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Abstract: With the ongoing fifth-generation cellular network (5G) d eployment, electromagnetic 1
field exposure has become a critical c oncern. However, measurements are s carce, and accurate 2
electromagnetic field reconstruction in a geographic region remains challenging. This work proposesa s
conditional Generative Adversarial Network to address this issue. The main objective is to reconstruct
the electromagnetic field exposure map accurately according to the environment’s topology froma s
few sensors located in an outdoor urban environment. The model is trained to learn and estimate
the propagation characteristics of the electromagnetic field according to the topology of a given -
environment. In addition, the conditional Generative Adversarial Network based electromagnetic s
field mapping is compared with simple kriging. Results show that the proposed method produces

accurate estimates and is a promising solution for exposure map reconstruction. 10
Keywords: EMF exposure; conditional generative adversarial network; optimization 1
1. Introduction 12

Wireless communication systems have become an inherent part of our daily life. 1
Hence, monitoring the status of wireless systems phenomena, such as radio-frequency s
electromagnetic field (RF-EMF) exposure, is of great significance. In urban environments, s
there are many sources of EMF, including WiFi, 2G, 3G, 4G, and 5G mobile communication 16
technologies. If 5G promises many improvements compared to previous generations [1-3], 17
there is growing anxiety regarding implementing the 5G network for two main reasons. 1s
The first one is that the frequency used is higher than the other mobile communication 1
generations. The second reason is the ultra-dense base station implementation requirement. 2o
Several organizations, such as the International Commission on Non-Ionizing Radiation 2
Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE), have 2
conducted research on human exposure standards for EMFs, as mobile devices and base  2s
stations emitting EMFs for radio communication must comply with regulatory human 2
exposure levels for EMFs [4,5]. 25

Although sensor networks and on-site measurements are essential, they are confined 2
systems that only allow a limited amount of EMF exposure monitoring. Locations of 27
base stations and mobile devices in an urban setting are influenced by elements including 2.
building topology, roadways, vehicles, and urban city topology. To evaluate RE-EMF 2
exposure, a power map must be constructed while taking these relevant factors into o
account. The challenge is reconstructing the EMF exposure map in an urban area from only s
a few sparsely located sensor-measured power values changing over time according to 2
environment topology and network activity. 3

In this work, we aim to assess the RF-EMF exposure using only 50 fixed receivers se
sparsely located in a 1 km square urban environment, specifically in Lille city center, France. s
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This is achieved using a conditional Generative Adversarial Network (cGAN) [6] architec- 36
ture where the city topology is used as a conditional input. The proposed Exposure Map  s7
Generative Adversarial Network (EMGAN) method is an innovative approach inspired s
by the cGAN architecture. The EMGAN model learns and then estimates the features of 1o
outdoor wireless propagation, including diffraction, shadowing reflection, and the impact 4o
of building walls, materials, roadways, and city topography. a

In this work, we consider a specific frequency band (around 5.89 GHz), this approach 4=
can naturally be extended to study the EMF exposure of other technologies (or the com- 4
binations of several). Additionally, other reconstruction techniques, such as kriging, are 4
developed to evaluate and compare the with the proposed model. 45

The main contributions of this paper can be summarized as follows: 46

*  Generating a new simulated dataset, called "LilleExposureMap", which consists of &7
EMEF exposure maps in Lille, France. a8
¢ Develop the generator and discriminator for the proposed EMGAN utilizing the deep 49
convolutional structure and auto-encoders analogy to learn about signal propagation  so
and calculate the map of EMF exposure. 51

The performance of the designed EMGAN is evaluated and shows a good reconstruc- s
tion despite a reduced number of fixed sensors. The paper is organized as follows. In s
Section 2, the review of related works is discussed. In Section 3, the data set is described. sa
Section 4 describes the proposed EMGAN model. The results and findings are presented s
and discussed in Section 5. Section 6 concludes the work. 56

2. Related work 57

Accurate radio frequency power map estimation is computationally expensive in  ss
a geographic region. Predicting power coverage in urban areas typically requires ray- so
tracing and also empirical/semi-empirical models, such as close-in(CI), floating intercept  eo
(FI), alpha, beta, gamma (ABG)[7-9], etc. simulations to determine how radio signals e
propagate and are distributed over an area. Deterministic and empirical models are used 2
for propagation prediction in earlier studies. Some examples are dominant path model s
[10], ray-tracing [11,12], and empirical models, such as [13]. Ray-tracing (RT) techniques  «a
offer the highest degree of precision, but often at the expense of high processing demands s
and a reliance on the accuracy of the tridimensional (3D) model of the [14]. RT techniques s
describe the propagating field as a series of propagating rays that reflect, diffract, and scatter e
over various environmental components. This high-frequency approximation (optical ray) s
to the Maxwell equations is the foundation for these approaches. This methodology has s
often proven computationally too expensive to be employed in large and, in particular, 7
dynamic contexts, hence network simulators only provide stochastic or streamlined hybrid 7
approaches [15]. If they are well suited to the coverage maps, they can not be used for
exposure maps, which would require the simulation of many different technologies and 7
the consideration of the number and positions of active users. 78

Data-driven interpolation methods presume that some measurements are given at 7
specific locations. These methods predict the function at non-measured locations via e
some signal processing approach, e.g., Kriging [16] relies on a model of the physical -
characteristics. The work in [17] used kriging to perform spatial interpolation of climate 7
data. The method works well when significant measurement points are considered. In [18], 7
kriging is applied to spatially reconstruct the EMF in an indoor scenario. However, the s
authors concluded that the reconstruction performance of the model could be improved by &
increasing the measurement points. 82

In [19], the authors use a CNN-based Generative Adversarial Network (GAN) [20] &3
to estimate the power spectrum map while considering urban cognitive radio networks. s
The employed bandwidths are 25 MHz and 75 MHz, and a uniform distribution of users s
was assumed. The under-sampled power spectrum maps were used as input for the image e
reconstruction task using a GAN model based on an autoencoder analogy. However,
the authors used the inverse polynomial law model in calculating power spectrum maps s
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(PSMs) to depict propagation characteristics. Additionally, the authors did not consider the &
topology as conditional input. %

For estimating radio maps, two recent papers proposed deep learning approaches o
[21,22]. The authors implemented a convolutional neural network [23] as the mapping 2
function to estimate the radio map for each Tx-Rx location. Every trained network definesa o3
specific map, and a new city map is needed to train the network. Other works on power map o4
prediction use fully connected neural networks, which do not consider the city topology s
as additional information [24-26]. In addition, the authors in [27] used a convolutional e
autoencoder [28] network for spectrum map interpolation, where several transmitters o7
with unknown locations operate. Buildings were superimposed on the estimated map  os
after the model inference. So far in the literature, all the works did not consider the oo
propagation characteristics of the area of interest, which can help to make the accurate 100
mapping. However, in the proposed method, the city topology is considered a conditional 101
input to the cGAN model to represent the urban environment characteristics. To the best of 102
our knowledge, no study in the literature considers the environment topology as additional 103
input. 104

3. Dataset and Simulator 105

This work presents a new dataset, called "LilleExposureMap" of 6006 simulated EMF 106
exposure maps in Lille, France, obtained from Veneris-Opal. Different moving transmitter 1o
positions are used in order to generate different maps. The considered number of simulated 10
EMF exposure maps is fixed to minimize the computational complexity. One km square 100
area is selected where three different simulations are done, placing three different moving 110
positions of transmitters in the area of interest (see Figure. 1).

Figure 1. 3D environment model of Lille City 1 km? area with 2088 receiver grid represented in green
squares.

The 3D environment model is implemented in * VENERIS -OPAL’ an open-source ray 11
tracing network simulator [29]. Veneris-Opal is a simulation framework for research on 114
Vehicular Networks and Cooperative Automated Driving. However, it can also be used 115
for general wireless network simulation, which needs 3D environment-aware propagation 11
simulation. On top of the Unity game engine citehaas2014history, it includes a realistic 117
vehicular model and a set of driving and lane change behaviors that reproduce the traffic 1.
dynamics integrated using SUMO [30], a ray-launching GPU-based propagation simulator s
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called Opal [31] and a set of modules that enable bidirectional coupling with the widely 120
used OMNET++ network simulator. 121

A map of Lille city center from OpenStreetMap [32] is used for the ray launching iz
simulations in Veneris-Opal. More specifically, the dataset contains objects with rough 123
surfaces like 3D building walls, statues, roads, etc., interacting with the rays in complex iza
ways. Moreover, gaps in the object, e.g., bridges and rays at different levels, can pass or 12s
reflect from such objects. The presence of the object in the environment, and several ray 126
interactions result in a complex power distribution representing a real-life environment. 127
The transmitters are assumed to use an isotropic antenna, producing omnidirectional radio  12s
waves. The height and power of the transmitting antenna were set at a maximum of 15 12
meters and 20 Watts, respectively. The propagation model in ray launching considers 1so
reflections on 3D buildings, resulting in more complex patterns. Even if VENERIS can 13
handle a very high number of iterations, a convergence study shows that 2 interactions are 132
enough for reliable results in this kind of environment. 133

For simulations, three transmitters are used at 5.89 GHz with 20 W transmitting power, 134
and other simulation parameters are used, like azimuth, elevation, reflection, etc. To 135
generate the ground truth maps, 2088 receivers at the height of 1.5 meters are placed ina 136
uniform grid in the area of interest, as shown in Figure 1. The receivers inside the buildings 1s7
are not considered. 138

Using Veneris-Opal, the received power in a dense urban environment by ray tracing 13
is simulated and converted into images using Python. Then, it is employed as a reference 140
map. Figure 2 gives an example of reference exposure maps when the transmitter is located 14
at the top right corner. Each map has a dimension of 512 height, 512 width, and 3 RGB 122
color channels. 143

Power(dBm)

50,633 50.635
latitude

(a) Transmitter’s location corner (b) Transmitter at upper right corner

Figure 2. RF-EMF exposure reference map.

The area of interest, Lille city center, is 1 km square, and 50 sensor points were selected 145
using "SensorLocator” an open source web application developed in IRCICA lab by authors 1as
which were then extracted from the reference map to generate the undersampled sensor 1
map images. The locations of the sensors are constrained by the position of the lighting  1ss
poles and are shown in Figure 3, and we consider 15, 30, and 50 fixed locations taken from 1
the reference map images for generating the test set. To capture the city topology effect, we s
used an image where black and white represent buildings and roads, respectively (with 1s
no intermediate grey levels) as a conditional input to the cGAN network. An example of  1s:
the topology image is shown in Figure 4b, and the EMF map with city topology overlaid s
is illustrated in Figure 4c. It is important to note that less than 1% of the reference image 1ss
area in terms of pixels is covered by sensors in the most optimistic case, i.e., when 50 1ss
measurements are taken into account. 156
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Figure 4. RF-EMF exposure reference map.

4. The Proposed EMGAN Model 157

We propose a deep learning method inspired by a conditional GAN architecture 1se
adapted to image-to-image translation. Several studies have been done using this specific 1so
model architecture[33-35] for different applications. In this work, the network learns to 160
estimate the propagation of an electromagnetic field according to a distribution of sensors. 16
Our model is conditioned by a map that represents the topology of a city, thus forcing the e
model to adapt to a targeted topology, whether indoor or outdoor. Figure 5 illustrates an  1es
overview of the proposed method. 164

4.1. Input and output data 165

To train the model, input data for the generator are the sensor map and city topology 1es
images with a dimension of 512 x 512 x 3. The output is a fake full-exposure map image. 167
For the discriminator, inputs are the generated fake images from the generator and the 1es
real full exposure map image simulated by Veneris-Opal with a dimension of 512 x 512 X 3. 1es
The output is classified as whether the data is fake or real, estimated full exposure map. 17
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4.2. Network Architecture 171
4.2.1. U-Net Generator 172

Estimating the EMF exposure map is an image-to-image translation task. The model’s 173
inputs consist of two images, a sparse sensor measurement map, and the city topology asa 17
conditional input to the generator (the U-net model), represented as a three-dimensional 175
matrix (height, width, and color channel). Three channels—red, green, and blue—are 17
combined to create a picture[36]. A channel represents the color and color intensity of an 17
image. The proposed method reconstructs the final image using a three-dimensional image 17s
tensor with three channels. The input sensor measurement map is sparse because each 17
pixel’s color intensity corresponds to a sensor-measured value at that location. 180

Since estimating the EMF exposure map is mainly an image-to-image translation task, 1e
the model’s inputs are two images, a sparse sensor measurement map, and the city topology e
as a conditional input to the generator (the U-net model) represented as a three-dimensional  1es
matrix, (height, width, and color channel). An image is built by combining three channels, 1ss
i.e., red, green, and blue [36]. Simply put, a channel refers to color intensity and color iss
in the image. In contrast, a three-dimensional image tensor with channel depth three is  1s6
utilized for our method to reconstruct the output image. The color intensity of pixels of 1s7
the input image represents the sensor-measured value at a corresponding location, making  1ss
the input sparse sensor measurement map. The generator is an encoder-decoder model

Training

Sensor map !

-

4 o "A\i’??»‘ﬁn“
%&?ﬁ Generated map
;,Q{‘f& Ay
Srafp®

Topology

Figure 5. Proposed conditional GAN.

using a U-Net architecture. The model takes a source image (e.g., a sensor map) along 1e0
with a city topology image as a conditional input and generates a target image (e.g., a 10
complete exposure map with the effect of topology). It does this by first downsampling or  1e2
encoding the input image down to a bottleneck layer, then upsampling or decoding the 1e:
bottleneck representation to the size of the output image. Moreover, skip-connections are 1es
added between the encoding and corresponding decoding layers for learning features from 195
input images. The model is built to learn more intricate wireless propagation aspects of the 106
target area, and translate it to an EMF map for exposure assessment. 107

Encoder: The sensor map I s the input to the encoder’s input layer. The decoder module 100
consists of several blocks, each of which has following setup: 200

e  Using a kernel size of 3 x 3 and a stride of 1, two convolutional layers are applied in 201
succession. The input layer uses tensors of a size of 512 x 512 x 3, which represent  zo2
a three-dimensional sensor map picture. This results in new dimensions with 16 2o
channels and raises the feature map’s channel count. 208
®  The rectified linear unit(ReLU) is the activation function that is being used. This zos
function enables to take only positive values after convolution operation. 206
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* A max-pooling layer connects previous layers. This layer downsamples the feature 207
map by taking the biggest value in each patch of each feature map. This creates new 208
dimensions of 64 x 64 x 16. 200

The first block’s layers are repeated in the decoder module, where the depth or channel 210
number rises to 8 x 8 x 512 and the size of the feature map rapidly decreases. 211

Decoder: Five symmetric reduction module blocks are employed in the decoder mod- 213
ule along with a transposed convolutional layer for upsampling. The feature map’s height 214
and width are set in the layer’s properties to be doubled, but the depth (number of channels) 215
is set to be decreased by half. For the purpose of extracting more precise features from the 216
feature map, two consecutive convolutions are used. The symmetric U-shaped generator 2i-
model architecture contains five blocks on each module. 218

4.2.2. Discriminator 210

The discriminator is a deep convolutional neural network in cGAN explicitly used for 220
conditional image classification. It takes all 3 images as input, the sparse sensor map, the 222
target image, and the conditional topology image. It estimates the likelihood of whether = 222
the target image is real or a fake translation of the source image having the effect from 2z
the topology as well. The effective receptive field of the model is the core of designing 224
the discriminator. This is called a PatchGAN [35] model, which defines the connection 225
between one output of the model to the number of pixels in the input image. The output =z
estimate of each model corresponds to a 70 x 70 square or patch of the input image. This 227
method has the advantage that the same model may be used to process input images that zzs
are bigger or less than 256 x 256 pixels. The size of the input image determines whether the 220
discriminator’s output is a single value or a square activation map of values. Each value =230
represents the chance that a patch in the input image is real. These values can be averaged =23
if necessary to provide a global probability or categorization score. 232

4.3. Loss Functions 233

The loss function of the proposed cGAN model contains the discriminator and the
generator part as shown in (1):

Lgan(G,D) = Ex,y [108 D(x, ]/)] + Ex;z [1— log D(x,G(x,z)] 1)

where x is the input image, y is the output image, and z is the conditional image. 234
The generator G is not only trying to reduce the loss from the discriminator but also
trying to move the fake distribution close to the real distribution by using L1 loss which is
given in (2):
Li2(G) = Exyzlly — G(x,2)]] @

The loss function of generator network is stated in (3):

G* = argmGianaxLC(;AN(G,D)/\u(G) 3)
5. Results 235
5.1. Training set-up 236
For the input training samples, 50 sensor measurement locations are used. Training a7
parameters are listed in Table 1. 238
5.2. Evaluation metrics 230

The structural similarity index (SSIM)[37] and peak signal-to-noise ratio (PSNR) are
between reconstructed map and the reference map in order to assess the model performance.
Values between -1 and 1, where 1 denotes perfect resemblance, are provided by the SSIM
model, which captures the observed change in the structural information of the picture.
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Table 1. Training parameters.

Parameters Value
Total number of images 9009
Input samples 2500
Test set 503
Optimizer ADAM
Learning rate 4x107%
Batch size 2
Decay rate 1x10°°
Epochs 4000

The PSNR test compares the distortion power to the greatest possible pixel intensity. The
SSIM index is calculated on various windows of an image. The measure between two
windows x and y of common size N x N is given below along with PSNR:

MAX}
PSNR = 10log;, *WEI )
where MAX] is the maximum possible pixel value of the image. When the pixels are 240
represented using 8 bits per sample, this is 255. The degree of inaccuracy in statistical mod- 2a
els is measured by the mean squared error, or MSE. Between the observed and estimated 242
values, it evaluates the average squared difference. The MSE is equal to 0 when a model is  2as
error-free. Its value increases when model error does as well. The mean squared deviation 2ea
is another name for the mean squared error (MSD). 245

(ZVXVy +c1) (Z‘Txy +c2)

SSIM(x,y) =
CN =212+ a) @+ oi+ )

Q)

where, iy and py are the pixel sample mean of x and y, py. 02 and (75 are the variance 24

of x and y, 0yy is the covariance of x and y. ¢; = (k1L)? and ¢, = (k,L)? are the variables zer
to stabilize the division with weak denominator, where L is the dynamic range of the =24

pixel-values. kq and k; are set to 0.01 and 0.03. 249
Finally, we will consider the pixel-to-pixel error that we will denote by R. To calculate
R, in dB, given by:
x
R(x,y) = 10log,, (y) (6)
We will represent either the probability distribution of R or the cumulative distribution of  2so
|R|. This allows to have a more detailed understanding of the error behaviour. 251
5.3. Visual analysis 252

The proposed EMGAN model is compared with the EME-Net model in [38] and the  2ss
kriging method when only 50 measurement points are considered. All models are trained  2sa
and tested on the same training and test data sets. As illustrated in Figure 6, the proposed  2ss
EMGAN model outperforms the kriging model. The EMGAN-based (6d) reconstructed  =zse
map looks very close to the ground truth, and few details are missed by the EME-Net-based 25
(6¢), whereas the kriging-based (6b) encounters significant loss. 258

Additionally, the proposed EMGAN model performance is analyzed by varying the 2so
number of measurement points. Figure 7 shows the EMGAN-based reconstructed maps  zeo
using 15 and 30 sensor measurement points. The figure illustrates that the performance of 261
the proposed EMGAN model remains consistent even when a few measurement points are ze2
considered, although some degradation can be observed. 263

The error map between the reconstructed map and the ground truth is illustrated in  2es
Figure 8. The error map shows that the proposed EMGAN model (8c, 8d and 8e) has a  zes
significantly low error compared to the other models. The kriging approach exhibits very zes
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Figure 6. Comparison of Reconstructed maps of the proposed model and other different models.
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poor results. The approach is not well adapted with such a spatial undersampling. Further 2.
studies, though, should be done to take into consideration the environment topology and  zes
the propagation models. This however is a different approach and is out of the scope of 260
this paper. 270

5.4. Quantified Analysis 272

Figure 9 presents the averages of SSIM and PSNR as a function of the number of 27
measurement points. As the number of measurement points rises, so do the averages of 274
SSIM and PSNR. The reconstruction procedure is cohesive in terms of similarity and picture 275
quality, according to the same trend. The same trend indicates that the reconstruction =7
process is coherent regarding similarity and image quality. 277

The Cumulative distribution function (CDF) of the error ratio R of the proposed 27
EMGAN and other models is shown in Figure 10.As illustrated in Figure 10a, the proposed 27
EMGAN model outperforms the kriging and EME-Net methods. In addition, Figure 10b  2e0
shows that, despite the optimistic visual evaluation, the performance of the proposed e
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EMGAN degrades as the number of sensors decreases. On the 1 km? area we are studying, as
the 50 sensors are needed to avoid some large deviations. 283

In Figure 11, the probability density function (PDF) of the ratio between the recon-  2s.
structed maps and the ground truth of the proposed EMGAN model with different numbers  2es
of sensors, EME-Net, and simple kriging methods are presented. The error ratio (in dB) 2es
distribution can be well approximated by a Gaussian random variable. We first notice that = 2e-
the mean is rather close to 0, meaning there is no significant bias in the prediction steps. 2ss
The second important point is that we note the reduction of the variance with the increase zs0
of the sensor of numbers. With 50 sensors in the studied 1 km? area, the variance is reduced  2e0
to 0.85, which seems a reasonable value for an exposimetry study, resulting in more than 20
90% of the error ratio below 3dB. We also notice that the EME-Net approach with 50 sensors  ze2
is not as good as the proposed approach with 30. 203
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Figure 11. The probability density of the ratio R between the reconstructed map and ground truth
when different numbers of sensors are used.

6. Conclusion 208

In this work, we present the EMGAN methodology, a deep learning-based exposure 205
maps estimation method for urban environment. The generator and the discriminator 2es
are developed to estimate the exposure maps and improve the estimation accuracy by o7
incorporating the city topology as a conditional input to the model. Instead of making 2es
direct, inaccurate, or biased assumptions about radio propagation, the EMGANSs algorithm 200
learns and uses radio environment information from the training process. The EMGANS 300
algorithm offers a highly accurate estimation performance, significantly more accurate than o
traditional approaches, according to experimental data. Future work will concentrate on o2
expanding the estimation of exposure maps using EMGANS to the temporal dimension.  sos
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