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Abstract: In the field of low power wireless networks, one of the techniques on which many re- 1

searchers are putting their efforts is related to positioning methodologies such as fingerprinting 2

in dense urban areas. This paper presents an experimental study aimed at quantifying the mean 3

location estimation error in densely urbanized areas.Using a dataset made available by the Univer- 4

sity of Antwerp, a neural network was implemented with the aim of providing the position of the 5

end-devices. In this way it was possible to measure the mean location estimation error in an area 6

with high urban density. The results obtained show an accuracy in the localization of the end-device 7

of less than 150 meters.This result would make it possible to use the fingerprint instead of alternative, 8

energy consuming, methodologies such as GPS in IoT (Internet of Things) applications where battery 9

life is the primary requirement to be met. 10
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1. Introduction 12

The growing interest of the telecommunications market for IoT technologies is driv- 13

ing research to develop different Low Power Wide Area Network (LPWAN) standards. 14

Colloquially speaking, an LPWAN is supposed to be to the IoT what WiFi was to con- 15

sumer networking: offering radio coverage over a (very) large area by way of base stations 16

and adapting transmission rates, transmission power, modulation, duty cycles, etc., such 17

that end-devices incur a very low energy consumption due to their being connected [13]. 18

Ultra-low power consumption as well as ubiquitous outdoor and indoor connectivity are 19

fundamental aspects to ensure that the network of IoT devices is reliable over the years. 20

To ensure smooth operations on IoT network, it is necessary to take into account various 21

elements such as network topology, modulation techniques, complexity of the hardware, 22

the use of the radio spectrum and regulations [10]. From this point of view it follows 23

that context-awareness is a key element in IoT applications. In order to set-up context- 24

awareness, the location of the device must be identified with minimal location error. The 25

simplest way to achieve this would be to use the GPS tracker. Unfortunately, however, the 26

GPS receiver can consume up to 50 mA when detecting the position [6]. Added to this is the 27

fact that once the position has been obtained it is necessary to transmit it to the gateway and 28

this further step produces an additional energy consumption. A further element to consider 29

is the high accuracy of a GPS measurement, an accuracy that is often not required in an IoT 30

sensor network. So in the face of a high energy consumption we would have an excessively 31

detailed measure in the context under analysis. A particularly interesting technique has 32

been developed in [12], in which a simplified implementation of interferometry is presented 33

obtaining high accuracies. This technique does not require additional hardware, but it 34

cannot be implemented with all communication devices as it strongly depends on the 35

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2022                   doi:10.20944/preprints202211.0130.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0003-4133-1220
https://doi.org/10.20944/preprints202211.0130.v1
http://creativecommons.org/licenses/by/4.0/


2 of 11

modulation mechanisms used and the freedoms left to users. Hence, wireless localization 36

based on LPWAN communication is an interesting alternative for localization in low power 37

networks. These techniques estimate the position of a transceiver by analyzing the physical 38

properties of the transmission link such as the value of the received signal strength (RSS), 39

information on the packet time of arrival, etc ... This paper aims to demonstrate that by 40

applying deep learning methodologies to fingerprint techniques it is possible to obtain 41

interesting results in terms of minimizing the localization error. The performance of the 42

fingerprint-based methods depends on the number of the reference points (RPs) in unit 43

space. However, as RSS measurement is time-consuming and laborious, an increase in the 44

number of RPs will increase positioning costs [8]. The remainder of the paper is structured 45

as follows. Section 2 describes the LoRaWan standard used to collect the dataset. Section 3 46

shows how the dataset has been built. Section 4 illustrates the machine learning approach 47

that we used to estimate the location of end-devices. Section 5 does show the results of our 48

technique. In Section 6 we discuss those results. Finally, Section 7 shows the conclusions 49

and the intended future work. 50

2. LoRaWAN Standard 51

LoRaWAN technology provides a two-way communication, but the transmission 52

from node (also known as motes) to gateway (also known as concentrator or base station) 53

or Uplink message is the most frequent one compared to that from gateway to node or 54

Downlink, since usually the purpose of the nodes is to collect data and then send them to 55

the Network Server and then to the Application Server. 56

The nodes send Uplink messages to the gateways in radio frequency through Lo- 57

RaWAN modulation. Gateways forward messages to the Network Server by adding 58

information regarding the quality of communication through an IP connection routed over 59

Ethernet, Wi-Fi or 3/4/5G. 60

The nodes send messages in Uplink to all gateways in their transmission range in 61

broadcast mode, the Network Server takes care of the management of duplicate Uplink 62

messages and the selection of the best gateway to use if a Downlink message is to be sent 63

to the node . 64

The Network Server also manages the transmission speed of the nodes through the 65

ADR (Adaptive Data Rate) mechanism to maximize the network capacity and extend the 66

battery life of the node. For example, the TTN Network Server uses the 20 most recent 67

Uplink messages, starting from the moment the ADR bit is set, to determine the optimal 68

Data Rate, these measurements contain the frame counter, the signal-to-noise ratio (SNR) 69

and the number of gateways that received each Uplink message. 70

The Application Server instead takes care of receiving and analyzing the data sent by 71

the nodes and determining the actions that must be performed by the nodes. 72

LoRaWAN is based on Chirp Spread Spectrum (CSS) technology, where chirps (also 73

known as symbols) are the data carrier. The spread factor controls the frequency of 74

the chirp and thus controls the data transmission rate. Lower spreading factors mean 75

faster chirps and therefore higher data rates. For each increase in the spreading factor, 76

the sweep rate of the chirp is halved and thus the data transmission rate is halved. [2]. 77

LoRaWAN uses the ISM (Industrial, Scientific and Medical) frequency bands reserved 78

for non-commercial radio communication applications, but for industrial, scientific and 79

medical use. In particular, depending on the geographic area and related regulations, the 80

two most common frequencies are 868 MHz in Europe and 915 MHz in North America. 81

Figure 1 shows a picture of the LoRaWAN network architecture. 82
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Figure 1. LoRaWAN network architecture

3. Dataset Analysis 83

In the period between November 2017 and February 2018, the dataset on which our 84

study is based was collected by the Faculty of Applied Engineering of the University 85

of Antwerp [1]. Hardware consisting of a GPS receiver and LoRaWAN end-device was 86

installed on about twenty cars from the Antwerp postal service. While the 20 cars drove 87

around in the city center, the location information was sent in a LoRaWAN message. On 88

the LoRaWAN backend server a callback function was configured to forward the payload 89

of each message, with additional network information attached, to the local data server. In 90

the dense urban area explored, 72 LoRaWAN gateways were detected. Figure 2 shows a 91

picture of the Antwerp Urban Area and message locations. 92

Figure 2. LoRaWAN Dataset collected in the City Center of Antwerp

Table 1. The Structure of the urban LoRaWAN dataset. Each row is a LoRaWAN message showing
its receiving base stations (BS) with the RSSI value, the receiving time of the message (RX Time), the
LoRa Spreading Factor, latitude and longitude of the transmitter at transmission time.

BS 1 BS 2 ... BS 72 RX Time SF Latitude Longitude

-200 -200 -200 -200 "2019-01" 8 51.23399... 4.42610...
-200 -118 -200 -97 "2019-01" 7 51.20718... 4.40368...

... ... ... ... "..." ... ... ...
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The urban dataset contains 130,429 messages and is available at [2]. All rows represent 93

one of the 130,429 messages in the urban dataset, the last three columns represent the 94

receiving time, latitude and longitude of a message. The columns before indicate which of 95

the 72 base stations in the urban area have received the message. If a base station has not 96

received the message, an RSSI of -200 dB is inserted in the cell. Received Signal Strength 97

Indicator (RSSI) is basically a measurement of the power present in a received radio signal. 98

This does not require additional bandwidth, energy or hardware. These features of RSS 99

measurements make it relatively inexpensive, simple to implement and make this technique 100

appealing [14]. In previous works basic kNN fingerprinting localization technique was 101

used. A parameter sweep has been analyzed, varying k from 1 to 15. Considering that the 102

optimal value of k was the one which produces the lowest mean location error, it emerged 103

that optimal value for k was 11 nearest neighbors. Applying this value of k the LoRaWAN 104

dataset returned a mean error of 398.4 m and a median error of 273.03 m. 105

By reproducing the same approach, it is possible to find the matrix of the centroids 106

locations. Plotting the centroids on a map, Figure 3, it emerges that the resolution achievable 107

with this technique is exactly the one indicated above. Calculating the distance of the 108

centroids in the most densely urbanized area, it can be seen, in fact, that the values are 109

around 796 meters. This result confirms what we have seen so far, namely that in this 110

densely urban context, using the kNN resolution technique, resolution does not drop below 111

398 meters. 112

Is it possible to obtain a mean location error lower than that obtained with the kNN 113

technique, using the dataset as input in a neural network for deep learning feature data 114

classification? With the aim of answering this question, we started with a detailed analysis 115

of the densely urbanized area. This area, in the specific case of Antwerp, is contained in 116

a rectangle whose vertices have coordinates between [4° 20’ East, 4° 27’ East] and [51° 11’ 117

North, 51° 15’ North]. We have therefore divided the area subtended by the rectangle into 118

sub-areas. Within each of these sub-areas we can place a subset of the original dataset. 119

Figure 3. Geometrical Medians of Clusters obtained with kNN Technique

This allows us to reconstruct the dataset with a further column whose information 120

is related to the sub-area which our message belongs to. For each of these sub-areas we 121

have used the function for distance-based clustering of a set of XY coordinates [7]. This 122

function finds clusters in a set of spatial points expressed in XY coordinates. The clustering 123

is based on the distance between the points and it does not require the number of clusters 124

to be known beforehand. Each point is clustered with the closest neighbouring point if the 125

distance between the two points is shorter than the user-defined threshold, that we fixed to 126
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150 meters. The function outputs basic summary statistics (number of clusters, minimum, 127

maximum and average cluster sizes, etc.) on the screen and figures showing the clusters, 128

the centroid points and the geometric median points of each clusters. It also creates two 129

text files that contain the coordinates of all centroid points and geometric median points. 130

The output variables return, for every cluster, the XY coordinates of the centroid and of the 131

geometric median point, as well as the XY coordinates of every point that form the cluster. 132

See an example in Tab 2 133

Table 2. Output of the distance-based clustering function in the central area of Antwerp Lat ∈
[4◦23′00′′, 4◦24′00′′]− Long ∈ [51◦12′00′′, 51◦13′00′′].

Number of
clusters

Size of
smallest
cluster

Size of
largest
cluster

Mean cluster
size

Median
cluster size

Number of
points not
part of any

cluster

13 14 880 212 78 10

Figure 4. Number of clusters in the central Area of Antwerp Lat ∈ [4◦23′00′′, 4◦24′00′′]− Long ∈
[51◦12′00′′, 51◦13′00′′]
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Figure 5. Centroids of clusters in the central Area of Antwerp Lat ∈ [4◦23′00′′, 4◦24′00′′]− Long ∈
[51◦12′00′′, 51◦13′00′′]

4. Machine Learning Approach 134

Deep neural networks rely on massive and high-quality data to gain satisfying perfor- 135

mance. When training a large and complex architecture, data volume and quality are very 136

important, as deeper model usually has a huge set of parameters to be learned and con- 137

figured. This issue remains true in mobile network applications [11]. Using the MATLAB 138

suite, we then configured, a neural network that would take as input the RSSI data received 139

from each of the 72 base stations, the values of the coordinates (Latitude and Longitude) of 140

the message and the categorical value of the assigned sub-area. This operation has been 141

recursively applied to all the sub-areas. To train a network using categorical features, we 142

had to first convert the categorical features to numeric using the convertvars function by 143

specifying a string array containing the names of all the categorical input variables. The 144

data set has been partitioned into training, validation, and test set using 15% of the data for 145

validation, and 15% for testing. The neural network was defined with a feature input layer 146

(BS1, BS2,..., BS72, lat, long, subarea), normalizing the data using Z-score procedure. Next, 147

a fully connected layer was included with output size 70 followed by a batch normalization 148

layer and a ReLU layer. For classification, another fully connected layer was specified with 149

output size corresponding to the number of classes, followed by a softmax layer and a 150

classification layer. 151
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Figure 6. Architecture of the Neural Network

In Figure 6 is showed a piece of the architecture of the Neural Network used in this 152

work. 153

Table 3. Neural Network Architecture and Training Options.

layers = [
featureInputLayer(numFeatures,’Normalization’, ’zscore’)
fullyConnectedLayer(70)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

miniBatchSize = 20;
options = trainingOptions(’adam’, ...

’InitialLearnRate’,0.0007,...
’MiniBatchSize’,miniBatchSize, ...
’Shuffle’,’every-epoch’, ...
’ValidationData’,tblValidation, ...
’Plots’,’training-progress’, ...
’Verbose’,false);

The software trained the network on the training data and calculated the accuracy on 154

the validation data at regular intervals during training. 155

5. Results 156

The results obtained do show that it is possible to reach an average localization error 157

lower than that obtained with the kNN technique. In fact, we got an error of less than 150 158

meters. The keystone is linked to the ratio between the number of clusters and the mean 159

cluster size. 160
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λ =
number_o f _clusters
mean_cluster_size

(1)

If this ratio, named as "crowding index", is greater than 10%, the accuracy is not 161

guaranteed because the number of clusters is too high compared to the mean cluster size. 162

On the other hand, when the value is less than 10% we find a very high accuracy. Accuracy 163

is the ratio of correct predictions and the total number of classes. That is: 164

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalseNegative + FalsePositive
(2)

5.1. Low Accuracy 165

When λ , the crowding index, is greater than 15% the poor accuracy in the localization 166

measurement emerges. The results are distributed as the following example: 167

1. Number of clusters: 4 168

2. Size of smallest cluster: 13 169

3. Size of largest cluster: 123 170

4. Mean cluster size: 50.500000 171

5. Median cluster size: 33 172

6. Number of points that are not part of any cluster: 9 173

Figure 7. Training Process Low Accuracy
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Figure 8. Confusion Matrix Low Accuracy

In Figure 7 and Figure 8 we can see respectively the behavior of the training process 174

and the confusion matrix in case of λ = 20%. The Confusion Matrix Table briefly describes 175

the predicted outcome for the classification problem. In this case it shows that it predicts 176

86% of data correctly and 14% of data was miss labeled in the validation data set. 177

5.2. High Accuracy 178

In the case of high accuracy in the localization measurement the results are distributed 179

as the following example: 180

1. Number of clusters: 15 181

2. Size of smallest cluster: 16 182

3. Size of largest cluster: 1175 183

4. Mean cluster size: 359 184

5. Median cluster size: 350 185

6. Number of points that are not part of any cluster: 6 186

Figure 9. Training Process High Accuracy
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Figure 10. Confusion Matrix High Accuracy

In this case, Figure 9 and Figure 10 show that the neural network predicts 95% of data 187

correctly and 5% of data was miss labeled in the validation data set. 188

6. Discussion 189

Literature did show that the first results of basic fingerprinting implementation indi- 190

cate a mean location estimation error of 398.40 m for the urban LoRaWAN dataset using a 191

standard kNN algorithm. The purpose of this work was to verify whether a lower location 192

estimation error level could be achieved with a machine learning approach. The results 193

of this work show that it is possible to achieve greater accuracy as long as the lambda 194

ratio has values lower than 0.15, that is the ratio between the number of clusters and the 195

mean cluster size (crowding index) is less that 15%. The average position estimation error 196

obtained with the machine learning approach is less than 150 m, and this is an important 197

milestone for the increasing relevance of the Internet of Things and location-based services. 198

7. Conclusions 199

Localization algorithms with an estimation error of this order could be suitable for 200

many applications, e.g., a self-driving car company could classify if their vehicles are on 201

their parking site or on their way. A better localization allows to guarantee safety and 202

timeliness in case of need. Future work will be focused on verifying the degree of accuracy 203

it is possible to achieve using the optimized neural network. 204
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Sample Availability: The Mathlab Code is available at the following repository: https://github.com/ 217

apirodd/LoRaWAN . 218
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