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Abstract: A common challenge in real-world classification scenarios with sequentially appending
target domain data is insufficient training datasets during the training phase. Therefore, conven-
tional deep learning and transfer learning classifiers are not applicable especially when individual
classes are not represented or are severely underrepresented at the outset. Domain Generalization
approaches reach their limits when domain shifts become too large, making them occasionally un-
suitable as well. In many (technical) domains, however, it is only the defect/ worn/ reject classes that
are insufficiently represented, while the non-defect class is often available from the beginning.

The proposed classification approach addresses such conditions and is based on a CNN encoder.
Following a contrastive learning approach, it is trained with a modified triplet loss function using
two datasets: Besides the non-defective target domain class (= 1% dataset), a state-of-the-art labeled
source domain dataset that contains highly related classes (e.g., a related manufacturing error or
wear defect) but originates from a (highly) different domain (e.g., different product, material, or
appearance) (= 2" dataset) is utilized. The approach learns the classification features from the source
domain dataset while at the same time learning the differences between the source and the target
domain in a single training step, aiming to transfer the relevant features to the target domain. The
classifier becomes sensitive to the classification features and — by architecture — robust against the
highly domain-specific context. The approach is benchmarked in a technical and a non-technical
domain and shows convincing classification results. In particular, it is shown that the domain gen-
eralization capabilities and classification results are improved by the proposed architecture, allow-
ing for larger domain shifts between source and target domains.

Keywords: domain generalization; contrastive learning; classification; deep learning; encoder; Zero-
Shot Learning

1. Introduction

The detection of defective parts is of great interest in technical domains. Deep Learn-
ing classifiers have become an important tool e.g., for the evaluation of manufactured
products or the wear monitoring of machine components (Hamadache et al., 2019). There
is an imbalance of defective and non-defective parts, e.g., worn-out ball screw drive (BSD)
spindles are rare compared to faultless BSD spindles and reject parts are rare compared
to good parts. Related to the lifetime of a component (or production line) this effect is
further exacerbated as shown in Figure 1.

The figure depicts a schematic lifetime progression of a component subject to wear
(Schlagenhauf et al., 2022) and the availability of samples of the non-defective class (green)
and the defective class (red). While non-defective parts are available from 0 % lifetime on,
the defective class is only available after the initial occurrence of (visually) detectable
wear. The training of a new classifier for a novel component must have been completed

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202211.0090.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 November 2022 d0i:10.20944/preprints202211.0090.v1

prior to the initial occurrence of e.g., wear!. Figure 1 depicts the corresponding phases of
model training, inference, and improvement of an exemplary classification model. Con-
ventional Deep Learning classifiers require an individual training dataset, containing all
classes (i.e., non-defective and defective classes) (Ben-David et al., 2010). Consequently,
they cannot be utilized for a novel domain/ component due to the lack of samples from
the defective class at the time of model training. Approaches that manage entirely without
target domain data are known as Domain Generalization approaches. Solely trained in
the source domain, they are subsequently used in the target domain without further train-
ing (Zhou et al., 2021). However, their ability for cross-domain generalization requires the
domains to be highly similar regarding their features as well as their context (Ben-David
et al.,, 2010; Torralba & Efros, 2011; Wang et al., 2021). This similarity requirement cannot
always be guaranteed in technical domains. Furthermore, these approaches do not exploit
all the data already available during training, since they are only trained with source-
domain data, although data of the non-defective target domain class would already be
available in most cases (see Figure 1). If the domain shift between source and target do-
mains is too large, so-called Domain Adaptation methods may be used instead. These
Transfer Learning approaches use two datasets for training: First, the model is pretrained
using an already available source domain dataset. Second, a (small) target domain dataset
is used to adapt the model to the target domain. These approaches are particularly data
efficient regarding the target domain since often a small target domain dataset is sufficient
if the model can generalize well enough across the domains (Jaiswal et al., 2020; Pan &
Yang, 2010; Shen et al., 2022; Zhang et al., 2022). However, like the conventional classifiers,
these approaches rely on target domain data from all classes, so they can only be trained
after the initial occurrence of visually detectable wear too (Figure 1).

0% initial (visually) 100 %
lifetime detectable wear lifetime

normalized lifetime [%]
non-defective class

defective class

model
training inference + improvement

< L

Figure 1. Timeline of model training, improvement, and inference in relation to a wear subjected
component’s normalized lifetime.

In this paper, we propose an approach that aims for large domain shifts (like Domain
Adaptation approaches) while being trained without target domain samples of the rare
defective class (like Domain Generalization approaches). It takes advantage of the fact that
during training, data from non-defective target domain components are easily accessible.
Our approach is trained using two datasets: A source domain dataset which is often given
in the state-of-the-art and an additional (incomplete) target domain dataset which exclu-
sively contains non-defective data like it would be generated in a realistic production
setup.

We assume that both the source and target domains contain the same classes (closed
set). Additionally, the features of the defect to be classified are assumed to only differ
marginally between the source domain and the target domain, while the domains

1 The example can also be applied to the initial occurrence of a reject part in a production line. Unless a reject has been produced, a classifier cannot

be trained with data of it.
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themselves may have very different appearances and origins. This allows for a greater
difference (domain gap) between source and target domains while at the same time keep-
ing the cost of target domain dataset creation low. Nevertheless, this is a domain general-
ization approach since the model learns entirely without target domain images of the de-
fective class.
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Figure 2. (non-)defective samples from a strip steel defect dataset (row 1 & 2) and BSD wear dataset
(row 3 & 4).

The use-case depicted in Figure 2 motivates our approach: The top row shows a se-
lection of images from the non-defective class of the Severstal strip steel defect dataset
(Severstal, 2020). The second row depicts four images from the defective class of the same
dataset, showing surface disruptions. These two classes form the source domain dataset,
which was already given in the state-of-the-art. The third row shows four images of a BSD
spindle in good condition without visible wear (Schlagenhauf, 2021). The last row depicts
the same part at a later point in time, now showing surface disruptions after the occur-
rence of visually detectable wear (known as pitting). The task is to classify a random image
of the BSD spindle surface into defective and non-defective (the two classes are high-
lighted by the green border). Since data of defective BSDs are not available during training
(see Figure 1), the model is trained using the Severstal dataset (= source domain, row 1 &
2) in addition to the non-defective BSD class (= target domain, row 3). The training data is
indicated by the blue outline in Figure 2.

In line with our assumptions, the classification feature of the defective pitting class
shares domain-independent similarities across the two domains. The appearance of the
raw strip steel surface, on the other hand, differs from the heavily machined surface of the
ball screw spindle, resulting in a domain shift from the source domain to the target do-
main. The observation of domain-independent defective class features and domain-spe-
cific features of the components themselves (in a non-defective state) is also made by
(Rombach et al., 2022). Besides technical domains, this observation holds for other do-
mains as well: In the food industry for the detection of bruises on fruits and vegetables
(Siddiqui, 2015) or diseased leaves (Chohan et al., 2020). In the healthcare sector for the
detection of disease types (Maqgsood et al., 2019). Or in the context of product remanufac-
turing (e.g., batteries) during the initial diagnosis of products (Kaiser et al., 2021).

2. Related Work
2.1. Object Detection

Modern object detectors achieve striking performance when train and test data are
sampled from the same or similar distributions (Zhang et al., 2022). However, if source
and target domains differ, the generalization abilities of state-of-the-art detectors lack (Y.
He et al., 2019; Zhang et al., 2021, 2022). One main reason described in the literature is the
fact, that an object’s background (= context) is related to the object itself (Zhang et al.,
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2022). Recent studies investigate domain generalization in object detection (DGOD),
where detectors trained in source domains are evaluated on unknown target domains
(Zhang et al., 2022). To the best of our knowledge, there are no approaches that use partial
data from one target domain class, to improve the generalization capabilities of
knowledge previously learned from source domain data.

2.2. Domain Generalization and Domain Adaptation

Domain Generalization (DG) considers scenarios where target data is inaccessible
during model training (Zhou et al., 2021). DG was initially introduced in a medical back-
ground where conventional classifiers (trained using data from historic patients) were not
able to generalize to new patients due to a distribution shift between different patients’
data (Blanchard et al., 2011). For a formal definition of DG, let X be the input (feature)
space (e.g., images) and Y the corresponding target (label) space of a domain defined as
joint distribution Pyy on X X Y. DG intends to learn a domain-invariant prediction model
f:X = Y using only source domain data S such that the prediction error on an unseen
target domain T is minimized. (Wang et al., 2021; Zhou et al., 2021) The generalization
abilities of DG approaches are strongly dependent on the similarity of source and target
datasets S, T as well as their distributions (Ben-David et al., 2010; Torralba & Efros, 2011).
State-of-the-art DG approaches face the problem of overfitting on the source domain, thus
reducing the generalization abilities, especially if the distribution mismatch between S
and T is large (Wang et al., 2021). Regularization and data augmentation techniques as
in (Huang et al., 2021; Li et al., 2017, Wang et al., 2020; Xu et al., 2014; Zhou et al., 2020)
can increase the generalization abilities but may also increase the difficulty of the learning
task, therefore increasing the risk of source-domain overfitting (Wang et al., 2021). The
use case considered in this paper assumes the data of non-defective target domain in-
stances to be already available during model training. There are some investigations on
the improvement of the DG model’s generalization abilities by mixing multiple source
domain datasets during training (e.g., (Wang et al., 2020)). However, the specific dataset
constellation considered in this paper has not been brought up in research yet.

The highly related Domain Adaptation (DA) approaches assume that unlabeled tar-
get domain data are available during training (Kim et al., 2022; Wang et al., 2020; Zhou et
al.,, 2021). As a special case of transfer learning (Pan & Yang, 2010), the idea of DA is to
generalize a model which is pre-trained in the source domain, using unlabeled target do-
main data (Kim et al., 2022). The strong assumption that unbiased target domain data
(including defective and non-defective data) are available during training is often not sat-
isfied in practice (Zhou et al., 2021) and does not coincide with the use case considered in
this paper: We assume that the target domain data given during training are only from
the non-defective class. Classical DA approaches would suffer from the highly biased tar-
get domain data which entirely omit defective data. Our target domain data used during
training carries additional information in that it includes the class label non-defective. How-
ever, this additional information is not yet leveraged by traditional DA approaches de-
signed to work with non-labeled target domain data (Kim et al., 2022).

2.3. Contrastive Learning

Contrastive Learning (CL) is based on a neural network encoder that outputs a dis-
criminative low-dimensional representation (= embedding or feature vector) of an input
sample (Jaiswal et al., 2020). The encoder is trained in a way that related samples (e.g.,
images of the same class or augmentations of the same image) are aligned in the latent
space, while unrelated samples (e.g., images of different classes) are separated (Chen et
al.,, 2020; Jaiswal et al., 2020). A similarity metric is used to measure the distance between
two embeddings (Jaiswal et al., 2020).

According to (Thota & Leontidis, 2021) CL has become a key approach for unsuper-
vised learning tasks with unlabeled datasets (Chen et al., 2020; K. He et al., 2019; Jaiswal
et al., 2020). Broadly, one sample from the unlabeled dataset is taken as a so-called anchor
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and a strongly augmented version of this sample is considered a positive sample. The rest
of the samples in the batch are considered negative samples, regardless of their actual class
(Shen et al., 2022). The encoder is trained in a way that it learns to increase the latent space
distance of anchor and negative samples while decreasing the distance of the strongly re-
lated positive and anchor embeddings. (Jaiswal et al., 2020; Shen et al., 2022) Here, train and
test samples are from the same dataset and distribution. A major problem of the contras-
tive self-supervised architecture is the occurrence of false negatives in the negative samples
(Thota & Leontidis, 2021).

Other CL research activities focus on contrastive approaches for DA and DG prob-
lems (e.g., (Shen et al., 2022; Thota & Leontidis, 2021; Yang et al., 2022)). A key advantage
of CL approaches (concerning the distribution shift from source to target domain) is their
robustness against overfitting the source domain samples (Xue et al., 2022). (Shen et al.,
2022) use unlabeled target domain and partially labeled source domain data during train-
ing. First, an encoder is pretrained using both, unlabeled source, and target data to mini-
mize the distance over augmentations of the same input and maximize the distance over
random pairs of inputs (Shen et al., 2022). Afterwards, a projection head is finetuned using
the labeled source data (Shen et al., 2022). (Thota & Leontidis, 2021) follow an entirely
unsupervised approach, by training only with unlabeled data. However, so far these ap-
plications remain largely underexplored in research (Thota & Leontidis, 2021). Further-
more, in the technical domains considered in this paper, different boundary conditions
apply: Besides a labeled source-domain dataset, there are samples of the non-defective
class of the target domain given in training. This setting is not yet considered in related
work and offers unprecedented opportunities:

e  There are labeled source domain data from which anchor and negative samples can be
chosen. This eliminates the fundamental problem of false-negative negatives during
training described by (Thota & Leontidis, 2021).

e  Sampling positives from the non-defective class of the target domain dataset elimi-
nates the need for data augmentation for the synthetic generation of positive samples.
Therefore, the model is systematically faced with the domain shift during training
since anchors and positives are chosen from different domains. Using a modified loss
function described in the next chapter, we aim to leverage the multi-domain training
data to improve the generalization abilities regarding the unseen defective class of
the target domain.

e  The underlying hypothesis of the decomposability of a defective sample from a tech-
nical domain into domain-independent “defect features” and domain-specific “base
features” is also stated, used, and proven by (Rombach et al., 2022) in the context of
controlled synthetic data generation for out-of-domain defective class samples.

The main contribution of this paper is a modified triplet loss function for classical
contrastive learning approaches. It allows to exploit the previously described opportuni-
ties to transfer the classification features across large domain gaps. Section 0 describes the
general framework, the modified triplet loss function, and the datasets used for the vali-
dation of the proposed approach. The model is then analyzed in technical and non-tech-
nical scenarios and the results are compared to multiple state-of-the-art benchmarks. The
approach shows convincing results and distinctly outperforms the benchmark models.
The discussion of the results is followed by a final summary.

3. Own Approach

The modified contrastive learning approach presented in this paper addresses clas-
sification tasks (e.g., distinguishing defective from non-defective components) in the pres-
ence of insufficient target domain training data. Aiming for improved generalization abil-
ities, the model is trained using easily accessible target domain data of the non-defective
class, as well as a state-of-the-art source domain dataset containing the same defect in a
different domain. However, target domain data of the defective class, showing the feature
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of interest is not used for training. Our approach is tested and analyzed on different do-
mains and its performance is benchmarked with other state-of-the-art classifiers.

3.1. Formalization of the cross-domain generalizing classification task

Following (Kim et al., 2022) there is a source-domain S and a target-domain T given
by S ={(x¥, yOI_, and T = {(x]*, y")}¥_,, where x; is a vector of K images and xr
is a vector of M images. ys and y; are vectors of corresponding (binary) class labels re-
spectively. The value range of the labels depends on the task and is often given by y7* €
[defect,noDefect] in the case of binary tasks in technical domains. Since this paper has a
technical background, the following notation is used hereinafter for all domains:

— k L knK-i-1 —
Strain - {(xSJ.VS )}k:l - Strain,defect U Strain,noDefect
— k kK —
Stest - {(xS'YS )}k:K~i - Stest,defect U Stest,noDefect
_ m ,m\\M-Jj-1 _
Ttrain - {(xT » YT )}m=1 - Ttrain,defect u Ttrain,noDefect

Tiest = {(x;"n' Y;‘n)}%zM-j = Ttest,defect U Ttest,noDefect
with train-test-split i,j € (0,1).

The objective is to train a classifier that predicts the label y7* of a testimage x7* from
the target domain Ties . The model is trained using Siainaefect> Strainnopefect> and
Tirainnopefect and a specific triplet loss function (see 0). Since Tiyqin gefece 1S NOt available
during training, the model must generalize well across domains to classify samples from
Tese correctly.

3.2. Datasets

Our research was initially conducted in technical domains and afterward verified in
non-technical domains. The technical domain is represented by modified samples of the
Severstal steel defect dataset (Severstal, 2020) and a selection of the Ball Screw Drive (BSD)
Surface Defect Dataset for Classification (Schlagenhauf, 2021).

The Severstal dataset contains images of strip steel surfaces showing either no defect
or defects from six different classes. Simulating a state-of-the-art source domain dataset,
we cropped the samples into smaller 224x224 pixel images showing either no defect (21806
pcs) (see Figure 4, Sirqinnopesect) Or defects of type patch (2018 pcs) (see Figure 4,
Strain,defect)- This defect class was selected since it has the greatest similarity to the pitting
defects of the BSD dataset. The BSD dataset on the other hand simulates a target domain
dataset. The dataset contains 150x150 pixel RGB images of the surface of ball screw spin-
dles. We use a selection of 1896 images showing no surface defects and little oil contami-
nation as non-defective target domain samples (see Figure 4, Tyginnopefect)- A selection
of 5240 images showing pitting defects due to extensive wear forms the defective target
domain class. This class is assumed to be not available during training. Even though the
two datasets show different objects with different shapes and surface characteristics, the
defect feature itself shares the main characteristics in both datasets, making them a suita-
ble pair of source and target domain datasets. The datasets are depicted in Figure 2.

The non-technical domain is represented by an apple leaves dataset and a bean leaves
dataset. The apple leaves dataset is a subset of the PlantVillage database that contains
54309 256x256 pixel RGB images of 29 different classes of healthy and diseased plant
leaves from 14 different species (Hughes & Salathe, 2015). The apple dataset consists of
1645 healthy images and only 276 diseased images (apple rust) and acts as the source do-
main dataset. The bean leaves dataset consists of 1296 images with a size of 500x500 pixels.
The dataset is divided into one healthy and two diseased classes, of which the angular leaf
spot disease class is used for our research due to its greater visual similarities to the dis-
ease characteristics of the apple leaves (Makerere Al Lab, 2020). The bean leaves were
recorded in nature, while the apple leaves were recorded under laboratory conditions.
Consequently, the two datasets differ not only in leaf shape, -color, and -surface texture
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but also in terms of background and lighting conditions, as depicted in Figure 11. The
bean leaves dataset simulates the target domain. All images are scaled to a size of 224x224
pixels and each dataset is split into a train, validation, and test set.

3.3. Model architecture

The model architecture of our binary classifier is depicted in Figure 3. It consists of a
trainable CNN encoder that outputs a 512-dimensional embedding vector from any given
image of size 224x224. An optional projection head can compute optimized projection vec-
tors from the embeddings. The model is trained using a non-defective target domain image
(Positive), a defective source domain image (Negative), and a non-defective source domain
image (Anchor). A modified contrastive triplet loss function (see Chapter 0) which quan-
tifies the model’s training performance is used to optimize the encoder (and the projection
head if applicable). During inference, the model is used to predict class labels of unlabeled
Anchor images from the target domain (= classification task). The previously trained en-
coder generates embedding vectors from the Anchor image and the two reference images
(Positive and Negative). The Positive belongs to the non-defective class of source or target
domain. The Negative is part of the defective source domain class since defective target do-
main samples are not available at the beginning of the inference phase. A distance metric
is used to determine the distances d(4,P), d(4, N) between the embeddings/projections
of the Anchor image and the Positive and Negative reference images. The class of the Anchor
image is then determined based on the shorter of the two distances. To increase robustness
against outliers, a single anchor image is classified using many positives and negatives by
averaging the individual distances at the end.

modified contrastive loss

image space

training

encoder projection head
(optional)

O]

embeddings
feature space

5x5 conv, 64
max. pooling
3%3 conv, 128
max. pooling
3x3 conv, 264
max. pooling
3x3 conv, 264
max. pooling
3%3 conv, 264
max. pooling
3%3 conv, 512
max. pooling
flatten
fully connetd.
512, relu
fully connetd.
64, linear

distance based classification

inference

Positive Negative
Td4P) | dAN)
Anchor

image space

Figure 3. Model architecture of the proposed classifier.

3.4. Enhancement of the triplet loss function for cross-domain transfer of features

The encoder is trained with a contrastive triplet loss function such that images of the
same class lead to related embeddings and images of different classes lead to diverging
embeddings - regardless of their domains.

The original triplet loss function is given by L = max(d(4,P)—d(4,N)+ m,,0)
(Equation 1). With distance d(4,P) between Anchor and Positive embeddings and dis-
tance d(A4,N) between Anchor and Negative embeddings. The margin parameter m,
maintains a minimum difference between the Positive and Negative classes, resulting in
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self-contained, non-mixed embedding clusters. d(. ) can be any similarity metric, how-
ever, cosine similarity or Euclidean distance are commonly used. Figure 4 visualizes the
loss function by the orange arrows. By minimizing L during training, d(4,N) is maxim-
ized while d(A, P) is minimized. Therefore, embeddings of images of the same class (Sev-
erstal noDefect & BSD noDefect) become less distant from each other (despite their differ-
ent domains) while embeddings of images of different classes (Severstal noDefect & Sev-
erstal defect) diverge.

Negative

331

Strain,no})efect

Severstal, Severs;tal,
noD_efect defect

ﬂ’. N)
max

1 I
Positive not available
du aining
o
(]
=
(P}
3
= Ttraffz;,noDefect
BSD, BSD,
noDefect defect

Figure 4. Cross-domain Contrastive Learning using modified Triplet Loss function.

In addition to the source domain data, the proposed model leverages the easily ac-
cessible target domain samples of the non-defective target domain class Tiegt nopefece dur-
ing training, as depicted in Figure 4. Therefore, the Positives belong to the target domain,
while the Anchors belong to the source domain, resulting in two different domains repre-
senting one class of non-defectives. By utilizing this setup, we aim for improved domain
generalization abilities. However, using the basic contrastive triplet loss in this setup
would result in an encoder that learns to disregard domain-related dissimilarities between
Anchor (source domain) samples and Positive (target domain) samples to comply with the
distance minimization of d(4, P). This could lead to an oversimplified encoding of the
target domain samples. Especially if the domain shift between Anchor (source domain)
and Positive (target domain) is large compared to the interclass difference between the
defective and non-defective classes, an oversimplification by the encoder is likely. This can
result in a classification bias towards the non-defective class since target domain samples
are oversimplified as Positives while disregarding their actual class, as we will show in
Chapter 4.

To address this issue, we extend the basic triplet loss by an additional term that yields
Equation 2. We additionally demand the maximization of the distance between the non-
defective target-domain embeddings (Positives) and the defective source-domain embed-
dings (Negatives) (cyan arrow in Figure 4), while still demanding a small distance between
the two non-defective embeddings (Positives and Anchors). This directs the focus away from
domain-specific features towards class-specific features by aiming for distance maximiza-
tion in the case of different classes (Positives & Negatives), while distance minimization is
aimed for identical classes (Positives & Anchors). Whether the distance of two samples is
maximized or minimized is thus independent of their domains and depends only on their

classes:
min L = min (max(d (4, P) — d(A,N) + m;,0) + max(d(4, P) —d(P,N) + m,,0))
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(Equation 2)
The colors of the two summands match the colors of the arrows in Figure 4. By ex-
plicitly maximizing the distance between Positives and Negatives d(P,N) while demand-
ing a small Anchor-Positive-Distance, we aim for a large interclass distance regardless of
the domain shift from source to target domains. Our research was conducted using the
Euclidean distance metric d(.) . Trained using Sgginnobefect » Straindefece and
Tirainnopefect the model then classifies unlabeled T, samples with positive and nega-
tive reference images, either chosen from S;.5; Or Tiese- The influence of the reference im-
age datasets will be further investigated below.

4. Results and Discussion
4.1. Experimental results of contrastive learning approaches

The proposed approach is analyzed in a typical technical scenario (Schlagenhauf,
2021): The task is to classify BSD spindle images (target domain) into defectives and non-
defectives. The model is trained using Anchors from the non-defective and Negatives from
the defective class of the state-of-the-art Severstal steel defect dataset respectively (=
source domain). The Positives belong to the non-defective class of the BSD dataset (= target
domain). The dataset setup during training and inference is depicted in Figure 5. The
model is trained without defective target domain samples at all. Using 1000 Positives, Neg-
atives, and Anchors each, the model is trained for 150 epochs with a batch size of 60 and
the modified contrastive triplet loss function (Equation 2). The margin parameters m,
and m, are set to 0.2. Once training is completed, the non-defective Severstal Anchor im-
ages are swapped for unlabeled target domain (BSD) images in the inference phase. The
trained encoder generates low-dimensional embeddings from 200 defective Severstal Neg-
atives and 200 non-defective BSD Positives (= reference images), as well as from 80 equally
distributed BSD test images (Anchors). Each of the 40 defective and 40 non-defective BSD
test samples is classified based on its Euclidean distance to the 200 positive and 200 nega-
tive embeddings.

Anchor Negative Anchor Negative

BSD, Sevetal.
unknown defect

Severstal, Severstal,
noDetect defect

Positive Positive

BSD,
noDefect

BSD,
noDefect

Figure 5. Dataset setup during training and inference of initial test with Severstal strip steel and
BSD datasets.

According to the confusion matrix (Figure 6), 100 % of the non-defective BSD samples
and 95 % of the defective BSD samples are correctly classified. The test results provide
evidence that the model can learn the characteristic features of the defect from the Sev-
erstal strip steel dataset (source-domain) and can successfully perform the domain shift
towards the BSD samples (target-domain).
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Figure 6. Confusion matrix of the BSD defect classifier that uses our improved triplet loss and is
trained on the Severstal strip steel defect dataset and the non-defective class of a BSD defect dataset.

In the following, we present two benchmark tests that demonstrate the performance
improvements of our proposed approach. The first benchmark model is trained using
only Severstal strip steel data with the basic, unmodified triplet loss function (Equation
1). Figure 7 depicts the modified training setup. The inference setup remains untouched.
The confusion matrix shown in Figure 8 testifies the inferior domain generalization abili-
ties of the benchmark model compared to our proposed model: While all non-defective
images are still correctly classified, more than four times as many defective images are
misclassified as non-defective, leading to a False Positive rate of 22.5 %.

Anchor Negative

Anchor Negative

BSD, Severstal,

Severstal,

noDefect defect unknown defect
Positive Positive

Severstal, BSD,

noDefect noDefect

Figure 7. Dataset setup for the benchmark test with basic triplet loss and training on source-domain
data only.
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Figure 8. Confusion matrix for the benchmark test of a BSD defect classifier that uses basic triplet
loss and is solely trained on the Severstal strip steel defect dataset.
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Trained exclusively with source domain data, the benchmark model shows inferior
domain generalization capabilities compared to the proposed model. This results in a clas-
sification bias towards the non-defective class, leading to the increased False Positive rate.

Further studies show that the inference performance of the benchmark model is even
decreased if the Positives are no longer generated from target domain samples but from
source domain samples. In this case, the False Positive rate further increases from 22.5 %
to 60 %.

Compared to the proposed approach, the previous test (first benchmark) was de-
prived of information, since the healthy target domain class was not given during train-
ing. Therefore, the following benchmark experiment is trained with the same data as our
proposed approach: The Anchors and Positives are composed of the non-defective target
domain- and source domain classes. However, the benchmark model does not use the
modified loss function. Instead, it uses the basic loss function already utilized in the pre-
vious benchmark model. The dataset setup is depicted in Figure 9.

Anchor Negative Anchor Negative

Sev. & BSD,  Severstal,

BSD,
noDefect defect unknown defect
Positive Positive
Sev. & BSD, BSD,
noDefect noDefect

Figure 9. Modified training setup for the second benchmark test using basic triplet loss and source
& target domains for training.

The inference setup remains untouched again.

The previously observed classification bias towards the non-defective class is further
increased by training with the basic triplet loss. According to Figure 10 the False Positive
rate increases from 22.5 % (previous benchmark test) to 75 %. Even though the model’s
recall of 0.97 is good, its low precision makes the model unusable for this classification

task.
Y ) ground-truth:
1- Ngg";‘:i-‘ve Sl defective: 50%
D & S /e - i 0
TE2  2500% [EESIRZEN " s
L predictions:
gL defective: 13.75%
= é 2 False non-def.: 86.25%
%= - Negative T
3L 2.50 % precision: (.57
E= recall: 0.97
=]

defective non-defective
(Negative)  (Positive)
Predicted Label

Figure 10. Confusion matrix of the second benchmark test using basic triplet loss and training on
the Severstal strip steel defect dataset and the non-defective class of a BSD defect dataset.
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The three experiments show that our proposed approach can significantly outper-
form the classification performance of the two benchmark models by systematic training
with additional data from the target domain and the modified triplet loss (Equation 2).

In the following, the generalization abilities of the proposed approach are further
investigated in non-technical domains using two plant leaf datasets: The model is trained
with just 275 sample images of healthy apple leaves as Anchors, 275 samples of diseased
apple leaves as Negatives and 275 samples of the healthy (non-defective) class of a bean
leaves dataset as Positives (Hughes & Salathe, 2015), (Makerere Al Lab, 2020). There is a
significant difference in the context of the two domains (see Chapter 0), whereas the dis-
eased spot features (brown spots) appear similar in both domains, as depicted in Figure
11.

Anchor Negative

Anchor Negative

bean, apple,
unknown diseased

Positive

appl, apple,

healthy diseased
Positive

fraining

0
=]
=
2

&

R=

y

o

healthy

healthy

Figure 11. Dataset setup during training and inference of initial test with apple and bean leaves
datasets.

The model is trained for 200 epochs with a batch size of 60 and the modified triplet
loss function given by (Equation 2). Despite the small training dataset size, no overfitting
was observed, which is also consistent with (Xue et al., 2022). The authors attribute this to
the random selection of triplets from Anchors, Positives, and Negatives, ensuring that no
triplet occurs more than once in the same constellation during training.

The trained encoder generates low-dimensional embeddings from 80 diseased apple
leaves (Negatives) and 80 healthy bean leaves (Positives) (= reference images), as well as
from 80 equally distributed bean leaf test images (Anchors) (see Figure 11). Each of the 40
diseased and 40 healthy bean test samples is classified based on its Euclidean distance to
the 80 positive and 80 negative embeddings. According to the confusion matrix (Figure
12), 100 % of the healthy bean leaves and 85 % of the diseased bean leaves are correctly
classified. The test results provide evidence that the model can learn the characteristic
features of the disease from the apple leaves dataset (source-domain) and can successfully
perform the domain shift towards the target domain (bean leaves). Furthermore, the do-
main generalization abilities are improved by the provided healthy target domain class
samples as the following benchmark test testifies:
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Figure 12. Confusion matrix of the bean leaves classifier that uses our improved triplet loss and is
trained on an apple leaves dataset and the healthy class of a bean leaves dataset.

The benchmark model is trained using only apple leaves data with the basic triplet
loss function (Equation 1). Figure 13 depicts the modified dataset setup during training
and the unchanged inference setup.

Anchor

Anchor Negative Negative

&

appl,
healthy
Positive

apple,
diseased

bean,
unknown

Positive

apple,
diseased

Figure 13. Modified training setup for the benchmark test with basic triplet loss and training on
source-domain data only.

The confusion matrix shown in Figure 14 testifies the poor domain generalization
abilities of the benchmark test. Only 55 % of the healthy — and 62.5 % of the diseased bean
leaves test dataset samples are correctly classified. The False Positive Rate is more than
doubled compared to our proposed approach. Almost every second healthy (“non-defec-
tive”) test sample is falsely classified as diseased (“defective”), whilst our proposed ap-
proach correctly classifies all healthy test images.


https://doi.org/10.20944/preprints202211.0090.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 November 2022 d0i:10.20944/preprints202211.0090.v1

u T - .
=2 T BN = ocrive: s0v%
5 s ativ Positi i
GRR  Negative Positive non-def:: 50%
E 3z % 62.50 % 37.50 % "
o predictions:
¢ 9 defective: 53.75%
E =10 True non-def.: 46.25%
SE Positive =
9o 55.00 % precision: 0.59
= recall: 0.55
=

defective non-defective
(Negative)  (Positive)
Predicted Label

Figure 14. Confusion matrix of the bean leaves classifier that uses basic triplet loss and is solely
trained on an apple leaves dataset.

Accordingly, the benchmark model trained only with source domain data is not able
to generalize to the target domain.

Again, further studies show that the inference performance of the benchmark model
is decreased if the Positives are no longer generated from target domain samples but source
domain samples. In this case, the False Positive rate further increases from 37.5 % to
92.5 %.

Again, the benchmark model was deprived of information since the healthy target
domain class is not given during training. Therefore, the next benchmark experiment uses
the same model and basic loss function as the previous benchmark, however, now trained
on the same database as the initial plant leaves experiment, thus combining source and
target domain data. The dataset setup is depicted in Figure 15.

Anchor Neiative Anchor Negative

apple & apple, bean, apple,
ean, healthy  diseased unknown diseased

Positive Positive

Figure 15. Modified training setup for the second benchmark test using basic triplet loss and source
& target domains during training.

Even though the recall improves from 0.55 to 0.85 due to the additional training data,
the model’s ability to classify diseased bean leaf samples decreases as posed by the con-
fusion matrix (Figure 16). With a False Positive rate of 45 %, the model is again highly
biased towards the positive (healthy) class.
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Figure 16. Confusion matrix of the second benchmark test using basic triplet loss and training on an
apple leaves dataset and the healthy class of a bean leaves dataset.

The three experiments show that the findings from the technical domain also apply
to the non-technical domain.

4.2. Basic object detection benchmark

A very different yet common image classification approach uses an object detector
that classifies a sample as defective if at least one defect is detected. The main drawback
of state-of-the-art approaches often is the insufficient generalization ability if source and
target domains differ too much. To analyze the model’s performance in the present case,
we confronted a state-of-the-art region-based Convolutional Neural Network (R-CNN)
object detection model with the domain transfer from BSD to Severstal data. Trained in
the BSD domain, the model provides good classification results within this domain. How-
ever, the model is not able to generalize enough to manage the domain shift from BSD to
Severstal data: None of the defects on the Severstal samples are detected. The findings
indicate that the generalization abilities of the state-of-the-art object detection model are
insufficient for the use case considered here.

4.3. Discussion: Domain generalization without target domain data

Table 1 summarizes the results of the presented experiments. The proposed contras-
tive learning model (experiments 1, 5) was developed for applications that require the
model to be trained without a complete target domain dataset. Learning from a source
domain dataset and the early available target domain data, the model must generalize
across large domain disparities. Experiments 2 and 6 prove that this model is not able to
generalize sufficiently when trained on source-domain data only (without target domain
data).
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Table 1. Experimental results.

# Experiment True False True False Contrast. Trainine Data
P Positive Negative Negative Positive Loss 8
1 Def g i : i :
poreelDefects, 0060 00%  950%  50% Equation2 1 Serainmover: P Torainnover N
Our Model Strain,defect
Steel Defects, 0y 00%  775%  225% EBquation1 ‘v Strainmopess Ps Serainnover, — N:
Benchmark 1 Straindefect
Steel Defects, o, -0 o509 250%  750% Equation1 > 5 Teramnovers P: S Teramnoper,  N:
Benchmark 2 Strain,defect
Steel Defects,
4 Ob;. 100.0 % 0.0 % 0.0 % 100.0 % - Train: Sigin,  Test: Tirgin
Detection
L . ) . ) c
AVeS  1000%  00%  850% 150% Equation2 ' Serainmober Pt Teraimmnopers N
Our Model Strain,defect
Leaves, o509  450%  625%  375% Equationl 1 Strainmodess P: Seamnover,  N:
Benchmark 1 Straindefect
L y . . ) [ )] : ) [ ] :
CaVeS g50%  150%  550%  450% Equation1 ‘v S Terammovers F:S.Teramnoper, N
Benchmark 2 Strain,defect

4.4. Discussion: The modified loss function leverages additional target domain training data to
improve domain generalization

Additionally providing non-defective target domain class data (Tyrginnoper) during
the training of the base model (basic triplet loss, Equation 1) strongly increases the false
positive rate as demonstrated by experiments 3 and 7. This classification bias limits the
model’s usability. To leverage the additional target domain data and improve the gener-
alization capability, the proposed model with its modified loss function (see Equation 2)
must be used for training, as testified by experiments 1 and 4. The modified loss function
(Figure 4) allows the model to:

e use the source-domain dataset with its defective (N) and non-defective (A4) classes

to systematically learn the features that characterize the defect (by maximizing
d(4,N)).

e use the non-defective source-domain class (4) and non-defective target-domain
class (P) tosuppress the (extraneous) context, that differs between source and target
domains (by minimizing d(4, P)).

e  prevent the target domain classification bias towards the non-defective class (P) as
a result of the one-sided training with non-defective target domain samples (P) (by
maximizing d(P, N)).

The modified triplet loss facilitates systematic learning of the domain-independent
features of defects, regardless of the domain-specific context.

4.5. Discussion: Data efficiency and robustness against overfitting

With 275 samples per dataset, the training datasets of the non-technical domain are
small. Even without a pre-trained network, our model is still able to learn the classification
task sufficiently well (see experiment 5). Furthermore, no overfitting was observed even
with such limited training data. This is attributed to the specific characteristics of the con-
trastive learning approach: The random selection of triplets from Anchors, Positives, and
Negatives mostly ensures that no triplet occurs more than once in the same constellation
during training. This leads to a large variety of training triplets, where each image can be
used multiple times in different triplet constellations.


https://doi.org/10.20944/preprints202211.0090.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 November 2022 d0i:10.20944/preprints202211.0090.v1

5. Conclusion

We proposed a modified contrastive learning approach with an extended triplet loss
function. The approach targets classification tasks where not all target domain classes are
already available during training. Therefore, an additional state-of-the-art source domain
dataset that contains all classes and shows the same defect/ classification feature but orig-
inates from a (highly) different domain is involved in training. By the combination of both,
the source and the (partial) target domain datasets, our model systematically learns the
relevant features for the classification and masters the domain shift from source to target
domain. This was analyzed in two different use cases. The experimental results demon-
strate that our proposed approach leverages the limited target domain data which is al-
ready available during training and outperforms a state-of-the-art object detection-based
classifier and contrastive learning approaches. Compared to zero-shot methods, which
only train with source-domain data, and one-shot/few-shot methods, which usually re-
quire target domain samples of all classes (especially of the "defective class"), our model
for the first time can make good use of the limited target domain data. Therefore, it can be
trained and used at an early stage when other models either cannot be trained yet or can-
not achieve sufficient classification results with the limited data available.

So far, the proposed approach only addresses binary classification tasks. In the next
step, the approach will be extended to multi-class problems. Another research topic will
be the analysis of different loss functions that follow the same basic idea. Furthermore,
instead of classification problems, the proposed approach will be integrated into object-
detection problems.
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