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Abstract

Human behaviour was tipped as the mainstay in the control of further SARS-
CoV-2 (COVID-19) spread especially after the lifting of restrictions by many
countries. Countries in which restrictions were lifted soon after the first wave,
had subsequent waves of the COVID-19 infections and it remains to be seen
whether there will be more waves. In this paper, we formulate a determinis-
tic model for COVID-19 incorporating dynamic non-pharmaceutical interven-
tions, dubbed social dynamics. The model steady states are determined and
their stability analysed. Numerical simulations are carried out to determine
the pack of various parameters that influence the social dynamics. In South
Africa, the first wave was the only wave in which the only interventions rested
solely on human behavior. The model is thus fitted to COVID-19 data on the
first wave in South Africa. The results presented in this paper have impli-
cations on the trajectory of the pandemic in the presence of changing social
processes.

Keywords: COVID-19, mathematical modelling, stability, dynamic social
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1 Introduction
COVID-19 has infected nearly 500 million people and 6.2 million people have died
as a results of the pandemic as of 8 April 2022 [32]. The COVID-19 outbreak is
likely to be the largest pandemic of the 21st century, in terms of human lives lost
[24]. While vaccines have resulted in some notable disease control, with declines
in infected cases globally, there is currently very few specific medical interventions,
only in developing countries, see for instance [20]. For developing countries such
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as South Africa, classes of drugs that are mainly used include antiviral agents, in-
flammation inhibitors, low-molecular-weight heparins, plasma, and hyperimmune
immunoglobulins [26]. In the absence of effective infection prevention and control
measures, human behaviour that reduces or prevents exposure to the virus is key
[21].

The role played by mathematical models in the infection dynamics of COVID-19
cannot be underestimated. Many of the public health policies to contain the global
pandemic of COVID-19 have been driven by mathematical models, that have been
to a large extent regional or country specific, see for instance [15, 33] for Wuhan,
China, [11] for Italy, [8,13] for Spain, [12,18] for the United Kingdom, [27] for Scot-
land and [6,28] for the United States of America, to mention a few. The challenges of
modelling the global pandemic have also been looked at by a number of authors, see
for instance[4, 23, 31]. One of the biggest problems in modelling infectious diseases,
is the inclusion of human behaviour in the models. The role of human behavior in
modulating the spread and prevalence of COVID-19 was presented in [1] using the
imitation dynamic approach of evolutionary game theory. Human behaviour plays a
very crucial role in the way infectious diseases spread and it is the understanding of
how the behaviour influences disease spread that is key to devising and improving
control measures. [2, 10].

The emergence of second waves of COVID-19 has been linked to the interplay be-
tween the infection dynamics and psycho-social processes within communities [9,22].
The first waves of COVID-19, often referred to as the “herald waves”, see [25], have
been followed by a second and third waves of the viral infection months after the
initial episodes. The subsequent waves have been more parlous than the first one
and this has been observed in other pandemics such as the influenza pandemics of
1918, 1957, 1968, and 2009 [9].

In this paper, we explore the role of two important aspects in the dynamics of
the pandemic that have evolved over time, i.e information and non-pharmaceutical
interventions (NPIs). NPIs that have involved aspects such as social distancing,
wearing of masks, restrictions generally known as "lockdowns", have been touted as
the best measures to reduce the spread of COVID-19 to date. The possible resur-
gence of other respiratory endemic infections due to the NPIs has been predicted
in [3]. The aim is to investigate how time dependent information translates into
the growth or decline of NPIs that in turn impact the transmission of COVID-19.
Many mathematical models have considered NPIs modelled by constant parameters,
see for instance [19]. This work presented in this paper follows the research in [7],
but unlike in [7], we focus on the long term dynamics of the infection, the role of
information and its potential impact in influencing NPIs.

This paper is arranged as follows: In section 1, the introduction to the paper is
presented followed by the model formulation in section 2. The model analysis is
presented in section 3. Numerical simulations are presented in section 4 and section
5 concludes the paper.
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2 Mathematical model
We consider a classical human SEIR model, coupled with behavioural state vari-
ables of: susceptible individuals S(t), exposed individuals who are not yet infectious
E(t), and infectious individuals who are either detected Id(t) or undetected Iu(t),
recovered individuals who are either recorded Rd(t) or unrecorded Ru(t). The total
human population is given by

N(t) = S(t) + E(t) + Id(t) + Iu(t) +Rd(t) +Ru(t).

The social processes at any time t are modelled by two state variables, ε(t) and ρ(t),
where ε(t) models the information on the disease, mainly driven by the number
of detected cases that are then reported in the media and ρ(t) models the NPIs
(personal hygiene, travel bans, mass gatherings bans, social distancing, curfews,
and lockdowns) that are used to reduce transmission, and are also driven by the
changes in the information on COVID-19. We assume that 0 < ε(t), ρ(t) ≤ 1.

The human population increases through births at a rate µN, with recruits assumed
susceptible and µ being the birth/death rate. The susceptibles are infected through
interaction with the infected in the compartments Id and Iu at a rate λ defined by

λ = β(1− ρ(t))(Id(t) + ηIu(t))
N(t) ,

where β is the effective contact rate and η is the relative infectivity rate of those
in the compartment Iu when compared to those in compartment Id. Once infected,
susceptible individuals move to the exposed class where they progress to become
infectious after 5 to 6 days [16] at a rate κ. A proportion q will be undetected infec-
tives while the remaining proportion becomes detected. The detected/undetected
infectives recover at rates σd/σu, and die due to COVID-19 at rates δd/δu.

The information growth rate is driven by the number of detected cases at a rate
α2 and the information decreases at a rate ν2 with ε0 being the constant baseline
information that the population has. The NPIs grow at a rate α1 and decrease at
a rate ν1 and the constant baseline value of NPIs practiced by the population are
modeled by ρ0. The model flow diagram is presented in Figure 1 below.
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Figure 1: Model diagram

The model formulation summary above together with the model flow diagram (Fig-
ure 1) leads to the following system of equations:

Ṡ = µN − λS − µS, Ṙu = σuIu − µRu,
Ė = λS − (µ+ κ)E, Ṙd = σdId − µRd,
İd = (1− q)κE − (µ+ σd + δd)Id, ρ̇ = ρ0 + α1ε− ν1ρ,
İu = qκE − (µ+ σu + δu)Iu, ε̇ = ε0 + α2Id − ν2ε.

(1)

Given that the human population and the social process have different dimension,
we re-scale the human population by setting

s = S

N
, e = E

N
, iu = Iu

N
, id = Id

N
, ru = Ru

N
and rd = Rd

N

and obtain the following system of differential equations:

ṡ = µ− β(1− ρ)(id + ηiu)s− µs,
ė = β(1− ρ)(id + ηiu)s− (µ+ κ)e,
i̇d = (1− q)κe− (µ+ σd + δd)id,
i̇u = qκe− (µ+ σu + δu)iu,
ṙd = σdid − µrd,
ṙu = σuiu − µru,


· · · Human dynamics (2)

ρ̇ = ρ0 + α1ε− ν1ρ,
ε̇ = ε0 + α2id − ν2ε,

}
· · · · · · · · · · · · · · · · · · Social dynamics (3)

with the initial conditions s(0) > 0, e(0) ≥ 0, id(0) ≥ 0, iu(0) ≥ 0, rd(0) ≥ 0,
ru(0) ≥ 0, ρ(0) > 0 and ε(0) > 0.
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3 Model analysis

3.1 Positivity of the solutions
Lemma 1. Suppose that s(0) > 0, e(0) ≥ 0, id(0) ≥ 0, iu(0) ≥ 0, rd(0) ≥
0, ru(0) ≥ 0, ρ(0) > 0 and ε(0) > 0, then the solution
(s(t), e(t), id(t), iu(t), rd(t), ru(t), ρ(t), ε(t)) ∈ R8 of system (2)-(3) is positive
for all time t ≥ 0.

Proof. Let (s(t), e(t), id(t), iu(t), rd(t), ru(t), ρ(t), ε(t)) be the solution of system
(2)-(3). From the first equation of system (2)-(3) we have that

ṡ = µ− β(1− ρ)(id + ηiu)s− µs, where λ̃ = β(1− ρ)(id + ηiu).

Thus,
ṡ = µ− (λ̃+ µ)s ⇒ ṡ ≥ −(λ̃+ µ)s. (4)

Integrating both sides and applying the initial conditions leads to

s(t) ≥ s(0)e−
(∫ t

0 λ̃(τ)dτ+µt
)

(5)

at any value of t ≥ 0. Since s(0) ≥ 0 then s(t) ≥ 0.
Also, from the second equation of system (2)-(3) we have that

ė = β(1− ρ)(id + ηiu)s− (µ+ κ)e ⇒ ė ≥ −(µ+ κ)e. (6)

Integrating both sides and applying the initial conditions gives

e(t) ≥ e(0)e−(µ+κ)t (7)

at any value of t ≥ 0. Since e(0) ≥ 0 then e(t) ≥ 0.
Similarly, it can be shown that id(t) ≥ 0, iu(t) ≥ 0, rd(t) ≥ 0, ru(t) ≥ 0, ρ(t) ≥ 0
and ε(t) ≥ 0.

3.2 Feasible region
Consider the biological feasible region given by
Ω =

{
X ∈ R8

+ : n ≤ 1, ρ ≤ ρ0
ν1

+ α1
ν1ν2

(ε0 + α2) , ε ≤ 1
ν2

(ε0 + α2)
}
, where

X = (s(t), e(t), iu(t), id(t), ru(t), rd(t), ρ(t), ε(t)) , n = s+ e+ iu + id + ru + rd.

Lemma 2. The solution of the system (2)-(3) with the non-negative initial condi-
tions are bounded for all t ≥ 0 in the biological feasible region Ω.

Proof. We note from system (2) that,

dn

dt
= µ(1− n) ⇒ n(t) = 1 + (n(0)− 1)e−µt (8)

5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2022                   doi:10.20944/preprints202211.0100.v1

https://doi.org/10.20944/preprints202211.0100.v1


upon solving the differential equation and applying the initial condition.
Thus, n→ 1 as t→∞.
Also, from system (3) we have that

ε̇ = ε0 + α2id − ν2ε ≤ ε0 + α2 − ν2ε since id ≤ 1. (9)
Upon solving the differential inequality (9) we obtain

ε(t) ≤ 1
ν2

(ε0 + α2) +
(
ε(0)− 1

ν2
(ε0 + α2)

)
e−ν2t. (10)

Thus, as t→∞ we have that ε(t) ≤ 1
ν2

(ε0 + α2).
Lastly, from system (3) we have that

ρ̇ = ρ0 + α1ε− ν1ρ ≤ ρ0 + α1

ν2
(ε0 + α2)− ν1ρ since ε ≤ 1

ν2
(ε0 + α2) . (11)

Solving the differential inequality (11) we obtain

ρ(t) ≤ ρ0

ν1
+ α1

ν1ν2
(ε0 + α2) +

(
ρ(0)− ρ0

ν1
+ α1

ν1ν2
(ε0 + α2)

)
e−ν1t. (12)

Thus, as t→∞ we have that ρ(t) ≤ ρ0
ν1

+ α1
ν1ν2

(ε0 + α2). Hence (s, e, iu, id, ru, rd, ρ, ε)
are all bounded in the region Ω. Therefore Ω is biologically feasible.

3.3 Disease-free equilibrium and model reproduction num-
ber

Model system (2)-(3) has a disease-free equilibrium given by

D0 =
(
s0, e0, i0u, i

0
d, r

0
u, r

0
d, ρ

0, ε0
)

=
(

1, 0, 0, 0, 0, 0,Φ, ε0

ν2

)
.

Following the next generation matrix approach in van den Driesche and Watmough
[30] we have that

F =



0 β (1− Φ) βη (1− Φ) 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


and

V =



κ+ µ 0 0 0 0 0 0
−(1− q)κ hd 0 0 0 0 0
−qκ 0 hu 0 0 0 0

0 −σd 0 µ 0 0 0
0 0 −σu 0 µ 0 0
0 0 0 0 0 ν1 −α1
0 −α2 0 0 0 0 ν2


.
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Thus, the basic reproduction number denoted by R0 and defined as the spectral
radius of the matrix FV −1 is given by

R0 = Rd +Ru with

Rd = βκ(1− Φ)(1− q)
(µ+ κ)hd

and Ru = βκ(1− Φ)qη
(µ+ κ)hu

,
(13)

where hd = µ+σd+δd, hu = µ+σu+δu and Φ = ρ0ν2 + ε0α1

ν1ν2
. We fix Φ < 1 in order

for R0 to be biologically meaningful. Here, Rd and Ru represent the contribution
of individuals in classes id and iu respectively.

3.4 Endemic equilibrium
The long term dynamics of the model can be determined by considering the steady
states of the model. Solving the first, third, fourth, fifth and sixth equations of
system (2) together with equations for system (3) in terms of e∗ gives

s∗ = 1− e∗(µ+ κ)
µ

, i∗u = e∗κq

hu
, id = e∗κ(1− q)

hd
, r∗

u = e∗κqσu
µhu

,

r∗
d = e∗κ(1− q)σd

µhd
, ε∗ = ε0hd + α2e

∗κ(1− q)
ν2hd

,

ρ∗ = α1 (ε0hd + α2e
∗κ(1− q)) + ν2ρ0hd
ν1ν2hd

.

(14)

Substituting the expressions (14) into the second equation of system (2) leads to the
following third order polynomial equation in terms of e∗

e∗
(
ae∗2 + be∗ + c

)
= 0 (15)

where

a = α1α2βκ
2(1− q)(κ+ µ) (ηqhd + (1− q)hu) ,

b = −βκ (ηqhd + (1− q)hu) (hdν1ν2(µ+ κ) (1− Φ) + µκα1α2(1− q)) ,

c = µh2
dhuν1ν2(µ+ κ) [R0 − 1] .

(16)

Solving (15) gives e∗ = 0 which corresponds to the disease-free equilibrium or

ae∗2 + be∗ + c = 0. (17)

We solve the quadratic equation (17). Note that

a > 0, b < 0, c > 0 (R0 > 1) and c < 0 (R0 < 1) . (18)

Various possibilities for the existence of the endemic equilibrium are shown in the
Table below. Here, i∗ denotes the number of roots of (17). Thus, we summarise
results on the existence of the endemic equilibrium of system (2)-(3) in Theorem 1.
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a > 0
b < 0

c > 0 c < 0
(R0 > 1) (R0 < 1)

i∗ 2 1

Theorem 1.(H1). System (2)-(3) has a unique endemic equilibrium D∗ = (s∗, e∗, i∗u, i
∗
d, r

∗
u, r

∗
d, ρ

∗, ε∗)
if and only if a > 0, b < 0 and R0 < 1.

(H2). System (2)-(3) has two endemic equilibria D∗
1 = (s∗

1, e
∗
1, i

∗
u1, i

∗
d1, r

∗
u1, r

∗
d1, ρ

∗
1, ε

∗
1)

and D∗
2 = (s∗

2, e
∗
2, i

∗
u2, i

∗
d2, r

∗
u2, r

∗
d2, ρ

∗
2, ε

∗
2) if and only if a > 0, b < 0 and R0 > 1.

3.5 Local stability of the endemic equilibrium point
In this section, we study the local stability of the endemic equilibrium of system
(2)-(3). We employ Theorem 4.1 proven in the work by Castillo-Chavez and Song
[5]. We focus on the application of the theorem and refer readers to [5] for more
details on the theorem. We introduce the following change of variables for easy
application of Theorem 4.1:
s = x1, e = x2, id = x3, iu = x4, rd = x5, ru = x6, ρ = x7, ε = x8, so that

N =
8∑

n=1
xn. We now use the vector notation X = (x1, x2, x3, x4, x5, x6, x7, x8)T .

Then, model system (2)-(3) can be written in the form

dX

dt
= F (t, x(t)) = (f1, f2, f3, f4, f5, f6, f7, f8)T ,

where
dx1

dt
= µ− β(1− ρ)(x3 + ηx4)x1 − µx1 = f1,

dx2

dt
= β(1− ρ)(x3 + ηx4)x1 − (µ+ κ)x2 = f2,

dx3

dt
= (1− q)κx2 − hdx3 = f3,

dx4

dt
= qκx2 − hux4 = f4,

dx5

dt
= σdx3 − µx5 = f5,

dx6

dt
= σux4 − µx6 = f6,

dx7

dt
= ρ0 + α1x8 − ν1x7 = f7,

dx8

dt
= ε0 + α2x3 − ν2x8 = f8.



(19)
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Let β be the bifurcation parameter, R0 = 1 corresponds to

β = β∗ = ν1ν2hdhu(κ+ µ)
κ (ν2 (ν1 − ρ0)− α1ε0) (ηqhd + (1− q)hu)

. (20)

The Jacobian matrix of system (2)-(3) at D0 when β = β∗ is given by

J∗(D0) =



−µ 0 −β∗ (1− Φ) −β∗η (1− Φ) 0 0 0 0
0 −κ− µ β∗ (1− Φ) β∗η (1− Φ) 0 0 0 0
0 (1− q)κ −hd 0 0 0 0 0
0 qκ 0 −hu 0 0 0 0
0 0 σd 0 −µ 0 0 0
0 0 0 σu 0 −µ 0 0
0 0 0 0 0 0 −ν1 α1
0 0 α2ε0 0 0 0 0 −ν2


where hd and hu are defined as before.
It can be noted that for β = β∗, system (2)-(3) has a simple eigenvalue. Thus, the
center manifold theory can be applied to analyse the dynamics of system (2)-(3) near
β = β∗. The right eigenvector for J∗(D0) is given by w = (w1, w2, w3, w4, w5, w6, w7, w8)T ,
where

w1 = ν1ν2hdhu(κ+ µ), w2 = −µν1ν2hdhu, w3 = −κµν1ν2(1− q)hu,
w4 = −κµν1ν2qhd, w5 = −κν1ν2(1− q)σdhu, w6 = −κν1ν2qhdσu,

w7 = −α1α2κµ(1− q)ε0hu, w8 = −α2κµν1(1− q)ε0hu.

The left eigenvector of J∗(D0), associated with the zero eigenvalue at β = β∗ is
given by v = (v1, v2, v3, v4, v5, v6, v7, v8)T , where

v1 = v5 = v6 = v7 = v8 = 0, v2 = κ (ηqhd + (1− q)hu) ,
v3 = hu(κ+ µ), v4 = ηhd(κ+ µ).

Now, we compute a and b and apply Theorem 4.1 in Castillo-Chavez and Song [5].
For system (19), the associated non-zero partial derivatives of F at D0 are given
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below in (21).

∂2f1

∂x1∂x3
= ∂2f1

∂x3∂x1
= −β∗ (1− Φ) , ∂2f1

∂x1∂x4
= ∂2f1

∂x4∂x1
= −β∗η (1− Φ) ,

∂2f1

∂x3∂x7
= ∂2f1

∂x7∂x3
= β∗,

∂2f1

∂x4∂x7
= ∂2f1

∂x7∂x4
= ηβ∗,

∂2f2

∂x1∂x3
= ∂2f2

∂x3∂x1
= β∗ (1− Φ) , ∂2f2

∂x1∂x4
= ∂2f2

∂x4∂x1
= β∗η (1− Φ) ,

∂2f2

∂x3∂x7
= ∂2f2

∂x7∂x3
= −β∗,

∂2f2

∂x4∂x7
= ∂2f2

∂x7∂x4
= −ηβ∗,

∂2f1

∂x3∂β∗ = Φ− 1, ∂2f1

∂x4∂β∗ = −η (1− Φ) ,

∂2f2

∂x3∂β∗ = 1− Φ, ∂2f2

∂x4∂β∗ = η (1− Φ) .
(21)

It thus follows that

a =
4∑
i=3

2v2w1wi
∂2f2

∂x1∂xi
+

4∑
i=3

2v2w7wi
∂2f2

∂xi∂x7

= ξ1 (ξ2 − ξ3)

= ξ1ξ3 (∆− 1)
(
ξ2

ξ3
= ∆

)
,

where

ξ1 = 2βκµν1ν2hu (ηqhd + (1− q)hu) ,
ξ2 = h2

dν1ν2(κ+ µ) (Φ− 1) (hu + ηκq) ,
ξ3 = α1α2ηκ

2µ(1− q)qε0hd + α1α2κ
2µ(1− q)2ε0hu.

Now, we fix ρ0 > ν1. Note that if ∆ > 1, then a > 0 and a < 0 if ∆ < 1. Lastly,

b = κ2µ (α1ε0 + ν2 (ρ0 − ν1)) (ηqhd + (1− q)hu) 2 > 0.

We thus have the following result

Theorem 2. If ∆ < 1 the endemic equilibrium of system (2)-(3) is locally asymp-
totically stable for R0 > 1 but close to one. Otherwise, if ∆ > 1, then model system
(2)-(3) has a backward bifurcation at R0 = 1.

4 Numerical simulations and model validation
The population of South Africa in 2020 was estimated to be 59.54 million [17].
We take the initial time of the epidemic to be the time when the first lock down
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Figure 2: A figure showing the model fitted to the first wave of the epidemic in
South Africa for the following parameter values: µ = 0.01, β = 2.6060,
η = 0.4651, q = 0.9571, κ = 0.3143, σu = 0.54511, σd = 0.9649, α1 = 0.0050,
α2 = 0.0842, δu = 0.1693, δd = 0.5033, ν1 = 0.0957, ν2 = 0.0100, ρ0 = 0.0122.

measures took effect, i.e on the 27th of March 2020. The choice of the initial time is
driven by the fact that there were no non-pharmaceutical interventions before then.
Also, the waves following the first wave had additional interventions that included
vaccination, which were not captured in our model. It is thus apparent that we use
data from the first wave. We chose the end time of the first wave to be the 15th of
October 2020. It is important that there was no clear time set for the end of the
first wave and the start of the second wave. We hypothetically chose a value at the
mid-point of trough between the first and second waves. The initial conditions are
given by

s0 =59539894
59540000 , e0 = 86

59540000 , Id0 = 20
59540000 , Iu0 = 0,

rd0 =0, ru0 = 0, ρ0 = 0, ε0 = 0.

While some of the parameters such as the birth/death rates can be obtained from
[17], the majority of the parameters are generated by the curve fitting algorithm,
the fminsearch, which uses the Nelder-Mead simplex algorithm described in detail in
[14]. The birth/death rate in this case is assumed to be related to the life expectancy
in the year 2020. The life expectancy in South Africa was 65.5 years in the year
2020, translating to µ = 0.015. The number of undetected cases is estimated to be
seven times higher than the reported figures [29]. So q is chosen in such away that
the proportion of undetected cases is seven times that of the detected. We thus have
q = 0.875. Our fitting suggest a value three times the one reported in [29] for South
Africa. The remaining parameters are determined from the fitting.
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(a) (b)

Figure 3: (a) The fraction of detected cases (b) The fraction of undetected cases as
ν1 varies. The subfigures show that the number of cases increase with any increase
in the reduction of NPIs.

4.1 Impact of varying NPIs
NPIs were impacted greatly when changes in the lockdown levels as the COVID-
19 pandemic progressed continued. Relaxations and tightening of NPIs has been
the norm in many countries depending on the number of cases and changes in
hospitalisation levels over time. We consider the relaxation of interventions that
are impacted by fear. As the numbers of cases decrease, the fear of COVID-19
decreases and consequently leading to a relaxation of the NPIs. The impact of NPIs
is modelled by the parameter ν1.

4.2 Impact of varying fear levels
The structure of our model is such that fear resulting from increased numbers of
detected cases can give rise to increased NPIs. The removal in the levels for fear
is modeled by the parameter ν2. We vary ν2 from 0.1 to 0.7 and the fraction of
undetected infectives follows the dynamics in Figure 4. Clearly, the direct impact of
fear does not translate into significant changes in the fraction of infectives. We had
to zoom in to determine the influence of varying ν2. The insert on Figure 4 shows
that increasing the levels of fear results in increased number of infected cases.

4.3 Impact of varying parameters ν1 and κ on R0.

The reduction in the NPIs, modelled by ν1 and the progression to infectiousness,
modelled by κ is of interest. We determine the effects of both parameters by a
contour plot R0 and the two parameters. Figure 5 shows that an increase in the
two parameters leads to an increase in the value of R0. We add a surface of R0 = 1,
to establish the parameter values of ν1 and κ for which the value of R0 = 1. This
is key in determining the persistence of the infection when all other parameters are
assumed to be constant.
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Figure 4: A figure showing the effects of varying ν2.

Figure 5: shows a contour plot for the parameters κ and η.

4.4 Impact varying parameters α1 and β on R0.
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Figure 6: shows a contour plot for the parameters α1 and β.

5 Conclusion
The work considered in this study captures the role of human behavior on the spread
of COVID-19 in South Africa influenced by spread of information. An eight-state
system of ODEs split into two sub-systems capturing human dynamics and social
dynamics is formulated. As can be observed in the social dynamics sub-system,
information on COVID-19 is considered to depend on data for COVID-19 detected
cases which in turn influence changes in human behavior. Baseline values for infor-
mation availability and human behavior are included to add realism to the system
of equations. Theoretical and numerical analysis of the model is carried out. The
model is applied to data on COVID-19 dynamics in South Africa with first wave
data used to validate the model.

Mathematical models that include human behaviour are key to the management
of diseases. COVID-19 treatment remain part of a bigger global research drive to
find therapeutics for the disease. In the mean time, the management and control of
the disease relied on human behaviour influenced by government policies. In South
Africa, restrictions to human movement, personal hygiene, cleaning of surfaces, san-
itizing and social distancing were key to minimising transmission before the advent
of the vaccines on the market. In particular, regulations on restrictions varied as
lockdown levels changed depending on the number of cases and hospitalization rates.

Other functions for f(ε) and g( Id

N
) can be used to model the growth of NPIs and fear

other than the ones presented in this article. One of the weaknesses of this article
is the non inclusion of the hospitalised compartment, who can influence the infor-
mation that impacts the dynamics of the NPIs. The paper can also be extended to
incorporate vaccination as many countries to date have considered this as the main
preventive form of control for COVID-19. These aspects and some other observed
characteristics that influence the trends of spread of COVID-19 can be considered
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as possible extensions to this work.
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