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A Practical Approach for Determining Multi-Dimensional Spatial Rainfall Scaling 2 

Relations Using High Resolution Time Height Doppler Data from a Single Mobile 3 

Vertical Pointing Radar 4 

A.R. Jameson 1 5 

1 RJH Scientific, Inc., arjatrjhsci@gmail.com  6 

Abstract: Rain occurs over a wide range of spatial scales. The challenge is to connect certain fine scale needs to the available large 7 

scale observations from radars, satellites or coarse grid numerical weather predictions. This is the problem of rescaling of the 8 

rainfall. Whatever approach is used, it requires a knowledge of rainfall scales over a wide range of possible dimensions from tens 9 

of meters to kilometers. It is also desirable to have measurements at different locations and under different meteorological settings. 10 

Such measurements are not necessarily readily obtainable, requiring extensive and usually fixed and expensive networks of 11 

multiple instruments over large areas. A mobile and less expensive alternative is the, Micro-Rain Radars (MRR). We illustrate this 12 

using observations of the Doppler spectra of falling rain every 10 m vertically and 10 second temporally over intervals varying 13 

from 15 up to 41 minutes collected at Wallop’s Island Virginia and Charleston South Carolina using two different MRR. An 14 

objective method to estimate advection velocity was developed so that the time-height profiles could be transformed into height- 15 

horizontal distance profiles in order to calculate scaling relations. Thus, MRR and other Doppler radars may obviate the need for 16 

networks of instruments. 17 

Keywords: Time-height rainfall rate profiles from MRR radars; Advection correction for conversion 18 

to height-distance profiles, Computing radial power spectra using height-distance profiles; Using 19 

derived radial power spectra for downscaling and upscaling 20 

 21 

1. Introduction 22 

Scaling is an essential feature of many phenomena ranging from those of cosmology to 23 

those of quantum physics [1]. Many human activities from the stock market [2] to ecol- 24 

ogy [3] are impacted by scaling. The science of scaling 25 

 “ helps reveal what factors determine … the …level of impact in a different place, in a 26 

different situation, and with a different population. How big is it? How long does it last? 27 

These are [some of] the most basic questions a scientist can ask.”( [4], p. 107). 28 

With respect to direct physical impacts on mankind, this is especially true for rainfall. 29 

Moreover, it has been shown [5] that the temporal and spatial structures of rain are not 30 

equivalent because they are orthogonal dimensions but also in part because the un- 31 

known advection of the rain affects the temporal observations. Furthermore, until re- 32 

cently [6] studies of spatial scaling have all been confined to the surface. Yet, the vertical 33 

dimension retains particular relevance not only with respect to the evolution of rain, but 34 

also because observations at the surface are only an ambiguous expression of what is 35 

happening aloft. That is, the structure and statistical characteristic above the ground will 36 

not necessarily be unambiguously reflected on the surface because of storm motion and 37 

boundary layer surface winds. Furthermore, rain evolves as it descends altering what is 38 

seen aloft from what may appear at the ground. Thus, in general the physical / statistical 39 

structure and scales at the surface will likely be somewhat different from that observed 40 

in the vertical [6]. Thus, combining observations in both dimensions may yield more 41 

generally applicable results. 42 
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However, whether in the vertical or horizontal, the different scales of rainfall are 43 

obvious even to the most casual observer. Specifically, proceeding from the smallest scales 44 

we have, soil erosion (e.g., [7]) and agricultural run-off and pollution, up to larger scales 45 

which influence flash flooding and urban water management (e.g.,[8]), and finally up to 46 

the largest scales(e.g., [9]) which play a major role in the world climate. Consequently, 47 

downscaling, going from the large dimensions of say a numerical model, a measurement 48 

by a spaceborne instrument [10] or even a coarse resolution radar measurement down to 49 

smaller scales [11], and upscaling, going from essentially point measurements such as by 50 

a rain gage or disdrometer up to the larger scales just mentioned [12,13], are both equally 51 

important depending upon the situation. 52 

In the literature there is an assortment of techniques for downscaling such as the so- 53 

called multiplicative cascading method [14,14–16] with improvements proposed by [17]. 54 

An alternative approach that reproduces the observed power spectrum uses the observed 55 

correlation functions (when valid) or the power spectrum [12,13,18] to downscale 56 

observations to smaller domains while maintaining the physical and statistical character 57 

of the observed rain. This will be illustrated in Appendix A. 58 

Methods for upscaling, however, are more limited, although a few exist. Some 59 

involve smoothing [19] or Kriging of the observations [19,20]. The primary limitation of 60 

such techniques is that they are filters of the power spectra [21] leading to a reduction of 61 

information as discussed in [22]. A different approach uses the Bayesian components of 62 

the rainfall and the observed power spectrum (or correlation function for statistically 63 

homogeneous rain) to generate rain over many different scales with the appropriate 64 

statistical properties consistent with the observations [12]. This will be briefly mentioned 65 

in Appendix A as well with appropriate references for the interested reader to pursue. 66 

Regardless of methodology, however, the statistical properties of the rain must be 67 

properly characterized and preserved. In the next sections we report on improved re- 68 

analyses of time-height observations presented in [6] to produce radial power functions 69 

for scaling which more accurately represent the data. In this work, results are presented 70 

using Micro-Rain Radar (MRR) vertical pointing Doppler radar observations in four cases 71 

in two different locations using two different radars, three from observations at the NASA 72 

Wallop’s Island Virginia facility and the other from measurements using the College of 73 

Charleston MRR radar collected near Charleston, South Carolina. An example of 74 

downscaling using these kind of results is given in an Appendix with references to view 75 

for upscaling. 76 

Time-height data are challenging since in the spatial dimension, power spectra yields 77 

the number of waves per unit length, while in the temporal dimension, the power spectra 78 

yields the frequency. In order to determine the spatial radial power spectra for all 79 

directions, the two must be combined [21]. The first order approach for transforming time 80 

to space is by using an average advection velocity for the storm. In the past work, this was 81 

done arbitrarily so that the quality of the results were uncertain even if ‘reasonable’. As 82 

we show below, there is a much better, more objective approach for better estimating a 83 

true advection velocity by comparing the independent spatial and advection transformed 84 
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temporal spectra. Importantly, under conditions having a proper advection velocity, time- 85 

height profiles using one radar can offer observations over a large spatial domain when 86 

more expensive networks of instruments are not available. This is further developed in 87 

the next section. 88 

2. Background 89 

2.1 Basic considerations 90 

In order to be able to fully scale the rain rate, R, for example, in any spatial direction, 91 

it is most useful to have access to the radial power spectra that, in the case of statistically 92 

homogeneous rain, can also be transformed into the radial correlation function. (e.g., for 93 

a discussion see Jameson, 2019). Accomplishing estimates of the rainfall rates at high res- 94 

olution is a challenging task that is, perhaps, best addressed using vertical pointing Dop- 95 

pler radar data in rain. Thus, one of the most potentially useful radars for collecting such 96 

observations in a number of different locations and meteorological settings is the Micro- 97 

Rain Radar (MRR) described in [24]. This is a light-weight, highly transportable low 98 

power vertical pointing continuous wave radar operating at a frequency of 24.23 GHz. 99 

There are challenges, however. The rainfall rate is calculated from the drop sizes de- 100 

duced from the Doppler spectra using well established relations between the fall speed of 101 

a drop and its size [25] with the drop concentration determined from the radar backscatter 102 

cross-section relation to drop size for the particular wavelength being used. Both of these 103 

quantities (the apparent fall speed and observed radar backscattered power), however, 104 

require adjustments. In particular, the observed Doppler velocity is the sum of the true 105 

fall speed of the drop and the vertical air motion which must be removed in order to esti- 106 

mate the correct drop fall speed and size. Similarly, at the wavelength of the MRR instru- 107 

ment, attenuation by the rain can become significant, at times, depending upon the rain 108 

intensity and distance of the sampling bin (range) from the radar. Both of these concerns 109 

have been addressed in [6] so that an interested reader can go to that paper for elaboration. 110 

Here, we take the deduced rainfall rates from that work for the data mentioned above and 111 

use them for further analyses. 112 

The challenge explored in this work is how best to address the fact that space and 113 

time are orthogonal dimensions so that a method must be identified in order to combine 114 

measurements in each. That is, radar time height observations are the sequential temporal 115 

measurements of the rainfall rate, R, at each sampling bin spatially sequentially in the 116 

vertical. For the data used here, data were collected over 10 m depths from about 30 meters 117 

above the ground up to a height of 1280 m. At each location the Doppler spectra and radar 118 

backscattered powers were measured over sequential 10 second sampling periods for each 119 

determination of R at each height and time. Over an interval of observations, these data 120 

can then be considered in two ways, namely as a sequential ensemble of vertical spatial 121 

profiles or, alternatively, as the ensemble of times series of observations at each height. 122 

Using the Fourier transform for each of these, one can compute both the ensemble of ver- 123 

tical spatial power spectra and, simultaneously, a different ensemble of the temporal 124 

power spectra at each height. 125 

2.1 An example 126 
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To make this all more concrete we initially consider the opening 950 seconds of ob- 127 

servations for a line of intense convective rainstorms that passed over the NASA Wallop’s 128 

Island Flight Facility on 03 June 2019 as illustrated in Fig.1.  129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

These data allowed for the generation of 90 power spectra in height and 125 power 147 

spectra in time corresponding to each 10 m increment in altitude. Since we are most inter- 148 

ested in the average properties of these data, all the power spectra were averaged in their 149 

own dimensions to yield the mean power spectra as illustrated in Fig.2.  150 

 151 

 152 

 153 

 154 

 155 

 156 
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 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

Figure 1.Time-

height profile of 

the logarithm of 

the rainfall rate as 

derived in [6] for 

the so-called 

early period of 03 

June 2019 data. 
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 169 

 170 

 171 

 172 

 173 

The two spectra are clearly different. This is, of course, not surprising since one is 174 

necessarily expressed as a temporal frequency while the other is written in terms of the 175 

wave number. If one desires to have a radial power spectrum for spatial scaling, is there 176 

a way to combine these two observations taken along two different orthogonal axes? To 177 

express it slightly differently, can the frequency  be transformed into reasonable esti- 178 

mates of k? The assumption when trying to make this transformation is that the temporal 179 

observations are really looking at approximately the same phenomenon but along a dif- 180 

ferent axes, i.e.  = Va / k where Va is defined to be the mean advection speed providing 181 

that it can be determined. 182 

While the motion of the rain is undoubtedly complicated, moving at different speeds 183 

at different locations and times, the simplest first approximation is to hypothesize that the 184 

rain is moving as a whole at Va so that the observed frequencies are really the consequence 185 

of the mean motion of the spatial structures. Can Va be determined? 186 

The answer is yes if a speed can be found that transforms most of the temporal power 187 

spectra into something that more closely approximates the observed spatial power spec- 188 

tra. To see how this may work, the temporal power spectra in Fig.2 was transformed from 189 

 to k using a range of possible advection velocities. That is, for a particular spatial wave- 190 

length, in the temporal domain the velocity can be viewed as stretching the wavelength. 191 

Consequently, the transformed wave number will be smaller than in the spatial domain. 192 

Another way to look at this is that if the characteristic spatial domain size is L while the 193 

temporal interval of observations is T, then the equivalent spatial domain size correspond- 194 

ing to T would be L = VaT where Va is a characteristic advection speed. For a fixed spatial 195 

wavelength, , then there would be k = L/  number of wavelengths in the spatial domain, 196 

but there would be k = L / such wavelengths in the velocity transformed temporal to 197 

spatial domain. Hence the k associated with that  would be much larger than k, i.e., k = 198 

(L / L )  k. Thus, in order to match the two wavenumbers so that they correspond to the 199 

same , k must be multiplied by L /L as illustrated in Fig.3a for this example. 200 

Figure 2. The averaged power spectra as functions of the wavenumber k in 

space and the frequency  in time for the rainfall rates in Figure 1 in both the 

purely vertical spatial dimension (black) and in the purely temporal domain 

(red) showing the time and space differences in the spectra. 
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Figure 4. Spatially scaled rainfall rate data in both the vertical and 

horizontal directions after using the Va deduced in Figure 3. 

Other examples will be shown below as well, but this velocity also allows us to cor- 201 

rectly rescale all the spatial data in Figure 1 as shown in Figure 4 thereby reducing the 202 

overly exaggerated appearance of the vertical structures. 203 

 204 
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 241 

 242 

Figure 3. (a) The temporal 

spectral powers converted to 

spatial spectra for the different 

indicated assumed advection 

speeds, Va. (b) The total 

differences between the 

transformed temporal spectra 

for the different  Va and the 

observed vertical spatial 

spectra (black line) in (a) 

showing the well-defined 

minimum difference at Va = 3.3 

ms-1 as indicated by the x. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2022                   doi:10.20944/preprints202211.0126.v1

https://doi.org/10.20944/preprints202211.0126.v1


Atmosphere 2022, 13, x FOR PEER REVIEW 7 of 18 
 

 

 243 

3. Further data analyses 244 

3.1 Three more cases 245 

Before computing the associated radial power spectrum for these specific data, how- 246 

ever, we next consider the other three sets of measurements used in this study. This will 247 

then allow direct comparisons among all of the radial power spectra that could be used 248 

for upscaling or downscaling of these observations as illustrated in the Appendix. To that 249 

end, for convenience, we begin in Figure.5 by first simply displaying the additional data 250 

to be processed using illustrations in a previous paper [6]. The first two are a continuation 251 

of the data presented above, but for a middle period (Figure 5a), a later period (Figure 5b) 252 

and finally for a different set of measurements using a different MRR at the College of 253 

Charleston (CoC data) gathered in a storm in August, 2021 (Figure5c). 254 

 255 

 256 
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 277 
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 279 

 280 

 281 

 282 

 283 

Figure 5. Replot of the rainfall 

rate time-height profiles for 03 

June 2019 for (a) the middle 

period, (b) later period and 

finally (c) the Charleston 

College MRR data as deduced 

in [6] and discussed in the 

text. 
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Beginning with the middle period data, the power spectra are plotted in Fig.6a with the 284 

determination of the optimum Va shown in Figure 6b. For these data the optimum advec- 285 

tion velocity of 2.6 ms-1 is about 0.7 ms-1 less than that for the line of storms moving over 286 

the radar in the previous early data set. 287 

 288 
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 324 

 325 

For the later period a similar plot is shown in Figure7. At this later time, the optimal 326 

advection speed is even slightly smaller at 2.1 ms-1 thus showing a persistent decrease in 327 

time over the 40 minute period of these observations.  328 

 329 

 330 

 331 

Figure 6. (a) The temporal 

spectral powers converted 

to spatial spectra for the 

different indicated 

assumed advection 

speeds, Va. (b) The total 

differences between the 

transformed temporal 

spectra for the different Va 

and the observed vertical 

spatial spectra (black line) 

in (a) showing the well-

defined minimum 

difference at Va = 2.6 ms-1 

as indicated by the x. 
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 373 

 374 

Lastly are the College of Charleston (CoC) data through an ordinary but significant 375 

South Carolina summer thunderstorm with results illustrated in Fig.8. Once again the 376 

advection speed is reasonable at about 2.4 ms-1 . 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

Figure 7. As in Figure 6 except for the later period of the 

03 June 2019 data. This time the optimum Va = 2.1 ms-1. 
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 421 

With these advection speeds and for completeness, we can then replot the time- 422 

height profiles as height distance profiles for these data (as was done in Figure 4) as 423 

illustrated in Figure 9. These most likely represent the actual spatial structures that we can 424 

now analyze to derive the spatial radial power spectra for rainfall scaling for each set of 425 

data separately. 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

Figure 8. As in Figure 7 

except for the CoC data. 

This time the optimum Va 

= 2.4 ms-1. 
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 489 

 490 

Figure 9. The properly scaled horizontal-height profiles on 03 June 2019 for 

(a) the middle period data, (b) the later period data and (c) the CoC data. 

These spatial data then make it possible to derive radial spectral functions 

which can be used for scaling of the rainfall rates to different dimensions 

of interest. 
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3.2 The radial power spectra for use in rescaling 491 

With these estimate of advection velocities , there are then only spatial variables in 492 

both the vertical (z) and horizontal (h) directions so that the one-dimensional radial power 493 

spectra can be computed for all of these data sets for subsequent use in rescaling out to a 494 

maximum range 
2 2

maxRng z h= + . As explained in [26] but repeated here for 495 

readability, this is accomplished by first computing the 2D horizontal-vertical coordinate 496 

system of the original 2D power spectrum using the fft2 routine in Matlab and then 497 

multiplying by its complex conjugate. This 2D power spectrum of values in (Δz, Δh) 498 

coordinates is then converted into 2D polar coordinate system of (Δr, θ) values of the 499 

power spectrum. Finally, the radial spectra can then be computed by integrating over all 500 

the angles θ for each Δr.  501 

Before displaying the results it is important to recognize the value of using the best 502 

estimate of the advection velocities as indicated for the CoC data in Figure 10. This is likely 503 

important for the other data in this study as well. Thus, in the previous work, (Figure 9 of 504 

[26]) which were erroneously calculated by assuming the incorrect Va = 1 ms-1 , the values 505 

of the slopes only ranged from  -2.47 to -2.74, while those below in Figure 11, calculated 506 

using the best estimates of Va , fall over a greater range of slopes between -2.71 to -3.51. 507 
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 536 

 537 

Figure 10. A plot illustrating the effect of increasing 

advection velocity on the slope of a power fit to the radial 

spectral power function for the CoC data illustrating the 

importance of using an estimate of an optimal advection 

speed rather than an arbitrary assumption as was done in 

[25].  
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 573 

 574 

However, while the maximum differences in slopes in Figure 11is about 0.8, this 575 

decreases to about 0.27 after first noting that these relations can all be scaled to the volume 576 

(Figure12). Here the volume is calculated from the expression 577 

( ) ( ) ( )3 3k maxLog V Log Rng Log k= −
     (1) 578 

where Vk is the volume associated with wave number k arising for each length scale 579 

defined by a L = Rngmax /k and Vk = L3 and a maximum length of Rngmax defined above. In 580 

this transform, the slopes now vary over a much narrower range of values from -0.9 to - 581 

1.17 while the minima in spectral powers at (k=1) are indicative of the over-all mean 582 

rainfall intensity (29.7, 25.6, 21.5, 1.65 mm h-1 for the CoC, early, later and middle data sets, 583 

respectively). Interestingly, then, under conditions having a proper advection velocity, 584 

time-height profiles using one radar offer the potential for observations over large spatial 585 

domains when more expensive networks of many instruments are not available.  586 

Figure 11. The spatial radial power spectra as functions of 

the spatial wave number deduced using the data in Figures 

4 and 9  after accounting for the advection speed for each 

data set separately. 
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 614 

4. Summary of results 615 

This work explored, in detail, an option for using a single time-height Doppler radar 616 

data for estimating rainfall data over a large spatial domain in order to compute radial 617 

power spectra for any subsequent rescaling of new input observations or numerical model 618 

outputs. Using the rainfall rates determined through an earlier analyses of these data [6], 619 

a method was found to convert the temporal observations into a spatially equivalent 620 

measurements using the concept of a mean advection speed so that the temporal 621 

frequency power fluctuations could be interpreted as the temporal reflection of moving 622 

spatial structures. Moreover, under the assumption of approximate spatial isotropy, an 623 

optimal advection speed could be estimated by comparing the spatially transformed 624 

temporal power spectra to the purely spatial power in the vertical. In each set of data, a 625 

unique advection velocity was found such that the total differences between the spatial 626 

power spectra and the transformed temporal power spectra were minimized. Using these 627 

advection speeds, all of the time-height data were then converted into vertical and 628 

horizontal spatial data which were subsequently used to compute the spatial radial power 629 

Figure 12. The spatial radial power spectra now scaled to the 

volume. The variability of the power fit slopes is now reduced to 

about 0.27 as compared to the range of values in Figure 11. 
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spectra for all the different sets of data. In the Appendix, an example is provided of how 630 

such radial spectra can be used to downscale a uniform mean rainfall rate over a one 631 

kilometer area into a set of statistically homogeneous ‘data’ having the structures of 632 

various dimensions consistent with the radial power spectrum. 633 

A significant advantage illustrated by these results is that such data from a single 634 

vertically pointing Doppler radar obviates the need for expensive, expansive fixed 635 

networks of multiple instruments in order to determine radial power spectra for rescaling. 636 

Thus, it opens up the possibility that such measurements may be made in locations where 637 

such networks of instrumentation may not even be possible or feasible, but also when the 638 

mobility is important for collecting observations in widely varying meteorological 639 

situations.  640 
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Appendix A 653 

The spectral power relations can be used for either upscaling or downscaling of the 654 

rainfall rates. The process of upscaling is discussed in previous work [12,13,18,22] and 655 

requires using the probability distribution of R. Here we will only consider downscaling 656 

starting with a uniform value such as might come from a  numerical weather prediction 657 

with 1 km grid spacing or from a 1o Gaussian beam radar 60 km away (Figure A1a). This 658 

uniform value is then downscaled to a spatial resolution of five meters as illustrated here 659 

in Figure A1b using the indicated spectral power relation that is similar to those found for 660 

the early and middle period in Figure 11. One advantage of this approach over some oth- 661 

ers is that it faithfully reproduces the observed power spectrum  662 

To accomplish this, a square field of uniform random numbers with zero mean and 663 

unit variance is generated. Because a radar measurement or a numerical model output is 664 

usually just a single number, as in Figure A1a, it is reasonable to assume that the observed 665 

field of rain is statistically homogeneous. Therefore, we can use the Weiner-Khintchine 666 

theorem [27,28] to convert the S(k) above into the corresponding correlation function, C(d). 667 

While such relations need not always be power fits, for the particular power relation above, 668 

the Fourier transform of ( ) pS k k − yields another power relation, 
qC( d ) d  where 669 

d is the distance between two points in the plane and 1q ( p )= − − .  670 

The field of random numbers can then be correlated using the root method as 671 

illustrated in a number of works including, for example, [13,29,30]. This usually produces 672 

a field of approximately normally distributed numbers that, by using the copula technique 673 

[31], can be transformed back into a field of uniformly distributed but properly correlated 674 
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numbers between 0 and 1 with a mean of 0.5. This, in turn, can then be transformed into 675 

a field of rainfall rates as in FigureA1b by simply multiplying by the inverse of the mean 676 

value of the field of numbers that is usually close to 0.5. Consequently, in this example we 677 

multiply by 1/0.5106 or 1.9585R where R is an input value from Figure A1a. The small 678 

scale patchiness is now clearly evident in Figure A1b.  679 

It should be noted, however, that because the correlation plummets so precipitously 680 

with lag for this power relation, the correlation of the resulting rainfield may often look 681 

more like a decreasing exponential than a power function for the reasons along the lines 682 

given for raindrops in [32]  683 
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FigureA1: (a) Illustrates the input uniform value as seen, for example by a radar 

having a 1 km beam width or as output from a numerical model having a 1 km grid 

spacing and (b) one realizaation of the resulting downscaling to 5 m resolution 

using the indicated radial power spectrum as discussed further in the text. 
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