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Abstract: Human motion analysis using inertial measurement units (IMUs) has recently been shown 1
to provide accuracy similar to the gold standard, marker-based optical motion capture, but at much =
lower costs and while being less restrictive and time-consuming. However, IMU-based motion s
analysis requires precise knowledge of the orientation in which the sensor is attached to the body 4
segments. This knowledge is commonly obtained via an anatomical calibration procedure basedon s
precisely defined poses or motions, which is time-consuming and error-prone. In the present work,
we propose a self-calibrating approach for magnetometer-free joint angle tracking that is suitable for 7
joints with two degrees of freedom (DoF), such as the elbow, ankle, and metacarpophalangeal finger
joints. The proposed methods exploit kinematic constraints to simultaneously identify the joint axes
and the heading offset. The experimental evaluation shows that the proposed methods are able to 10
estimate plausible and consistent joint axes from just ten seconds of arbitrary elbow joint motion. 11
Comparison with optical motion capture shows that the proposed methods yield joint angles with 12
similar accuracy as a conventional IMU-based method while being much less restrictive. Therefore, 13
the proposed methods improve the practical usability of IMU-based motion tracking in many clinical 14
and biomedical applications. 15

Keywords: anatomical calibration; sensor-to-segment calibration; kinematic constraints; human  1e
motion analysis; elbow joint; inertial sensor; inertial measurement unit 17

1. Introduction 18

Marker-based optical motion capture (OMC) is considered the gold standard for hu- 1e
man motion analysis. However, this method is time-consuming and confined to expensive 2o
laboratory environments. Ambulatory real-time motion analysis can be achieved at much 2
lower costs with inertial measurement units (IMUs). Recent studies have shown that the 2
accuracy of IMU-based motion analysis is comparable to marker-based OMC, see, e.g., =3
[1 ,2] . 24

However, in order to derive anatomically meaningful kinematic quantities, for exam- 25
ple, joint angles, the orientation of each IMU with respect to its body segment must be 2
known, as illustrated in Figure 1. Even small misalignments between the assumed and ac- =7
tual orientation of the IMUs on the body lead to errors in the obtained kinematic quantities. 2s
To ensure accurate motion tracking, it is therefore desirable to accurately determine this 2.
orientation. 30

In practice, this is often achieved by manual placement of the IMUs on the respective s
body segments in a specified orientation [3], which is error-prone, especially when the s
attachment of sensors is to be performed by patients or by non-medical personnel. 33

An alternative is to include a procedure that determines the orientation of each IMU 34
with respect to its body segment based on data measured by the sensors. This procedureis ss
called anatomical calibration or sensor-to-segment calibration, which is not to be confused with 36
sensor calibration. Sensor calibration determines parameters such as scaling and biasin s~
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order to increase the accuracy of the sensor orientation estimates. Anatomical calibration s
determines how the sensors are attached to the body segments to ensure that the rotation 3¢
axes used for calculating joint angles match the anatomical axes of joint rotation. 40

conventional: | proposed:

dedicated calibration K data from arbitrary
movements and poses | joint motion
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Figure 1. Anatomical calibration, also called sensor-to-segment calibration, is the task of determining
how the IMUs are attached to the body segments. More precisely, the rotations between the IMU
coordinate systems S 5, defined by the sensor housing, and the corresponding body segments B 5,
determined by anatomical axes such as the joint axes j; », have to be determined. Conventional
methods rely on precisely defined calibration movements and poses, whereas the proposed methods
use kinematic constraints to derive this information from arbitrary joint motion.

As detailed in Section 2, anatomical calibration traditionally relies on precisely defined 4
calibration poses or motions. Less restrictive approaches aim for anatomical calibration 4=
based on arbitrary joint motion. Such approaches have been proposed for (approximate) s
hinge joints [4,5]. In the following, we consider the more challenging case of joints with 4
two degrees of freedom (DoF), such as the elbow joint, the metacarpophalangeal joints s
(MCP) of the finger, or the ankle joint. The present contribution introduces methods for 4
self-calibrating joint angle tracking that a7

*  use two kinematic constraints for 2-DoF joints, one for the angular rates (as already 4=
introduced in [6,7]) and a novel constraint for the relative segment orientations 40
* donot make use of magnetometer measurements and are therefore insensitive to mag- so
netic disturbances (otherwise, temporary magnetic disturbances could permanently s

deteriorate accuracy until calibration is repeated) 52
* instead simultaneously estimate the heading offset to facilitate magnetometer-free s
joint angle tracking. se

The methods are evaluated based on two experiments. The first experiment, with a known s
sensor attachment as ground truth, compares a simple and a complex motion and is used e
to show that estimation over a short time window of just ten seconds of joint motion yields s-
plausible and consistent joint axes. The second experiment, with OMC as ground truth, is  ss
used to validate that, while being much less restrictive, the proposed self-calibrating joint  se
angle tracking provides the same accuracy as a conventional IMU-based approach. 60

2. Brief Review of the State of the Art in Anatomical Calibration 61

Anatomical calibration is the task of determining how the IMUs are attached to the e
body segments. In a broader sense, this also encompasses the pairing of IMUs to body s
segments [8,9] and the estimation of joint center positions [10-12]. The most relevant s
aspect, however, is to determine how the sensor coordinate system is rotated with respect s
to anatomical body segment axes (cf. Figure 1). In order to uniquely define this orientation, s
the coordinates of two anatomical axes need to be known in the sensor frame (or vice versa). 7
Since errors in the sensor-to-segment orientations lead to kinematic cross-task and thus s
directly cause errors in the obtained joint angles [13—15], the reliability and accuracy of s
anatomical calibration methods are of fundamental interest in IMU-based motion analysis. 7o

There are four main approaches for how to deal with the need for sensor-to-segment 7.
alignment in IMU-based human motion analysis [3]: 72
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1. relying on a precisely defined sensor attachment (assumed alignment), 73
2. calibration via measurements from additional devices (augmented data), 7a
3.  calibration based on precisely defined poses or motions (functional alignment), 75
4.  calibration from arbitrary motions (model-based alignment). 76

Using a precisely defined attachment of the sensors to the body is a common approach 77
and, according to the survey by Vitali and Perkins [3], used by 42 % of recent publications. s
The advantage of this approach is that it only requires minimum effort from the subject, i.e.,
no extra calibration movements are required, and that it is simple to implement. However, =0
placing the sensors on the body so that predefined sensor axes correspond to functional e
joint axes is error-prone even for experienced medical personnel and even more so when 2
patients themselves attach the sensors. In a study with three operators, Bouvier et al. [16] e
report reproducibility in the range of 4° to 12° and agreement with OMC in the range of 8° e
to 23°. o

An example of an augmented data method for anatomical calibration is the use of =6
an additional custom device equipped with an IMU that is used to determine the sensor e
orientation with respect to anatomical landmarks [17,18]. 88

The third approach is to ask the subject to assume precisely defined postures or s
perform a sequence of precisely defined motions. In the simplest form, this consists of a 0
single pose calibration, often in the N-pose or T-pose [19-22], and requires magnetometers o
in order to be able to define two axes from one pose. A magnetometer-free alternativeis to o2
use two poses, e.g., one standing up and one lying down [23], or to derive the anatomical s
axes from angular rate measurements of precisely defined motions, typically around the o
functional axes of the joint [24-26]. Often, both approaches are combined, and one axisis o5
derived from a static pose and one from a functional motion. Those hybrid approaches s
have been demonstrated for the upper body [27,28] and lower body [29-31]. For thorax e
and lumbar joint angles, however, a recent study by Cottam et al. [32] found that calibration s
via functional motions did not improve accuracy in comparison to relying on manual s
sensor placement. Bouvier et al. [16] observe similar accuracy for precise attachment and 100
for various calibration approaches based on precise poses and motions and point out that 1
accuracy depends more on the rigor of the experimental procedure and operator training 12
than on the calibration method. Furthermore, performing those motions can be tedious 1os
for the subject, especially considering that a precise execution is required. For patients 1os
with motor disabilities, performing precise motions can be hard or impossible. Even after 1o
solving those obstacles, the main drawback of those methods is that the accuracy of the 106
calibration depends on the accuracy of performing the motion. An elegant recent approach 1o
is to use the actual motions of interest for calibration, e.g., during cycling [33] or walking 108
[34]. However, this is only feasible in a limited amount of applications and relies on strong 10
assumptions on the analyzed motions. 110

In many cases, e.g., clinical applications, it would render the use of IMUs much more 111
practical if both a precisely known attachment and precisely specified calibration poses and 112
motions could be avoided by determining the sensor-to-segment orientations from arbitrary 113
motions, usually by relying on kinematic constraints of biomechanical models. This was 114
demonstrated for the knee joint by exploiting a kinematic constraint in the angular rates of s
(approximate) hinge joints [4,10]. Furthermore, it was shown that extending this constraint 116
for a combined optimization of a three-segment chain improves robustness [35] and that 117
other methods, such as principal component analysis [36] and factor graph optimization s
[37,38], can be used to exploit hinge joint constraints. In [5,39], the gyroscope-based hinge 11
joint constraint introduced in [10] and an accelerometer-based constraint are combined 120
with an elaborate sample selection strategy, and in [40], both constraints are analyzed for i
observability of the joint axis. Taetz et al. [41] introduce an approach based on sliding 122
window weighted least squares optimization that uses hinge-joint and range-of-motion 12
constraints and a body-shape prior to simultaneously estimate the sensor-to-segment iza
orientation along with the body motion. Zimmermann et al. [9] demonstrate that deep 125
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learning can be used for lower body anatomical calibration with just two seconds of walking 126
data. 127

For anatomical calibration based on arbitrary motions of 2-DoF joints, the existing 122
work is limited. Miiller ef al. [6] introduce a gyroscope-based kinematic constraint for 2-DoF 12
joints such as the elbow. Norden et al. [42] demonstrate that the same constraint can be 10
employed for real-time estimation of hip and knee joint axes. However, the constraint used = 1s:
in both [6] and [42] assumes knowledge of the relative sensor orientation and therefore s
requires magnetometers. This poses a severe limitation for the applicability of those 133
methods in indoor environments [43] and implies that temporary magnetic disturbances 13
during calibration can lead to wrong axis estimates and thus permanently deteriorate the 135
accuracy of the obtained joint angles. In [7], we presented first results of a magnetometer- 1ss
free method that overcomes those restrictions by simultaneously estimating the heading  1s7
offset. 138

3. Kinematic Model of 2-DoF Joints 130

The methods proposed in the present contribution perform automatic anatomical 140
calibration for joints with two degrees of freedom (DoF). Those methods are suitable for 1a
any 2-DoF joint and can be applied to a range of biomechanical or robotic 2-DoF joints. s
To improve comprehensibility, the following description of the kinematic model and the 1
calibration method focuses on the human elbow joint as an exemplary joint, which is later 14a
also used in the experimental evaluation. 145

Furthermore, even though in the following we always only consider two body seg- 146
ments connected by a single joint, the proposed methods can be used to analzye longer 14
kinematic chains consisting of multiple segments. In this case, the calibration methods can  14s
be applied to each pair of segments that are connected by a 2-DoF joint. 140

Figure 2 shows an anatomical model of the combined elbow and radioulnar joint as an  se
exemplary biological 2-DoF joint. The combined joint can perform two functional motions. s
Flexion and extension (FE) is performed by the elbow joint, while pronation and supination s

(PS) are the result of the radius pivoting around the ulna. 153
1 j2 (PS) / ulnar
humerus = Ty
]'] (FE) radius \(\Z
B (upper arm) B, (forearm) 2

Figure 2. Anatomical model of the elbow joint and the radioulnar joint. The elbow joint is a hinge
joint with the rotation axes j, allowing for flexion and extension (FE). The radioulnar joint also has
one degree of freedom (j,) and allows for pronation and supination (PS). For simplicity, we often
refer to the combined radioulnar and elbow joint with two degrees of freedom as elbow joint.

As an approximation, we can model this joint — as well as any other 2-DoF joint — 1ss
as a kinematic chain consisting of two hinge joints and one fixed rotation in between, as  1ss
depicted in Figure 3. Including the fixed rotation, the sequence of rotations consists of 1se
flexion and extension (FE), a fixed carrying angle [44], and pronation and supination (PS). s

We use unit quaternions to denote rotations and orientations [45]. In the context of 1se
quaternion multiplication, which we denote by ®, we implicitly regard 3D vectors as pure 1so
quaternions. Square brackets specify the coordinate system in which a vector is expressed, 160
for example, [w1], is the gyroscope measurement of IMU S transformed into frame &, e
ie, [wi]g = ‘gq Qw ® ‘gq’l. Here, the left upper and lower indices denote the frames 12
between which the quaternion rotates. Quaternions that represent the rotation of an angle  1es

. . T . T
& € R around the axis v € R® are written as (r @v) := [COS 5 H‘;—H sing| . 164
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B, (forearm)

Bj (upper arm)

Figure 3. (a) Geometric kinematic model of the elbow joint. Inertial sensors S1 and S are placed in
arbitrary orientation on the upper arm B and forearm B;. Upper arm and forearm are connected by
two hinge joints that allow for FE (j;) and PS (j,). (b) View onto the j;-j, plane. The fixed rotation
between FE and PS is called carrying angle.

We can use this notation to mathematically express the orientation of the forearm By  1es
relative to the upper arm B; using the FE joint angle «(t), the carrying angle By, and the PS 166
angle y(t) as 167

2a = (a() @j1) @ (B @j1 x o) @ (v(t) @jo). (1)

The International Society of Biomechanics (ISB) [44] also recommends this joint model for 1ee
the elbow and precisely defines coordinate systems 1 and B; so that [ji]z; = [0 0 1]T 160
and [jo|z, = [0 1 0]T. When using this definition, the joint angles are intrinsic z-x"-y” 170
Euler angles of gfq Please note that this also means that the axis j; (FE) is fixed in the 17
coordinate system of a sensor attached to the upper arm, while the axis j, (PS) is fixed in 172
the coordinate system of a sensor attached to the forearm. 173

Instead of using regular Euler angles, we could consider modeling a 2-DoF joint with 17s
axes that are all potentially non-orthogonal (including the carrying angle axis). However, as 175
Appendix A shows, any generic model with non-orthogonal axes can also be expressed us- 176
ing standard z-x"-y” Euler angles by redefining the segment coordinate systems accordingly. 77
This means that the choice of z-x’-y”" Euler angles according to the ISB recommendations  17s
[44] does not restrict the generality of the proposed methods. Also, note that the orientation 17
of the IMUs on the body segments is independent of this definition. The goal of anatomical s
calibration is to determine the fixed coordinates j; and j, of the functional joint axes in the  1a:
local coordinate systems of the respective IMUs. 182

4. Proposed Methods 183

Two IMUs S and S, are placed on the subject in unknown orientations, one on each  1ss
body segment connected by the 2-DoF joint (i.e., in case of the elbow, one on the upper arm  1ss
and one on the forearm). Assume that we can estimate the sensor orientation quaternions 1ss
Séq(tk), qu(tk) relative to a common inertial frame £. We also measure the angular rates e
w1(ty) € R?, wy(t;) € R3 of the IMUs, in their respective local coordinate systems. All s
measurements are sampled at times f; = kTs, k € {1,2,...,N}, Ts € Roo. Note that the 1s
assumption of a common inertial frame £ is restrictive in practice as it assumes 9D sensor  1s0
fusion in a perfectly homogeneous magnetic field and will later be dropped. 101

In the following, we will derive two different kinematic constraints for 2-DoF joints, 12
one based on the angular rate and one based on the segment orientations, that are both  1e3
suitable for 6D sensor fusion with unknown heading offset. Based on those constraints, we 194
introduce methods for automatic anatomical calibration and for magnetometer-free joint 105
angle calculation. 196

4.1. Rotation-Based Kinematic Joint Constraint 107

As shown in Section 3, a 2-DoF joint cannot perform arbitrary joint rotation in all ~ 1ee
directions. Instead, rotation is only possible around the two joint axes. In the following, we 190
will investigate how this translates to a kinematic constraint in the angular rates measured  zo0
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by the two IMUs. We will later exploit this constraint to estimate joint axes from arbitrary zo:

joint motion. 202

Using the addition theorem for angular velocities, we express the relationship between 20

the gyroscope measurements w (t;) and wy(t) as 204
[wa]e = [wile +wjy [j1]e + W) lio]e- 2

The scalars wj, and wj, are the rotation rates of the joint around the respective joint axes.  zos
In case of joints with two degrees of freedom according to the model in Figure 3, this 2o
corresponds to the anatomical joint motions, i.e., in case of the elbow, wj is the FE angular 207
rate and wj, the PS angular rate. This means that the angular rate w, measured by the  zos

forearm IMU S; is composed of three components: 200
1.  the common rotation of the whole arm, also observed by IMU S as wq 210
2. the FE rotation around j; 211
3.  the PSrotation around j». 212

Note that the carrying angle does not appear, since it is time-invariant. Also note thatin (2), =21
the angular rates and joint axes are transformed into a common coordinate system, here £. 21
For hinge joints, in [4], the following constraint has been derived from (2): 215

lew1 X jul| = [lwz < jaf| = 0. ®)

Since this version of the constraint only uses quantities given in local sensor coordinates, it 216
is independent of sensor orientations with respect to a fixed frame and thus not affected by 217
magnetic disturbances. 218

For joints with two degrees of freedom, we need to know the relative sensor orientation 21e
or sensor orientations with respect to a common fixed frame. In order to derive a similar 220
constraint from (2) for 2-DoF joints, we calculate the scalar product with the normalized' 22

axis [j1]g X [j2]¢ on both sides, i.e., 222
oy, e x fiale oy li)e x fiale
(ale = ilizle) g5 5l = (e *nlitle) | S @
and employ the fact thata - (a x b) = a - (b x a) = 0. This yields 223
(@ile - fosle) - U o ®)

ile % Galell —

For perfect 2-DoF joints and ideal IMU measurements, this constraint must be fulfilled 224
for each sampling instant. For biological joints, and when taking soft tissue motion and 225
measurement errors into account, the constraint is still valid in a least-squares sense when 226
considering a short motion sequence consisting of multiple samples. 227

However, the constraint as formulated in (5) uses the reference frame £ and is only  z2s
suitable for use in combination with 9D inertial orientation estimation (IOE), i.e., with the 220
use of magnetometers. Since magnetic fields are often severely disturbed [43], we want 230
to avoid using magnetometer measurements and therefore only employ 6D sensor fusion 23
to estimate the sensor orientations, e.g., using the VQF algorithm [47]. This implies that =232
the heading of the estimated orientations is not well-defined. More precisely, this can =2s:
be described by the estimated orientations ‘giq and ‘giq being given in different global 2«
reference frames £, and &, which are rotated around the vertical global z-axis, i.e., 235

2q= (61 @[0 0 1]7) = [cos(2) 0 0 sin(*2)]" ©)

1 Normalizing the axis was found to improve robustness compared to the constraint presented in [46].
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The heading offset (t) has an unknown initial value and then slowly drifts due to gyro- =
scope bias [48]. Please note that both £; and £, have some unknown heading offset with 237
respect to a fixed frame £ used in 9D sensor fusion and defined by gravity and the Earth’s  2:s
magnetic field. However, knowing those individual offsets is not necessary for calculating 2s»

relative orientations and joint angles. 240
We take the heading offset into account by evaluating the constraint (5) in one of the  2a
slowly-drifting global frames (here £1), i.e., 242

([w1]51 - [“’2]51) . H[h]glx[]ﬂgl

li1le,  [i2le,

=0. @)

=1 Wre]

=tjn/ [ljnll

This version of the constraint implicitly depends on 6, as we need the quaternion za:
‘giq = gfq(é) ® ‘giq to transform w, and j, to £1 coordinates. This means that instead 244
of (5) we can use (7) with magnetometer-free 6D orientations and that, in addition to the a5
joint axes coordinates, we also identify the current heading offset J(¢) as an additional =
parameter. 247

4.2. Orientation-Based Kinematic Joint Constraint 248

As an alternative, we derive a second kinematic joint constraint. In contrast to the e
constraint introduced in the previous section, this constraint is not based on the joint 2s0
rotation but on the joint orientation, i.e., the relative orientation between the two body  2s:
segments connected by the joint. 252

Asin Section 4.1, assume that we have 6D sensor orientation estimates ‘21 q(te), ‘gi q(tg), =ss
e.g., estimated with the VQF algorithm [47]. As before, our aim is to identify [j;] Sy
lj2] s,» and the heading offset 5(t). For any given estimate of those values, we are able to  zss
calculate joint angles. If the joint follows the 2-DoF joint model introduced in Section 3, 2se
the following statement holds true: With the correct sensor-to-segment orientation and the 2s7
correct heading offset, the second joint angle (for the elbow joint: the carrying angle) is  zss
constant. 250

Mathematically, we can formulate this by calculating the joint orientation and then 260
decomposing this orientation into Euler angles. First, we determine the shortest-possible 261

rotations that align the estimated sensor axes with the joint axes: 262
B . .
S1a = (arccos([0 0 1]7-[ju]s, ) @[0 0 1]7 x [ja], ) ®)
B . .
§2q = (arccos ([0 1 0]7-[j2]s,) @[0 1 0]7 x i), ) ©)
and calculate the rotation quaternion between the reference frames 263
2q=(@[001]). (10)
Using those quaternions we calculate the joint orientation 264
B S £ 19 S B
quzgiq(@giq@gfq@g;q@siq/ (11)
:giq

which depends on the sensor orientations, the estimated joint axes j; and j;, and the 26
heading offset ¢. 266
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Therefore, gfq =: [qw qx 9y 9-]7 can be calculated from the measured data and the e
estimated parameters. The second intrinsic z-x"-y” Euler angle of this quaternion, i.e., the zes
estimated carrying angle, is 260
Bo = arcsin (2qwqx + 2q42). (12)
Due to the joint constraint, this angle has to be constant over the whole measurement 270
window, i.e., with the fixed constant carrying angle By, am
arcsin (2qw4x + 244492) = Po- (13)

Similar to (7), the constraint (13) can be used to identify the joint axes coordinates and 272
the heading offset 6. Additionally, unless the actual value of the carrying angle Bo is known, =27
Bo has to be identified as an additional parameter. 274

4.3. Parametrization of Joint Axes 275

The aim of the anatomical calibration is to identify the joint axes j; € R® and j, € R3 27
with |[ji|| = 1, i = 1,2. Parametrizing the axes as Cartesian vectors in an optimization 27
problem is inconvenient as we would need an additional constraint to ensure unit length. 27
Therefore, we employ spherical coordinates and represent each axis by two parameters @; =27
and 0;, e.g., 280

ji = [sin6;cos ¢; sinf;sing; cosf;]T, i=1,2. (14)

With the parametrization given in (14), aa g’o‘ = 0if sin@; = 0. To avoid this singularity, ze:

we introduce an alternative spherical representation of the same joint axis direction, as 2.2
shown in Figure 4. During optimization, we always use a parametrization with | sin6;| > 2
0 by converting the axis to Cartesian coordinates and then to the other representation 2es

whenever the current representation comes close (< 30°) to that singularity. 285
sinf;| < 3
sin 6; cos @; | i<z Jix| | ——— ——— cos 0;
ji = |[sin6;sin ¢; ji = |jiy ji sin 6; sin ¢;
cos 6; - iz | o1 sin 6; cos ¢;
4 |sind;| < 3

Figure 4. Two spherical parametrizations are used to represent the joint axes j;, i = 1,2, with two
parameters each, 6; and ¢;. To avoid the derivative becoming close to zero, we convert the respective
axis to Cartesian coordinates and then to the other representation whenever |sin6;| < 0.5.

This approach ensures that the derivatives with respect to the joint axes are always 26

sufficiently sensitive. 287

4.4. Cost Function and Optimization 288

Sample selection is performed to fill a sample buffer of M data sets 280
{S1at), Zalt), [w,)g, (), [w,)g, () | (15)

for the rotation-based constraint and 200
{Slat), Ealt) } (16)

for the orientation-based constraint from the 6D orientation quaternions and angular rates 201
measured at a (potentially very high) sampling frequency of f;. The proposed method  ze:
employs a regular (equidistant) sample selection strategy that stores one sample every zes
0.05s. Note that this method can easily be extended by more sophisticated sample selection 204
strategies since the optimization procedure does not require equidistant sampling. 205
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In order to determine the joint axes and heading offset that best satisfy the rotation- 2e6
based constraint (7) in a least-squares sense, we define the error for each sampling instant  ze7

tk as 208
jn(®)
e(ty) == wye1(9) - 7 , (17)
()= @) 5 @)
with the parameter vector ® := [6; @1 62 ¢» ¢]T. Note that we assume the heading offset 200
4(t) to be constant for all samples in the current buffer, which is valid for short window 3o
lengths. 301

Similarly, for the orientation-based constraint (13), we define the error as 302

e(®) := arcsin(2qwqx + 2q492) — o, (18)

with a parameter vector ® := [0; @1 6, @2 § Bo]T that additionally includes the carrying  sos
angle. 304

To estimate the joint axes j; and jp and the heading offset J given a set of M samples, sos
we find the parameter vector & that minimizes the sum of squares of the error using the  sos
Gauss-Newton algorithm [49]. Appendix B gives details on the optimization algorithm, o7
provides analytical expressions for the gradients of the cost function, and introduces a  sos
moving window approach for employing the proposed method in real-time applications. oo
As a result of the optimization step, we obtain the joint axes j; and j; in the coordinates s
systems of sensors S1 and Sy, respectively, and the heading offset 6 between the reference 1.
frames £1 and &5. 312

4.5. Joint Angle Calculation 313

Using the optimization results, we calculate FE and PS joint angles based on the ISB 314
recommendations [44]. Those joint angles are defined as intrinsic z-x"-y” Euler angles of a1
the forearm B; relative to the upper arm By, i.e., gf q, with B; and B; being the segment 316
coordinate systems as defined in [44]. 317

From 6D IOE, we get the sensor orientation quaternions ‘2 q and giq After performing s
the optimization, we know the coordinates of both joint axes j; and j, in local sensor coor- 1
dinates and the heading offset 4. Note that additional knowledge is needed to determine 20
the absolute value of the joint angles without any offset — for example, for the elbow joint, sz
which joint orientation corresponds to zero flexion and zero pronation is only a matter of sz
convention and not an inherent property of the 2-DoF joint. To obtain offset-free angles, we = s2s
employ reference values of the FE and PS joint angles at one arbitrary time instant f,.(, €.g., 324
obtained from a known pose or by exploiting the maximum range of motion of the joint. s2s
With those values, the joint angles can be calculated by the algorithm described below: 326

First, we calculate giq via (6) and use this to obtain ‘gfq = ?fq ® ‘gi q. Then we 32
determine rotations that ensure that the identified joint axes match the joint axes defined in  s2s

[44]: 329
S'q = (arccos([00 1] 1) @[0 0 17 x jy) (19)
$2q = (arccos([0 107 -j2) @[0 1 0]T x ja). (20)

Using those, we calculate the relative segment orientation 330

/

B/ S B -1 S B/
59= (g}q®3}q) ®e1q® 529 (21)
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For any quaternion q =: [qu qx qy 4|7, the z-x’-y” Euler angles (a, B,y) can be calculated ~ s3:
as 332
& = atan2(2quq: — 2qxqy, G — 95 + 45 — 42), (22)
B = arcsin(2qwqx + 2qy93), (23)
7 = atan2(2qwdy — 29x4z, 95 — % — Gy + 2)- (24)

By calculating z-x'-y” Euler angles (a/, 8/, v") of g;z q, we obtain the FE angle a’ and the PS 133
1
angle +/ that only differ from the well-defined joint angles according to [44] by a constant s

offset that depends on the actual placement of the IMUs. 335
We can eliminate this offset by exploiting knowledge of the actual joint angles aef and  sse
Yref at t = tyor. The segment-to-sensor orientations 337
B _ B ' B T
Slq - Slq ® (D‘ (tref) “ref@ [0 0 1] )/ (25)
B B,
S;q = S;q ® (’)/ref - yl(tref) @ [0 1 O]T) (26)

allow us to calculate gfq = (‘gi q® glq)_1 ® ‘g?q ® giq The Euler angles («, B, ) of gfq 238

are the offset-free FE and PS joint angies « and 1, respectively, and the carrying angle S (cf. s
Figure 3), which is almost constant and rarely reported [44]. 340

To further improve the proposed method, in Appendix C, we introduce an optional s
extension that allows for the rotation-based constraint to be used when only orientation s
data is available (e.g., if on-chip sensor fusion is used), add a low-pass filter to reduce se
the influence of soft tissue motion artifacts, and discuss options for how to resolve the s
ambiguity in the signs of the joint axes. 245

5. Experimental Evaluation 346

We evaluate the proposed magnetometer-free anatomical calibration and joint angle a7
calculation methods based on two experiments. 348

The first experiment is designed to evaluate if the obtained joint axis estimates are s
plausible and consistent. To this end, IMU data from two different motions is recorded sso
from five subjects and a mechanical joint, while carefully attaching the sensors in a known s
orientation. Each trial is split into overlapping time windows to which the anatomical s
calibration methods are applied. The obtained joint axis estimates are compared to the axes ss
obtained by the more restrictive method of careful manual sensor placement. 354

The second experiment is designed for the evaluation of the accuracy of the obtained  sss
joint angles with the proposed self-calibrating magnetometer-free joint angle calculation sss
method. This experiment consists of recordings of natural everyday life motions of two s
subjects. It uses marker-based OMC as a reference, which allows for the comparison of the ss
obtained joint angles to joint angles obtained from optical markers and from a conventional sse
9D IMU-based approach. As a further validation step, we consider the variability of the se0
expected-to-be-constant carrying angle as a metric for how well the estimated joint axes e
describe the functional joint motion. 362

Note that in all experiments, the sensors are carefully attached in a known orientation  ses
to facilitate a plausibility check of the obtained results. To still verify that the proposed  ses
methods do not make assumptions regarding the sensor orientation, we simulate a random  ses
sensor attachment by multiplying all gyroscope and accelerometer measurements witha  ses
random rotation matrix that is different for each time window. 367

The extension for on-chip sensor fusion introduced in Section C.1 is always used, i.e., 36s
the angular rates used for evaluating the rotation-based kinematic constraint are derived ses
from the orientation estimates. Since the impact on the results is negligible, the results sz
obtained using the actual gyroscope measurements are not shown separately. am1


https://doi.org/10.20944/preprints202211.0035.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2022 d0i:10.20944/preprints202211.0035.v1

11 0f28
5.1. Robustness of Joint Axis Estimation 372
The first experiment is performed to answer the following two research questions: 373
1. Are the estimated joint axes plausible, i.e., do they agree with the values expected 7
based on careful manual placement? 375
2. Are the estimated joint axes consistent, i.e., do we always obtain the same result when sz
using different parts of the trial? 377

Data from five healthy subjects is recorded. Inertial sensors (Xsens MTw, Xsens s7s
Technologies B.V., Netherlands) are placed on the upper arm close to the elbow and on the 37
forearm close to the wrist. The sensors are placed in a defined orientation on the skin so e
that one local sensor axis coincides roughly with the functional joint axis. 361

We define two different motions: 382

1.  The simple motion consists of FE of the elbow and PS of the forearm, performed s

alternatingly while keeping the arm in the frontal plane of the shoulder. 384
2. For the complex motion, we ask the subject to perform random combinations of FE and  zes
PS, allowing for 3D rotation of the shoulder including humeral rotation. 386
Each subject performs both motions for approximately one minute. 387

In addition to the five human subjects, an additional data set is recorded using a ses
mechanical joint. This joint has dimensions similar to the human arm and consists of two s
hinge joints as shown in Figure 3. During the recordings, the joint was held in hand and  se0
moved in a way that mimics the motions performed by the five subjects. 301

For each recording, the proposed methods are used on 21 partially overlapping moving  se2
windows w, w = 1,2,...,21, of length 10s with data sets recorded every 0.05s. Note that 30
we will later investigate the effect of window length and sampling time and show that this 04
window length is usually sufficient to identify the joint axes and that collecting data sets o5
more frequently does not significantly improve the robustness. 396

—
e
X

estimated
joint axes jy

Figure 5. Variability angle ¢;, and misalignment angle « used to evaluate the axis estimation results.

axis obtained
via manual sensor
attachment jatt

¢; is the angle between the estimated axis for a single window and the mean estimate. « is the angle
between the mean estimate and the axis obtained by careful manual sensor attachment. For a good
anatomical calibration method, ¢; should be small, showing that the estimates are consistent, and a
should be within 30°, showing that the estimates are plausible.

Since the only available ground truth are approximate axis coordinates that we know o7
due to the orientation in which the sensor was attached, we define suitable evaluation ses
metrics that allow us to quantify the consistency and plausibility of the estimates. See 300
Figure 5 for an illustration of the definitions. First, denote the estimated joint axes j,, with 400
w being the index for the estimation window.” To assess if the estimates are consistent, we a0
define the variability angle 402

Ew = <I(]'w/ jmean); (27)

2 For a compact notation, we now omit the segment index, denoting whether the axis is a FE axis or a PS axis.
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where < denotes the angle between two 3D vectors and a03
1 21
jmean = A7 jw (28)
21 =

is the mean of all estimates. In other words, ¢, is the angular deviation between the a0
estimate for window w and the mean of all estimates. If this angle is always small, the 405

estimation results agree well for all time windows. a06
To also check if this result is plausible, we introduce the misalignment angle a07
o= <[(].mean/ jatt)/ (29)

with jat being the joint axis obtained via careful manual sensor attachment. Therefore, & aos
is the angle between the mean estimation result and the axis obtained via manual sensor 40s
attachment. While precise manual sensor attachment is hard and error-prone, we can at 410
least expect both axes to coincide roughly and therefore consider the result plausible if 411
14 S 30°. 412

Figure 6 shows the results obtained in the first experiment with the rotation-based and 413
orientation-based constraints. In general, we see that the proposed methods for anatomical 414
calibration produce good results: with both constraints, the methods are able to determine a5
plausible FE and PS joint axes from 10-second recordings, and in all cases except for s
subject 2 with the orientation-based constraint and the complex motion, the median of a7
the variability angle ¢, is below 10°. In other words, almost all time windows lead to axis 41s
estimates within the expected range. As a main result, it is noticeable that the rotation-based 419
constraint performs better than the orientation-based constraint and that a slight increase s20
in the variability angles &,, can be observed in the complex motion. This is likely due to soft 421
tissue motion caused by humeral rotation. Furthermore, the randomness of the complex a2z
motion can lead to longer periods of motion that do not excite both degrees of freedom of  42:
the joint. a2a

The results obtained with the mechanical joint agree very well with the expected axes 425
(x < 2°), and the joint axis estimates are more consistent than for the biological elbow joints. a26
This is to be expected since precisely attaching the sensors is easier with the mechanical 427
joints, there are no soft tissue motion artifacts, and the mechanical joint constructed with  aze
two hinge joints follows the kinematic model (Figure 3) more precisely than the human 42
elbow. 430

To facilitate an intuitive understanding of the results, Figure 7 shows the estimated and 43
expected joint axes in a 3D visualization of the respective IMU coordinate systems. We can 432
see that, for both FE and PS, the joint axis estimates of all overlapping time windows agree 433
well. While the PS axis agrees very well with the axis expected due to sensor alignment, a s«
systematic disagreement of ~17° between the estimated and expected axes is noticeable. 35
Since all estimates are very consistent, this is most likely due to an imprecise manual 436
attachment of the sensor, causing the y-axis to disagree with the functional PS axis of the a7
joint. In general, we see in Figure 6 that the misalignment angle « is larger for the FE axis j; a3
than for the PS axis j,. This is plausible, given the fact that the longitudinal x-axis of the 430
IMU is much easier to precisely align with the longitudinal axis of the forearm, whereas 440
aligning the y-axis of the upper arm IMU, corresponding to a much shorter dimension of 44
the sensor case, with the functional FE axis was found to be much harder while conducting 442
the experiments. 443
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Figure 6. Consistency and plausibility results for the first experiment with the (a) rotation-based
constraint and the (b) orientation-based constraint, for two motion types and for five human subjects
and a mechanical joint (m). The proposed methods estimate plausible axes for all subjects and all
motions. The rotation-based constraint yields more consistent estimates than the orientation-based
constraint, and the simple motion leads to better results than the complex motion.

upper arm forearm

My > expected PS axis j
estimated PS axes j»

\
1
expected FE axis j; /k\/

estimated FE axes j;

Figure 7. 3D visualization of the estimation results for an exemplary trial (subject 2, simple motion,
rotation-based constraint). The joint axis estimates from all windows agree well (blue arrows). The PS
axis agrees very well with the expected value (red arrow), while for the FE axis there is a misalignment
of 17°, most likely due to imprecise manual sensor attachment.

However, it is noticeable that also for the variability angle €, the values are typically sss
much larger for the FE axis than for the PS axis, indicating that it is not only harder to per- ass
form a precise manual alignment of this axis but it is also harder for the proposed methods 4ss
to accurately and consistently estimate this axis. This effect is especially pronounced for 4
the complex motion. aa8
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To investigate one potential effect, we take a closer look at subject 2 and the rotation- s
based constraint. In the complex motion trials, subject 2 stands out as the range of motion 4so
of the upper arm IMU is significantly lower than for the other subjects (more specifically, s
the mean pairwise orientation difference within a window is 16° for subject 2 and between  4s2
46° and 56° for the other four subjects) while the FE axis deviations are larger than for s
all other subjects. In Figure 8, we visualize the estimated FE joint axes (Figure 8a) and  ass
notice that all estimates lie approximately within the y-z-plane of the sensor. During the 4ss
trial, the x-axis of the upper arm IMU was approximately vertical, i.e., the y-z-plane is 4s6
approximately horizontal. When calculating the angle of the joint axis in this y-z-plane and  as7
plotting this angle together with the estimated heading offset § in Figure 8b, we notice that  ass

there is an obvious correlation. 450
(@) (b) = 70

upper arm forearm < /0
§ [ J
= 60
Q
60
5 50 1

il S °
IM < °
Z/ Us 240 1 y=51.2—082x

e
8 T T T
]

estimated FE axes j;  estimated PS axes j, & —-20 0 20
g angle of j; in y-z-plane [°]

Figure 8. Investigation into the variability of the FE axis estimates (subject 2, complex motion,
rotation-based constraint). (a) 3D visualization of the axis estimates for all windows. (b) Plot of the
estimated heading offset § and the angle of the FE axis in the (approximately horizontal) y-z-plane
of the upper arm IMU coordinate system. There is an obvious correlation, indicating that without
sufficient upper arm movement, the kinematic constraint does not allow for distinguishing between
a heading rotation of the joint axis and a heading offset between the sensor orientations.

This correlation can be explained when considering the kinematic constraint in (7) for 4so
the special case in which the upper arm does not move, i.e., the orientation l;i qis constant, se
w, = 0, and the coordinates of [j;]¢, are constant. In this case, there is no difference s
between a change in J, i.e., the heading offset between £1 and £, and a rotation of the joint 4es
axis estimate j; around the vertical axis. The observation in Figure 8 is likely caused by the  ass
real situation being too close to this singular case. To mitigate this, care should be taken to  4es
avoid calibration motions during which one of the body segments is always stationary. as6

In summary, the evaluation of the first experiment has shown that the proposed s
methods yield consistent and plausible joint axis estimates. The rotation-based constraint 4ss
performs better than the orientation-based constraint. To ensure that the axes converge, s
the subject’s motion should include sufficient motion from both the upper arm and the 470
forearm. an1

To further enrich the evaluation, we use the data from the first experiment to investi- a7
gate the influence of the the cutoff frequency for the low-pass filter, the sample selection 473
frequency, and the window duration. The results are presented in Appendix D. ara

5.2. Accuracy of Magnetometer-Free Joint Angle Tracking a7s

The second experiment is performed to validate that the proposed methods can be 476
used to obtain accurate elbow joint angles for functional motions without relying on a 47
precisely known sensor attachment and without relying on the magnetic field. An optical as
motion capture system (Vicon Motion Systems Ltd. UK) is used as reference. In addition to  47e
the two inertial sensors positioned as in the previous experiment, optical markers are placed  4so
on bony landmarks in a way that facilitates joint angle measurement as recommended by  se
the ISB [44]. Note that by placing reflective markers on anatomical landmarks and not, like  4s2
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many previous works, on the IMUs, we ensure that we compare against the gold standard
for measuring joint angles, taking soft tissue motion into account.
Two healthy subjects performed two motions:

1.  During the pick-and-place motion, the subject placed a small box in a sequence of
predefined orientations and locations on a table.

2. The drinking motion consists of the subject repeatedly placing the hand on a table,
grabbing a cup, simulating a drinking motion, and then placing the cup back on the
table.

Each of the four subjects repeats the two motions four times (twice slow and twice fast),
resulting in a total of 16 trials, with durations between 14 and 44s.
For each trial, calculate four different joint angles.

1. The OMC-based ground truth angles are derived from the optical markers placed on
anatomical landmarks and calculated as described in [44].

2. Conventional IMU-based joint angles are calculated using 9D sensor fusion (with the
VQF algorithm [47]), i.e., using the magnetic field to determine the heading, and
relying on the careful placement of the sensors on the body.

3.  In contrast, the proposed IMU-based joint angles use 6D sensor fusion (with the VQF
algorithm [47]), and the joint axes and heading offset are identified from the trial
motion using the

*  rotation-based joint constraint and the
*  orientation-based joint constraint.

Note that the application of the proposed methods tests the most challenging case, i.e.,
we use a standard everyday motion to identify both the joint axes and the heading offset
without requiring a separate calibration phase.

conventional method proposed plug-and-play method
(with magnetometers, (magnetometer-free, arbitrary attachment)
requires precise attachment) rotation-based constraint orientation-based constraint
>10
10 9 @ subject 1, drinking motion £ e
@ subject 1, pick and place
. subject 2, drinking motion
84 @ subject?2, pick and place ——a
o ——
23
35
ZAN
%)o 1> o0
g
g 4 E o H
’ | m K
- .
2 % @ L L
O T T T T T T

FE
2.3°

PS FE PS FE PS
3.6° 2.1° 3.7° 4.6° 6.4°

Figure 9. Joint angle estimation errors for all trials with a conventional 9D approach and with the
proposed plug-and-play magnetometer-free methods, using OMC-based angles as ground truth. The
numbers below the axis labels indicate the mean root mean square error (RMSE) for all 16 trials. The
proposed method with the rotation-based constraint yields the same accuracy as the much more
restrictive conventional 9D method.

To determine the sign and the required offset for the joint angles, we use the OMC-
based angles. The IMU-based joint angles obtained by the different methods are compared

508
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Figure 10. Joint angle trajectories for an exemplary (a) drinking and (b) pick-and-place trial obtained
with the proposed IMU-based method (and the rotation-based constraint), the conventional 9D
IMU-based approach, and the OMC ground truth. While being much less restrictive, the proposed
method is able to obtain FE and PS joint angles that agree well with the angles obtained with the
other two methods.

to the OMC-based ground truth, and the RMSE is calculated. Results from all trials are sos
shown in Figure 9. 510

When comparing the two variants of the proposed method, we see that the rotation- s
based constraint outperforms the orientation-based constraint. This coincides with the s
results of the first experiment presented in Section 5.2. It is noteworthy that for many trials s
the accuracy achieved with both constraints is comparable and the difference in the mean s
accuracy is caused by several outliers obtained with the orientation-based constraint, which s
is consistent with the lower robustness observed for this constraint in Figure 6. 516

However, when considering the results obtained with the proposed method and =7
the rotation-based constraint, the accuracy is similar to the conventional 9D IMU-based s
method. For the FE angles, the mean RMSE of 2.1° is 0.2° lower than for the conventional s
method, while for the PS angles, the mean RMSE of 3.7° is 0.1° larger. In contrast to the sz
results with the orientation-based constraint, there are no outliers, and the maximum s
RMSE of the proposed method and the conventional method is comparable. Note that sz
the conventional method relies on properly calibrated magnetometer measurements, a  szs
controlled environment without ferromagnetic material or electric devices, and a precise sza
and known sensor attachment and is therefore much more restrictive than the proposed sz
magnetometer-free plug-and-play method. 526
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To illustrate the performed motions and the obtained results, Figure 10 shows the s27
OMC ground truth joint angles, the conventional IMU-based joint angles, and the proposed  szs
joint angles with the rotation-based constraint for two exemplary trials. As can be seen, the sz
joint angles obtained with the proposed plug-and-play method agree well with both the sso
conventional IMU-based joint angles and the OMC-based ground truth angles. 531

Note that the joint constraint is only used for identifying the joint axes and that the ss:
joint angle calculation uses standard Euler angles and therefore not directly restricted by  sss
this constraint. As a result, the obtained carrying angles, which are also shown in Figure 10  s3s
but rarely reported in practice, are not perfectly constant. 535

We can use the carrying angle as an indicator of how well the measured joint motion sss
adheres to the 2-DoF joint model (Figure 3). For a perfect 2-DoF joint, we would expecta ss7
perfectly constant carrying angle, while a 3-DoF joint will show significant movement in all ~ sss
three joint angles. Also, if the joint is in fact a 2-DoF joint but the joint axis estimates are sss
wrong, the Euler decomposition will cause variability in all three joint angles. 540

Therefore, we calculate the standard deviation of the carrying angle as a measure sa
of variability, which is shown in Figure 11 for all 16 trials and all four angle calculation ss2
methods. With both constraints, the median of the standard deviations is slightly lower sas
than for the conventional IMU-based joint angles and the OMC-based ground truth. This s
indicates that the joint axis estimates automatically obtained with the proposed method are s
better suited to describe the functional motion of the joint than the axes obtained via careful sas
IMU placement and the axes obtained via the placement of optical markers on anatomical sa7
landmarks. This agrees with previous research showing that anatomical joint axes defined sas
based on anatomical landmarks do not coincide with the rotation axes of functional joint s
motion [50]. For joint angle calculation, the use of functional rotation axes seems preferable sso
in order to minimize kinematic cross-talk. 551

In summary, the evaluation of the second experiment has shown that for the challeng- ss2
ing case of using recordings of everyday motions for calibration, the proposed methods are sss
able to obtain joint angles with the same accuracy as a conventional IMU-based approach, sss
while not relying on precise sensor placement or magnetometer measurements. As also  sss
shown via the first experiment, the rotation-based constraint performs better than the sse
orientation-based constraint and should therefore be used for anatomical calibration. 557

@ subject 1, drinking motion
subject 1, pick and place

@ subject 2, drinking motion

@ subject2, pick and place

E
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T
orientation-based rotation-based conventional OMC
constraint constraint MU ground truth

standard deviation of carrying angle [°]
@0
1

joint angle calculation method

Figure 11. Standard deviation of the carrying angle for all trials with the different angle calculation
methods. The proposed method induces the smallest variation in the assumed-to-be-constant carrying
angle. This indicates that the estimated joint axes describe the functional motion axes better than the
axes obtained via careful manual IMU placement (conventional IMU) and via placing markers on
anatomical landmarks (OMC ground truth).
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6. Conclusions 558

The present contribution introduced methods for automatic anatomical calibration for sse
2-DoF joints, such as the elbow, that do not require the subject to perform precise calibration  seo
movements but instead work on arbitrary motions by exploiting one of two kinematic sex
constraints: a rotation-based constraint for the angular rates and an orientation-based se:
constraint. The methods do not make use of magnetometer measurements. Instead, the ses
heading offset is simultaneously estimated via the kinematic constraint, which facilitates  sea
plug-and-play magnetometer-free joint angle estimation. 565

The proposed methods were evaluated using two experiments. The first experiment, ses
without OMC ground truth, showed that the proposed methods yield consistent and  ser
plausible joint axis estimates from only ten seconds of motion data. The second experiment, ses
performed with OMC as ground truth, showed that the proposed plug-and-play method ses
can estimate accurate joint angles while being much less restrictive than a conventional sz
IMU-based approach. In both experiments, the rotation-based joint constraint performed sz
better than the orientation-based joint constraint. 572

The proposed methods overcome mounting and calibration restrictions and facilitate sz
magnetometer-free motion tracking. Therefore, they are highly suitable for indoor environ- sz
ments and improve the practical usability of IMU-based motion tracking in many clinical s7s
and biomedical applications. 576

To further advance the proposed methods, it should be evaluated if combining the sz
rotation-based and the orientation-based constraint can increase the robustness and con- sz
sistency of the joint axes estimates. Furthermore, introducing and evaluating metrics to sz
quantify the estimation uncertainty and methods for automatic (re-)triggering of the calibra- sso
tion when suitable motions are detected are important next steps to increase the usability ss:
of the method. se2
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6D sensor fusion with gyroscope and accelerometer data
9D sensor fusion with gyroscope, accelerometer, and magnetometer data
DoF degrees of freedom
FE flexion and extension
MU inertial measurement unit
IOE inertial orientation estimation 600
ISB International Society of Biomechanics
MCP  metacarpophalangeal joint
OMC  optical motion capture
PS pronation and supination
RMSE  root mean square error
Appendix A. Transforming Any General 2D Joint Model to Euler Angles 601

The proposed methods for automatic anatomical calibration use z-i//-x” Euler angles oz
to decompose the relative segment orientation into joint angles. This decomposition was eos
chosen because it is recommended by the ISB for the elbow [44]. However, this choice is  eos
not restrictive in any way. In the following, we show that any joint model with two degrees eos
of freedom can be transformed to fit the chosen Euler angle representation. For example, eos
instead of using regular Euler angles, we could consider modeling a 2-DoF joint with axes eor

that are all potentially non-orthogonal (including the carrying angle axis), i.e., 608
B/Z — / @ o / @ s/ / @ s/ A1
54= (@ (Hej) e (fejy) @ (V(H) ej), (A1)

or assume that the relative segment orientation is a sequence of two non-orthogonal eos
rotations (which is a special case of the above model with g/ = 0). Furthermore, the e
joint model might include additional fixed rotations, similar to the carrying angle, at the
beginning or at the end of the rotation sequence. 612

To capture all those possibilities, we start with a very general model of a joint with 613
two degrees of freedom, described as the decomposition of the relative body segment 61
orientation quaternion 615

B . .
5d=0®@@j1)®q e (1@))® qs. (A2)

The 3D vectors j; and j, are arbitrary but constant joint rotation axes, a(t) and () are the e
two time-varying joint angles, and q, q2 and q3 are arbitrary but constant rotations. 617

Without loss of generality, we can write (¢@j;) = qa ® (¢@[0 0 1]T) ® q; ' and e
(7@j2) = q5® (x@[0 1 0]T) ® q5 !, with some constant rotations qs, qs that rotate e
between the given joint axes and the z-axis and y-axis, respectively. Inserting this into (A2) 620
gives 621

B} _ _
FA=0OL@@[001]N)2q'©q@eq@(1@[010]7)@g;' @qs. (A
Since we can decompose any quaternion into Euler angles, we can write 622
4 ®@®gs=(%@[001])® (f@[100]T) @ (1@[0 10]T).  (Ad)
Furthermore, we can define new body segment coordinate systems B; and Bj: 623
By _
9= 91O q (A5)
1

B _
59=d5 ©qa (A6)
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Putting (A4), (A5) and (A5) into (A3) yields 624
2q=(@@001]N2q'®qege(y@[01 0] (A7)
=(a+0@[001])®@(Bo@[100])@(y+7@[010]T). (A8)

This represents z-x’-y”" Euler angles as recommended for the elbow by [44], with a constant  e2s
carrying angle By. The time-varying joint angles in the generic model (A2) and in the Euler 26
angle model (A8) are only shifted by constant offsets xp and (. Therefore, without loss of 627
generality, all joints that can be represented with two sequential rotations around arbitrary ezs

but constant axes can be described using z-x"-yy” Euler angles. 020
Appendix B. Details on the Optimization Procedure 630
Appendix B.1. Gauss-Newton Algorithm 631
To estimate the joint axes j; and jp and the heading offset J given a set of M samples, e32
we find the parameter vector & that minimizes the sum of squares, i.e., 633
& =argmin )_ e(t;)? = argmin eTe, (A9)
L4 ty€B P

with e € RM*! being the error vector and B denoting the set of sampling times t; in the ess

buffer. 635
For any given parameter vector, we can evaluate the Jacobian J € RM*5 with 636
ael-
= . Al

Analytical expressions for all elements of J that only depend on the parameters ® and e
on the measurements are given in Appendix B.3 for the rotation-based constraint and in  e:s

Appendix B.4 for the orientation-based constraint. 630

The Gauss-Newton algorithm [49] is used to minimize the error. Starting with an s

initial parameter vector ®(, we iteratively obtain the estimate by 641
@11 = @; + ap; with JTJp; = JTe, (A1)

until convergence is achieved, with the iteration index i, the step direction p;, and the step 642
length & = 1. In between iterations, we switch from one joint axis representation to the s
other via Cartesian coordinates if |sin6;| < %, i = 1,2 (cf. Figure 4). As a result of the s
optimization step, we obtain the joint axes j; and j, in the coordinates systems of sensors s
S1 and Sy, respectively, and the heading offset § between the reference frames £1 and £;.  e46

Appendix B.2. Moving Window Approach for Real-Time Applications 647

Note that the proposed optimization method can not only be applied to recorded ess
datasets but is also suitable for real-time application. In the simplest case, samples are s
saved while the subject performs a motion and afterward, the optimization is performed on  eso
the stored samples, and the resulting calibration parameters are applied to all subsequent es2
samples. For an improved online implementation that continuously updates the axes es2
estimates (if desired) and that starts to provide estimates as early as possible, the method ess

can be extended to the following moving window approach: 654
1.  New samples are continuously selected every 0.05s and stored in a ring buffer con- ess

taining M = 200 data sets, i.e., old data sets are automatically discarded. 656
2. Assoon as the buffer is half-full, optimization starts. 057

3. One Gauss-Newton step is performed every time a sample is added to the buffer (to ess
continuously update the solution while spreading the computational load over time). eso
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Note that it is also possible to keep the parameters for the joint axes 01, ¢1, 62, and ¢, fixed eso

after the initial estimate and only track the heading offset 4. 661
Appendix B.3. Gradient of Rotation-Based Cost Function 662
For efficient optimization using the rotation-based joint constraint introduced in ees
Section 4.2, we need to calculate the elements of the Jacobian J, i.e., 664
ode; 9 jn jn ad
= L e I Al2
[”1] a®] rel acD] “]n” ||]n|| aq)] rel ( )
The derivative of the normalized axis is c65
J . . J .
9 j ag;Jn  Jn3g;)n
T!H = o e (A13)
b [linll il [
All necessary subsequent derivatives are detailed in the following. Note that, while j, ess
depends on all parameters in ®, the relative angular rate w;,) only depends on J. 067
Appendix B.3.1. Derivative with Respect to the Joint Axes 668

We exploit the fact that the product rule holds for quaternion multiplication [51, p.24].> e

ail’l S 1 a .
Al4
31, o1 ( 1% 55, (P11® ad ) <[, (Al4)
Jjn . d
= Al
36, 02 lirle, (51CI® 302, 92 o3 q ) (A15)
Deriving the axes in local sensor coordinates with respect to 8 and ¢ as defined in (14) is 670
straightforward: 71
% = [cosb;cos ¢; cosb;sing; —sinb;]T, (Al6)
1
aa:; = [—sin®;sing; sinb;cosgp; 0|7, i=1,2. (A17)
1
The same is possible for the alternative joint axis parametrization. o72
Appendix B.3.2. Derivative with Respect to the Heading Offset 673
Instead of quaternion multiplication, we can make use of Rodrigues’ rotation formula ez
to express the transformation of a vector v € R3 from &, to &1, i.e., 675
£ &y —
Vg1 = 2q@ [v]g, ®2q" (A18)

= [v]g, cos(6) + ([o 0 1] x [v}gz) sin(5)

+[00 1]T([0 0 1]T~[v]52>(1—cos((5)). (A19)

3 Similarly, we could argue that the rotation can be expressed using a rotation matrix and make use of the

product rule for matrix multiplication.


https://doi.org/10.20944/preprints202211.0035.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2022 d0i:10.20944/preprints202211.0035.v1

220f 28
This allows us to calculate the derivatives 676
awrel o Jd
S5 = ~aslwale, (A20)
= [wa]¢, sin(0) — ([0 01]7x [“’2]52) cos(9)
—[00 1]T([0 0 1]T~[w2]52)sin(§) (A21)
and 677
9j . J . .
a]; lit]e, > 55lia]e, with (A22)
J . . . .
=5lizle, = —lizle2sin(d) + (10 0 1]7 x [ja]e, ) cos(4)
+[00 1]T([0 0 1]T~[j2]52)sin((5). (A23)
Appendix B.4. Gradient of Orientation-Based Cost Function o78

Analogously to the derivation in Section B.3, we now show how to calculate the e
elements of the Jacobian J for the orientation-based constraint introduced in Section 4.2, i.e., eso

de; 0
0l = aq;,- = 5%, (arcsm (2904 + 24y12) ﬁo), (A24)
=:5(01,¢1,02,92,0)
with giq =:[qu qx qy 92]7- es1
Trivially, the derivative with respect to the fixed carrying angle By is 682
aei
=-1 A25
%0 (A2

For the derivatives with respect to the other parameters, we make use of the fact that s

9
E)i arcsins(®;) = _ (A26)
P 1—5(®;)2
and that 684
9 o 8qx 8qw 3qy aqz

To determine the derivative of the quaternion components gy, qx, gy, and g, remember  ess
that the relative segment orientation gi q, as defined in (11), is the multiplicative concatena- sss

tion of five quaternions: 087
B, S By
qu = 31 (91; Gol) ®31q® q((S) ® gzq®82q(92/ 992)' (A28)
Since for each parameter, only a single of those five quaternions depends on the respective ess
parameter, the other four quaternions are constant factors, i.e., 680
J 5 J 5
== A2
3, 9r 519 (ael,(p 54) 0590 2q9 a0 g (A29)
9B d ¢ Sy B
55 5:4= Aq®5q® <35 giq> ®ed® g9 (A30)

a Bz _ 51 51 a BZ
a%ﬂh&qf&q®&q® 290 89e 30,97 24)" (A31)
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Appendix B.4.1. Derivative with Respect to the Joint Axes
The sensor-to-segment orientation for the first segment can be expressed as
Y 0 iy
cos . ) . 3
giq = lsin(lp()Z)"] , with ¢ = arccos(ji,) and v =j; x [0 = [ —jix]- (A32)
2/ vl 1 0
For the scalar part of the quaternion,
d P 1. (¢\ oy
) =_2 L A
391,¢1COS<2) 28m<2)391,¢1 (A33)
and
a] 1z
J 901,91
—P = : (A34)
96y, :
L9 1—j %,z

The derivative of the vector part of the quaternion is

3 . ¢> v 1 asin(¥) (w) v . <¢> a||v||
sinf = | — = —= [ v||v +sin| = | ||V||z==—— —sin| = |v—],
961, ¢1 (2 vl ||v|2< i 961, ¢1 2 | H391/§01 2) 061, ¢

(A35)
with
I (P L (¥ 9%
961, 1 s1n(2> S 2 COS(2> 961, 91 (A36)
and
d 1 . ajly . ajlx >
s VIl = {1y 55 o — A, A37
st = o7 Uzt~ (A37)

For the derivatives of the Cartesian joint axis vector j; with respect to 61 and ¢y, refer
to Appendix B.3.
The derivative with respect to 6, and ¢, follows analogously for the second sensor-to-

segment orientation
0 jl,z
1| Xjo=1] 0 |. (A38)

], with ¢ = arccos(jp,x) and v =
0 _jl,x

Appendix B.4.2. Derivative with Respect to the Heading Offset
The derivative of the heading offset quaternion
29 =[cos(§) 0 0 sin($)]" (A39)

with respect to the heading offset ¢ is

d ¢ :

ﬁgfq =[-%sin(§) 0 0 lcos(9)]". (A40)
Appendix C. On-Chip Sensor Fusion, Soft Tissue Motions, and Axis Ambiguity
Appendix C.1. Extension to On-Chip 6D Sensor Fusion

Especially in wireless inertial sensor networks, it is desirable to perform on-chip sensor
fusion, potentially with a high sampling rate of the gyroscopes, and then to only transmit
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the orientation quaternions at a regular (and typically much lower) sampling rate to the 708
processing unit. However, the constraint (7) is based on angular rates, i.e., on the gyroscope 700
measurements. 710

Instead of transmitting the gyroscope measurements as well, which requires extra 7.
bandwidth, increases power consumption, and might not be possible without changing 72
hardware and/or the communication protocol, the angular rates can easily be approximated 71

from the change of orientation 714
Si(t Si(t Silhe1) 1 . .

soa], =S Wae Y =i [gw ax gy 0T, i=12,  (A4)

by 715
2 [q9x gy 4=]"
[w(tg)]e. = = arccos(gy) 77— (A42)
Y Ve ay a:17]

Note that due to the order of quaternion multiplication, we already obtain the angular rate 716
in each sensor’s global frame, thus avoiding another transformation step. 77

Of course, when the gyroscope and accelerometer readings are available, it is equally 71.
possible to perform 6D sensor fusion in the processing unit, e.g., using the VQF algorithm 71
[47], and directly employ the angular rates measured by the gyroscopes for evaluation of 72
the kinematic constraint. Therefore, this proposed extension is not restrictive but instead 721
broadens the scope of applicability of the method. 722

Note that the orientation-based constraint is already quaternion-based and does not 723
require any other measurement data. Therefore, employing the proposed extension is not 7z
necessary when using this constraint. 725

Appendix C.2. Measurement and Soft Tissue Motion Artifact Reduction 726

Measurement anomalies, such as the sensor accidentally touching objects, or soft 77
tissue motion can cause artifacts in the measured angular rates w; and wy. This leads to  7zs
high-frequency disturbances (compared to the frequency of the functional joint motions) 72e
that often violate the rotation-based constraint (7) and therefore deteriorate the estimation 730
accuracy. Low-pass filtering of the angular rates used for evaluating the rotation-based 7
constraint with a cutoff frequency of f. = 5Hz improves the accuracy and robustness of 7s:
the anatomical calibration. 733

Appendix C.3. Ambiguity in the Signs of the Joint Axes 734

The joint constraints cannot be used to determine the signs of the joint rotation axes, 735
as for any pair of axes, the value of the cost function for (jy,j2), (—j1, —j2) and also (j1, —j2) 736
is exactly the same. Correspondingly, whether, for example, supination is defined as a 77
positive or negative rotation around an axis pointing proximally along the right forearm is 73
only a matter of convention. 730

In practical applications, it is essential to ensure that a specific definition is always 740
followed, e.g., [44]. In order to determine the sign, two approaches are practical: The first 7
is to ensure a sensor placement that is roughly known, i.e., the half-space in which each 7
joint axis points is predetermined. Another way is to exploit the joint’s range of motion a3
in combination with the offset-removal method described in Section 4.5. For example, by 744
defining that an extended and supinated elbow corresponds to « = 0,y = 0 and choosing 745
the signs of the axes so that the mean joint angles during calibration are positive, we ensure 74
that we follow the definitions given in [44]. 747

Appendix D. Sensitivity to Cutoff Frequency, Sample Selection Frequency, and Window 7.
Duration 740

As a further part of the evaluation, we consider the three main degrees of freedom in  7so
applying the proposed methods and investigate the influence of those parameters: 751
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e the cutoff frequency f. for measurement and soft tissue motion artifact reduction s

(employed value: 5 Hz, cf. Appendix C.2, rotation-based constraint only) 753
* the sample selection frequency (employed value: 20Hz, Ts = 0.05s) 754
* the duration of the measurement window (employed value: 10s). 785

We apply the proposed methods to all trials of the five subjects of the first experiment 7se
for different values of the respective parameter while keeping the other two parameters at  7s7
the previously employed default value. In order to condense the obtained information (cf. 7ss
Figure 6), we calculate the mean and the 99th percentile of the variability angles ¢, of all  7se
windows of all trials. 760

2.25 —e— mean(ey)/4.7°
99th-percentile(e)/27.3°

£w, rel. to minimum
—_
N
Qa1
1

1.50 1

T \\‘

1.00 T T T p—tr—r T T
2 3 4 5 6 7 10 15 20

cutoff frequency [Hz]

Figure A1l. Variability of the obtained axis estimates (mean and 99th-percentile of ¢, relative to
minimum value) for different values of the cutoff frequency of the soft tissue motion artifact reduction
low pass filter. Low-pass filtering of the angular rates increases the consistency of the axis estimates,
but for too low cutoff frequencies, important information gets lost, and the deviations increase.
Choosing a cutoff frequency of 5Hz gives robust estimates.

For the angular rate cutoff frequency f. for measurement and soft tissue motion artifact e:
reduction, the obtained results are shown in Figure Al. If the cutoff frequency is chosen ez
too low (f. = 2 Hz), the mean and 99th-percentile of ¢, increase compared to the smallest 7es
possible value. At those frequencies, valuable information about the movement gets lost, 7.
leading to more inconsistent estimation results. However, when choosing 3Hz < f. <7Hz, 7es
the results are more consistent than without low-pass filter. Therefore, we can conclude 76
that low-pass filtering of the angular rates helps to increase robustness and that f. =5Hz  7e7
is a reasonable choice for the cutoff frequency. 768

To determine how much data is needed to get consistent estimates, we repeat the 7eo
same evaluation for the other two parameters, i.e., window duration and sample selection 770
frequency, which is shown for both constraints in Figure A2. As expected, using more 77
data in the optimization, i.e., increasing the window duration or increasing the sample 7
selection frequency, leads to more consistent estimates. However, this comes at a cost. 773
Longer window durations cause inconvenience for the subject that has to perform the 7z
movements and limit the applicability of the method. Therefore, the duration of 10s was 775
chosen as a compromise between ease of use and accuracy and to demonstrate that such 77
short durations lead to good results. If the data is available, employing longer motion 777
sequences should be considered (up to a point where the assumption of § being constant 77
is not valid anymore due to integration drift). The sampling selection frequency is less 779
critical as it only affects the computational time. However, the results show that increasing  7so
the frequency past 10 Hz does not significantly affect the results. The chosen frequency 7s
of 20 Hz is more than sufficient while still considerably removing the number of data sets ze2
compared to typical IMU raw data sampling rates of 50-500 Hz. 783
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(a) rotation-based constraint

’ —o— mean(ey)/2.9° —o— mean(ey)/4.7°
g —&— 99th-percentile(e,)/14.8° g 357 —&— 99th-percentile(e,,) /27.4°
£ 6 £ 30
5 5
5 2
= 4 -
T;_)‘ Td 2.0 1
S §15
T T T T T T T T 10 T T L TT T 'T""T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 2 3 45 10 15 20 30 50 100
window duration [s] sample selection frequency [Hz]
(b) orientation-based constraint
5 4 2.0
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Figure A2. Variability of the obtained axis estimates (mean and 99th-percentile of &, relative to
minimum value) for different values of the window duration and the sample selection frequency for
the (a) rotation-based constraint and the (b) orientation-based constraint. In general, using more data
(long windows at high sampling rates) leads to more consistent estimates but increases inconvenience
for the subject and processing time.
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