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Abstract: Rain occurs over a wide range of spatial scales. The challenge is to connect certain fine scale needs to the available large 7

scale observations from radars, satellites or coarse grid numerical weather predictions. This is the problem of rescaling of the 8

rainfall. Whatever approach is used, it requires a knowledge of rainfall scales over a wide range of possible dimensions from tens 9
of meters to kilometers. It is also desirable to have measurements at different locations and under different meteorological settings. 10
Such measurements are not necessarily readily obtainable, requiring extensive and usually fixed and expensive networks of 11
multiple instruments over large areas. A mobile and less expensive alternative is the, Micro-Rain Radars (MRR). We illustrate this 12
using observations of the Doppler spectra of falling rain every 10 m vertically and 10 second temporally over intervals varying 13
from 15 up to 41 minutes collected at Wallop’s Island Virginia and Charleston South Carolina using two different MRR. An 14
objective method to estimate advection velocity was developed so that the time-height profiles could be transformed into height- 15
horizontal distance profiles in order to calculate scaling relations. Thus, MRR and other Doppler radars may obviate the need for 16
networks of instruments. 17

Keywords: Time-height rainfall rate profiles from MRR radars; Advection correction for conversion 18
to height-distance profiles, Computing radial power spectra using height-distance profiles; Using 19

derived radial power spectra for downscaling and upscaling 20
21

1. Introduction 22
Scaling is an essential feature of many phenomena ranging from those of cosmology to 23
those of quantum physics [1]. Many human activities from the stock market [2] to ecol- 24
ogy [3] are impacted by scaling. The science of scaling 25
“ helps reveal what factors determine ... the ...level of impact in a different place, in a 26
different situation, and with a different population. How big is it? How long does it last? 27
These are [some of] the most basic questions a scientist can ask.”( [4], p. 107). 28
With respect to direct physical impacts on mankind, this is especially true for rainfall. 29
Moreover, it has been shown [5] that the temporal and spatial structures of rain are not 30
equivalent because they are orthogonal dimensions but also in part because the un- 31
known advection of the rain affects the temporal observations. Furthermore, until re- 32

cently [6] studies of spatial scaling have all been confined to the surface. Yet, the vertical 33
dimension retains particular relevance not only with respect to the evolution of rain, but 34
also because observations at the surface are only an ambiguous expression of what is 35
happening aloft. That is, the structure and statistical characteristic above the ground will 36
not necessarily be unambiguously reflected on the surface because of storm motion and 37
boundary layer surface winds. Furthermore, rain evolves as it descends altering whatis 38
seen aloft from what may appear at the ground. Thus, in general the physical / statistical 39

structure and scales at the surface will likely be somewhat different from that observed 40
in the vertical [6]. Thus, combining observations in both dimensions may yield more 41
generally applicable results. 42
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However, whether in the vertical or horizontal, the different scales of rainfall are 43
obvious even to the most casual observer. Specifically, proceeding from the smallest scales 44
we have, soil erosion (e.g., [7]) and agricultural run-off and pollution, up to larger scales 45
which influence flash flooding and urban water management (e.g.,[8]), and finally up to 46
the largest scales(e.g., [9]) which play a major role in the world climate. Consequently, 47
downscaling, going from the large dimensions of say a numerical model, a measurement 48
by a spaceborne instrument [10] or even a coarse resolution radar measurement down to 49
smaller scales [11], and upscaling, going from essentially point measurements such as by 50
a rain gage or disdrometer up to the larger scales just mentioned [12,13], are both equally 51
important depending upon the situation. 52

In the literature there is an assortment of techniques for downscaling such as the so- 53
called multiplicative cascading method [14,14-16] with improvements proposed by [17]. 54
An alternative approach that reproduces the observed power spectrum uses the observed 55
correlation functions (when valid) or the power spectrum [12,13,18] to downscale 56
observations to smaller domains while maintaining the physical and statistical character 57
of the observed rain. This will be illustrated in Appendix A. 58

Methods for upscaling, however, are more limited, although a few exist. Some 59
involve smoothing [19] or Kriging of the observations [19,20]. The primary limitation of 60
such techniques is that they are filters of the power spectra [21] leading to a reduction of 61
information as discussed in [22]. A different approach uses the Bayesian components of 62
the rainfall and the observed power spectrum (or correlation function for statistically 63
homogeneous rain) to generate rain over many different scales with the appropriate 64
statistical properties consistent with the observations [12]. This will be briefly mentioned 65
in Appendix A as well with appropriate references for the interested reader to pursue. 66

Regardless of methodology, however, the statistical properties of the rain must be 67
properly characterized and preserved. In the next sections we report on improved re- 68
analyses of time-height observations presented in [6] to produce radial power functions 69
for scaling which more accurately represent the data. In this work, results are presented 70
using Micro-Rain Radar (MRR) vertical pointing Doppler radar observations in four cases 71
in two different locations using two different radars, three from observations at the NASA 72
Wallop’s Island Virginia facility and the other from measurements using the College of 73
Charleston MRR radar collected near Charleston, South Carolina. An example of 74
downscaling using these kind of results is given in an Appendix with references to view 75
for upscaling. 76

Time-height data are challenging since in the spatial dimension, power spectra yields 77
the number of waves per unit length, while in the temporal dimension, the power spectra 78
yields the frequency. In order to determine the spatial radial power spectra for all 79
directions, the two must be combined [21]. The first order approach for transforming time 80
to space is by using an average advection velocity for the storm. In the past work, this was 81
done arbitrarily so that the quality of the results were uncertain even if ‘reasonable’. As 82
we show below, there is a much better, more objective approach for better estimating a 83

true advection velocity by comparing the independent spatial and advection transformed 84
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temporal spectra. Importantly, under conditions having a proper advection velocity, time- 85
height profiles using one radar can offer observations over a large spatial domain when 86

more expensive networks of instruments are not available. This is further developed in 87

the next section. 38
2. Background 89
2.1 Basic considerations 90

In order to be able to fully scale the rain rate, R, for example, in any spatial direction, 91
it is most useful to have access to the radial power spectra that, in the case of statistically 92
homogeneous rain, can also be transformed into the radial correlation function. (e.g., for 93
a discussion see Jameson, 2019). Accomplishing estimates of the rainfall rates at high res- 94
olution is a challenging task that is, perhaps, best addressed using vertical pointing Dop- 95
pler radar data in rain. Thus, one of the most potentially useful radars for collecting such 96
observations in a number of different locations and meteorological settings is the Micro- 97
Rain Radar (MRR) described in [24]. This is a light-weight, highly transportable low 98

power vertical pointing continuous wave radar operating at a frequency of 24.23 GHz. 99

There are challenges, however. The rainfall rate is calculated from the drop sizes de- 100
duced from the Doppler spectra using well established relations between the fall speed of 101
a drop and its size [25] with the drop concentration determined from the radar backscatter 102
cross-section relation to drop size for the particular wavelength being used. Both of these 103
quantities (the apparent fall speed and observed radar backscattered power), however, 104
require adjustments. In particular, the observed Doppler velocity is the sum of the true 105
fall speed of the drop and the vertical air motion which must be removed in order to esti- 106
mate the correct drop fall speed and size. Similarly, at the wavelength of the MRR instru- 107
ment, attenuation by the rain can become significant, at times, depending upon the rain 108
intensity and distance of the sampling bin (range) from the radar. Both of these concerns 109
have been addressed in [6] so that an interested reader can go to that paper for elaboration. 110
Here, we take the deduced rainfall rates from that work for the data mentioned above and 111

use them for further analyses. 112

The challenge explored in this work is how best to address the fact that space and 113
time are orthogonal dimensions so that a method must be identified in order to combine 114
measurements in each. That is, radar time height observations are the sequential temporal 115
measurements of the rainfall rate, R, at each sampling bin spatially sequentially in the 116
vertical. For the data used here, data were collected over 10 m depths from about 30 meters 117
above the ground up to a height of 1280 m. At each location the Doppler spectra and radar 118
backscattered powers were measured over sequential 10 second sampling periods foreach 119
determination of R at each height and time. Over an interval of observations, these data 120
can then be considered in two ways, namely as a sequential ensemble of vertical spatial 121
profiles or, alternatively, as the ensemble of times series of observations at each height. 122
Using the Fourier transform for each of these, one can compute both the ensemble of ver- 123
tical spatial power spectra and, simultaneously, a different ensemble of the temporal 124
power spectra at each height. 125

2.1 An example 126
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To make this all more concrete we initially consider the opening 950 seconds of ob-
servations for a line of intense convective rainstorms that passed over the NASA Wallop’s
Island Flight Facility on 03 June 2019 as illustrated in Fig.1.
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These data allowed for the generation of 90 power spectra in height and 125 power
spectra in time corresponding to each 10 m increment in altitude. Since we are most inter-
ested in the average properties of these data, all the power spectra were averaged in their
own dimensions to yield the mean power spectra as illustrated in Fig.2.

w ,min'1

0 1 2 3
80 T T T

Vertical Mean Power
Temporal Mean Power

60 [

50

40

Spectral Power, dB

Early Period

0 10 20 30 40

20

127
128
129
130
131
132
133
134

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168


https://doi.org/10.20944/preprints202211.0126.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2022 d0i:10.20944/preprints202211.0126.v1

5 of 18
169
Figure 2. The averaged power spectra as functions of the wavenumber k in 70
space and the frequency w in time for the rainfall rates in Figure 1 in both the 171
172
purely vertical spatial dimension (black) and in the purely temporal domain 73

(red) showing the time and space differences in the spectra.

The two spectra are clearly different. This is, of course, not surprising since one is 174
necessarily expressed as a temporal frequency while the other is written in terms of the 175
wave number. If one desires to have a radial power spectrum for spatial scaling, is there 176

a way to combine these two observations taken along two different orthogonal axes? To 177
express it slightly differently, can the frequency w be transformed into reasonable esti- 178

mates of k? The assumption when trying to make this transformation is that the temporal 179

observations are really looking at approximately the same phenomenon but along a dif- 180
ferent axes, i.e. w= Vi / k where Vi is defined to be the mean advection speed providing 181

that it can be determined. 182

While the motion of the rain is undoubtedly complicated, moving at different speeds 183
at different locations and times, the simplest first approximation is to hypothesize that the 184
rain is moving as a whole at V. so that the observed frequencies are really the consequence 185

of the mean motion of the spatial structures. Can Va be determined? 186

The answer is yes if a speed can be found that transforms most of the temporal power 187
spectra into something that more closely approximates the observed spatial power spec- 188

tra. To see how this may work, the temporal power spectra in Fig.2 was transformed from 189
w to k using a range of possible advection velocities. That is, for a particular spatial wave- 190

length, in the temporal domain the velocity can be viewed as stretching the wavelength. 191
Consequently, the transformed wave number will be smaller than in the spatial domain. 192
Another way to look at this is that if the characteristic spatial domain size is £while the 193

temporal interval of observations is T, then the equivalent spatial domain size correspond- 194

ing to T would be £= Vax T where V. is a characteristic advection speed. For a fixed spatial =~ 195

wavelength, \, then there would be k = L/ X number of wavelengths in the spatial domain, 19

but there would be k, = £ /X such wavelengths in the velocity transformed temporal to 197

spatial domain. Hence the k_associated with that X\ would be much larger than k, i.e.,, k,= 198

(£/L) x k. Thus, in order to match the two wavenumbers so that they correspond to the 199

same X, k, must be multiplied by L /£ as illustrated in Fig.3a for this example. 200
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Other examples will be shown below as well, but this velocity also allows us to cor- 201

rectly rescale all the spatial data in Figure 1 as shown in Figure 4 thereby reducing the 202

overly exaggerated appearance of the vertical structures. 203
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Figure 4. Spatially scaled rainfall rate data in both the vertical and 241

horizontal directions after using the V. deduced in Figure 3. 242
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3. Further data analyses

3.1 Three more cases

Before computing the associated radial power spectrum for these specific data, how-
ever, we next consider the other three sets of measurements used in this study. This will
then allow direct comparisons among all of the radial power spectra that could be used
for upscaling or downscaling of these observations as illustrated in the Appendix. To that
end, for convenience, we begin in Figure.5 by first simply displaying the additional data
to be processed using illustrations in a previous paper [6]. The first two are a continuation
of the data presented above, but for a middle period (Figure 5a), a later period (Figure 5b)
and finally for a different set of measurements using a different MRR at the College of

Charleston (CoC data) gathered in a storm in August, 2021 (Figure5c).
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Beginning with the middle period data, the power spectra are plotted in Fig.6a with the 284
determination of the optimum V. shown in Figure 6b. For these data the optimum advec- 285

tion velocity of 2.6 ms-! is about 0.7 ms™! less than that for the line of storms moving over 286

the radar in the previous early data set. 287
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For the later period a similar plot is shown in Figure7. At this later time, the optimal 326
advection speed is even slightly smaller at 2.1 ms-! thus showing a persistent decrease in 327

time over the 40 minute period of these observations. 328
329

330
331
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Lastly are the College of Charleston (CoC) data through an ordinary but significant 375

South Carolina summer thunderstorm with results illustrated in Fig.8. Once again the 376

advection speed is reasonable at about 2.4 ms'.
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Spectral Power, dB
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With these advection speeds and for completeness, we can then replot the time-
height profiles as height distance profiles for these data (as was done in Figure 4) as
illustrated in Figure 9. These most likely represent the actual spatial structures that we can
now analyze to derive the spatial radial power spectra for rainfall scaling for each set of

data separately.
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Figure 9. The properly scaled horizontal-height profiles on 03 June 2019 for
(a) the middle period data, (b) the later period data and (c) the CoC data.

These spatial data then make it possible to derive radial spectral functions
which can be used for scaling of the rainfall rates to different dimensions

of interest.
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3.2 The radial power spectra for use in rescaling 491
With these estimate of advection velocities , there are then only spatial variables in 492

both the vertical (z) and horizontal (h) directions so that the one-dimensional radial power 493

spectra can be computed for all of these data sets for subsequent use in rescaling outtoa 494

maximum range RNg, . =+ Z2+h . As explained in [26] but repeated here for 495
readability, this is accomplished by first computing the 2D horizontal-vertical coordinate 496
system of the original 2D power spectrum using the fft2 routine in Matlab® and then 497

multiplying by its complex conjugate. This 2D power spectrum of values in (Az, Ah) 498
coordinates is then converted into 2D polar coordinate system of (Ar, 0) values of the 499
power spectrum. Finally, the radial spectra can then be computed by integrating over all ~ 500
the angles O for each Ar. 501

Before displaying the results it is important to recognize the value of using the best 502
estimate of the advection velocities as indicated for the CoC data in Figure 10. This is likely ~ 503
important for the other data in this study as well. Thus, in the previous work, (Figure 9 of 504
[26]) which were erroneously calculated by assuming the incorrect Vo =1 ms, the values 505

of the slopes only ranged from -2.47 to -2.74, while those below in Figure 11, calculated 506

using the best estimates of Va, fall over a greater range of slopes between -2.71 to -3.51. 507
508
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Figure 10. A plot illustrating the effect of increasing
advection velocity on the slope of a power fit to the radial
spectral power function for the CoC data illustrating the
importance of using an estimate of an optimal advection
speed rather than an arbitrary assumption as was done in
[25].
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Figure 11. The spatial radial power spectra as functions of
the spatial wave number deduced using the data in Figures
4 and 9 after accounting for the advection speed for each
data set separately.
574
However, while the maximum differences in slopes in Figure 11is about 0.8, this 575

decreases to about 0.27 after first noting that these relations can all be scaled to the volume 576

(Figurel2). Here the volume is calculated from the expression 577

Log (V) =3Log(Rng,,, ) -3Log (k) 1) 578

where Vi is the volume associated with wave number k arising for each length scale 579
defined by a L = Rngma /k and Vi = L? and a maximum length of Rngmax defined above. In 580
this transform, the slopes now vary over a much narrower range of values from -0.9 to - 581
1.17 while the minima in spectral powers at (k=1) are indicative of the over-all mean 582
rainfall intensity (29.7, 25.6, 21.5, 1.65 mm h-! for the CoC, early, later and middle data sets, 583
respectively). Interestingly, then, under conditions having a proper advection velocity, 584
time-height profiles using one radar offer the potential for observations over large spatial =~ 585

domains when more expensive networks of many instruments are not available. 586
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Figure 12. The spatial radial power spectra now scaled to the
volume. The variability of the power fit slopes is now reduced to
about 0.27 as compared to the range of values in Figure 11.
613
614
4. Summary of results 615

This work explored, in detail, an option for using a single time-height Doppler radar 616
data for estimating rainfall data over a large spatial domain in order to compute radial 617
power spectra for any subsequent rescaling of new input observations or numerical model 618
outputs. Using the rainfall rates determined through an earlier analyses of these data [6], 619
a method was found to convert the temporal observations into a spatially equivalent 620
measurements using the concept of a mean advection speed so that the temporal 621
frequency power fluctuations could be interpreted as the temporal reflection of moving 622
spatial structures. Moreover, under the assumption of approximate spatial isotropy, an 623
optimal advection speed could be estimated by comparing the spatially transformed 624
temporal power spectra to the purely spatial power in the vertical. In each set of data, a 625
unique advection velocity was found such that the total differences between the spatial 626
power spectra and the transformed temporal power spectra were minimized. Using these =~ 627
advection speeds, all of the time-height data were then converted into vertical and 628

horizontal spatial data which were subsequently used to compute the spatial radial power 629
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spectra for all the different sets of data. In the Appendix, an example is provided of how 630
such radial spectra can be used to downscale a uniform mean rainfall rate over a one 631
kilometer area into a set of statistically homogeneous ‘data’ having the structures of 632
various dimensions consistent with the radial power spectrum. 633

A significant advantage illustrated by these results is that such data from a single 634
vertically pointing Doppler radar obviates the need for expensive, expansive fixed 635
networks of multiple instruments in order to determine radial power spectra for rescaling. 636
Thus, it opens up the possibility that such measurements may be made in locations where 637
such networks of instrumentation may not even be possible or feasible, but also when the 638

mobility is important for collecting observations in widely varying meteorological 639

situations. 640
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Appendix A 653

The spectral power relations can be used for either upscaling or downscaling of the 654
rainfall rates. The process of upscaling is discussed in previous work [12,13,18,22] and 655
requires using the probability distribution of R. Here we will only consider downscaling 656
starting with a uniform value such as might come from a numerical weather prediction 657
with 1 km grid spacing or from a 1° Gaussian beam radar 60 km away (Figure Ala). This 658
uniform value is then downscaled to a spatial resolution of five meters as illustrated here 659
in Figure A1b using the indicated spectral power relation that is similar to those found for 660
the early and middle period in Figure 11. One advantage of this approach over some oth- 661
ers is that it faithfully reproduces the observed power spectrum 662

To accomplish this, a square field of uniform random numbers with zero mean and 663
unit variance is generated. Because a radar measurement or a numerical model outputis 664
usually just a single number, as in Figure Ala, it is reasonable to assume that the observed 665
field of rain is statistically homogeneous. Therefore, we can use the Weiner-Khintchine 666
theorem [27,28] to convert the S(k) above into the corresponding correlation function, C(d). 667

While such relations need not always be power fits, for the particular power relation above, 668
the Fourier transform of S( k) oc K™ Pyields another power relation, C(d)ocd® where 669

d is the distance between two points in the planeand q=—-(p-1). 670

The field of random numbers can then be correlated using the root method as 671
illustrated in a number of works including, for example, [13,29,30]. This usually produces 672
a field of approximately normally distributed numbers that, by using the copula technique 673
[31], can be transformed back into a field of uniformly distributed but properly correlated 674
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numbers between 0 and 1 with a mean of 0.5. This, in turn, can then be transformed into
a field of rainfall rates as in FigureA1b by simply multiplying by the inverse of the mean
value of the field of numbers that is usually close to 0.5. Consequently, in this example we
multiply by 1/0.5106 or 1.9585R where R is an input value from Figure Ala. The small
scale patchiness is now clearly evident in Figure Alb.

It should be noted, however, that because the correlation plummets so precipitously
with lag for this power relation, the correlation of the resulting rainfield may often look
more like a decreasing exponential than a power function for the reasons along the lines

given for raindrops in [32]
10ooObserved R=18 mm h'1, 1 km resolution
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FigureAl: (a) Illustrates the input uniform value as seen, for example by a radar
having a 1 km beam width or as output from a numerical model having a 1 km grid
spacing and (b) one realizaation of the resulting downscaling to 5 m resolution

using the indicated radial power spectrum as discussed further in the text.
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