10 show that the neural network predicts 95% of data  1er
correctly and 5% of data was miss labeled in the validation data set. 108

6. Discussion 180

Literature did show that the first results of basic fingerprinting implementation indi- s
cate a mean location estimation error of 398.40 m for the urban LoRaWAN dataset using a 10
standard kNN algorithm. The purpose of this work was to verify whether a lower location sz
estimation error level could be achieved with a machine learning approach. The results 103
of this work show that it is possible to achieve greater accuracy as long as the lambda  1ss
ratio has values lower than 0.15, that is the ratio between the number of clusters and the 15
mean cluster size (crowding index) is less that 15%. The average position estimation error o6
obtained with the machine learning approach is less than 150 m, and this is an important e7
milestone for the increasing relevance of the Internet of Things and location-based services. 108

7. Conclusions 100

Localization algorithms with an estimation error of this order could be suitable for 200
many applications, e.g., a self-driving car company could classify if their vehicles are on 20
their parking site or on their way. A better localization allows to guarantee safety and 202
timeliness in case of need. Future work will be focused on verifying the degree of accuracy zos
it is possible to achieve using the optimized neural network. 208
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Sample Availability: The Mathlab Code is available at the following repository: https://github.com/

apirodd/LoRaWAN .
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