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Abstract: A common challenge in real-world classification scenarios with sequentially appending 

target domain data is insufficient training datasets during the training phase. Therefore, conven-

tional deep learning and transfer learning classifiers are not applicable especially when individual 

classes are not represented or are severely underrepresented at the outset. Domain Generalization 

approaches reach their limits when domain shifts become too large, making them occasionally un-

suitable as well. In many (technical) domains, however, it is only the defect/ worn/ reject classes that 

are insufficiently represented, while the non-defect class is often available from the beginning. 

The proposed classification approach addresses such conditions and is based on a CNN encoder. 

Following a contrastive learning approach, it is trained with a modified triplet loss function using 

two datasets: Besides the non-defective target domain class (= 1st dataset), a state-of-the-art labeled 

source domain dataset that contains highly related classes (e.g., a related manufacturing error or 

wear defect) but originates from a (highly) different domain (e.g., different product, material, or 

appearance) (= 2nd dataset) is utilized. The approach learns the classification features from the source 

domain dataset while at the same time learning the differences between the source and the target 

domain in a single training step, aiming to transfer the relevant features to the target domain. The 

classifier becomes sensitive to the classification features and – by architecture – robust against the 

highly domain-specific context. The approach is benchmarked in a technical and a non-technical 

domain and shows convincing classification results. In particular, it is shown that the domain gen-

eralization capabilities and classification results are improved by the proposed architecture, allow-

ing for larger domain shifts between source and target domains. 

Keywords: domain generalization; contrastive learning; classification; deep learning; encoder; Zero-

Shot Learning 

 

1. Introduction 

The detection of defective parts is of great interest in technical domains. Deep Learn-

ing classifiers have become an important tool e.g., for the evaluation of manufactured 

products or the wear monitoring of machine components (Hamadache et al., 2019). There 

is an imbalance of defective and non-defective parts, e.g., worn-out ball screw drive (BSD) 

spindles are rare compared to faultless BSD spindles and reject parts are rare compared 

to good parts. Related to the lifetime of a component (or production line) this effect is 

further exacerbated as shown in Figure 1. 

The figure depicts a schematic lifetime progression of a component subject to wear 

(Schlagenhauf et al., 2022) and the availability of samples of the non-defective class (green) 

and the defective class (red). While non-defective parts are available from 0 % lifetime on, 

the defective class is only available after the initial occurrence of (visually) detectable 

wear. The training of a new classifier for a novel component must have been completed 
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prior to the initial occurrence of e.g., wear1. Figure 1 depicts the corresponding phases of 

model training, inference, and improvement of an exemplary classification model. Con-

ventional Deep Learning classifiers require an individual training dataset, containing all 

classes (i.e., non-defective and defective classes) (Ben-David et al., 2010). Consequently, 

they cannot be utilized for a novel domain/ component due to the lack of samples from 

the defective class at the time of model training. Approaches that manage entirely without 

target domain data are known as Domain Generalization approaches. Solely trained in 

the source domain, they are subsequently used in the target domain without further train-

ing (Zhou et al., 2021). However, their ability for cross-domain generalization requires the 

domains to be highly similar regarding their features as well as their context (Ben-David 

et al., 2010; Torralba & Efros, 2011; Wang et al., 2021). This similarity requirement cannot 

always be guaranteed in technical domains. Furthermore, these approaches do not exploit 

all the data already available during training, since they are only trained with source-

domain data, although data of the non-defective target domain class would already be 

available in most cases (see Figure 1). If the domain shift between source and target do-

mains is too large, so-called Domain Adaptation methods may be used instead. These 

Transfer Learning approaches use two datasets for training: First, the model is pretrained 

using an already available source domain dataset. Second, a (small) target domain dataset 

is used to adapt the model to the target domain. These approaches are particularly data 

efficient regarding the target domain since often a small target domain dataset is sufficient 

if the model can generalize well enough across the domains (Jaiswal et al., 2020; Pan & 

Yang, 2010; Shen et al., 2022; Zhang et al., 2022). However, like the conventional classifiers, 

these approaches rely on target domain data from all classes, so they can only be trained 

after the initial occurrence of visually detectable wear too (Figure 1). 

 

Figure 1. Timeline of model training, improvement, and inference in relation to a wear subjected 

component’s normalized lifetime. 

In this paper, we propose an approach that aims for large domain shifts (like Domain 

Adaptation approaches) while being trained without target domain samples of the rare 

defective class (like Domain Generalization approaches). It takes advantage of the fact that 

during training, data from non-defective target domain components are easily accessible. 

Our approach is trained using two datasets: A source domain dataset which is often given 

in the state-of-the-art and an additional (incomplete) target domain dataset which exclu-

sively contains non-defective data like it would be generated in a realistic production 

setup.  

We assume that both the source and target domains contain the same classes (closed 

set). Additionally, the features of the defect to be classified are assumed to only differ 

marginally between the source domain and the target domain, while the domains 

 
1 The example can also be applied to the initial occurrence of a reject part in a production line. Unless a reject has been produced, a classifier cannot 

be trained with data of it. 
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themselves may have very different appearances and origins. This allows for a greater 

difference (domain gap) between source and target domains while at the same time keep-

ing the cost of target domain dataset creation low. Nevertheless, this is a domain general-

ization approach since the model learns entirely without target domain images of the de-

fective class. 

 

Figure 2. (non-)defective samples from a strip steel defect dataset (row 1 & 2) and BSD wear dataset 

(row 3 & 4). 

The use-case depicted in Figure 2 motivates our approach: The top row shows a se-

lection of images from the non-defective class of the Severstal strip steel defect dataset 

(Severstal, 2020). The second row depicts four images from the defective class of the same 

dataset, showing surface disruptions. These two classes form the source domain dataset, 

which was already given in the state-of-the-art. The third row shows four images of a BSD 

spindle in good condition without visible wear (Schlagenhauf, 2021). The last row depicts 

the same part at a later point in time, now showing surface disruptions after the occur-

rence of visually detectable wear (known as pitting). The task is to classify a random image 

of the BSD spindle surface into defective and non-defective (the two classes are high-

lighted by the green border). Since data of defective BSDs are not available during training 

(see Figure 1), the model is trained using the Severstal dataset (= source domain, row 1 & 

2) in addition to the non-defective BSD class (= target domain, row 3). The training data is 

indicated by the blue outline in Figure 2. 

In line with our assumptions, the classification feature of the defective pitting class 

shares domain-independent similarities across the two domains. The appearance of the 

raw strip steel surface, on the other hand, differs from the heavily machined surface of the 

ball screw spindle, resulting in a domain shift from the source domain to the target do-

main. The observation of domain-independent defective class features and domain-spe-

cific features of the components themselves (in a non-defective state) is also made by 

(Rombach et al., 2022). Besides technical domains, this observation holds for other do-

mains as well: In the food industry for the detection of bruises on fruits and vegetables 

(Siddiqui, 2015) or diseased leaves (Chohan et al., 2020). In the healthcare sector for the 

detection of disease types (Maqsood et al., 2019). Or in the context of product remanufac-

turing (e.g., batteries) during the initial diagnosis of products (Kaiser et al., 2021). 

2. Related Work 

2.1. Object Detection 

Modern object detectors achieve striking performance when train and test data are 

sampled from the same or similar distributions (Zhang et al., 2022). However, if source 

and target domains differ, the generalization abilities of state-of-the-art detectors lack (Y. 

He et al., 2019; Zhang et al., 2021, 2022). One main reason described in the literature is the 

fact, that an object’s background (= context) is related to the object itself (Zhang et al., 
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2022). Recent studies investigate domain generalization in object detection (DGOD), 

where detectors trained in source domains are evaluated on unknown target domains 

(Zhang et al., 2022). To the best of our knowledge, there are no approaches that use partial 

data from one target domain class, to improve the generalization capabilities of 

knowledge previously learned from source domain data. 

2.2. Domain Generalization and Domain Adaptation 

Domain Generalization (DG) considers scenarios where target data is inaccessible 

during model training (Zhou et al., 2021). DG was initially introduced in a medical back-

ground where conventional classifiers (trained using data from historic patients) were not 

able to generalize to new patients due to a distribution shift between different patients’ 

data (Blanchard et al., 2011). For a formal definition of DG, let � be the input (feature) 

space (e.g., images) and � the corresponding target (label) space of a domain defined as 

joint distribution ��� on � × �. DG intends to learn a domain-invariant prediction model 

�: � → � using only source domain data � such that the prediction error on an unseen 

target domain � is minimized. (Wang et al., 2021; Zhou et al., 2021) The generalization 

abilities of DG approaches are strongly dependent on the similarity of source and target 

datasets �, � as well as their distributions (Ben-David et al., 2010; Torralba & Efros, 2011). 

State-of-the-art DG approaches face the problem of overfitting on the source domain, thus 

reducing the generalization abilities, especially if the distribution mismatch between � 

and � is large (Wang et al., 2021). Regularization and data augmentation techniques as 

in (Huang et al., 2021; Li et al., 2017; Wang et al., 2020; Xu et al., 2014; Zhou et al., 2020) 

can increase the generalization abilities but may also increase the difficulty of the learning 

task, therefore increasing the risk of source-domain overfitting (Wang et al., 2021). The 

use case considered in this paper assumes the data of non-defective target domain in-

stances to be already available during model training. There are some investigations on 

the improvement of the DG model’s generalization abilities by mixing multiple source 

domain datasets during training (e.g., (Wang et al., 2020)). However, the specific dataset 

constellation considered in this paper has not been brought up in research yet. 

The highly related Domain Adaptation (DA) approaches assume that unlabeled tar-

get domain data are available during training (Kim et al., 2022; Wang et al., 2020; Zhou et 

al., 2021). As a special case of transfer learning (Pan & Yang, 2010), the idea of DA is to 

generalize a model which is pre-trained in the source domain, using unlabeled target do-

main data (Kim et al., 2022). The strong assumption that unbiased target domain data 

(including defective and non-defective data) are available during training is often not sat-

isfied in practice (Zhou et al., 2021) and does not coincide with the use case considered in 

this paper: We assume that the target domain data given during training are only from 

the non-defective class. Classical DA approaches would suffer from the highly biased tar-

get domain data which entirely omit defective data. Our target domain data used during 

training carries additional information in that it includes the class label non-defective. How-

ever, this additional information is not yet leveraged by traditional DA approaches de-

signed to work with non-labeled target domain data (Kim et al., 2022). 

2.3. Contrastive Learning 

Contrastive Learning (CL) is based on a neural network encoder that outputs a dis-

criminative low-dimensional representation (= embedding or feature vector) of an input 

sample (Jaiswal et al., 2020). The encoder is trained in a way that related samples (e.g., 

images of the same class or augmentations of the same image) are aligned in the latent 

space, while unrelated samples (e.g., images of different classes) are separated (Chen et 

al., 2020; Jaiswal et al., 2020). A similarity metric is used to measure the distance between 

two embeddings (Jaiswal et al., 2020). 

According to (Thota & Leontidis, 2021) CL has become a key approach for unsuper-

vised learning tasks with unlabeled datasets (Chen et al., 2020; K. He et al., 2019; Jaiswal 

et al., 2020). Broadly, one sample from the unlabeled dataset is taken as a so-called anchor 
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and a strongly augmented version of this sample is considered a positive sample. The rest 

of the samples in the batch are considered negative samples, regardless of their actual class 

(Shen et al., 2022). The encoder is trained in a way that it learns to increase the latent space 

distance of anchor and negative samples while decreasing the distance of the strongly re-

lated positive and anchor embeddings. (Jaiswal et al., 2020; Shen et al., 2022) Here, train and 

test samples are from the same dataset and distribution. A major problem of the contras-

tive self-supervised architecture is the occurrence of false negatives in the negative samples 

(Thota & Leontidis, 2021). 

Other CL research activities focus on contrastive approaches for DA and DG prob-

lems (e.g., (Shen et al., 2022; Thota & Leontidis, 2021; Yang et al., 2022)). A key advantage 

of CL approaches (concerning the distribution shift from source to target domain) is their 

robustness against overfitting the source domain samples (Xue et al., 2022). (Shen et al., 

2022) use unlabeled target domain and partially labeled source domain data during train-

ing. First, an encoder is pretrained using both, unlabeled source, and target data to mini-

mize the distance over augmentations of the same input and maximize the distance over 

random pairs of inputs (Shen et al., 2022). Afterwards, a projection head is finetuned using 

the labeled source data (Shen et al., 2022). (Thota & Leontidis, 2021) follow an entirely 

unsupervised approach, by training only with unlabeled data. However, so far these ap-

plications remain largely underexplored in research (Thota & Leontidis, 2021). Further-

more, in the technical domains considered in this paper, different boundary conditions 

apply: Besides a labeled source-domain dataset, there are samples of the non-defective 

class of the target domain given in training. This setting is not yet considered in related 

work and offers unprecedented opportunities: 

 There are labeled source domain data from which anchor and negative samples can be 

chosen. This eliminates the fundamental problem of false-negative negatives during 

training described by (Thota & Leontidis, 2021). 

 Sampling positives from the non-defective class of the target domain dataset elimi-

nates the need for data augmentation for the synthetic generation of positive samples. 

Therefore, the model is systematically faced with the domain shift during training 

since anchors and positives are chosen from different domains. Using a modified loss 

function described in the next chapter, we aim to leverage the multi-domain training 

data to improve the generalization abilities regarding the unseen defective class of 

the target domain. 

 The underlying hypothesis of the decomposability of a defective sample from a tech-

nical domain into domain-independent “defect features” and domain-specific “base 

features” is also stated, used, and proven by (Rombach et al., 2022) in the context of 

controlled synthetic data generation for out-of-domain defective class samples. 

The main contribution of this paper is a modified triplet loss function for classical 

contrastive learning approaches. It allows to exploit the previously described opportuni-

ties to transfer the classification features across large domain gaps. Section 0 describes the 

general framework, the modified triplet loss function, and the datasets used for the vali-

dation of the proposed approach. The model is then analyzed in technical and non-tech-

nical scenarios and the results are compared to multiple state-of-the-art benchmarks. The 

approach shows convincing results and distinctly outperforms the benchmark models. 

The discussion of the results is followed by a final summary. 

3. Own Approach 

The modified contrastive learning approach presented in this paper addresses clas-

sification tasks (e.g., distinguishing defective from non-defective components) in the pres-

ence of insufficient target domain training data. Aiming for improved generalization abil-

ities, the model is trained using easily accessible target domain data of the non-defective 

class, as well as a state-of-the-art source domain dataset containing the same defect in a 

different domain. However, target domain data of the defective class, showing the feature 
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of interest is not used for training. Our approach is tested and analyzed on different do-

mains and its performance is benchmarked with other state-of-the-art classifiers. 

3.1. Formalization of the cross-domain generalizing classification task 

Following (Kim et al., 2022) there is a source-domain � and a target-domain � given 

by � = {(��
�, ��

�)}���
�  and � = {(��

�, ��
�)}���

� , where �� is a vector of � images and �� 

is a vector of � images. �� and ��  are vectors of corresponding (binary) class labels re-

spectively. The value range of the labels depends on the task and is often given by ��
� ∈

[������, ��������] in the case of binary tasks in technical domains. Since this paper has a 

technical background, the following notation is used hereinafter for all domains: 

 

������ = {(��
�, ��

�)}���
�⋅���     = ������,������ ∪ ������,��������  

����� = {(��
�, ��

�)}���⋅�
�     = �����,������   ∪ �����,�������� 

������ = {(��
�, ��

�)}���
�⋅���

 = ������,������ ∪ ������,�������� 

����� = {(��
�, ��

�)}���⋅�
� = �����,������    ∪ �����,�������� 

with train-test-split �, � ∈ (0,1). 

 

The objective is to train a classifier that predicts the label ��
� of a test image ��

� from 

the target domain ����� . The model is trained using ������,������, ������,��������,  and 

������,�������� and a specific triplet loss function (see 0). Since ������,������  is not available 

during training, the model must generalize well across domains to classify samples from 

�����  correctly. 

3.2. Datasets 

Our research was initially conducted in technical domains and afterward verified in 

non-technical domains. The technical domain is represented by modified samples of the 

Severstal steel defect dataset (Severstal, 2020) and a selection of the Ball Screw Drive (BSD) 

Surface Defect Dataset for Classification (Schlagenhauf, 2021). 

The Severstal dataset contains images of strip steel surfaces showing either no defect 

or defects from six different classes. Simulating a state-of-the-art source domain dataset, 

we cropped the samples into smaller 224×224 pixel images showing either no defect (21806 

pcs) (see Figure 4, ������,�������� ) or defects of type patch (2018 pcs) (see Figure 4, 

������,������). This defect class was selected since it has the greatest similarity to the pitting 

defects of the BSD dataset. The BSD dataset on the other hand simulates a target domain 

dataset. The dataset contains 150×150 pixel RGB images of the surface of ball screw spin-

dles. We use a selection of 1896 images showing no surface defects and little oil contami-

nation as non-defective target domain samples (see Figure 4, ������,��������). A selection 

of 5240 images showing pitting defects due to extensive wear forms the defective target 

domain class. This class is assumed to be not available during training. Even though the 

two datasets show different objects with different shapes and surface characteristics, the 

defect feature itself shares the main characteristics in both datasets, making them a suita-

ble pair of source and target domain datasets. The datasets are depicted in Figure 2. 

The non-technical domain is represented by an apple leaves dataset and a bean leaves 

dataset. The apple leaves dataset is a subset of the PlantVillage database that contains 

54309 256×256 pixel RGB images of 29 different classes of healthy and diseased plant 

leaves from 14 different species (Hughes & Salathe, 2015). The apple dataset consists of 

1645 healthy images and only 276 diseased images (apple rust) and acts as the source do-

main dataset. The bean leaves dataset consists of 1296 images with a size of 500×500 pixels. 

The dataset is divided into one healthy and two diseased classes, of which the angular leaf 

spot disease class is used for our research due to its greater visual similarities to the dis-

ease characteristics of the apple leaves (Makerere AI Lab, 2020). The bean leaves were 

recorded in nature, while the apple leaves were recorded under laboratory conditions. 

Consequently, the two datasets differ not only in leaf shape, -color, and -surface texture 
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but also in terms of background and lighting conditions, as depicted in Figure 11. The 

bean leaves dataset simulates the target domain. All images are scaled to a size of 224×224 

pixels and each dataset is split into a train, validation, and test set. 

3.3. Model architecture 

The model architecture of our binary classifier is depicted in Figure 3. It consists of a 

trainable CNN encoder that outputs a 512-dimensional embedding vector from any given 

image of size 224×224. An optional projection head can compute optimized projection vec-

tors from the embeddings. The model is trained using a non-defective target domain image 

(Positive), a defective source domain image (Negative), and a non-defective source domain 

image (Anchor). A modified contrastive triplet loss function (see Chapter 0) which quan-

tifies the model’s training performance is used to optimize the encoder (and the projection 

head if applicable). During inference, the model is used to predict class labels of unlabeled 

Anchor images from the target domain (= classification task). The previously trained en-

coder generates embedding vectors from the Anchor image and the two reference images 

(Positive and Negative). The Positive belongs to the non-defective class of source or target 

domain. The Negative is part of the defective source domain class since defective target do-

main samples are not available at the beginning of the inference phase. A distance metric 

is used to determine the distances �(�, �), �(�, �) between the embeddings/projections 

of the Anchor image and the Positive and Negative reference images. The class of the Anchor 

image is then determined based on the shorter of the two distances. To increase robustness 

against outliers, a single anchor image is classified using many positives and negatives by 

averaging the individual distances at the end. 

 

Figure 3. Model architecture of the proposed classifier. 

3.4. Enhancement of the triplet loss function for cross-domain transfer of features 

The encoder is trained with a contrastive triplet loss function such that images of the 

same class lead to related embeddings and images of different classes lead to diverging 

embeddings - regardless of their domains.  

The original triplet loss function is given by � = max(�(�, �) − �(�, �) + ��, 0) 

(Equation 1). With distance �(�, �) between Anchor and Positive embeddings and dis-

tance �(�, �)  between Anchor and Negative embeddings. The margin parameter �� 

maintains a minimum difference between the Positive and Negative classes, resulting in 
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self-contained, non-mixed embedding clusters. �(.  ) can be any similarity metric, how-

ever, cosine similarity or Euclidean distance are commonly used. Figure 4 visualizes the 

loss function by the orange arrows. By minimizing � during training, �(�, �) is maxim-

ized while �(�, �) is minimized. Therefore, embeddings of images of the same class (Sev-

erstal noDefect & BSD noDefect) become less distant from each other (despite their differ-

ent domains) while embeddings of images of different classes (Severstal noDefect & Sev-

erstal defect) diverge. 

 

Figure 4. Cross-domain Contrastive Learning using modified Triplet Loss function. 

In addition to the source domain data, the proposed model leverages the easily ac-

cessible target domain samples of the non-defective target domain class �����,�������� dur-

ing training, as depicted in Figure 4. Therefore, the Positives belong to the target domain, 

while the Anchors belong to the source domain, resulting in two different domains repre-

senting one class of non-defectives. By utilizing this setup, we aim for improved domain 

generalization abilities. However, using the basic contrastive triplet loss in this setup 

would result in an encoder that learns to disregard domain-related dissimilarities between 

Anchor (source domain) samples and Positive (target domain) samples to comply with the 

distance minimization of �(�, �). This could lead to an oversimplified encoding of the 

target domain samples. Especially if the domain shift between Anchor (source domain) 

and Positive (target domain) is large compared to the interclass difference between the 

defective and non-defective classes, an oversimplification by the encoder is likely. This can 

result in a classification bias towards the non-defective class since target domain samples 

are oversimplified as Positives while disregarding their actual class, as we will show in 

Chapter 4. 

To address this issue, we extend the basic triplet loss by an additional term that yields 

Equation 2. We additionally demand the maximization of the distance between the non-

defective target-domain embeddings (Positives) and the defective source-domain embed-

dings (Negatives) (cyan arrow in Figure 4), while still demanding a small distance between 

the two non-defective embeddings (Positives and Anchors). This directs the focus away from 

domain-specific features towards class-specific features by aiming for distance maximiza-

tion in the case of different classes (Positives & Negatives), while distance minimization is 

aimed for identical classes (Positives & Anchors). Whether the distance of two samples is 

maximized or minimized is thus independent of their domains and depends only on their 

classes: 
min � = min (max(�(�, �) − �(�, �) + ��, 0) + max(�(�, �) − �(�, �) + ��, 0)) 
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(Equation 2) 

The colors of the two summands match the colors of the arrows in Figure 4. By ex-

plicitly maximizing the distance between Positives and Negatives �(�, �) while demand-

ing a small Anchor-Positive-Distance, we aim for a large interclass distance regardless of 

the domain shift from source to target domains. Our research was conducted using the 

Euclidean distance metric �(.  ) . Trained using ������,�������� , ������,������  and 

������,�������� the model then classifies unlabeled �����  samples with positive and nega-

tive reference images, either chosen from �����  or ����� . The influence of the reference im-

age datasets will be further investigated below. 

4. Results and Discussion 

4.1. Experimental results of contrastive learning approaches  

The proposed approach is analyzed in a typical technical scenario (Schlagenhauf, 

2021): The task is to classify BSD spindle images (target domain) into defectives and non-

defectives. The model is trained using Anchors from the non-defective and Negatives from 

the defective class of the state-of-the-art Severstal steel defect dataset respectively (= 

source domain). The Positives belong to the non-defective class of the BSD dataset (= target 

domain). The dataset setup during training and inference is depicted in Figure 5. The 

model is trained without defective target domain samples at all. Using 1000 Positives, Neg-

atives, and Anchors each, the model is trained for 150 epochs with a batch size of 60 and 

the modified contrastive triplet loss function (Equation 2). The margin parameters �� 

and �� are set to 0.2. Once training is completed, the non-defective Severstal Anchor im-

ages are swapped for unlabeled target domain (BSD) images in the inference phase. The 

trained encoder generates low-dimensional embeddings from 200 defective Severstal Neg-

atives and 200 non-defective BSD Positives (= reference images), as well as from 80 equally 

distributed BSD test images (Anchors). Each of the 40 defective and 40 non-defective BSD 

test samples is classified based on its Euclidean distance to the 200 positive and 200 nega-

tive embeddings. 

 

Figure 5. Dataset setup during training and inference of initial test with Severstal strip steel and 

BSD datasets. 

According to the confusion matrix (Figure 6), 100 % of the non-defective BSD samples 

and 95 % of the defective BSD samples are correctly classified. The test results provide 

evidence that the model can learn the characteristic features of the defect from the Sev-

erstal strip steel dataset (source-domain) and can successfully perform the domain shift 

towards the BSD samples (target-domain).  
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Figure 6. Confusion matrix of the BSD defect classifier that uses our improved triplet loss and is 

trained on the Severstal strip steel defect dataset and the non-defective class of a BSD defect dataset. 

In the following, we present two benchmark tests that demonstrate the performance 

improvements of our proposed approach. The first benchmark model is trained using 

only Severstal strip steel data with the basic, unmodified triplet loss function (Equation 

1). Figure 7 depicts the modified training setup. The inference setup remains untouched. 

The confusion matrix shown in Figure 8 testifies the inferior domain generalization abili-

ties of the benchmark model compared to our proposed model: While all non-defective 

images are still correctly classified, more than four times as many defective images are 

misclassified as non-defective, leading to a False Positive rate of 22.5 %. 

 

Figure 7. Dataset setup for the benchmark test with basic triplet loss and training on source-domain 

data only. 

 

Figure 8. Confusion matrix for the benchmark test of a BSD defect classifier that uses basic triplet 

loss and is solely trained on the Severstal strip steel defect dataset. 
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Trained exclusively with source domain data, the benchmark model shows inferior 

domain generalization capabilities compared to the proposed model. This results in a clas-

sification bias towards the non-defective class, leading to the increased False Positive rate. 

Further studies show that the inference performance of the benchmark model is even 

decreased if the Positives are no longer generated from target domain samples but from 

source domain samples. In this case, the False Positive rate further increases from 22.5 % 

to 60 %. 

Compared to the proposed approach, the previous test (first benchmark) was de-

prived of information, since the healthy target domain class was not given during train-

ing. Therefore, the following benchmark experiment is trained with the same data as our 

proposed approach: The Anchors and Positives are composed of the non-defective target 

domain- and source domain classes. However, the benchmark model does not use the 

modified loss function. Instead, it uses the basic loss function already utilized in the pre-

vious benchmark model. The dataset setup is depicted in Figure 9.  

 

Figure 9. Modified training setup for the second benchmark test using basic triplet loss and source 

& target domains for training. 

The inference setup remains untouched again. 

The previously observed classification bias towards the non-defective class is further 

increased by training with the basic triplet loss. According to Figure 10 the False Positive 

rate increases from 22.5 % (previous benchmark test) to 75 %. Even though the model’s 

recall of 0.97 is good, its low precision makes the model unusable for this classification 

task. 

 

Figure 10. Confusion matrix of the second benchmark test using basic triplet loss and training on 

the Severstal strip steel defect dataset and the non-defective class of a BSD defect dataset. 
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The three experiments show that our proposed approach can significantly outper-

form the classification performance of the two benchmark models by systematic training 

with additional data from the target domain and the modified triplet loss (Equation 2). 

In the following, the generalization abilities of the proposed approach are further 

investigated in non-technical domains using two plant leaf datasets: The model is trained 

with just 275 sample images of healthy apple leaves as Anchors, 275 samples of diseased 

apple leaves as Negatives and 275 samples of the healthy (non-defective) class of a bean 

leaves dataset as Positives (Hughes & Salathe, 2015), (Makerere AI Lab, 2020). There is a 

significant difference in the context of the two domains (see Chapter 0), whereas the dis-

eased spot features (brown spots) appear similar in both domains, as depicted in Figure 

11. 

 

Figure 11. Dataset setup during training and inference of initial test with apple and bean leaves 

datasets. 

The model is trained for 200 epochs with a batch size of 60 and the modified triplet 

loss function given by (Equation 2). Despite the small training dataset size, no overfitting 

was observed, which is also consistent with (Xue et al., 2022). The authors attribute this to 

the random selection of triplets from Anchors, Positives, and Negatives, ensuring that no 

triplet occurs more than once in the same constellation during training. 

The trained encoder generates low-dimensional embeddings from 80 diseased apple 

leaves (Negatives) and 80 healthy bean leaves (Positives) (= reference images), as well as 

from 80 equally distributed bean leaf test images (Anchors) (see Figure 11). Each of the 40 

diseased and 40 healthy bean test samples is classified based on its Euclidean distance to 

the 80 positive and 80 negative embeddings. According to the confusion matrix (Figure 

12), 100 % of the healthy bean leaves and 85 % of the diseased bean leaves are correctly 

classified. The test results provide evidence that the model can learn the characteristic 

features of the disease from the apple leaves dataset (source-domain) and can successfully 

perform the domain shift towards the target domain (bean leaves). Furthermore, the do-

main generalization abilities are improved by the provided healthy target domain class 

samples as the following benchmark test testifies: 
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Figure 12. Confusion matrix of the bean leaves classifier that uses our improved triplet loss and is 

trained on an apple leaves dataset and the healthy class of a bean leaves dataset. 

The benchmark model is trained using only apple leaves data with the basic triplet 

loss function (Equation 1). Figure 13 depicts the modified dataset setup during training 

and the unchanged inference setup. 

 

Figure 13. Modified training setup for the benchmark test with basic triplet loss and training on 

source-domain data only. 

The confusion matrix shown in Figure 14 testifies the poor domain generalization 

abilities of the benchmark test. Only 55 % of the healthy – and 62.5 % of the diseased bean 

leaves test dataset samples are correctly classified. The False Positive Rate is more than 

doubled compared to our proposed approach. Almost every second healthy (“non-defec-

tive”) test sample is falsely classified as diseased (“defective”), whilst our proposed ap-

proach correctly classifies all healthy test images. 
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Figure 14. Confusion matrix of the bean leaves classifier that uses basic triplet loss and is solely 

trained on an apple leaves dataset. 

Accordingly, the benchmark model trained only with source domain data is not able 

to generalize to the target domain. 

Again, further studies show that the inference performance of the benchmark model 

is decreased if the Positives are no longer generated from target domain samples but source 

domain samples. In this case, the False Positive rate further increases from 37.5 % to 

92.5 %. 

Again, the benchmark model was deprived of information since the healthy target 

domain class is not given during training. Therefore, the next benchmark experiment uses 

the same model and basic loss function as the previous benchmark, however, now trained 

on the same database as the initial plant leaves experiment, thus combining source and 

target domain data. The dataset setup is depicted in Figure 15.  

 

Figure 15. Modified training setup for the second benchmark test using basic triplet loss and source 

& target domains during training. 

Even though the recall improves from 0.55 to 0.85 due to the additional training data, 

the model’s ability to classify diseased bean leaf samples decreases as posed by the con-

fusion matrix (Figure 16). With a False Positive rate of 45 %, the model is again highly 

biased towards the positive (healthy) class. 
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Figure 16. Confusion matrix of the second benchmark test using basic triplet loss and training on an 

apple leaves dataset and the healthy class of a bean leaves dataset. 

The three experiments show that the findings from the technical domain also apply 

to the non-technical domain.  

4.2. Basic object detection benchmark 

A very different yet common image classification approach uses an object detector 

that classifies a sample as defective if at least one defect is detected. The main drawback 

of state-of-the-art approaches often is the insufficient generalization ability if source and 

target domains differ too much. To analyze the model’s performance in the present case, 

we confronted a state-of-the-art region-based Convolutional Neural Network (R-CNN) 

object detection model with the domain transfer from BSD to Severstal data. Trained in 

the BSD domain, the model provides good classification results within this domain. How-

ever, the model is not able to generalize enough to manage the domain shift from BSD to 

Severstal data: None of the defects on the Severstal samples are detected. The findings 

indicate that the generalization abilities of the state-of-the-art object detection model are 

insufficient for the use case considered here. 

4.3. Discussion: Domain generalization without target domain data 

Table 1 summarizes the results of the presented experiments. The proposed contras-

tive learning model (experiments 1, 5) was developed for applications that require the 

model to be trained without a complete target domain dataset. Learning from a source 

domain dataset and the early available target domain data, the model must generalize 

across large domain disparities. Experiments 2 and 6 prove that this model is not able to 

generalize sufficiently when trained on source-domain data only (without target domain 

data). 
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Table 1. Experimental results. 

# Experiment 
True 

Positive 

False 

Negative 

True 

Negative 

False 

Positive 

Contrast. 

Loss 
Training Data 

1 
Steel Defects, 

Our Model 
100.0 % 0.0 % 95.0 % 5.0 % Equation 2 

A: ������,�����,      P: ������,�����,     N: 

������,������ 

2 
Steel Defects, 

Benchmark 1 
100.0 % 0.0 % 77.5 % 22.5 % Equation 1 

A: ������,�����,      P: ������,�����,     N: 

������,������ 

3 
Steel Defects, 

Benchmark 2 
97.5 % 2.5 % 25.0 % 75.0 % Equation 1 

A: �, ������,�����,  P: �, ������,�����,  N: 

������,������ 

4 

Steel Defects, 

Obj. 

Detection 

100.0 % 0.0 % 0.0 % 100.0 % - Train: ������,   Test: ������ 

5 
Leaves, 

Our Model 
100.0 % 0.0 % 85.0 % 15.0 % Equation 2 

A: ������,�����,      P: ������,�����,     N: 

������,������ 

6 
Leaves, 

Benchmark 1 
55.0 % 45.0 % 62.5 % 37.5 % Equation 1 

A: ������,�����,      P: ������,�����,     N: 

������,������ 

7 
Leaves, 

Benchmark 2 
85.0 % 15.0 % 55.0 % 45.0 % Equation 1 

A: �, ������,�����,  P: �, ������,�����,  N: 

������,������ 

4.4. Discussion: The modified loss function leverages additional target domain training data to 

improve domain generalization 

Additionally providing non-defective target domain class data (������,�����) during 

the training of the base model (basic triplet loss, Equation 1) strongly increases the false 

positive rate as demonstrated by experiments 3 and 7. This classification bias limits the 

model’s usability. To leverage the additional target domain data and improve the gener-

alization capability, the proposed model with its modified loss function (see Equation 2) 

must be used for training, as testified by experiments 1 and 4. The modified loss function 

(Figure 4) allows the model to: 

 use the source-domain dataset with its defective (�) and non-defective (�) classes 

to systematically learn the features that characterize the defect (by maximizing 

�(�, �)). 

 use the non-defective source-domain class (�)  and non-defective target-domain 

class (�) to suppress the (extraneous) context, that differs between source and target 

domains (by minimizing �(�, �)). 

 prevent the target domain classification bias towards the non-defective class (�) as 

a result of the one-sided training with non-defective target domain samples (�) (by 

maximizing �(�, �)). 

The modified triplet loss facilitates systematic learning of the domain-independent 

features of defects, regardless of the domain-specific context. 

4.5. Discussion: Data efficiency and robustness against overfitting 

With 275 samples per dataset, the training datasets of the non-technical domain are 

small. Even without a pre-trained network, our model is still able to learn the classification 

task sufficiently well (see experiment 5). Furthermore, no overfitting was observed even 

with such limited training data. This is attributed to the specific characteristics of the con-

trastive learning approach: The random selection of triplets from Anchors, Positives, and 

Negatives mostly ensures that no triplet occurs more than once in the same constellation 

during training. This leads to a large variety of training triplets, where each image can be 

used multiple times in different triplet constellations. 
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5. Conclusion  

We proposed a modified contrastive learning approach with an extended triplet loss 

function. The approach targets classification tasks where not all target domain classes are 

already available during training. Therefore, an additional state-of-the-art source domain 

dataset that contains all classes and shows the same defect/ classification feature but orig-

inates from a (highly) different domain is involved in training. By the combination of both, 

the source and the (partial) target domain datasets, our model systematically learns the 

relevant features for the classification and masters the domain shift from source to target 

domain. This was analyzed in two different use cases. The experimental results demon-

strate that our proposed approach leverages the limited target domain data which is al-

ready available during training and outperforms a state-of-the-art object detection-based 

classifier and contrastive learning approaches. Compared to zero-shot methods, which 

only train with source-domain data, and one-shot/few-shot methods, which usually re-

quire target domain samples of all classes (especially of the "defective class"), our model 

for the first time can make good use of the limited target domain data. Therefore, it can be 

trained and used at an early stage when other models either cannot be trained yet or can-

not achieve sufficient classification results with the limited data available.  

So far, the proposed approach only addresses binary classification tasks. In the next 

step, the approach will be extended to multi-class problems. Another research topic will 

be the analysis of different loss functions that follow the same basic idea. Furthermore, 

instead of classification problems, the proposed approach will be integrated into object-

detection problems. 
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