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Abstract: With the ongoing fifth-generation cellular network (5G) d eployment, electromagnetic 
field exposure has become a  critical c oncern. H owever, measurements are s carce, and accurate 
electromagnetic field reconstruction in a geographic region remains challenging. This work proposes a 
conditional Generative Adversarial Network to address this issue. The main objective is to reconstruct 
the electromagnetic field exposure map accurately according to the environment’s topology from a 
few sensors located in an outdoor urban environment. The model is trained to learn and estimate 
the propagation characteristics of the electromagnetic field according to the topology of a  given 
environment. In addition, the conditional Generative Adversarial Network based electromagnetic 
field mapping is compared with simple kriging. Results show that the proposed method produces 
accurate estimates and is a promising solution for exposure map reconstruction.

Keywords: EMF exposure; conditional generative adversarial network; optimization 11

1. Introduction 12

Wireless communication systems have become an inherent part of our daily life. 13

Hence, monitoring the status of wireless systems phenomena, such as radio-frequency 14

electromagnetic field (RF-EMF) exposure, is of great significance. In urban environments, 15

there are many sources of EMF, including WiFi, 2G, 3G, 4G, and 5G mobile communication 16

technologies. If 5G promises many improvements compared to previous generations [1–3], 17

there is growing anxiety regarding implementing the 5G network for two main reasons. 18

The first one is that the frequency used is higher than the other mobile communication 19

generations. The second reason is the ultra-dense base station implementation requirement. 20

Several organizations, such as the International Commission on Non-Ionizing Radiation 21

Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE), have 22

conducted research on human exposure standards for EMFs, as mobile devices and base 23

stations emitting EMFs for radio communication must comply with regulatory human 24

exposure levels for EMFs [4,5]. 25

Although sensor networks and on-site measurements are essential, they are confined 26

systems that only allow a limited amount of EMF exposure monitoring. Locations of 27

base stations and mobile devices in an urban setting are influenced by elements including 28

building topology, roadways, vehicles, and urban city topology. To evaluate RF-EMF 29

exposure, a power map must be constructed while taking these relevant factors into 30

account. The challenge is reconstructing the EMF exposure map in an urban area from only 31

a few sparsely located sensor-measured power values changing over time according to 32

environment topology and network activity. 33

In this work, we aim to assess the RF-EMF exposure using only 50 fixed receivers 34

sparsely located in a 1 km square urban environment, specifically in Lille city center, France. 35
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This is achieved using a conditional Generative Adversarial Network (cGAN) [6] architec- 36

ture where the city topology is used as a conditional input. The proposed Exposure Map 37

Generative Adversarial Network (EMGAN) method is an innovative approach inspired 38

by the cGAN architecture. The EMGAN model learns and then estimates the features of 39

outdoor wireless propagation, including diffraction, shadowing reflection, and the impact 40

of building walls, materials, roadways, and city topography. 41

In this work, we consider a specific frequency band (around 5.89 GHz), this approach 42

can naturally be extended to study the EMF exposure of other technologies (or the com- 43

binations of several). Additionally, other reconstruction techniques, such as kriging, are 44

developed to evaluate and compare the with the proposed model. 45

The main contributions of this paper can be summarized as follows: 46

• Generating a new simulated dataset, called "LilleExposureMap", which consists of 47

EMF exposure maps in Lille, France. 48

• Develop the generator and discriminator for the proposed EMGAN utilizing the deep 49

convolutional structure and auto-encoders analogy to learn about signal propagation 50

and calculate the map of EMF exposure. 51

The performance of the designed EMGAN is evaluated and shows a good reconstruc- 52

tion despite a reduced number of fixed sensors. The paper is organized as follows. In 53

Section 2, the review of related works is discussed. In Section 3, the data set is described. 54

Section 4 describes the proposed EMGAN model. The results and findings are presented 55

and discussed in Section 5. Section 6 concludes the work. 56

2. Related work 57

Accurate radio frequency power map estimation is computationally expensive in 58

a geographic region. Predicting power coverage in urban areas typically requires ray- 59

tracing and also empirical/semi-empirical models, such as close-in(CI), floating intercept 60

(FI), alpha, beta, gamma (ABG)[7–9], etc. simulations to determine how radio signals 61

propagate and are distributed over an area. Deterministic and empirical models are used 62

for propagation prediction in earlier studies. Some examples are dominant path model 63

[10], ray-tracing [11,12], and empirical models, such as [13]. Ray-tracing (RT) techniques 64

offer the highest degree of precision, but often at the expense of high processing demands 65

and a reliance on the accuracy of the tridimensional (3D) model of the [14]. RT techniques 66

describe the propagating field as a series of propagating rays that reflect, diffract, and scatter 67

over various environmental components. This high-frequency approximation (optical ray) 68

to the Maxwell equations is the foundation for these approaches. This methodology has 69

often proven computationally too expensive to be employed in large and, in particular, 70

dynamic contexts, hence network simulators only provide stochastic or streamlined hybrid 71

approaches [15]. If they are well suited to the coverage maps, they can not be used for 72

exposure maps, which would require the simulation of many different technologies and 73

the consideration of the number and positions of active users. 74

Data-driven interpolation methods presume that some measurements are given at 75

specific locations. These methods predict the function at non-measured locations via 76

some signal processing approach, e.g., Kriging [16] relies on a model of the physical 77

characteristics. The work in [17] used kriging to perform spatial interpolation of climate 78

data. The method works well when significant measurement points are considered. In [18], 79

kriging is applied to spatially reconstruct the EMF in an indoor scenario. However, the 80

authors concluded that the reconstruction performance of the model could be improved by 81

increasing the measurement points. 82

In [19], the authors use a CNN-based Generative Adversarial Network (GAN) [20] 83

to estimate the power spectrum map while considering urban cognitive radio networks. 84

The employed bandwidths are 25 MHz and 75 MHz, and a uniform distribution of users 85

was assumed. The under-sampled power spectrum maps were used as input for the image 86

reconstruction task using a GAN model based on an autoencoder analogy. However, 87

the authors used the inverse polynomial law model in calculating power spectrum maps 88

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2022                   doi:10.20944/preprints202211.0040.v1

https://doi.org/10.20944/preprints202211.0040.v1


3 of 13

(PSMs) to depict propagation characteristics. Additionally, the authors did not consider the 89

topology as conditional input. 90

For estimating radio maps, two recent papers proposed deep learning approaches 91

[21,22]. The authors implemented a convolutional neural network [23] as the mapping 92

function to estimate the radio map for each Tx-Rx location. Every trained network defines a 93

specific map, and a new city map is needed to train the network. Other works on power map 94

prediction use fully connected neural networks, which do not consider the city topology 95

as additional information [24–26]. In addition, the authors in [27] used a convolutional 96

autoencoder [28] network for spectrum map interpolation, where several transmitters 97

with unknown locations operate. Buildings were superimposed on the estimated map 98

after the model inference. So far in the literature, all the works did not consider the 99

propagation characteristics of the area of interest, which can help to make the accurate 100

mapping. However, in the proposed method, the city topology is considered a conditional 101

input to the cGAN model to represent the urban environment characteristics. To the best of 102

our knowledge, no study in the literature considers the environment topology as additional 103

input. 104

3. Dataset and Simulator 105

This work presents a new dataset, called "LilleExposureMap" of 6006 simulated EMF 106

exposure maps in Lille, France, obtained from Veneris-Opal. Different moving transmitter 107

positions are used in order to generate different maps. The considered number of simulated 108

EMF exposure maps is fixed to minimize the computational complexity. One km square 109

area is selected where three different simulations are done, placing three different moving 110

positions of transmitters in the area of interest (see Figure. 1).

Figure 1. 3D environment model of Lille City 1 km2 area with 2088 receiver grid represented in green
squares.

111

112

The 3D environment model is implemented in ’ VENERIS -OPAL’ an open-source ray 113

tracing network simulator [29]. Veneris-Opal is a simulation framework for research on 114

Vehicular Networks and Cooperative Automated Driving. However, it can also be used 115

for general wireless network simulation, which needs 3D environment-aware propagation 116

simulation. On top of the Unity game engine citehaas2014history, it includes a realistic 117

vehicular model and a set of driving and lane change behaviors that reproduce the traffic 118

dynamics integrated using SUMO [30], a ray-launching GPU-based propagation simulator 119
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called Opal [31] and a set of modules that enable bidirectional coupling with the widely 120

used OMNET++ network simulator. 121

A map of Lille city center from OpenStreetMap [32] is used for the ray launching 122

simulations in Veneris-Opal. More specifically, the dataset contains objects with rough 123

surfaces like 3D building walls, statues, roads, etc., interacting with the rays in complex 124

ways. Moreover, gaps in the object, e.g., bridges and rays at different levels, can pass or 125

reflect from such objects. The presence of the object in the environment, and several ray 126

interactions result in a complex power distribution representing a real-life environment. 127

The transmitters are assumed to use an isotropic antenna, producing omnidirectional radio 128

waves. The height and power of the transmitting antenna were set at a maximum of 15 129

meters and 20 Watts, respectively. The propagation model in ray launching considers 130

reflections on 3D buildings, resulting in more complex patterns. Even if VENERIS can 131

handle a very high number of iterations, a convergence study shows that 2 interactions are 132

enough for reliable results in this kind of environment. 133

For simulations, three transmitters are used at 5.89 GHz with 20 W transmitting power, 134

and other simulation parameters are used, like azimuth, elevation, reflection, etc. To 135

generate the ground truth maps, 2088 receivers at the height of 1.5 meters are placed in a 136

uniform grid in the area of interest, as shown in Figure 1. The receivers inside the buildings 137

are not considered. 138

Using Veneris-Opal, the received power in a dense urban environment by ray tracing 139

is simulated and converted into images using Python. Then, it is employed as a reference 140

map. Figure 2 gives an example of reference exposure maps when the transmitter is located 141

at the top right corner. Each map has a dimension of 512 height, 512 width, and 3 RGB 142

color channels. 143

(a) Transmitter’s location corner (b) Transmitter at upper right corner

Figure 2. RF-EMF exposure reference map.
144

The area of interest, Lille city center, is 1 km square, and 50 sensor points were selected 145

using ’SensorLocator’ an open source web application developed in IRCICA lab by authors 146

which were then extracted from the reference map to generate the undersampled sensor 147

map images. The locations of the sensors are constrained by the position of the lighting 148

poles and are shown in Figure 3, and we consider 15, 30, and 50 fixed locations taken from 149

the reference map images for generating the test set. To capture the city topology effect, we 150

used an image where black and white represent buildings and roads, respectively (with 151

no intermediate grey levels) as a conditional input to the cGAN network. An example of 152

the topology image is shown in Figure 4b, and the EMF map with city topology overlaid 153

is illustrated in Figure 4c. It is important to note that less than 1% of the reference image 154

area in terms of pixels is covered by sensors in the most optimistic case, i.e., when 50 155

measurements are taken into account. 156
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Figure 3. 50 sparsely located sensor map in Lille city center.

(a) Reference map. (b) City topology.

(c) Map superimposed on city topology.

Figure 4. RF-EMF exposure reference map.

4. The Proposed EMGAN Model 157

We propose a deep learning method inspired by a conditional GAN architecture 158

adapted to image-to-image translation. Several studies have been done using this specific 159

model architecture[33–35] for different applications. In this work, the network learns to 160

estimate the propagation of an electromagnetic field according to a distribution of sensors. 161

Our model is conditioned by a map that represents the topology of a city, thus forcing the 162

model to adapt to a targeted topology, whether indoor or outdoor. Figure 5 illustrates an 163

overview of the proposed method. 164

4.1. Input and output data 165

To train the model, input data for the generator are the sensor map and city topology 166

images with a dimension of 512 × 512 × 3. The output is a fake full-exposure map image. 167

For the discriminator, inputs are the generated fake images from the generator and the 168

real full exposure map image simulated by Veneris-Opal with a dimension of 512 × 512 × 3. 169

The output is classified as whether the data is fake or real, estimated full exposure map. 170
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4.2. Network Architecture 171

4.2.1. U-Net Generator 172

Estimating the EMF exposure map is an image-to-image translation task. The model’s 173

inputs consist of two images, a sparse sensor measurement map, and the city topology as a 174

conditional input to the generator (the U-net model), represented as a three-dimensional 175

matrix (height, width, and color channel). Three channels—red, green, and blue—are 176

combined to create a picture[36]. A channel represents the color and color intensity of an 177

image. The proposed method reconstructs the final image using a three-dimensional image 178

tensor with three channels. The input sensor measurement map is sparse because each 179

pixel’s color intensity corresponds to a sensor-measured value at that location. 180

Since estimating the EMF exposure map is mainly an image-to-image translation task, 181

the model’s inputs are two images, a sparse sensor measurement map, and the city topology 182

as a conditional input to the generator (the U-net model) represented as a three-dimensional 183

matrix, (height, width, and color channel). An image is built by combining three channels, 184

i.e., red, green, and blue [36]. Simply put, a channel refers to color intensity and color 185

in the image. In contrast, a three-dimensional image tensor with channel depth three is 186

utilized for our method to reconstruct the output image. The color intensity of pixels of 187

the input image represents the sensor-measured value at a corresponding location, making 188

the input sparse sensor measurement map. The generator is an encoder-decoder model

Sensor map

Topology

Generator

U - Net

Discriminator

Generated map

Simulated map

Training

Figure 5. Proposed conditional GAN.
189

using a U-Net architecture. The model takes a source image (e.g., a sensor map) along 190

with a city topology image as a conditional input and generates a target image (e.g., a 191

complete exposure map with the effect of topology). It does this by first downsampling or 192

encoding the input image down to a bottleneck layer, then upsampling or decoding the 193

bottleneck representation to the size of the output image. Moreover, skip-connections are 194

added between the encoding and corresponding decoding layers for learning features from 195

input images. The model is built to learn more intricate wireless propagation aspects of the 196

target area, and translate it to an EMF map for exposure assessment. 197

198

Encoder: The sensor map I s the input to the encoder’s input layer. The decoder module 199

consists of several blocks, each of which has following setup: 200

• Using a kernel size of 3 × 3 and a stride of 1, two convolutional layers are applied in 201

succession. The input layer uses tensors of a size of 512 × 512 × 3, which represent 202

a three-dimensional sensor map picture. This results in new dimensions with 16 203

channels and raises the feature map’s channel count. 204

• The rectified linear unit(ReLU) is the activation function that is being used. This 205

function enables to take only positive values after convolution operation. 206
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• A max-pooling layer connects previous layers. This layer downsamples the feature 207

map by taking the biggest value in each patch of each feature map. This creates new 208

dimensions of 64 × 64 × 16. 209

The first block’s layers are repeated in the decoder module, where the depth or channel 210

number rises to 8 × 8 × 512 and the size of the feature map rapidly decreases. 211

212

Decoder: Five symmetric reduction module blocks are employed in the decoder mod- 213

ule along with a transposed convolutional layer for upsampling. The feature map’s height 214

and width are set in the layer’s properties to be doubled, but the depth (number of channels) 215

is set to be decreased by half. For the purpose of extracting more precise features from the 216

feature map, two consecutive convolutions are used. The symmetric U-shaped generator 217

model architecture contains five blocks on each module. 218

4.2.2. Discriminator 219

The discriminator is a deep convolutional neural network in cGAN explicitly used for 220

conditional image classification. It takes all 3 images as input, the sparse sensor map, the 221

target image, and the conditional topology image. It estimates the likelihood of whether 222

the target image is real or a fake translation of the source image having the effect from 223

the topology as well. The effective receptive field of the model is the core of designing 224

the discriminator. This is called a PatchGAN [35] model, which defines the connection 225

between one output of the model to the number of pixels in the input image. The output 226

estimate of each model corresponds to a 70 × 70 square or patch of the input image. This 227

method has the advantage that the same model may be used to process input images that 228

are bigger or less than 256 × 256 pixels. The size of the input image determines whether the 229

discriminator’s output is a single value or a square activation map of values. Each value 230

represents the chance that a patch in the input image is real. These values can be averaged 231

if necessary to provide a global probability or categorization score. 232

4.3. Loss Functions 233

The loss function of the proposed cGAN model contains the discriminator and the
generator part as shown in (1):

LcGAN(G, D) = Ex,y[log D(x, y)] + Ex,z[1 − log D(x, G(x, z)] (1)

where x is the input image, y is the output image, and z is the conditional image. 234

The generator G is not only trying to reduce the loss from the discriminator but also
trying to move the fake distribution close to the real distribution by using L1 loss which is
given in (2):

LL1(G) = Ex,y,z[∥y − G(x, z)∥] (2)

The loss function of generator network is stated in (3):

G⋆ = arg min
G

max
D

LcGAN(G, D)λL1(G) (3)

5. Results 235

5.1. Training set-up 236

For the input training samples, 50 sensor measurement locations are used. Training 237

parameters are listed in Table 1. 238

5.2. Evaluation metrics 239

The structural similarity index (SSIM)[37] and peak signal-to-noise ratio (PSNR) are
between reconstructed map and the reference map in order to assess the model performance.
Values between -1 and 1, where 1 denotes perfect resemblance, are provided by the SSIM
model, which captures the observed change in the structural information of the picture.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2022                   doi:10.20944/preprints202211.0040.v1

https://doi.org/10.20944/preprints202211.0040.v1


8 of 13

Table 1. Training parameters.

Parameters Value
Total number of images 9009
Input samples 2500
Test set 503
Optimizer ADAM
Learning rate 4 × 10−4

Batch size 2
Decay rate 1 × 10−6

Epochs 4000

The PSNR test compares the distortion power to the greatest possible pixel intensity. The
SSIM index is calculated on various windows of an image. The measure between two
windows x and y of common size N × N is given below along with PSNR:

PSNR = 10 log10 ∗
MAX2

I
MSE

(4)

where MAXI is the maximum possible pixel value of the image. When the pixels are 240

represented using 8 bits per sample, this is 255. The degree of inaccuracy in statistical mod- 241

els is measured by the mean squared error, or MSE. Between the observed and estimated 242

values, it evaluates the average squared difference. The MSE is equal to 0 when a model is 243

error-free. Its value increases when model error does as well. The mean squared deviation 244

is another name for the mean squared error (MSD). 245

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5)

where, µx and µy are the pixel sample mean of x and y, µy. σ2
x and σ2

y are the variance 246

of x and y, σxy is the covariance of x and y. c1 = (k1L)2 and c2 = (k2L)2 are the variables 247

to stabilize the division with weak denominator, where L is the dynamic range of the 248

pixel-values. k1 and k2 are set to 0.01 and 0.03. 249

Finally, we will consider the pixel-to-pixel error that we will denote by R. To calculate
R, in dB, given by:

R(x, y) = 10 log10

(
x
y

)
(6)

We will represent either the probability distribution of R or the cumulative distribution of 250

|R|. This allows to have a more detailed understanding of the error behaviour. 251

5.3. Visual analysis 252

The proposed EMGAN model is compared with the EME-Net model in [38] and the 253

kriging method when only 50 measurement points are considered. All models are trained 254

and tested on the same training and test data sets. As illustrated in Figure 6, the proposed 255

EMGAN model outperforms the kriging model. The EMGAN-based (6d) reconstructed 256

map looks very close to the ground truth, and few details are missed by the EME-Net-based 257

(6c), whereas the kriging-based (6b) encounters significant loss. 258

Additionally, the proposed EMGAN model performance is analyzed by varying the 259

number of measurement points. Figure 7 shows the EMGAN-based reconstructed maps 260

using 15 and 30 sensor measurement points. The figure illustrates that the performance of 261

the proposed EMGAN model remains consistent even when a few measurement points are 262

considered, although some degradation can be observed. 263

The error map between the reconstructed map and the ground truth is illustrated in 264

Figure 8. The error map shows that the proposed EMGAN model (8c, 8d and 8e) has a 265

significantly low error compared to the other models. The kriging approach exhibits very 266
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(a) Ground truth (b) Simple kriging

(c) EME-Net model (d) Proposed EMGAN model

Figure 6. Comparison of Reconstructed maps of the proposed model and other different models.

(a) Using 15 sensor map (b) Using 30 sensor map

Figure 7. EMGAN-based Reconstructed maps when different number of sensors are considered.

poor results. The approach is not well adapted with such a spatial undersampling. Further 267

studies, though, should be done to take into consideration the environment topology and 268

the propagation models. This however is a different approach and is out of the scope of 269

this paper. 270

271

5.4. Quantified Analysis 272

Figure 9 presents the averages of SSIM and PSNR as a function of the number of 273

measurement points. As the number of measurement points rises, so do the averages of 274

SSIM and PSNR. The reconstruction procedure is cohesive in terms of similarity and picture 275

quality, according to the same trend. The same trend indicates that the reconstruction 276

process is coherent regarding similarity and image quality. 277

The Cumulative distribution function (CDF) of the error ratio R of the proposed 278

EMGAN and other models is shown in Figure 10.As illustrated in Figure 10a, the proposed 279

EMGAN model outperforms the kriging and EME-Net methods. In addition, Figure 10b 280

shows that, despite the optimistic visual evaluation, the performance of the proposed 281
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(a) Kriging 50 sensors (b) EME-Net 50 sensors (c) EMGAN 15 sensors

(d) EMGAN 30 sensors (e) EMGAN 50 sensors

Figure 8. Error maps of the proposed EMGAN for different number of sensors and EME-Net model.

Figure 9. Average SSIM and PSNR of the proposed EMGAN with a varying number of measurement
points.

EMGAN degrades as the number of sensors decreases. On the 1 km2 area we are studying, 282

the 50 sensors are needed to avoid some large deviations. 283

In Figure 11, the probability density function (PDF) of the ratio between the recon- 284

structed maps and the ground truth of the proposed EMGAN model with different numbers 285

of sensors, EME-Net, and simple kriging methods are presented. The error ratio (in dB) 286

distribution can be well approximated by a Gaussian random variable. We first notice that 287

the mean is rather close to 0, meaning there is no significant bias in the prediction steps. 288

The second important point is that we note the reduction of the variance with the increase 289

of the sensor of numbers. With 50 sensors in the studied 1 km2 area, the variance is reduced 290

to 0.85, which seems a reasonable value for an exposimetry study, resulting in more than 291

90% of the error ratio below 3dB. We also notice that the EME-Net approach with 50 sensors 292

is not as good as the proposed approach with 30. 293
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(a) Different models
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(b) EMGAN with varying number of sensors

Figure 10. CDF of the models as function of the absolute ratio |R| between the reconstructed map
and ground truth.

Figure 11. The probability density of the ratio R between the reconstructed map and ground truth
when different numbers of sensors are used.

6. Conclusion 294

In this work, we present the EMGAN methodology, a deep learning-based exposure 295

maps estimation method for urban environment. The generator and the discriminator 296

are developed to estimate the exposure maps and improve the estimation accuracy by 297

incorporating the city topology as a conditional input to the model. Instead of making 298

direct, inaccurate, or biased assumptions about radio propagation, the EMGANs algorithm 299

learns and uses radio environment information from the training process. The EMGANs 300

algorithm offers a highly accurate estimation performance, significantly more accurate than 301

traditional approaches, according to experimental data. Future work will concentrate on 302

expanding the estimation of exposure maps using EMGANs to the temporal dimension. 303
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