

Article

A Practical Approach for Determining Multi-Dimensional Spatial Rainfall Scaling Relations Using High Resolution Time Height Doppler Data from a Single Mobile Vertical Pointing Radar

A.R. Jameson ¹¹ RJH Scientific, Inc., arjatrjhsci@gmail.com

Abstract: Rain occurs over a wide range of spatial scales. The challenge is to connect certain fine scale needs to the available large scale observations from radars, satellites or coarse grid numerical weather predictions. This is the problem of rescaling of the rainfall. Whatever approach is used, it requires a knowledge of rainfall scales over a wide range of possible dimensions from tens of meters to kilometers. It is also desirable to have measurements at different locations and under different meteorological settings. Such measurements are not necessarily readily obtainable, requiring extensive and usually fixed and expensive networks of multiple instruments over large areas. A mobile and less expensive alternative is the, Micro-Rain Radars (MRR). We illustrate this using observations of the Doppler spectra of falling rain every 10 m vertically and 10 second temporally over intervals varying from 15 up to 41 minutes collected at Wallop's Island Virginia and Charleston South Carolina using two different MRR. An objective method to estimate advection velocity was developed so that the time-height profiles could be transformed into height-horizontal distance profiles in order to calculate scaling relations. Thus, MRR and other Doppler radars may obviate the need for networks of instruments.

Keywords: Time-height rainfall rate profiles from MRR radars; Advection correction for conversion to height-distance profiles, Computing radial power spectra using height-distance profiles; Using derived radial power spectra for downscaling and upscaling

1. Introduction

Scaling is an essential feature of many phenomena ranging from those of cosmology to those of quantum physics [1]. Many human activities from the stock market [2] to ecology [3] are impacted by scaling. The science of scaling

“ helps reveal what factors determine ... the ...level of impact in a different place, in a different situation, and with a different population. *How big is it? How long does it last?* These are [some of] the most basic questions a scientist can ask.” ([4], p. 107).

With respect to direct physical impacts on mankind, this is especially true for rainfall. Moreover, it has been shown [5] that the temporal and spatial structures of rain are not equivalent because they are orthogonal dimensions but also in part because the unknown advection of the rain affects the temporal observations. Furthermore, until recently [6] studies of spatial scaling have all been confined to the surface. Yet, the vertical dimension retains particular relevance not only with respect to the evolution of rain, but also because observations at the surface are only an ambiguous expression of what is happening aloft. That is, the structure and statistical characteristic above the ground will not necessarily be unambiguously reflected on the surface because of storm motion and boundary layer surface winds. Furthermore, rain evolves as it descends altering what is seen aloft from what may appear at the ground. Thus, in general the physical / statistical structure and scales at the surface will likely be somewhat different from that observed in the vertical [6]. Thus, combining observations in both dimensions may yield more generally applicable results.

However, whether in the vertical or horizontal, the different scales of rainfall are 43
obvious even to the most casual observer. Specifically, proceeding from the smallest scales 44
we have, soil erosion (e.g., [7]) and agricultural run-off and pollution, up to larger scales 45
which influence flash flooding and urban water management (e.g.,[8]), and finally up to 46
the largest scales(e.g., [9]) which play a major role in the world climate. Consequently, 47
downscaling, going from the large dimensions of say a numerical model, a measurement 48
by a spaceborne instrument [10] or even a coarse resolution radar measurement down to 49
smaller scales [11], and upscaling, going from essentially point measurements such as by 50
a rain gage or disdrometer up to the larger scales just mentioned [12,13], are both equally 51
important depending upon the situation. 52

In the literature there is an assortment of techniques for downscaling such as the so- 53
called multiplicative cascading method [14,14–16] with improvements proposed by [17]. 54
An alternative approach that reproduces the observed power spectrum uses the observed 55
correlation functions (when valid) or the power spectrum [12,13,18] to downscale 56
observations to smaller domains while maintaining the physical and statistical character 57
of the observed rain. This will be illustrated in Appendix A. 58

Methods for upscaling, however, are more limited, although a few exist. Some 59
involve smoothing [19] or Kriging of the observations [19,20]. The primary limitation of 60
such techniques is that they are filters of the power spectra [21] leading to a reduction of 61
information as discussed in [22]. A different approach uses the Bayesian components of 62
the rainfall and the observed power spectrum (or correlation function for statistically 63
homogeneous rain) to generate rain over many different scales with the appropriate 64
statistical properties consistent with the observations [12]. This will be briefly mentioned 65
in Appendix A as well with appropriate references for the interested reader to pursue. 66

Regardless of methodology, however, the statistical properties of the rain must be 67
properly characterized and preserved. In the next sections we report on improved 68
re-analyses of time-height observations presented in [6] to produce radial power functions 69
for scaling which more accurately represent the data. In this work, results are presented 70
using Micro-Rain Radar (MRR) vertical pointing Doppler radar observations in four cases 71
in two different locations using two different radars, three from observations at the NASA 72
Wallop's Island Virginia facility and the other from measurements using the College of 73
Charleston MRR radar collected near Charleston, South Carolina. An example of 74
downscaling using these kind of results is given in an Appendix with references to view 75
for upscaling. 76

Time-height data are challenging since in the spatial dimension, power spectra yields 77
the number of waves per unit length, while in the temporal dimension, the power spectra 78
yields the frequency. In order to determine the spatial radial power spectra for all 79
directions, the two must be combined [21]. The first order approach for transforming time 80
to space is by using an average advection velocity for the storm. In the past work, this was 81
done arbitrarily so that the quality of the results were uncertain even if 'reasonable'. As 82
we show below, there is a much better, more objective approach for better estimating a 83
true advection velocity by comparing the independent spatial and advection transformed 84

temporal spectra. Importantly, under conditions having a proper advection velocity, time-height profiles using one radar can offer observations over a large spatial domain when more expensive networks of instruments are not available. This is further developed in the next section.

2. Background

2.1 Basic considerations

In order to be able to fully scale the rain rate, R , for example, in any spatial direction, it is most useful to have access to the radial power spectra that, in the case of statistically homogeneous rain, can also be transformed into the radial correlation function. (e.g., for a discussion see Jameson, 2019). Accomplishing estimates of the rainfall rates at high resolution is a challenging task that is, perhaps, best addressed using vertical pointing Doppler radar data in rain. Thus, one of the most potentially useful radars for collecting such observations in a number of different locations and meteorological settings is the Micro-Rain Radar (MRR) described in [24]. This is a light-weight, highly transportable low power vertical pointing continuous wave radar operating at a frequency of 24.23 GHz.

There are challenges, however. The rainfall rate is calculated from the drop sizes deduced from the Doppler spectra using well established relations between the fall speed of a drop and its size [25] with the drop concentration determined from the radar backscatter cross-section relation to drop size for the particular wavelength being used. Both of these quantities (the apparent fall speed and observed radar backscattered power), however, require adjustments. In particular, the observed Doppler velocity is the sum of the true fall speed of the drop and the vertical air motion which must be removed in order to estimate the correct drop fall speed and size. Similarly, at the wavelength of the MRR instrument, attenuation by the rain can become significant, at times, depending upon the rain intensity and distance of the sampling bin (range) from the radar. Both of these concerns have been addressed in [6] so that an interested reader can go to that paper for elaboration. Here, we take the deduced rainfall rates from that work for the data mentioned above and use them for further analyses.

The challenge explored in this work is how best to address the fact that space and time are orthogonal dimensions so that a method must be identified in order to combine measurements in each. That is, radar time height observations are the sequential temporal measurements of the rainfall rate, R , at each sampling bin spatially sequentially in the vertical. For the data used here, data were collected over 10 m depths from about 30 meters above the ground up to a height of 1280 m. At each location the Doppler spectra and radar backscattered powers were measured over sequential 10 second sampling periods for each determination of R at each height and time. Over an interval of observations, these data can then be considered in two ways, namely as a sequential ensemble of vertical spatial profiles or, alternatively, as the ensemble of times series of observations at each height. Using the Fourier transform for each of these, one can compute both the ensemble of vertical spatial power spectra and, simultaneously, a different ensemble of the temporal power spectra at each height.

2.1 An example

To make this all more concrete we initially consider the opening 950 seconds of observations for a line of intense convective rainstorms that passed over the NASA Wallop's Island Flight Facility on 03 June 2019 as illustrated in Fig.1.

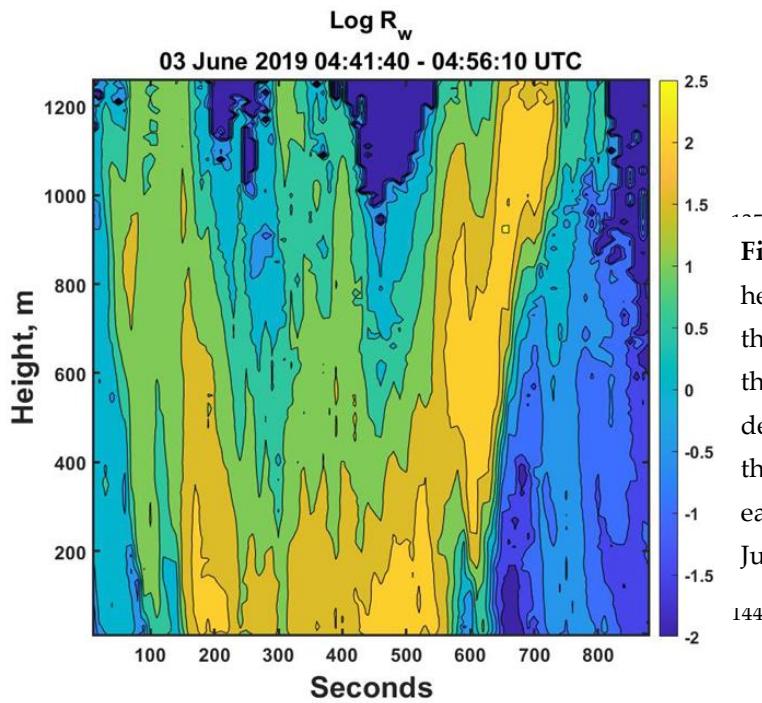
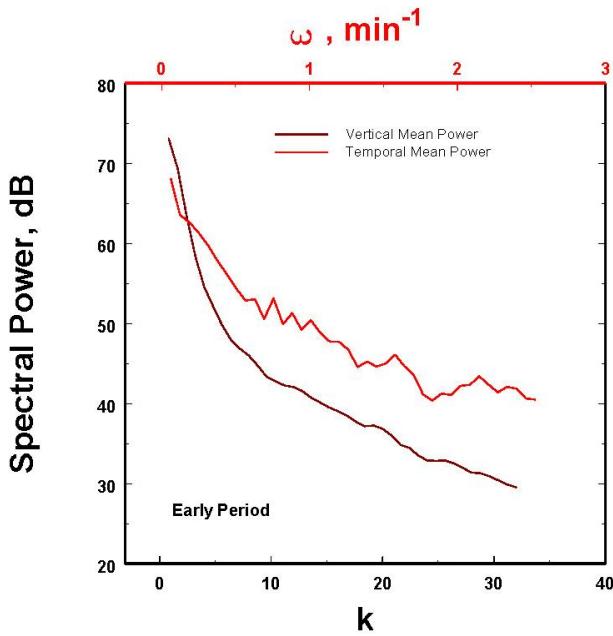


Figure 1. Time-height profile of the logarithm of the rainfall rate as derived in [6] for the so-called early period of 03 June 2019 data.

These data allowed for the generation of 90 power spectra in height and 125 power spectra in time corresponding to each 10 m increment in altitude. Since we are most interested in the average properties of these data, all the power spectra were averaged in their own dimensions to yield the mean power spectra as illustrated in Fig.2.



169
170
171
172
173
Figure 2. The averaged power spectra as functions of the wavenumber k in
space and the frequency ω in time for the rainfall rates in Figure 1 in both the
purely vertical spatial dimension (black) and in the purely temporal domain
(red) showing the time and space differences in the spectra.

174
175
176
177
178
179
180
181
182
183
184
185
186
The two spectra are clearly different. This is, of course, not surprising since one is
necessarily expressed as a temporal frequency while the other is written in terms of the
wave number. If one desires to have a radial power spectrum for spatial scaling, is there
a way to combine these two observations taken along two different orthogonal axes? To
express it slightly differently, can the frequency ω be transformed into reasonable esti-
mates of k ? The assumption when trying to make this transformation is that the temporal
observations are really looking at approximately the same phenomenon but along a dif-
ferent axes, i.e. $\omega = V_a / k$ where V_a is defined to be the mean advection speed providing
that it can be determined.

187
188
189
190
191
192
193
194
While the motion of the rain is undoubtedly complicated, moving at different speeds
at different locations and times, the simplest first approximation is to hypothesize that the
rain is moving as a whole at V_a so that the observed frequencies are really the consequence
of the mean motion of the spatial structures. Can V_a be determined?

195
196
197
198
199
The answer is yes if a speed can be found that transforms most of the temporal power
spectra into something that more closely approximates the observed spatial power spec-
tra. To see how this may work, the temporal power spectra in Fig.2 was transformed from
 ω to \mathbf{k} using a range of possible advection velocities. That is, for a particular spatial wave-
length, in the temporal domain the velocity can be viewed as stretching the wavelength.
Consequently, the transformed wave number will be smaller than in the spatial domain.
Another way to look at this is that if the characteristic spatial domain size is \mathcal{L} while the
temporal interval of observations is T , then the equivalent spatial domain size correspond-
ing to T would be $\mathcal{L} = V_a \times T$ where V_a is a characteristic advection speed. For a fixed spatial

196
wavelength, λ , then there would be $k = L / \lambda$ number of wavelengths in the spatial domain,

197
but there would be $k_\omega = \mathcal{L} / \lambda$ such wavelengths in the velocity transformed temporal to

198
spatial domain. Hence the k_ω associated with that λ would be much larger than k , i.e., $k_\omega =$

199
(\mathcal{L} / L) $\times k$. Thus, in order to match the two wavenumbers so that they correspond to the

200
same λ , k_ω must be multiplied by L / \mathcal{L} as illustrated in Fig.3a for this example.

Other examples will be shown below as well, but this velocity also allows us to correctly rescale all the spatial data in Figure 1 as shown in Figure 4 thereby reducing the overly exaggerated appearance of the vertical structures.

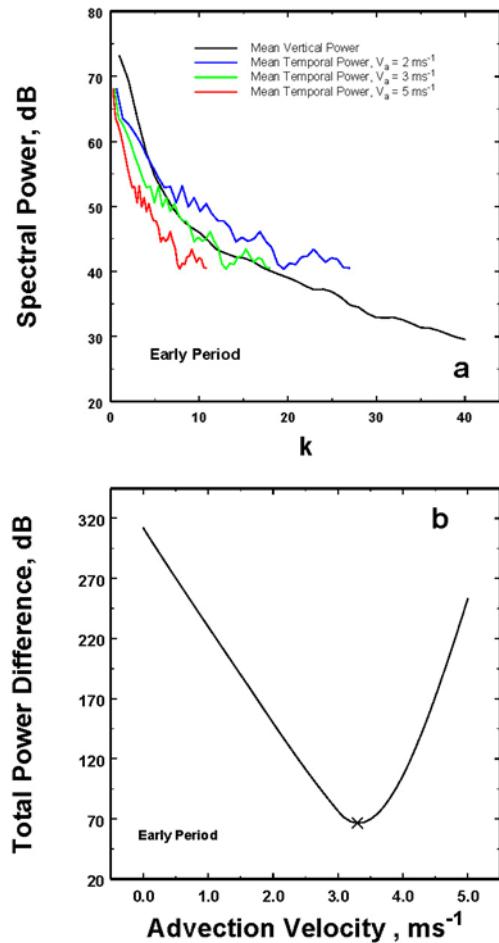


Figure 3. (a) The temporal spectral powers converted to spatial spectra for the different indicated assumed advection speeds, V_a . (b) The total differences between the transformed temporal spectra for the different V_a and the observed vertical spatial spectra (black line) in (a) showing the well-defined minimum difference at $V_a = 3.3$ ms^{-1} as indicated by the x.

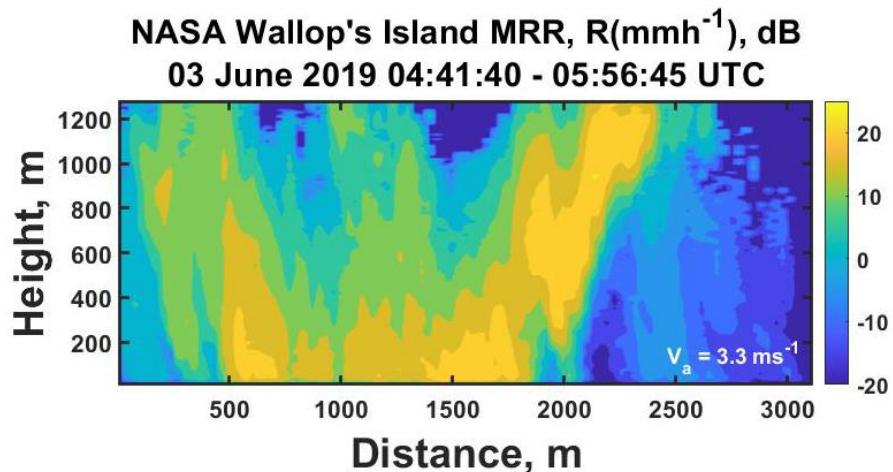


Figure 4. Spatially scaled rainfall rate data in both the vertical and horizontal directions after using the V_a deduced in Figure 3.

243

3. Further data analyses

244

3.1 Three more cases

245

Before computing the associated radial power spectrum for these specific data, however, we next consider the other three sets of measurements used in this study. This will then allow direct comparisons among all of the radial power spectra that could be used for upscaling or downscaling of these observations as illustrated in the Appendix. To that end, for convenience, we begin in Figure 5 by first simply displaying the additional data to be processed using illustrations in a previous paper [6]. The first two are a continuation of the data presented above, but for a middle period (Figure 5a), a later period (Figure 5b) and finally for a different set of measurements using a different MRR at the College of Charleston (CoC data) gathered in a storm in August, 2021 (Figure 5c).

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

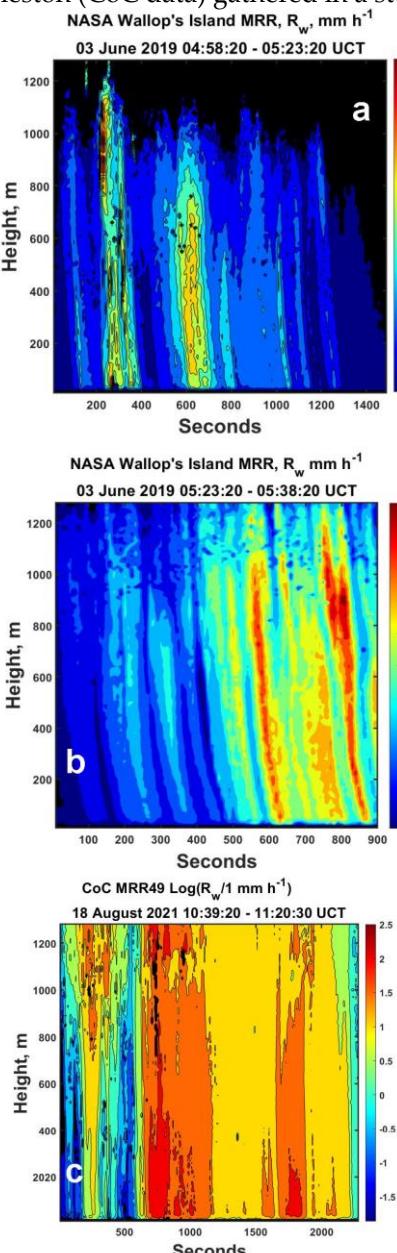


Figure 5. Replot of the rainfall rate time-height profiles for 03 June 2019 for (a) the middle period, (b) later period and finally (c) the Charleston College MRR data as deduced in [6] and discussed in the text.

275

276

277

278

279

280

281

282

283

Beginning with the middle period data, the power spectra are plotted in Fig.6a with the determination of the optimum V_a shown in Figure 6b. For these data the optimum advection velocity of 2.6 ms^{-1} is about 0.7 ms^{-1} less than that for the line of storms moving over the radar in the previous early data set.

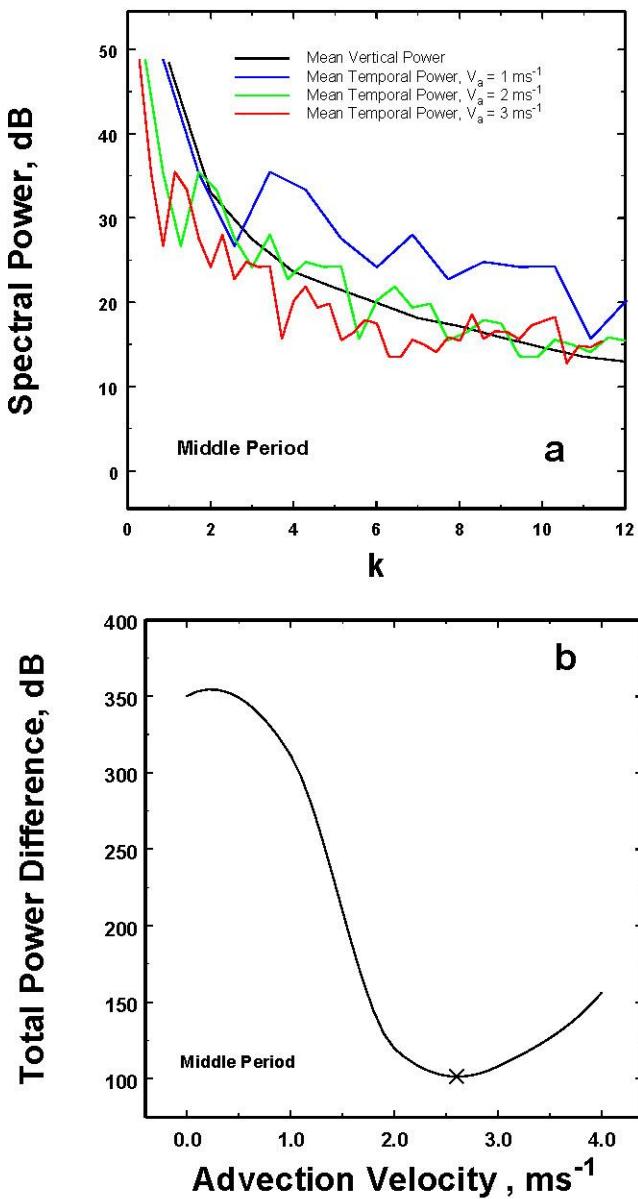
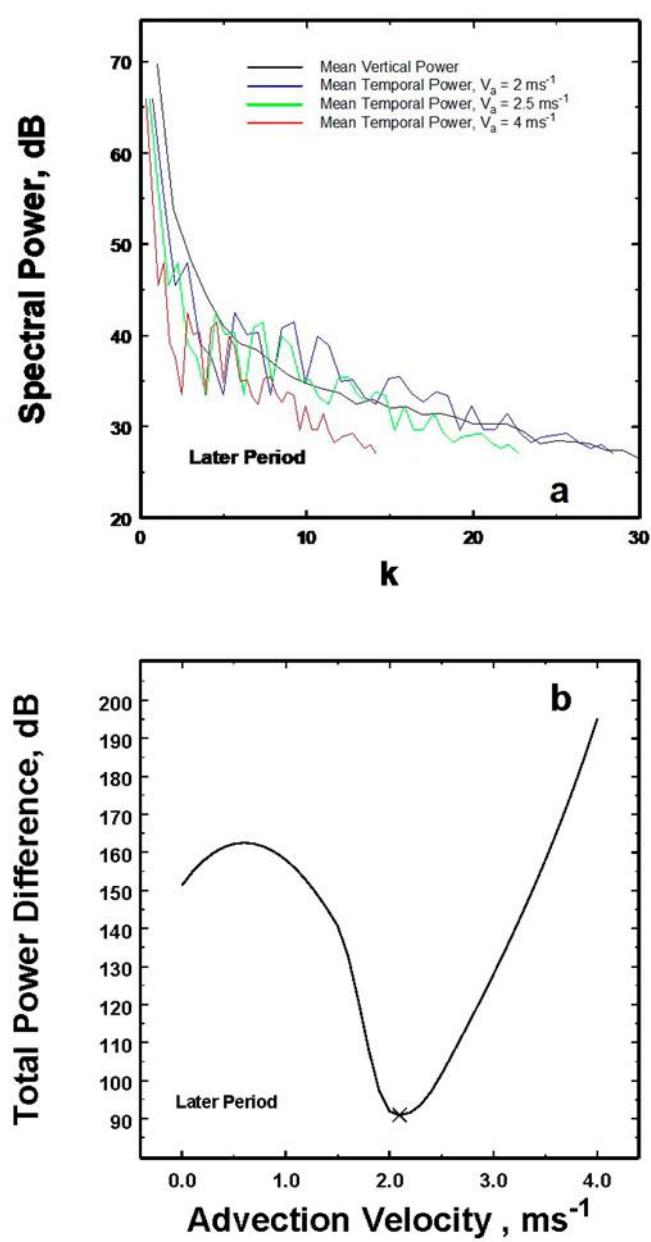


Figure 6. (a) The temporal spectral powers converted to spatial spectra for the different indicated assumed advection speeds, V_a . (b) The total differences between the transformed temporal spectra for the different V_a and the observed vertical spatial spectra (black line) in (a) showing the well-defined minimum difference at $V_a = 2.6 \text{ ms}^{-1}$ as indicated by the x.

For the later period a similar plot is shown in Figure 7. At this later time, the optimal advection speed is even slightly smaller at 2.1 ms^{-1} thus showing a persistent decrease in time over the 40 minute period of these observations.



369

Figure 7. As in Figure 6 except for the later period of the 03 June 2019 data. This time the optimum $V_a = 2.1 \text{ ms}^{-1}$.

373

Lastly are the College of Charleston (CoC) data through an ordinary but significant South Carolina summer thunderstorm with results illustrated in Fig.8. Once again the advection speed is reasonable at about 2.4 ms^{-1} .

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

374
375
376
377
378
379
380
381
382
383
384

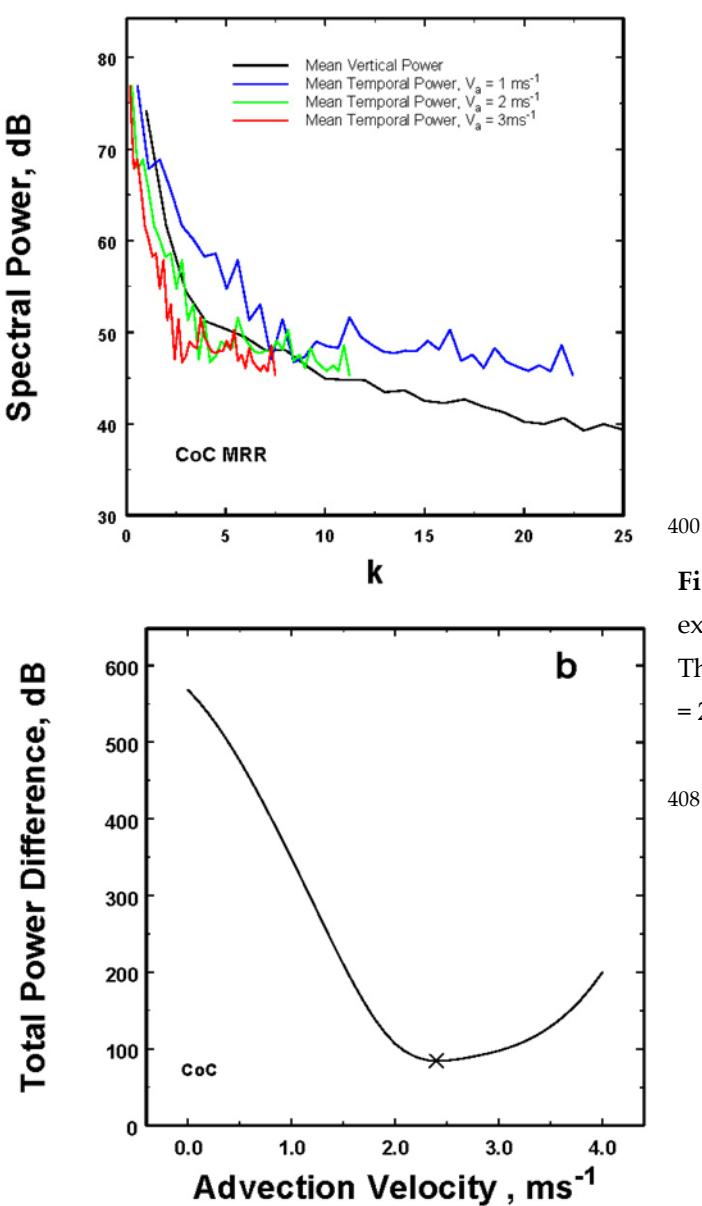


Figure 8. As in Figure 7 except for the CoC data. This time the optimum $V_a = 2.4 \text{ ms}^{-1}$.

With these advection speeds and for completeness, we can then replot the time-height profiles as height distance profiles for these data (as was done in Figure 4) as illustrated in Figure 9. These most likely represent the actual spatial structures that we can now analyze to derive the spatial radial power spectra for rainfall scaling for each set of data separately.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

409
410
411
412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

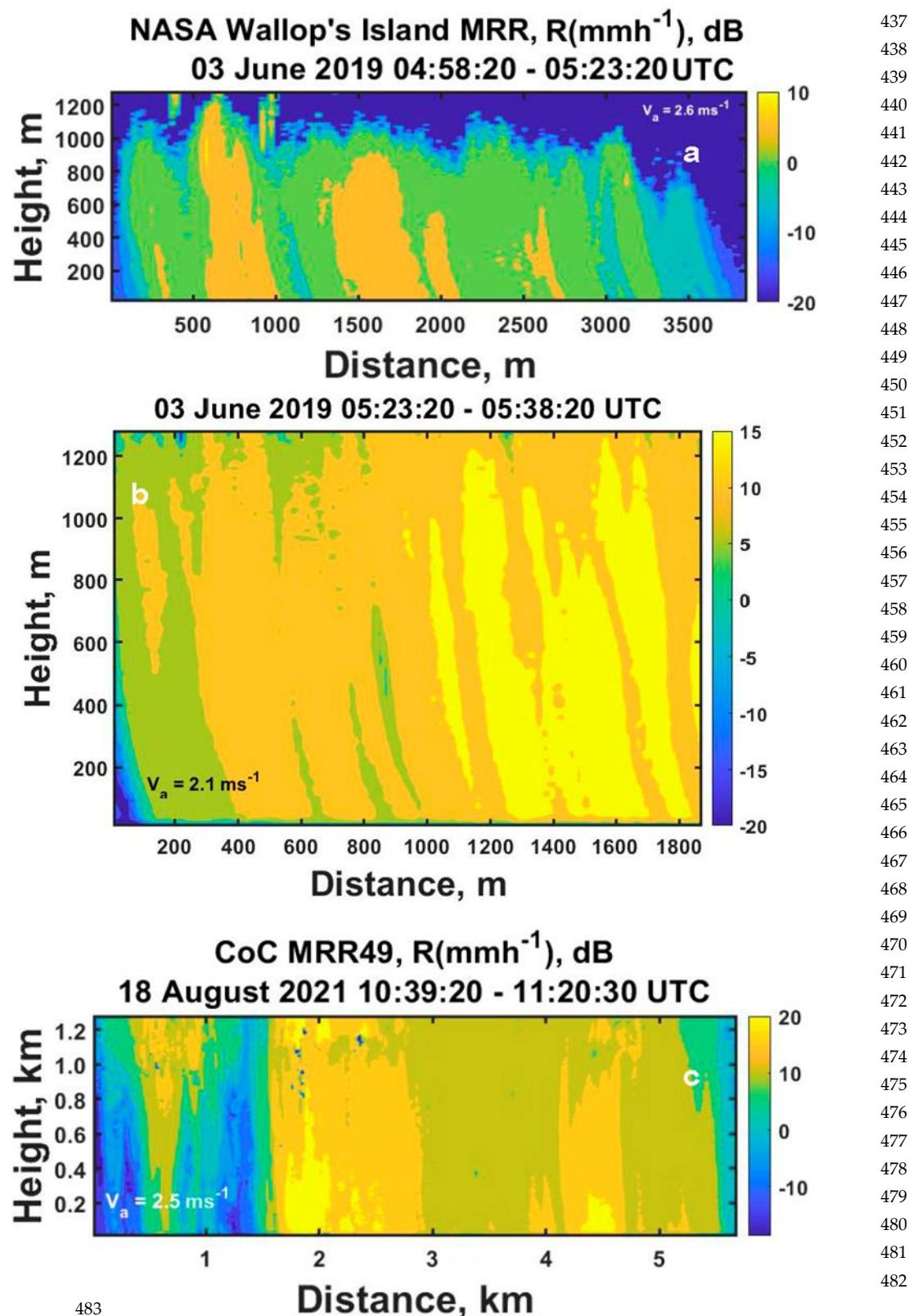


Figure 9. The properly scaled horizontal-height profiles on 03 June 2019 for (a) the middle period data, (b) the later period data and (c) the CoC data. These spatial data then make it possible to derive radial spectral functions which can be used for scaling of the rainfall rates to different dimensions of interest.

3.2 The radial power spectra for use in rescaling

491

With these estimate of advection velocities, there are then only spatial variables in both the vertical (z) and horizontal (h) directions so that the one-dimensional radial power spectra can be computed for all of these data sets for subsequent use in rescaling out to a maximum range $Rng_{max} = \sqrt{z^2 + h^2}$. As explained in [26] but repeated here for readability, this is accomplished by first computing the 2D horizontal-vertical coordinate system of the original 2D power spectrum using the fft2 routine in Matlab® and then multiplying by its complex conjugate. This 2D power spectrum of values in $(\Delta z, \Delta h)$ coordinates is then converted into 2D polar coordinate system of $(\Delta r, \theta)$ values of the power spectrum. Finally, the radial spectra can then be computed by integrating over all the angles θ for each Δr .

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

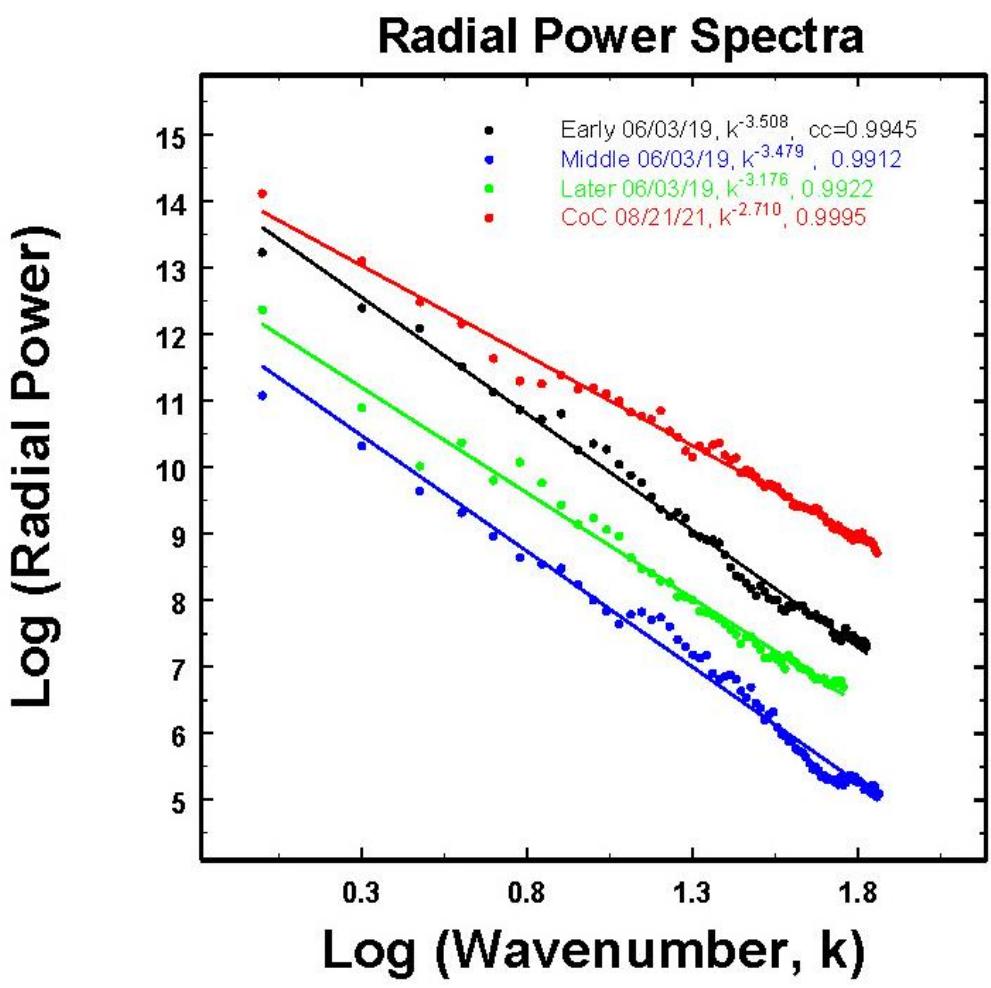


Figure 11. The spatial radial power spectra as functions of the spatial wave number deduced using the data in Figures 4 and 9 after accounting for the advection speed for each data set separately.

574

However, while the maximum differences in slopes in Figure 11 is about 0.8, this 575 decreases to about 0.27 after first noting that these relations can all be scaled to the volume 576 (Figure 12). Here the volume is calculated from the expression 577

$$\log(V_k) = 3\log(Rng_{max}) - 3\log(k) \quad (1) \quad 578$$

where V_k is the volume associated with wave number k arising for each length scale 579 defined by a $L = Rng_{max}/k$ and $V_k = L^3$ and a maximum length of Rng_{max} defined above. In 580 this transform, the slopes now vary over a much narrower range of values from -0.9 to - 581 1.17 while the minima in spectral powers at ($k=1$) are indicative of the over-all mean 582 rainfall intensity (29.7, 25.6, 21.5, 1.65 mm h⁻¹ for the CoC, early, later and middle data sets, 583 respectively). Interestingly, then, under conditions having a proper advection velocity, 584 time-height profiles using one radar offer the potential for observations over large spatial 585 domains when more expensive networks of many instruments are not available. 586

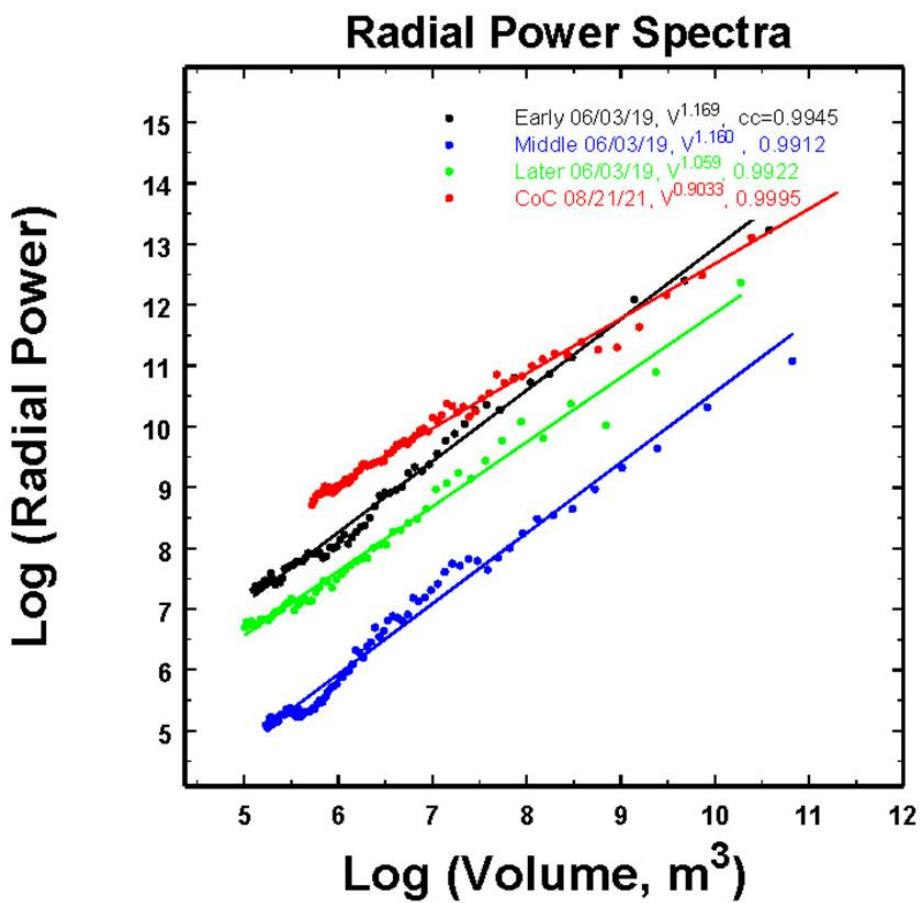


Figure 12. The spatial radial power spectra now scaled to the volume. The variability of the power fit slopes is now reduced to about 0.27 as compared to the range of values in Figure 11.

4. Summary of results

This work explored, in detail, an option for using a single time-height Doppler radar data for estimating rainfall data over a large spatial domain in order to compute radial power spectra for any subsequent rescaling of new input observations or numerical model outputs. Using the rainfall rates determined through an earlier analyses of these data [6], a method was found to convert the temporal observations into a spatially equivalent measurements using the concept of a mean advection speed so that the temporal frequency power fluctuations could be interpreted as the temporal reflection of moving spatial structures. Moreover, under the assumption of approximate spatial isotropy, an optimal advection speed could be estimated by comparing the spatially transformed temporal power spectra to the purely spatial power in the vertical. In each set of data, a unique advection velocity was found such that the total differences between the spatial power spectra and the transformed temporal power spectra were minimized. Using these advection speeds, all of the time-height data were then converted into vertical and horizontal spatial data which were subsequently used to compute the spatial radial power

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

spectra for all the different sets of data. In the Appendix, an example is provided of how such radial spectra can be used to downscale a uniform mean rainfall rate over a one kilometer area into a set of statistically homogeneous 'data' having the structures of various dimensions consistent with the radial power spectrum. 630
631
632
633

A significant advantage illustrated by these results is that such data from a single vertically pointing Doppler radar obviates the need for expensive, expansive fixed networks of multiple instruments in order to determine radial power spectra for rescaling. Thus, it opens up the possibility that such measurements may be made in locations where such networks of instrumentation may not even be possible or feasible, but also when the mobility is important for collecting observations in widely varying meteorological situations. 634
635
636
637
638
639
640

Funding: This research was funded by the United States National Science Foundation under grant AGS2001343. 641
642
643

Data Availability Statement The data are at Jameson, Arthur (2020), "MRR Data for Analyses", 644
Mendeley Data, V1, <http://dx.doi.org/10.17632/skyg4f9fhv.1> 645

Acknowledgments: In this section, you can acknowledge any support given which is not covered 646
by the author contribution or funding sections. This may include administrative and technical sup- 647
port, or donations in kind (e.g., materials used for experiments). 648

Conflicts of Interest: Conflicts of Interest: The author wishes to confirm that there are no known 649
conflicts of interest associated with this publication and there has been no significant financial sup- 650
port for this work that could have influenced its outcome. All of the sources of funding for the work 651
described in this publication are acknowledged above. 652

Appendix A

The spectral power relations can be used for either upscaling or downscaling of the 653
rainfall rates. The process of upscaling is discussed in previous work [12,13,18,22] and 654
requires using the probability distribution of R . Here we will only consider downscaling 655
starting with a uniform value such as might come from a numerical weather prediction 656
with 1 km grid spacing or from a 1° Gaussian beam radar 60 km away (Figure A1a). This 657
uniform value is then downscaled to a spatial resolution of five meters as illustrated here 658
in Figure A1b using the indicated spectral power relation that is similar to those found for 659
the early and middle period in Figure 11. One advantage of this approach over some oth- 660
ers is that it faithfully reproduces the observed power spectrum 661
662

To accomplish this, a square field of uniform random numbers with zero mean and 663
unit variance is generated. Because a radar measurement or a numerical model output is 664
usually just a single number, as in Figure A1a, it is reasonable to assume that the observed 665
field of rain is statistically homogeneous. Therefore, we can use the Weiner-Khintchine 666
theorem [27,28] to convert the $S(k)$ above into the corresponding correlation function, $C(d)$. 667
While such relations need not always be power fits, for the particular power relation above, 668
the Fourier transform of $S(k) \propto k^{-p}$ yields another power relation, $C(d) \propto d^q$ where 669
 d is the distance between two points in the plane and $q = -(p - 1)$. 670

The field of random numbers can then be correlated using the root method as 671
illustrated in a number of works including, for example, [13,29,30]. This usually produces 672
a field of approximately normally distributed numbers that, by using the copula technique 673
[31], can be transformed back into a field of uniformly distributed but properly correlated 674

numbers between 0 and 1 with a mean of 0.5. This, in turn, can then be transformed into a field of rainfall rates as in Figure A1b by simply multiplying by the inverse of the mean value of the field of numbers that is usually close to 0.5. Consequently, in this example we multiply by $1/0.5106$ or $1.9585R$ where R is an input value from Figure A1a. The small scale patchiness is now clearly evident in Figure A1b.

It should be noted, however, that because the correlation plummets so precipitously with lag for this power relation, the correlation of the resulting rainfield may often look more like a decreasing exponential than a power function for the reasons along the lines given for raindrops in [32]

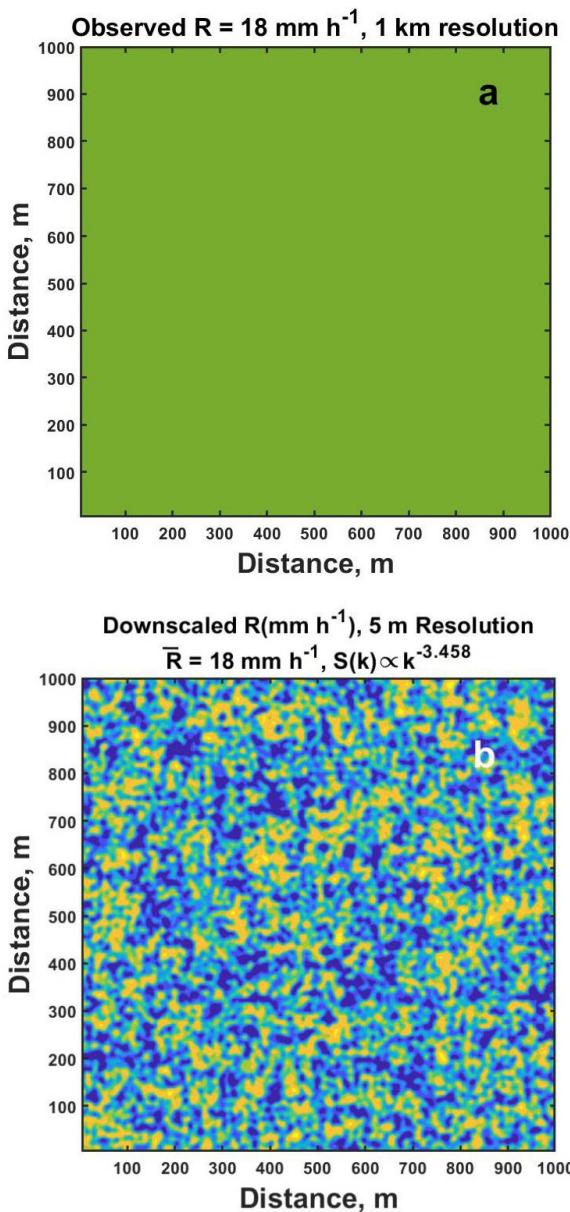


Figure A1: (a) Illustrates the input uniform value as seen, for example by a radar having a 1 km beam width or as output from a numerical model having a 1 km grid spacing and (b) one realization of the resulting downscaling to 5 m resolution using the indicated radial power spectrum as discussed further in the text.

References

1. Rauscher, E.A.; Hurtak, J.J.; Hurtak, D.E. Universal Scaling Laws in Quantum Theory and Cosmology. In Proceedings of the The Physics of Reality; WORLD SCIENTIFIC: Covent Garden, London, UK, November 2013; pp. 376–387. 726

2. Walter, C. Research of Scaling Law on Stock Market Variations. In *Scaling, Fractals and Wavelets*; Abry, P., Goncalves, P., Vhel, J.L., Eds.; ISTE: London, UK, 2009; pp. 437–464 ISBN 978-0-470-61156-2. 728

3. Ellison, A.M.; Gotelli, N.J. *Scaling in Ecology with a Model System*; Monographs in population biology; Princeton University Press: Princeton, 2021; ISBN 978-0-691-17270-5. 730

4. Gleick, J. *Chaos: Making a New Science*; 20th anniversary ed.; Penguin Books: New York, N.Y, 2008; ISBN 978-0-14-311345-4. 731

5. Jameson, A.R.; Larsen, M.L.; Kostinski, A.B. Disdrometer Network Observations of Finescale Spatial–Temporal Clustering in Rain. *J. Atmospheric Sci.* **2014**, *72*, 1648–1666, doi:10.1175/JAS-D-14-0136.1. 732

6. Jameson, A.R.; Larsen, M.L.; Wolff, D.B. Improved Estimates of the Vertical Structures of Rain Using Single Frequency Doppler Radars. *Atmosphere* **2021**, *12*, 699, doi:10.3390/atmos12060699. 733

7. Piacentini, T.; Galli, A.; Marsala, V.; Miccadi, E. Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy. *Water* **2018**, *10*, 1314, doi:10.3390/w10101314. 734

8. Cristiano, E.; ten Veldhuis, M.-C.; van de Giesen, N. Spatial and Temporal Variability of Rainfall and Their Effects on Hydrological Response in Urban Areas – a Review. *Hydrol. Earth Syst. Sci.* **2017**, *21*, 3859–3878, doi:10.5194/hess-21-3859-2017. 735

9. Hatsuzuka, D.; Sato, T.; Higuchi, Y. Sharp Rises in Large-Scale, Long-Duration Precipitation Extremes with Higher Temperatures over Japan. *Npj Clim. Atmospheric Sci.* **2021**, *4*, 29, doi:10.1038/s41612-021-00184-9. 736

10. Zorzetto, E.; Marani, M. Downscaling of Rainfall Extremes From Satellite Observations. *Water Resour. Res.* **2019**, *55*, 156–174, doi:10.1029/2018WR022950. 737

11. Chen, H.; Qin, H.; Dai, Y. FC-ZSM: Spatiotemporal Downscaling of Rain Radar Data Using a Feature Constrained Zooming Slow-Mo Network. *Front. Earth Sci.* **2022**, *10*, 887842, doi:10.3389/feart.2022.887842. 738

12. Jameson, A.R. A Bayesian Method for Upsizing Single Disdrometer Drop Size Counts for Rain Physics Studies and Areal Applications. *IEEE Trans. Geosci. Remote Sens.* **2015**, *53*, 335–343, doi:10.1109/TGRS.2014.2322092. 739

13. Das, S.; Jameson, A.R. Site Diversity Prediction at a Tropical Location From Single-Site Rain Measurements Using a Bayesian Technique. *Radio Sci.* **2018**, doi:10.1029/2018RS006597. 740

14. Lovejoy, S.; Schertzer, D. Fractals, Raindrops and Resolution Dependence of Rain Measurements. *J. Appl. Meteorol.* **1990**, *29*, 1167–1170, doi:10.1175/1520-0450(1990)029<1167:FRARDO>2.0.CO;2. 741

15. Gupta, V.K.; Waymire, E.C. A Statistical Analysis of Mesoscale Rainfall as a Random Cascade. *J. Appl. Meteorol.* **1993**, *32*, 251–267, doi:10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2. 742

16. Schleiss, M. A New Discrete Multiplicative Random Cascade Model for Downscaling Intermittent Rainfall Fields. *Hydrol. Earth Syst. Sci.* **2020**, *24*, 3699–3723, doi:10.5194/hess-24-3699-2020. 743

17. Shrestha, R.R.; Tachikawa, Y.; Takara, K. Downscaling Spatial Rainfall Field from Global Scale to Local Scale Using Improved Multiplicative Random Cascade Method.; 2004. 744

18. Jameson, A.R.; Heymsfield, A.J. Bayesian Upscaling of Aircraft Ice Measurements to Two-Dimensional Domains for Large-Scale Applications. *Meteorol. Atmospheric Phys.* **2014**, *123*, 93–103, doi:10.1007/s00703-013-0303-3. 745

19. Frei, C.; Schar, C. A Precipitation Climatology of the Alps from High-Resolution Rain-Gauge Observations. *Int. J. Climatol. U. K.* **1998**, *18*, 873–900. 746

20. Rubel, F.; Hantel, M. BALTEX 1/6-Degree Daily Precipitation Climatology 1996–1998. *Meteorol. Atmospheric Phys.* **2001**, *77*, 155–166, doi:10.1007/s007030170024. 767

21. Jameson, A.R. Spatial and Temporal Network Sampling Effects on the Correlation and Variance Structures of Rain Observations. *J. Hydrometeorol.* **2017**, *18*, 187–196. 768

22. Ahrens, B.; Beck, A. On Upscaling of Rain-Gauge Data for Evaluating Numerical Weather Forecasts. *Meteorol. Atmospheric Phys.* **2008**, *99*, 155–167, doi:10.1007/s00703-007-0261-8. 771

23. Jameson, A.R. On the Importance of Statistical Homogeneity to the Scaling of Rain. *J. Atmospheric Ocean. Technol.* **2019**, *36*, 1063–1078, doi:10.1175/JTECH-D-18-0160.1. 773

24. Löffler-Mang, M.; Kunz, M.; Schmid, W. On the Performance of a Low-Cost K-Band Doppler Radar for Quantitative Rain Measurements. *J. Atmospheric Ocean. Technol.* **1999**, *16*, 379–387, doi:10.1175/1520-0426(1999)016<0379:OTPOAL>2.0.CO;2. 775

25. Gunn, R.; Kinzer, G.D. The Terminal Velocity OffallL for Water Droplets in Stagnant Air. *J. Meteorol.* **1949**, *6*, 243–248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2. 778

26. Jameson, A.R.; Larsen, M.L. Preliminary Statistical Characterizations of the Lowest Kilometer Time–Height Profiles of Rainfall Rate Using a Vertically Pointing Radar. *Atmosphere* **2022**, *13*, 635, doi:10.3390/atmos13040635. 780

27. Wiener, N. Generalized Harmonic Analysis. *Acta Math.* **1930**, *55*, 117–258, doi:10.1007/BF02546511. 781

28. Khintchine, A. Korrelationstheorie der stationären stochastischen Prozesse. *Math. Ann.* **1934**, *109*, 604–615, doi:10.1007/BF01449156. 783

29. Johnson, G.E. Constructions of Particular Random Processes. *Proc. IEEE* **1994**, *82*, 270–285, doi:10.1109/5.265353. 785

30. Jameson, A.R.; Kostinski, A.B. Fluctuation Properties of Precipitation. Part V: Distribution of Rain Rates—Theory and Observations in Clustered Rain. *J. Atmospheric Sci.* **1999**, *56*, 3920–3932, doi:10.1175/1520-0469(1999)056<3920:FPOPPV>2.0.CO;2. 787

31. Nelsen, R.B. *An Introduction to Copulas*; Springer series in statistics; 2nd ed.; Springer: New York, 2006; ISBN 978-0-387-28659-4. 789

32. Kostinski, A.B.; Jameson, A.R. Fluctuation Properties of Precipitation. Part III: On the Ubiquity and Emergence of the Exponential Drop Size Spectra. *J. Atmospheric Sci.* **1999**, *56*, 111–121, doi:10.1175/1520-0469(1999)056<0111:FPOPPI>2.0.CO;2. 791

792

793

794