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Álvaro G. López1, ∗
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Abstract

We show that loophole-free Bell-type no-go theorems cannot be derived in theories involving local

hidden fields. At the time of measurement, a contextuality loophole appears because each particle’s

electromagnetic field interacts with the field of its respective apparatus, preventing the expression of

the probability density as a function independent of the orientation of the measuring devices. Then,

we use the dynamical evolution of the probability distribution to show that the spin-correlation

integral can neither be expressed in terms of initial Cauchy data restricted to the particles. A

correlation loophole ensues, which prevents the usage of the non-contextual correlation integrals

required to demonstrate the CHSH-Bell inequality. We obtain a new inequality not violated by

quantum correlation functions of entangled spin pairs, and propose that Maxwell’s electrodynamic

field is the missing hidden variable triggering the coupled nonlinear oscillations of the particles,

which bring about the synchronicities observed in the Einstein-Podolsky-Rosen-Bohm (EPRB)

experiment.
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I. INTRODUCTION

In the seminal work of Einstein, Podolsky and Rosen, the following dilemma is proposed

[1]: Or complementary variables associated with non-commuting observables cannot be com-

puted from quantum mechanics but have a simultaneous physical reality or, on the contrary,

it is just that quantum mechanics does not fail in computing all aspects of reality, for the

simple reason that some of these observables do not exist when certain experimental set-

tings are considered. To this end, they adopt a sufficient empirical definition of reality, which

states that a property is real if it can be measured without disturbing the system. Then,

these authors show how quantum mechanics runs into a contradiction by using two entan-

gled particles [1]. More specifically, they show that, if we assume that quantum mechanics

is complete, we can overcome the lack of simultaneous reality imposed by the principle

of uncertainty by making measurements only on one of the particles which, presumably,

can not have any effect on the other particle (locality). Thus, beginning with the assump-

tion of completeness, the assignation of realistic properties to non-commuting observables

is achieved. It follows, consequently, that completeness and realism can be logically implied

in entangled quantum mechanical systems. This contradicts the original dilemma, which

ruled out any option apart from the mutual exclusion between completeness and realism,

thus completeness must fail.

From an analytical point of view, there can be two solid attacks to their reasoning, con-

cerning the two fundamental philosophical assumptions made in their work. Indeed, we can

avoid their dilemma by renouncing either to their definition of realism or to locality (or

both). Bohr criticized their definition of realism by appealing to the physical interaction

between the measuring apparatus and the particles [2]. According to Bohr, two different ex-

perimental contexts were being used to measure non-commuting observables and, therefore,

the two settings could not be invoked to attribute properties to the same particle. On the

other front, Bell investigated the assumption of the separability between the two electro-

dynamic bodies, whose properties are to be measured [3]. Following an example advocated

by Bohm and Ahronov [4], Bell studied the statistical correlation of different components

of the spin, for a pair of entangled particles (see Fig. 1). He proved that statistical theories

based on hidden classical magnitudes must obey certain inequalities, which are violated by

quantum mechanical correlations of entangled pairs.
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Many works have been published since the discovery of Bell’s theorem [5], pointing out

the many loopholes that experiments can suffer. Most of these loopholes have been ex-

perimentally closed [6], some of them in conjunction, and it is not expected that they can

produce violations of the magnitude appearing in Bell tests [6]. However, here we adopt

Bohr’s contextual perspective and show that a loophole cannot be avoided from the very

definition of measurement, when classical field theories are at stake. For this purpose, we re-

consider Bell-type theorems using dynamical hidden fields. In these theories, the apparatus

has an unavoidable effect on the particle when a measurement takes place, as a consequence

of their electrodynamic interaction [7, 8]. A contextuality loophole is thus enforced, be-

cause we cannot impose a priori that the probability distribution of a hidden variable is

independent of the experimental arrangement.

Furthermore, contrary to the assumption of probability distributions of stationary random

hidden variables, the probability density of a hidden field defines a stochastic process [9] that

evolves in time and differs for different experimental settings. Using this fact, we show that

the correlation integral, when expressed in terms of the initial hidden data, is different from

the integral used in the derivation of the CHSH-Bell inequality [10], unless a correlation

loophole is closed. Finally, we extend our arguments to situations where last-instant and

free choices can be made, regarding the orientation of the Stern-Gerlach apparatuses.

It is not the purpose of the present work to provide a quantitative mechanism that

explains EPRB correlations, but just to show that Bell-type theorems cannot yet discard

classical field theories as a foundation of quantum mechanics. Nevertheless, we suggest a

qualitative explanation to the mysterious correlations between the measurements of the two

electrodynamic particles by invoking the electromagnetic nature of entanglement and the

concepts of self-oscillation and synchronization [7, 8, 11]. Some brief philosophical insights

concerning realism are briefly pointed out in the discussion.

II. HYPOTHESES IN BELL-TYPE THEOREMS

Bell’s program is based on computing correlations of the spin of two entangled particles

[3]. In particular, a singlet state of zero spin S = S1 + S2 = 0 is considered, which can be

written as

|0, 0⟩ = 1√
2
(|↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩) , (1)
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FIG. 1. Stern-Gerlach apparatus. (a) A beam of silver atoms (red) entering a S-G device,

where some non-uniform magnetic field is present. The beam separates into two components, re-

flecting the different values of the spin that these atoms acquire during the process of measurement.

(b) A section of the S-G device showing the magnetic fields and the evolution of the spin of an

electron going through. (c) A disintegration of a π0 meson into an electron-positron entangled pair.

The two particles evolve in opposite senses towards two far away respective measuring apparatuses.

where |↑⟩ and |↓⟩ are eingenstates of the operator Sz representing the spin angular momen-

tum component along the z-axis. As depicted in Fig. 1(c), from a physical point of view we

can think of this entangled state as two electrodynamic particles, a positron and an electron,

flying away from each other from the location where the disintegration of a neutral meson

took place, for example. These two particles are heading towards two identical Stern-Gerlach

(S-G) apparatuses.

In principle, each of these two measuring devices can be oriented along any possible

direction described by the unit vector a in the euclidean space, so that one measures the

spin component S1a = S1 ·a, while the other can measure some other component of the spin

S2b = S2 · b, along the direction given by the unit vector b. Then, if we consider these two

components of the spin, related to our two respective entangled particles, the correlation

Cab of the product of spin projections can be computed as

Cab = ⟨0, 0|S1a ⊗ S2b |0, 0⟩ = −ℏ2

4
a · b, (2)

where Eq. (1) has been used, together with the expression Sn = ℏ2niσi/2, being σi the
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Pauli matrices and n some unit vector in the three-dimensional euclidean space. Note that

we are just computing a second-order moment using the random variables S1a and S2b.

For convenience, we shall neglect hereafter the ℏ2/4 in the computation of correlations by

considering units of ℏ/2, and simply assign values plus one or minus one to the spin.

Bell’s point is that, for a deterministic hidden variable theory to exist, we must be able to

compute the averages, the correlations and the moments of any order appearing in quantum

mechanics, from the evolution of the system by using a probability distribution depending

on the hidden variables λ. Any quantum operator must be defined as a function of these

hidden variables in such a way that their knowledge would allow to precisely determine the

value of the quantum operator and the average of any function of this and other operators,

no matter how complicated. In particular, the correlation integral can be written as

Cab =

∫
Aa(λ)Bb(λ)p(λ)dλ, (3)

where Aa(λ) denotes the result of measuring the spin of the first particle along the direction

given by a. Given a value of λ, we must have a specific value of Aa(λ), whether this value

is one (spin up) or minus one (spin down). Correspondingly, we denote as Bb(λ) the value

of the spin of the second particle, when measured along the direction given by b. If we now

consider four different orientations of the apparatuses a, a′, b, b′, it can be shown after some

algebraic manipulations [10] that

|Cab + Cab′|+ |Ca′b − Ca′b′| ≤ 2. (4)

This inequality sets a restriction among the values that the correlations between two

spin variables measured along different directions can have. By considering the quantum

mechanical result Cab = −a · b, it is very easy to see that many values do not obey this

inequality. A common counterexample is to let the four directions to be π/4 radians apart

in a plane, in the order b′, a, b, a′, so that the violation is maximized [6], yielding a value of

2
√
2 in Eq. (4).

Four hypotheses can be clearly identified in Bell’s work [3], regarding the expression of

the correlation integral appearing in Eq. (3):

1. Hidden variables λ can be anything, from simple constant vectors to dynamical vector

fields evolving in spacetime λ(x, t).
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2. There exists two functions Aa(λ) and Bb(λ) with outputs ±1, representing the two

possible results of measuring the spin of any of the two particles, which depend on the

hidden variables λ related to them.

3. There exists a probability measure p(λ)dλ that does not depend on the orientation of

the apparatuses.

4. The principle of locality, which states that Aa(λ) does not depend on b and Bb(λ) does

not depend on a.

We now thoroughly discuss these four postulates in relation to the EPRB experiment.

The first assumption is of great importance, since the main purpose of Bell’s no-go theorem

is to reject classical field theories as the foundation of quantum mechanics. It is evident

that electrodynamic fields are specially concerned in this regard, since they do not explicitly

appear in the Schödinger equation when studying the EPRB experiment, which involves

two electrically charged bodies. Not to speak about other experiments involving correlated

photon pairs, which are frequently represented without any allusion to the electromagnetic

field.

The second assumption is undisputed as long as the correlations are computed at the

time of measurement, since in a classical field theory the magnetic field inside the particle

specifies its internal angular momentum. Together with the orientation of the measuring

device, which also enforces a direction of the non-uniform magnetic field created by the SG

apparatus, would suffice to determine the result of the measurement. However, as we shall

see in Sec. IV, the expression of the functions Aa(λ) and Bb(λ) in terms of initial hidden

field variables λ related exclusively to the particles [10] is prevented by the contextuality of

classical field theories.

Concerning the third assumption, it is evident that when Bell defines the probability

measure p(λ), he does not rigorously enter into the question about if these variables depend

or not on any time-dependent parameter. If we assume that any initial p(λ) does not evolve

in time, then it is evident that we are also assuming that the hidden variables have constant

values all over their trip from the place where the disintegration took place, until they arrive

to the apparatus. This is frequently considered by supposing that measured observables

correspond to properties possessed by the particles before and after measurement, which is

tantamount to realism according to the definition provided by Einstein-Podolsky-Rosen [1].
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Quite the opposite, in field theories, which are contextual, this definition of reality becomes

over-restrictive, because the apparatus has an active role in the production of the measured

values of an observable.

It is crucial to recall that, if hidden variables are dynamical, the probability density

must inherit such a dependence, as it occurs in the theory of stochastic processes [9]. For

example, if the hidden variables depend on time λ(t), we would have a probability density

p(λ, t), even if this time is made the same by resetting clocks at each row of the experiment.

If hidden fields are at investigation, in principle we would have to consider a probability

density p(λ, x′
a, x

′
b, t) defined over the entire space, where x′

a and x′
b would be the position

at which the two point particles would be found at the time of measurement.

Alternatively, if particles are considered extended and made of fields, the probability

density would have to be integrated throughout the region of space where these particles

can be found at time t of measurement. In this case, when we compute the correlation

Cab using the distribution at the precise moment of arrival to the apparatus, we must face

the question about if this probability is the same for all the experimental settings a and

b. In the next section we prove that a contextuality loophole produces a dependence of

the probability density on the measurement setting at the time of measurement, even in

Newtonian mechanical systems.

We might try to avoid the effect of the apparatus on the hidden variables by assuming

that uncertainty emanates from a lack of control of the initial conditions. The knowledge

of these hidden variables would entail a determination of the spin of the particles in the

very moment in which they are created. This is an example that Bell has in mind, as he

clearly manifests [3]. To this end, we must use some probability distribution describing

the frequency with which these hidden variable values are uncontrollably picked as initial

conditions. Then, the hidden variables would determine, at the moment of arrival to the

apparatus, the values of the result of the experiment. In this case, the probability can

be expressed as independent of the measurement settings only if hidden fields in the ini-

tial Cauchy hypersurface are uncorrelated. Quite the opposite, we suggest that correlated

electrodynamic field fluctuations prevent the expression of Bell-type correlation integrals.

Here we assume the fourth hypothesis as evident, i.e., that Aa does not depend on the

direction of the second apparatus (say b) at the time of measurement, and vice versa. Oth-

erwise, the correlation could be perfectly explained by assuming that the well distanced
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apart experiments are communicating during the collapse of the simultaneous (in the labo-

ratory frame) measurements of the two spins. This locality loophole was mostly closed in

experiments with entangled photons [12, 13].

III. BELL-TYPE CORRELATION INTEGRALS

Given the evidence appearing in Bell’s works [14], it is obvious that he was perfectly

aware wether the values of the hidden variables were given before the measurement process

took place or not. Indeed, in such works Bell demonstrates a vast knowledge of Bohr’s

ideas, where he also states the misuse of the word “measurement”, by recognizing that it

is the interaction between the system and the measuring apparatus what determines the

result of an experiment. In other words, hidden variables are contextual. Thus, in the

first place, we show that a stationary probability density is unattainable, even in ordinary

classical systems. This is important since many no-hidden variables theorems rely on this

assumption [15], ascribing it to realism, as previously explained.

Evidently, if we make such an assumption, the main conclusion that can be drawn from

the violation of such relations is that there exists no local hidden variables theory compatible

with the predictions of quantum mechanics, as long as these hidden variables are assigned

values prior to the measurement of the quantum physical magnitudes being studied. The

assumption of no interference between the apparatus and the hidden variables is sometimes

made because, otherwise, we would still have to explain why correlations are not destroyed

by the collapse of the wave function. But it is really hard to ascertain if this assumption is

correct in the absence of a clear physical picture of entanglement and of how such a collapse

of the wave function takes place.

Consequently, in what follows we provide a possible picture of how a process of collapse

can take place in a physical system. In this respect, we propose that the collapse of the wave

function is a real dissipative process since, as it has been recently demonstrated, the wave

function is a real force field related to internal and external electromagnetic forces, and not

just a probabilistic entity [7, 16]. The present example is used just for illustration purposes,

and it is not intended to replace the real case of fundamental particles under electrodynamic

retarded potentials, even though it shares common features as a consequence of the dissi-

pative character of the interaction between the apparatus and the physical system. In any
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case, we emphasize that with this example we are just trying to clear that an avoidance of

the effect of the measuring apparatus on the hidden variables cannot be easily and generally

done, without detailed experimental justification.

The experiment that we would like to propose is ostensibly simple. Consider that we let a

coin fall freely along the vertical line with some initial angular velocity ω0, from some initial

height z0. The dynamics of the coin when it is falling is governed by Newton’s second law

and Euler’s rotation equations, and can be described by using the variables θ(t) and z(t) in

the configuration space. We suppose that the value of the angle θ(t) is taken with respect

to an axis of rotation that, for simplicity, we assume to be orthogonal with respect to the

vertical axis. Then, with the purpose of measuring the angle (modulo 2π) of the coin, we let

our approximately rigid body evolve until it experiences an inelastic collision with a table

underneath, which sets it to one of its two sides (the edge of the coin is thin enough). There

can be only two possible outcomes of this measurement: heads (θ = 0) or tails (θ = π).

We can safely affirm that, prior to the measurement, this system was in a combined state,

oscillating between the two possible results of the experiment. Its interaction with the table,

here playing the role of the apparatus, forces it to acquire one of the two possible outcomes

that, following the simile, play the role of the eigenstates.

Of course, we could do things much better by using another apparatus with much smaller

action than the table, so as not to disturb the coin. We must also recall that both, the final

coordinates and the momenta of the two degrees of freedom z and θ are known. Thus, no

uncertainty principle is taking place here as in quantum mechanics. Moreover, we do not find

here any interfering waves whose modes can be quantized, as it occurs with self-oscillating

electrodynamic moving bodies [7, 8] and also in experiments with walking droplets [17, 18].

Nevertheless, this example allows to illustrate one first important point, which is that the

outcome of the experiment was produced by the interaction with the table. Therefore, the

result cannot be considered a property possessed by the system before the collision takes

place. Interestingly, we note that this interaction is mediated by a dissipative phenomenon

as a consequence of the electrodynamic nature of both constituents of the system: the coin

and the table.

In the modern jargon of dynamical systems theory, we would say that the coin and the

table comprise a nonlinear dynamical system that possesses two attractors in the phase space

[19]: (θ, ω, z, vz) = (0, 0, 0, 0) and (θ, ω, z, vz) = (π, 0, 0, 0). It is also worth mentioning that,
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as a consequence of the dissipative dynamics, all the information concerning the angle and

the angular momentum at the moment immediately previous to the contact between the two

bodies is erased with the interaction. In other words, once an attractive limit set is attained,

we have no empirical procedure to find out how this collapse towards the attractor occurred.

This is just another manifestation of the irreversible nature of classical electrodynamics of

moving sources, which is governed by the non-conservative functional differential equations

arising from the field solutions of Jefimenko [8, 20].

Moreover, we can study how the initial conditions affect the fate of the result of the

experiment, by computing the basins of attraction. Given a dynamical system with two

or more attractors, a basin of attraction is a color plot defined over a region of the phase

space, where every initial condition within a range of values is assigned a color, according

to its asymptotic fate [21]. For example, in our case, we can use two colors, white and

blue, if the experiment leads to heads or tails, respectively. It has been shown that, if we

do not let the coin rebound on the table one or more times, the basins of attraction are

manifestly separated by a smooth and a rather predictable boundary at our visual scale

[19]. However, as we can see in the Fig. 30 in such reference, when we allow the coin to

rebound twice on the table, the basins become increasingly random, and if we allow more

rebounds, they completely mess up at the original scale [19]. Further inspection reveals

that a fractal structure does not appear as we reduce the scale by zooming into the picture,

as it commonly occurs with chaotic dynamical systems [21]. Therefore, from a classical

point of view, the system is not unpredictable if sufficiently small scales are accessible to the

experimenter [19]. On the contrary, for atomic systems, a sufficient reduction of the scale

cannot be achieved in most cases. This occurs because fundamental particles are limiting

structures and, as a consequence of this fact as well, it is impossible to reduce arbitrarily

the action of the measuring apparatus on the system.

These last considerations lead us to the second important moral of the present analysis.

The key point that we would like to stress is that, if our lack of knowledge of the final result

of the coin orientation arises from our inability to control the initial conditions with which

the coin is released in the beginning, a modification of the materials or the geometry of the

table, here playing the role of the measuring apparatus, certainly can affect the nature of

the potential results. These effects have two consequences. On the one hand, it modifies

the function Bb(λ), for example, to some other Bc(λ), as Bell wisely devised when defining
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these variables.

On the other hand, since the dynamical evolution of the system is now guided by new

differential equations, because of the different arrangement of the apparatus, the dynamically

evolving solutions might not be the same. This introduces a dependence of the probability

density on the measuring apparatus, which can be represented in the form pab(λ, t), as it

frequently occurs in contextual theories [22, 23]. In principle, λ can also incorporate hidden

variables of the apparatus. However, it must be highlighted that independence between

the hidden variables related to the apparatus and those of its corresponding particle at the

time of measurement is unattainable, contrary to expressions appearing in some contextual

models [23].

If the reader hesitates to ascertain that this last argument is correct, perhaps he can

consider the more familiar case of conservative physical systems. There, the evolution of a

probability distribution of an ensemble of initial conditions p(λ) is governed by Liouville’s

equation [24]. This hive of initial points distributed over the phase space, each representing

a repetition of the apparently same experimental arrangement, evolve under the symplectic

flow defined by Hamilton’s equations. But then, we should not deny that, if the Hamiltonian

changes throughout the evolution of the system, so it does the nature of the probability

density p(λ, t), which is advanced by the Liouvillian operator. In our more complicated

case, which is not conservative neither Hamiltonian [7, 8], this change of the probability

distribution is also reflected in the basins of attraction, which in turn affect the functions

Aa(λ) and Bb(λ).

We now proceed to demonstrate Bell’s correlation integral, by using the insights gained

from the previous example. In the case of traditional mechanical systems (e. g., Hamil-

tonian systems described by ordinary differential equations), where the feedback between

the environmental electrodynamic fields and the dynamics of particles is neglected, particles

can be represented by some finite set of generalized coordinates, that are affected by some

potentials defined in the region where the apparatuses rest. Since the dynamics of the fields

is being disregarded, we can neglect the explicit spatial dependence and write down the

correlation as

Cab(t) =

∫
Aa(λ)Bb(λ)pab(λ, t)dλ. (5)

We can go back to a probability density in terms of the hidden initial conditions λ0 and

obtain a relation like the one used by Bell and his advocates. This can be done through a
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change of random variables in the form

pab(λ, t) =

∫
p(λ0)δ(λA − Λa

At(λ0))δ(λB − Λb
Bt(λ0))dλ0, (6)

where the flow Λt relates the hidden variables at the time of measurement and at the initial

time λ = Λa,b
t (λ0), so that the vector λ separates as a direct sum of two other vectors λA and

λB, which are uncorrelated. In other words, we assume that the flow can also be written as

λA = Λa
At(λ0) and λB = Λb

Bt(λ0). Finally, we must consider that each observable depends on

its respective and disconnected hidden variables as well (i.e., Aa(λA) and Bb(λB) must hold),

as suggested by the principle of locality. In this manner, we obtain the integral appearing

in Eq. (3), by simply redefining the functions Aa and Bb, and Bell’s agenda, as appearing in

the references [3, 10], can be perfectly carried out.

IV. HIDDEN FIELD THEORIES

Now we assume that the hidden variables represent a vector field λ(x, t), where t is the

present time in some inertial frame, while x represents the position in the space. Just

for the sake of clarity, here we accept that electrodynamic bodies are made of extended

electromagnetic fields. This entails to think fundamental particles as some electromagnetic

topological solitons [25]. Then, any other properties relying on their internal structure, as for

example the spin, can be connected to the different physical properties of such gauge fields

[26, 27]. For example, the spin could be related to the magnetic field configuration, while

the charge would correspond to the topological charge of the vortex knot [28]. However, we

recall that no particular assumptions are here made in relation to our argument concerning

what particles really are. Our results are perfectly extensible to point particles with their

properties (charge, mass and spin) all embedded in the point.

It is evident that the different orientations of the non-uniform magnetic field of a Stern-

Gerlach apparatus will affect our dynamical hidden fields. Then, we have to rewrite the

correlation function as

Cab(t) =

∫∫
Aa[λA(x

′
a, t)]Bb[λB(x

′
b, t)]pab[λ, t]DλADλB, (7)

where t represents the time at which the particle’s spin is first aligned with the S-G appa-

ratus, while x′
a and x′

b are the spatial coordinates of the region where the two particles at
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such time instant are found. This integral is a functional integral over a set of hidden fields

at the time of measurement, integrated over the region where most part of the particle’s

energy is stored. We also notice that the integral runs through all the possible values of

the hidden fields λ = (λA(x
′
a, t), λB(x

′
b, t)) of the two particles, which have been gathered

in one hidden variable for simplicity. Again, recall that the effect of the apparatus on the

probability distribution appears explicitly in pab[λ, t].

We now show that, when we consider fields that are defined all over the space, the

derivation of the correlation integral is more complicated, yielding a different result. The

hurdle arises because the hidden fields at the particle’s position, when its magnetic moment

has completely aligned with the external field of the Stern-Gerlach apparatus (i.e. when the

collapse has completed), are determined from its causal past lying in some initial Cauchy

hypersurface. As an example, the reader can consider the well-known theorem of Cauchy-

Kovalévskaya [29].

In Fig. 2 we have represented the light cones of two entangled bodies that are measured

at some instant of time to illustrate this effect. We see that when we attempt to express the

correlation integral in terms of the initial hidden fields, which are defined on the aforemen-

tioned Cauchy surface, the probability density must inherit a dependence on the orientation

of the apparatus. Indeed, the fields at the time of measurement are related to the initial

fields through the Green’s function G(x′, x, t) of the field theory and its time derivatives.

For simplicity, we write this relation in the form

λa(x
′, t) =

∫
G(x′, x, t)λ0(x)dx. (8)

Certainly, the propagator G(x′, x, t) will be zero between two regions that are not causally

connected and, consequently, only the region inside the initial domain Ωa affects the values

of the hidden variables λa(x
′, t), and similarly for λb(x

′, t) and Ωb (see again Fig. 2). If

we now consider that the change of variables between the initial probability density and

the probability density at the time of measurement is given by the mathematical relation

pab[λ, t] =
∫
δ[λA(x

′
a, t)−λa(x

′
a, t)]δ[λB(x

′
b, t)−λb(x

′
b, t)]pab[λ0(x)]Dλ0, the correlation integral

in terms of the initial fields can be written in the form

Cab =

∫
Âa[λ0(x)]B̂b[λ0(x)]pab[λ0(x)]Dλ0, (9)

where this integral is again a functional integral over a set of uncontrollable initial hidden
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fields, defined on the initial Cauchy surface. We have introduced the functional Âa[λ0(x)] =

Aa[
∫
G(x′, x, t)λ(x, 0)dx] and the same has been done for Bb.

Importantly, we highlight that, when defining these functionals, the spatiotemporal coor-

dinates t and x′ have been omitted. The temporal coordinate can be neglected by assuming

that clocks are reset at the beginning of each experimental row and that measurements

are always performed at the exact same instant of time. The spatial coordinate can be

neglected if we assume that the measured particle is always at the same place and has the

same orientation when the measurement is carried out. Obviously, these two restrictions

are experimentally impossible to achieve [7, 8], and would hinder themselves the derivation

of Bell’s inequalities, as has been already proposed [30]. Nevertheless, here we take these

impossible conditions for granted, to focus on a more severe loophole due to a correlation of

hidden field fluctuations [31].

If we assume that the initial fields are only correlated in the domain Σc = Ωa ∩ Ωb

depicted in Fig. 2, the CHSH-Bell inequality can be derived. We have to average the

initial hidden fields over the regions Σa = Ωa/Σc and Σb = Ωb/Σc. Indeed, under such

hypothesis, the probability density pab[λ0(x)] can be expressed as a product of densities

pa[λa(x)]pb[λb(x)]p[λc(x)], where λa(x) = {λ0(x) : x ∈ Σa}, λb(x) = {λ0(x) : x ∈ Σb} and

λc(x) = {λ0(x) : x ∈ Σc}. This is possible assuming that the fields are uncorrelated in

spacelike separated sets. Similarly, we can express the functions Âa[λa(x), λc(x)] and the

B̂b[λb(x), λc(x)]. This yields the functional integral

Cab =

∫∫∫
Âa[λa(x), λc(x)]B̂b[λb(x), λc(x)]pa[λa(x)]pb[λb(x)]p[λc(x)]DλaDλbDλc, (10)

which, after averaging out fluctuations Āa[λc(x)] =
∫
Âa[λa(x), λc(x)]pa[λa(x)]Dλa, and the

same for B̄b[λc(x)], yields a Bell-type integral. As it has been pointed out in previous works

[23, 32], these experiments are impossible to accomplish, since we would have to repeat each

experimental row with exactly the same two entangled particles a great number of times,

letting the electrodynamic fields in Σa and Σb change to average out their fluctuations.

However, Eq. (10) allows to derive the CHSH-Bell inequality and must describe the same

type of correlations.

The reader might wonder why there should be a dependence of Âa[λa(x), λc(x)] and

B̂b[λb(x), λc(x)] on the fields outside the particles λa(x) and λb(x) at all. The importance of

the environmental fluctuating hidden fields in all the three sets Σa, Σb and Σc, is explained
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as follows. On the one hand, it is crucial that these fluctuations are not very strong in the

former regions. Otherwise, decoherence phenomena would appear. In both the former and

the later regions, as it has been recently suggested, these field fluctuations, which travel at

the speed of light and reach the particle all the way along their journey to the SG apparatus,

can be indispensable to promote their coherent self-oscillatory motion [7, 8]. In turn, these

oscillations can be crucial to explain the entanglement of the electrodynamic particles. We

develop more thoroughly these ideas in Sec. VIII.

A correlation between Σa (or Σb) and Σc still allows to factorize Eq. 10 and to derive

the CHSH-Bell inequality. Therefore, our main conclusion is that to prove this inequality

for classical field theories, we must first show that hidden electrodynamic field fluctuations

are uncorrelated for the spacelike separated sets in Σa and Σb in the Cauchy hypersurface.

This assumption deserves more attention, since correlations of field fluctuations far from

equilibrium can extend through very wide regions of spacetime in the Cauchy hypersurface

[31]. The distance between Σa and Σb depends considerably on the nature of the experiment,

being very small for experiments with photons receding from each other, and depending

critically on the speed at which charges separate in experiments with entangled fermions.

As it has been already pointed out [31], this correlation loophole was overlooked by

Shimony, Horne, and Clauser in a reply to a work by Bell [34], where they discuss another

possible source of conspiracy [33]. The Eq. (9) prevents the derivation of the CHSH-Bell

inequality, and unless the loophole is experimentally closed, we cannot safely affirm that

classical field theories can be rejected as a foundation of quantum mechanics. First, it must

be shown that the field fluctuations are uncorrelated or irrelevant to the production and

maintenance of entangled pairs, which is at odds with recent findings explaining the origin

of the wave-particle duality in terms of self-oscillations [7, 35]. Importantly, our derivation

of Eq. (9) involves hidden fields that are local in the sense of classical field theories.

V. LAST-INSTANT CHOICES

We might be tempted to avoid any possible effect on each particle by the environmental

field fluctuations, which depend on its related apparatus, by making a last-instant choice,

i.e., by dynamically setting its orientation through some physical mechanism, right before

the particle enters the S-G device [13]. The main purpose is to avoid a dependence of
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FIG. 2. Light cones of the particles. A (2+1)-dimensional spacetime diagram of an extended

electrodynamic body (black disk) that splits into two bodies A and B (red and blue disks), which

move far away from each other towards two respective measuring devices. The process of mea-

surement is denoted as S-G. The dashed lines represent the worldlines of the particles, while their

light cones at the instant of measurement are represented in red and blue, showing the sets of

causally connected initial conditions Ωa and Ωb that affect each particle during its journey. When

the orientation of the S-G apparatus at B is switched from b to c, the domain of initial conditions

correspondingly switches from Ωb to Ωc.

pab[λa(x), λb(x), λc(x)] on a and b, both in the hidden fields and the probability density.

This would entail that the hidden fields appearing in Âa[λa(x), λc(x)] and B̂a[λb(x), λc(x)]

are also independent of a and b.

Now, if the orientation of the apparatuses is set dynamically, the system of partial dif-

ferential equations that describe the evolution of the fields are required to compute the

evolution of such orientations, which can be expressed as functions of them in the form

a(x̂a, t) = α(λA(x̂a, t)) and b(x̂b, t) = β(λB(x̂b, t)). By composition, these functions become

dynamical fields as well, where x̂a and x̂b represent the positions of the centre of the top

part of each respective S-G (see Fig. 1), measured from the centre of mass of the apparatus,

if desired.

In this case, the resulting change of variables relating the probability density at the time

of measurement and the probability density defined on the initial Cauchy hypersurface is

given by the relation pab[λ, t] =
∫
δ[λA(x

′
a, t) − λa(x

′
a, t)]δ[λB(x

′
b, t) − λb(x

′
b, t)]δ[a(x̂a, t) −

α(λA(x̂a, t))]δ[b(x̂b, t) − β(λB(x̂b, t))]pab[λ0(x)]Dλ0, where now we have gathered the four

variables in the vector λ = (λA(x
′
a, t), λB(x

′
b, t), λA(x̂a, t), λB(x̂b, t)). However, we must not
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neglect the fact that, just as it occurred before, the initial probability density pab[λ0(x)]

changes when a different orientation of the S-G apparatus results to measure the spin.

The reason of this dependence is that, in order to compute the correlations for a definite

orientation of the apparatus, all those initial field configurations that lead to a different

orientation are being disregarded. Consequently, a restriction of events in the sample space

of initial fields is being imposed. Thus a dependence of the probability density pab[λ0(x)]

on the orientations a and b cannot be circumvented. As the reader can verify himself, the

replacement of pab[λ, t] in a corresponding correlation integral similar to Eq. (7) leads to

Eq. (9) anew.

VI. RANDOM CHOICES

We can also assume that the orientations of the S-G apparatuses are set by an inherently

random mechanism (freely, if desired) at some brief instant of time before the measure-

ment takes place. The consideration of these stochastic hidden variable models is relevant

because, despite the fact that one is inclined to think that randomness is just a byprod-

uct of deterministic chaos [36], there exist complexity measures that distinguish between

low-dimensional chaotic dynamical systems and computer-generated noise [37]. Neverthe-

less, and precisely because of the fact that rather simple low-dimensional chaotic dynamical

systems are capable of generating white noise, we should not quickly discard that high-

dimensional chaotic dynamical systems might be behind the supposed intrinsic randomness

of computed-generated noise, neither of quantum noise [7, 8].

In case that stochastic fields are considered as fundamental [38], we can represent math-

ematically the selection of the orientation of the apparatus, and any other randomness in

the experiment as well, by a Langevin current j(x, t) acting on the dynamical fields, which

ultimately decides what orientation of the S-G is used. This turns the system of equations

describing the evolution of the fields λ(x, t) into a system of stochastic partial differential

equations. The relation between the hidden field configuration of the apparatus and the

initial data λ0(x) is now given by the convolution

λa(x̂, t) =

∫
G(x̂, x, t)λ0(x)dx+

∫ ∫ t

0

G(x̂, x, t′)ja(x, t
′)dxdt′, (11)

where in this example we have considered a situation in which the final orientation of the
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S-G is given by the vector a.

Nevertheless, the convolution (11) prevents the expression of the probability density as

independent of the setting of the apparatus. As long as there is any deterministic component

in the Green’s function of the field’s dynamical equations (no matter how small), in addition

to the stochastic Langevin force, we cannot guarantee that the probability density depending

on the initial hidden field configuration λ0(x) is the same for different ultimate orientations

of the measuring apparatuses. This argument also concerns very complicated situations

where human decision-making is used to generate random choices [39].

Importantly, we recall that a superdeterministic loophole is not here implied in any way

[6], since we assume that the values of the magnetic field orientation of the S-G apparatus

can be set stochastically and independently of each other. Simply put, the values of a and b

are statistically independent and causally disconnected. This is irrelevant to our argument.

Irrespective of how this choice is made, a particular setting of the apparatus affects the

particle’s hidden variables when its internal angular momentum is measured. Since different

probability densities computed from the Cauchy data in its causal past correspond to dif-

ferent orientations of the SG devices, the correlation loophole induced by contextual hidden

fields shall persist in stochastic hidden field variable models [22, 38].

VII. A NEW INEQUALITY

On the basis of the expression represented in Eq. (5), the difference between correlations

can be derived in a straightforward manner as

Cab(t)− Cac(t) =

∫
Aa(λ)Bb(λ)pab(λ, t)dλ−

∫
Aa(λ

′)Bc(λ
′)pac(λ

′, t) dλ′. (12)

A change of variable, and the fact that probability densities are normalized, allow to write

Cab(t)− Cac(t) =

∫
{Aa(λ)Bb(λ)− Aa(λ

′)Bc(λ
′)}pabc(λ, λ′, t)dλdλ′, (13)

where here we have introduced the joint probability density pabc(λ, λ
′, t) = pab(λ, t)pac(λ

′, t)

of the the two hidden fields corresponding to each experiment. This probability density

should not be confused with joint probability densities of incompatible experiments [5],

since different hidden variables are used in repeated experiments even with one of the S-G

apparatuses keeping its orientation. It manifests the mutual independence of different mea-

surements, just as two consecutive coin tosses with the same coin are frequently considered
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independent processes. Nevertheless, we remind that this is only true assuming a certain

inability to control the initial conditions [19], or unless the basins of attraction are very

fractal due to an underlying chaotic dynamics.

If we again take the absolute value on both sides of the previous equations and we reason

exactly as in Bell’s work [3], we get the mathematical relation

|Cab(t)− Cac(t)| ≤
∫

|Aa(λ)Ab(λ)||1− Aa(λ)Bb(λ)Aa(λ
′)Bc(λ

′)|pabc(λ, λ′, t)dλdλ′. (14)

Here we clearly see that conventional steps appearing in Bell-type theorems [3, 10] cannot

be accomplished. Certainly, the first term still obeys the relation |Aa(λ)Ab(λ)| = 1, while

the second is again always greater or equal than zero, what allows us to neglect the absolute

value. We are thus lead to the relation

|Cab(t)− Cac(t)| ≤ 1− Cab(t)Cac(t). (15)

Using again the relations for one-half spin particles, we get the inequation

| cos θab − cos θac| ≤ 1− cos θab cos θac. (16)

The reader can verify and demonstrate that, no matter which angular variables θab and

θac we consider in [0, 2π], the previous inequality is always fulfilled. Therefore, there is no

theoretical reason implying that a classical theory cannot violate Bell’s inequalities, as long

as their dynamical hidden fields are dependent on the measurement apparatus, as it occurs

in classical electrodynamics.

VIII. ENTANGLEMENT AS SYNCHRONIZATION

We now provide a qualitative explanation of why quantum collapse preserves the correla-

tions of entangled pairs. Assuming that no communication between apparatuses is allowed

(locality loophole), as recent experiments guarantee [40], the only possible solution that the

authors can envisage is that such correlations are dynamically preserved during all the phys-

ical phenomenon. In other words, it must be the property of entanglement that guarantees

the observed correlation at all times. From this point of view, the internal angular momen-

tum of the two particles is evolving but both particles are electromagnetically synchronized

to render the total conservation of the spin. This locking of the phases of their evolving
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internal angular momentum must not be a product of chance, but can only be maintained

by means of some nonlinear interaction [41].

It has been recently demonstrated by deriving the quantum potential from classical elec-

trodynamics that the wave-particle duality has its origin in the electrodynamic Liénard-

Wiechert potentials [7, 8, 35]. These retarded potentials lead to state-dependent time-

delayed differential equations, reflecting the memory effects arising from self-interactions

of electrodynamic accelerated extended bodies. The feedback interaction of radiative and

Coulombian fields can unleash a self-oscillatory dynamics [11], what manifests the excitable

character of fundamental particles, which can operate far from equilibrium, specially in the

presence of fluctuating external fields [8]. The resulting motion is a violent oscillation with

frequency similar to the zitterbewegung oscillation appearing in Dirac’s equation.

When several particles are considered in interaction, the delays of their self-interactions

leading to such internal oscillation can couple to the delays affecting their mutual inter-

actions. Since these delays depend on the kinematic variables of the bodies at different

times, the dynamics of these fundamental particles becomes subsequently entangled. In

other words, the internal oscillations of the particles can become synchronized or entrained,

as it is this phenomenon technically named in the theory of nonlinear oscillations [11]. In

the case of spin entangled pairs, a synchronization between the evolving internal magnetic

moment of the electromagnetic particles is expected.

We can further assume that the process of collapse is of such nature that it destroys the

entanglement following deterministic laws, even if there is a sensitivity to initial conditions.

This means that the “channel” [16] or basin of attraction that determines which eigenmode

of vibration (limit cycle) is selected, does not occur by chance, but it depends through a

dynamical relation between both the system and the apparatus. The only condition that

is mandatory is that the collapse takes place more or less simultaneously in the laboratory

frame. In this last regard, the two particles must be kept entangled through their respec-

tive journeys, which is a rather difficult task to accomplish, given the tendency of these

particles to decohere, by strongly coupling to their surrounding electromagnetic fluctuating

environment when they approach other external bodies.
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IX. DISCUSSION

We have shown that Bell-type inequations cannot be derived in classical theories involving

local fields. This occurs because the hidden fields circumscribed to the particle, in terms of

which the internal angular momentum is defined, are dynamically evolving. Their values are

determined by the interaction of the particle’s fields and the hidden fields of the contextual

measuring devices [32, 42]. These hidden fields are then related to initial field data inside

its causal past, which involve the apparatuses as well. This last fact implies a correlation

loophole that is not usually considered when deriving Bell-type inequalities. It is reminiscent

of arguments presented in previous works [31]. However, here we have not assumed that the

fields need to be random, we have explicitly represented hidden fields all over the physical

process and connected them to the contextual paradigm.

We also recall that the present arguments are extensible to other inequalities [10], which

rely on correlation integrals as defined by Bell, and also to stochastic hidden variable models

that are tantamount to them [43]. For the same reason, the present work evinces the non-

Kolmogorovness of joint probability distributions [44] comprising more than one orientation

of the same measuring apparatus, due to field correlations. Our work also rules out other

formulations of no-hidden variables theorems, for example the Bell-Kochen-Specker theorems

[15], since we have shown that stationary probability densities do not comply with classical

electrodynamics. If the contextuality loophole is not circumvented, traditional experimental

works carried out so far to test Bell’s inequalities [12, 40], do not prove the impossibility of

a foundation of quantum mechanics by means of classical field theories.

The point of view of the present work conforms very well with a description of reality

in terms of two layers, as has been explained in previous essays [45]. The first layer is

made of the fields, which are hidden, insofar as it is not possible to directly measure them.

Following Bell, we could call this hidden fields the beables [34]. On the other hand, there

is what we get to know by the affection of different parts of the field, one related to the

system and another to the apparatus, which manifests as some perceivable change. Such

interacting forces manifest as a dynamical effect of the fields (e.g. the appearance of a spot

on a fluorescent screen), which is the only thing that is accessible to us directly, as opposed

to the fields themselves. This would constitute the phenomenal part of reality, which is

frequently called the observables.
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But even if we decide not to do the measurement, the fields must be there as the precon-

dition of any experimental knowledge, at least if we are willing to accept that this knowledge

is nothing else than the result of a dynamical effect of the fields. Thus, whatever are the

fundamental equations that constitute the dynamics of elementary fields, they must be used

simultaneously for the representation of the system and the measuring apparatus, which

have the same physical basis and, in this respect, form a unified inseparable physical reality.

The frequent avoidance of the representation of the apparatus and its fields in the quan-

tum mechanical formalism, which reveals the non-completeness of quantum theory itself,

is justified because of its tremendous size and complexity in relation to the system to be

measured. This theoretical convenience, which lead Bohr to formulate the principle of cor-

respondence, might be at the core of the measurement problem in quantum mechanics.

Hopefully, our increasing ability to perform numerical simulations will help us to face these

multi-scale problems, avoiding the appearance of the concept of measurement as a funda-

mental concept in physical theories [46].
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