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Abstract: Human motion analysis using inertial measurement units (IMUs) has recently been shown 1

to provide accuracy similar to the gold standard, marker-based optical motion capture, but at much 2

lower costs and while being less restrictive and time-consuming. However, IMU-based motion 3

analysis requires precise knowledge of the orientation in which the sensor is attached to the body 4

segments. This knowledge is commonly obtained via an anatomical calibration procedure based on 5

precisely defined poses or motions, which is time-consuming and error-prone. In the present work, 6

we propose a self-calibrating approach for magnetometer-free joint angle tracking that is suitable for 7

joints with two degrees of freedom (DoF), such as the elbow, ankle, and metacarpophalangeal finger 8

joints. The proposed methods exploit kinematic constraints to simultaneously identify the joint axes 9

and the heading offset. The experimental evaluation shows that the proposed methods are able to 10

estimate plausible and consistent joint axes from just ten seconds of arbitrary elbow joint motion. 11

Comparison with optical motion capture shows that the proposed methods yield joint angles with 12

similar accuracy as a conventional IMU-based method while being much less restrictive. Therefore, 13

the proposed methods improve the practical usability of IMU-based motion tracking in many clinical 14

and biomedical applications. 15

Keywords: anatomical calibration; sensor-to-segment calibration; kinematic constraints; human 16

motion analysis; elbow joint; inertial sensor; inertial measurement unit 17

1. Introduction 18

Marker-based optical motion capture (OMC) is considered the gold standard for hu- 19

man motion analysis. However, this method is time-consuming and confined to expensive 20

laboratory environments. Ambulatory real-time motion analysis can be achieved at much 21

lower costs with inertial measurement units (IMUs). Recent studies have shown that the 22

accuracy of IMU-based motion analysis is comparable to marker-based OMC, see, e.g., 23

[1,2]. 24

However, in order to derive anatomically meaningful kinematic quantities, for exam- 25

ple, joint angles, the orientation of each IMU with respect to its body segment must be 26

known, as illustrated in Figure 1. Even small misalignments between the assumed and ac- 27

tual orientation of the IMUs on the body lead to errors in the obtained kinematic quantities. 28

To ensure accurate motion tracking, it is therefore desirable to accurately determine this 29

orientation. 30

In practice, this is often achieved by manual placement of the IMUs on the respective 31

body segments in a specified orientation [3], which is error-prone, especially when the 32

attachment of sensors is to be performed by patients or by non-medical personnel. 33

An alternative is to include a procedure that determines the orientation of each IMU 34

with respect to its body segment based on data measured by the sensors. This procedure is 35

called anatomical calibration or sensor-to-segment calibration, which is not to be confused with 36

sensor calibration. Sensor calibration determines parameters such as scaling and bias in 37

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2022                   doi:10.20944/preprints202211.0035.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0003-2928-2446
https://orcid.org/0000-0001-9858-1293
https://doi.org/10.20944/preprints202211.0035.v1
http://creativecommons.org/licenses/by/4.0/


2 of 28

order to increase the accuracy of the sensor orientation estimates. Anatomical calibration 38

determines how the sensors are attached to the body segments to ensure that the rotation 39

axes used for calculating joint angles match the anatomical axes of joint rotation. 40
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Figure 1. Anatomical calibration, also called sensor-to-segment calibration, is the task of determining
how the IMUs are attached to the body segments. More precisely, the rotations between the IMU
coordinate systems S1,2, defined by the sensor housing, and the corresponding body segments B1,2,
determined by anatomical axes such as the joint axes j1,2, have to be determined. Conventional
methods rely on precisely defined calibration movements and poses, whereas the proposed methods
use kinematic constraints to derive this information from arbitrary joint motion.

As detailed in Section 2, anatomical calibration traditionally relies on precisely defined 41

calibration poses or motions. Less restrictive approaches aim for anatomical calibration 42

based on arbitrary joint motion. Such approaches have been proposed for (approximate) 43

hinge joints [4,5]. In the following, we consider the more challenging case of joints with 44

two degrees of freedom (DoF), such as the elbow joint, the metacarpophalangeal joints 45

(MCP) of the finger, or the ankle joint. The present contribution introduces methods for 46

self-calibrating joint angle tracking that 47

• use two kinematic constraints for 2-DoF joints, one for the angular rates (as already 48

introduced in [6,7]) and a novel constraint for the relative segment orientations 49

• do not make use of magnetometer measurements and are therefore insensitive to mag- 50

netic disturbances (otherwise, temporary magnetic disturbances could permanently 51

deteriorate accuracy until calibration is repeated) 52

• instead simultaneously estimate the heading offset to facilitate magnetometer-free 53

joint angle tracking. 54

The methods are evaluated based on two experiments. The first experiment, with a known 55

sensor attachment as ground truth, compares a simple and a complex motion and is used 56

to show that estimation over a short time window of just ten seconds of joint motion yields 57

plausible and consistent joint axes. The second experiment, with OMC as ground truth, is 58

used to validate that, while being much less restrictive, the proposed self-calibrating joint 59

angle tracking provides the same accuracy as a conventional IMU-based approach. 60

2. Brief Review of the State of the Art in Anatomical Calibration 61

Anatomical calibration is the task of determining how the IMUs are attached to the 62

body segments. In a broader sense, this also encompasses the pairing of IMUs to body 63

segments [8,9] and the estimation of joint center positions [10–12]. The most relevant 64

aspect, however, is to determine how the sensor coordinate system is rotated with respect 65

to anatomical body segment axes (cf. Figure 1). In order to uniquely define this orientation, 66

the coordinates of two anatomical axes need to be known in the sensor frame (or vice versa). 67

Since errors in the sensor-to-segment orientations lead to kinematic cross-task and thus 68

directly cause errors in the obtained joint angles [13–15], the reliability and accuracy of 69

anatomical calibration methods are of fundamental interest in IMU-based motion analysis. 70

There are four main approaches for how to deal with the need for sensor-to-segment 71

alignment in IMU-based human motion analysis [3]: 72
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1. relying on a precisely defined sensor attachment (assumed alignment), 73

2. calibration via measurements from additional devices (augmented data), 74

3. calibration based on precisely defined poses or motions (functional alignment), 75

4. calibration from arbitrary motions (model-based alignment). 76

Using a precisely defined attachment of the sensors to the body is a common approach 77

and, according to the survey by Vitali and Perkins [3], used by 42 % of recent publications. 78

The advantage of this approach is that it only requires minimum effort from the subject, i.e., 79

no extra calibration movements are required, and that it is simple to implement. However, 80

placing the sensors on the body so that predefined sensor axes correspond to functional 81

joint axes is error-prone even for experienced medical personnel and even more so when 82

patients themselves attach the sensors. In a study with three operators, Bouvier et al. [16] 83

report reproducibility in the range of 4° to 12° and agreement with OMC in the range of 8° 84

to 23°. 85

An example of an augmented data method for anatomical calibration is the use of 86

an additional custom device equipped with an IMU that is used to determine the sensor 87

orientation with respect to anatomical landmarks [17,18]. 88

The third approach is to ask the subject to assume precisely defined postures or 89

perform a sequence of precisely defined motions. In the simplest form, this consists of a 90

single pose calibration, often in the N-pose or T-pose [19–22], and requires magnetometers 91

in order to be able to define two axes from one pose. A magnetometer-free alternative is to 92

use two poses, e.g., one standing up and one lying down [23], or to derive the anatomical 93

axes from angular rate measurements of precisely defined motions, typically around the 94

functional axes of the joint [24–26]. Often, both approaches are combined, and one axis is 95

derived from a static pose and one from a functional motion. Those hybrid approaches 96

have been demonstrated for the upper body [27,28] and lower body [29–31]. For thorax 97

and lumbar joint angles, however, a recent study by Cottam et al. [32] found that calibration 98

via functional motions did not improve accuracy in comparison to relying on manual 99

sensor placement. Bouvier et al. [16] observe similar accuracy for precise attachment and 100

for various calibration approaches based on precise poses and motions and point out that 101

accuracy depends more on the rigor of the experimental procedure and operator training 102

than on the calibration method. Furthermore, performing those motions can be tedious 103

for the subject, especially considering that a precise execution is required. For patients 104

with motor disabilities, performing precise motions can be hard or impossible. Even after 105

solving those obstacles, the main drawback of those methods is that the accuracy of the 106

calibration depends on the accuracy of performing the motion. An elegant recent approach 107

is to use the actual motions of interest for calibration, e.g., during cycling [33] or walking 108

[34]. However, this is only feasible in a limited amount of applications and relies on strong 109

assumptions on the analyzed motions. 110

In many cases, e.g., clinical applications, it would render the use of IMUs much more 111

practical if both a precisely known attachment and precisely specified calibration poses and 112

motions could be avoided by determining the sensor-to-segment orientations from arbitrary 113

motions, usually by relying on kinematic constraints of biomechanical models. This was 114

demonstrated for the knee joint by exploiting a kinematic constraint in the angular rates of 115

(approximate) hinge joints [4,10]. Furthermore, it was shown that extending this constraint 116

for a combined optimization of a three-segment chain improves robustness [35] and that 117

other methods, such as principal component analysis [36] and factor graph optimization 118

[37,38], can be used to exploit hinge joint constraints. In [5,39], the gyroscope-based hinge 119

joint constraint introduced in [10] and an accelerometer-based constraint are combined 120

with an elaborate sample selection strategy, and in [40], both constraints are analyzed for 121

observability of the joint axis. Taetz et al. [41] introduce an approach based on sliding 122

window weighted least squares optimization that uses hinge-joint and range-of-motion 123

constraints and a body-shape prior to simultaneously estimate the sensor-to-segment 124

orientation along with the body motion. Zimmermann et al. [9] demonstrate that deep 125
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learning can be used for lower body anatomical calibration with just two seconds of walking 126

data. 127

For anatomical calibration based on arbitrary motions of 2-DoF joints, the existing 128

work is limited. Müller et al. [6] introduce a gyroscope-based kinematic constraint for 2-DoF 129

joints such as the elbow. Norden et al. [42] demonstrate that the same constraint can be 130

employed for real-time estimation of hip and knee joint axes. However, the constraint used 131

in both [6] and [42] assumes knowledge of the relative sensor orientation and therefore 132

requires magnetometers. This poses a severe limitation for the applicability of those 133

methods in indoor environments [43] and implies that temporary magnetic disturbances 134

during calibration can lead to wrong axis estimates and thus permanently deteriorate the 135

accuracy of the obtained joint angles. In [7], we presented first results of a magnetometer- 136

free method that overcomes those restrictions by simultaneously estimating the heading 137

offset. 138

3. Kinematic Model of 2-DoF Joints 139

The methods proposed in the present contribution perform automatic anatomical 140

calibration for joints with two degrees of freedom (DoF). Those methods are suitable for 141

any 2-DoF joint and can be applied to a range of biomechanical or robotic 2-DoF joints. 142

To improve comprehensibility, the following description of the kinematic model and the 143

calibration method focuses on the human elbow joint as an exemplary joint, which is later 144

also used in the experimental evaluation. 145

Furthermore, even though in the following we always only consider two body seg- 146

ments connected by a single joint, the proposed methods can be used to analzye longer 147

kinematic chains consisting of multiple segments. In this case, the calibration methods can 148

be applied to each pair of segments that are connected by a 2-DoF joint. 149

Figure 2 shows an anatomical model of the combined elbow and radioulnar joint as an 150

exemplary biological 2-DoF joint. The combined joint can perform two functional motions. 151

Flexion and extension (FE) is performed by the elbow joint, while pronation and supination 152

(PS) are the result of the radius pivoting around the ulna. 153

j1 (FE)

j2 (PS)

B1 (upper arm) B2 (forearm)

humerus
radius

ulnar

Figure 2. Anatomical model of the elbow joint and the radioulnar joint. The elbow joint is a hinge
joint with the rotation axes j1, allowing for flexion and extension (FE). The radioulnar joint also has
one degree of freedom (j2) and allows for pronation and supination (PS). For simplicity, we often
refer to the combined radioulnar and elbow joint with two degrees of freedom as elbow joint.

As an approximation, we can model this joint – as well as any other 2-DoF joint – 154

as a kinematic chain consisting of two hinge joints and one fixed rotation in between, as 155

depicted in Figure 3. Including the fixed rotation, the sequence of rotations consists of 156

flexion and extension (FE), a fixed carrying angle [44], and pronation and supination (PS). 157

We use unit quaternions to denote rotations and orientations [45]. In the context of 158

quaternion multiplication, which we denote by ⊗, we implicitly regard 3D vectors as pure 159

quaternions. Square brackets specify the coordinate system in which a vector is expressed, 160

for example, [ω1]E is the gyroscope measurement of IMU S1 transformed into frame E , 161

i.e., [ω1]E = S
Eq⊗ω1 ⊗ SEq−1. Here, the left upper and lower indices denote the frames 162

between which the quaternion rotates. Quaternions that represent the rotation of an angle 163

α ∈ R around the axis v ∈ R3 are written as (α @ v) :=
[
cos α

2
vᵀ

‖v‖ sin α
2

]ᵀ
. 164

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2022                   doi:10.20944/preprints202211.0035.v1

https://doi.org/10.20944/preprints202211.0035.v1


5 of 28

(a) (b)

j1 (FE)

j2 (PS)

B1 (upper arm)

B2 (forearm)

S1

S2

carrying angle β0

B1

B2

S1

S2

j1

j2

Figure 3. (a) Geometric kinematic model of the elbow joint. Inertial sensors S1 and S2 are placed in
arbitrary orientation on the upper arm B1 and forearm B2. Upper arm and forearm are connected by
two hinge joints that allow for FE (j1) and PS (j2). (b) View onto the j1-j2 plane. The fixed rotation
between FE and PS is called carrying angle.

We can use this notation to mathematically express the orientation of the forearm B2 165

relative to the upper arm B1 using the FE joint angle α(t), the carrying angle β0, and the PS 166

angle γ(t) as 167

B2
B1

q = (α(t)@ j1)⊗ (β0 @ j1 × j2)⊗ (γ(t)@ j2). (1)

The International Society of Biomechanics (ISB) [44] also recommends this joint model for 168

the elbow and precisely defines coordinate systems B1 and B2 so that [j1]B1 = [ 0 0 1 ]ᵀ 169

and [j2]B2 = [ 0 1 0 ]ᵀ. When using this definition, the joint angles are intrinsic z-x′-y′′ 170

Euler angles of B2
B1

q. Please note that this also means that the axis j1 (FE) is fixed in the 171

coordinate system of a sensor attached to the upper arm, while the axis j2 (PS) is fixed in 172

the coordinate system of a sensor attached to the forearm. 173

Instead of using regular Euler angles, we could consider modeling a 2-DoF joint with 174

axes that are all potentially non-orthogonal (including the carrying angle axis). However, as 175

Appendix A shows, any generic model with non-orthogonal axes can also be expressed us- 176

ing standard z-x′-y′′ Euler angles by redefining the segment coordinate systems accordingly. 177

This means that the choice of z-x′-y′′ Euler angles according to the ISB recommendations 178

[44] does not restrict the generality of the proposed methods. Also, note that the orientation 179

of the IMUs on the body segments is independent of this definition. The goal of anatomical 180

calibration is to determine the fixed coordinates j1 and j2 of the functional joint axes in the 181

local coordinate systems of the respective IMUs. 182

4. Proposed Methods 183

Two IMUs S1 and S2 are placed on the subject in unknown orientations, one on each 184

body segment connected by the 2-DoF joint (i.e., in case of the elbow, one on the upper arm 185

and one on the forearm). Assume that we can estimate the sensor orientation quaternions 186

S1
Eq(tk),

S2
Eq(tk) relative to a common inertial frame E . We also measure the angular rates 187

ω1(tk) ∈ R3, ω2(tk) ∈ R3 of the IMUs, in their respective local coordinate systems. All 188

measurements are sampled at times tk = kTs, k ∈ {1, 2, . . . , N}, Ts ∈ R>0. Note that the 189

assumption of a common inertial frame E is restrictive in practice as it assumes 9D sensor 190

fusion in a perfectly homogeneous magnetic field and will later be dropped. 191

In the following, we will derive two different kinematic constraints for 2-DoF joints, 192

one based on the angular rate and one based on the segment orientations, that are both 193

suitable for 6D sensor fusion with unknown heading offset. Based on those constraints, we 194

introduce methods for automatic anatomical calibration and for magnetometer-free joint 195

angle calculation. 196

4.1. Rotation-Based Kinematic Joint Constraint 197

As shown in Section 3, a 2-DoF joint cannot perform arbitrary joint rotation in all 198

directions. Instead, rotation is only possible around the two joint axes. In the following, we 199

will investigate how this translates to a kinematic constraint in the angular rates measured 200
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by the two IMUs. We will later exploit this constraint to estimate joint axes from arbitrary 201

joint motion. 202

Using the addition theorem for angular velocities, we express the relationship between 203

the gyroscope measurements ω1(tk) and ω2(tk) as 204

[ω2]E = [ω1]E + ωj1 [j1]E + ωj2 [j2]E . (2)

The scalars ωj1 and ωj2 are the rotation rates of the joint around the respective joint axes. 205

In case of joints with two degrees of freedom according to the model in Figure 3, this 206

corresponds to the anatomical joint motions, i.e., in case of the elbow, ωj1 is the FE angular 207

rate and ωj2 the PS angular rate. This means that the angular rate ω2 measured by the 208

forearm IMU S2 is composed of three components: 209

1. the common rotation of the whole arm, also observed by IMU S1 as ω1 210

2. the FE rotation around j1 211

3. the PS rotation around j2. 212

Note that the carrying angle does not appear, since it is time-invariant. Also note that in (2), 213

the angular rates and joint axes are transformed into a common coordinate system, here E . 214

For hinge joints, in [4], the following constraint has been derived from (2): 215

‖ω1 × j1‖ − ‖ω2 × j2‖ = 0. (3)

Since this version of the constraint only uses quantities given in local sensor coordinates, it 216

is independent of sensor orientations with respect to a fixed frame and thus not affected by 217

magnetic disturbances. 218

For joints with two degrees of freedom, we need to know the relative sensor orientation 219

or sensor orientations with respect to a common fixed frame. In order to derive a similar 220

constraint from (2) for 2-DoF joints, we calculate the scalar product with the normalized1
221

axis [j1]E × [j2]E on both sides, i.e., 222

(
[ω2]E −ωj2 [j2]E

)
· [j1]E × [j2]E
‖[j1]E × [j2]E‖

=
(
[ω1]E + ωj1 [j1]E

)
· [j1]E × [j2]E
‖[j1]E × [j2]E‖

, (4)

and employ the fact that a · (a × b) = a · (b × a) = 0. This yields 223

([ω1]E − [ω2]E ) ·
[j1]E × [j2]E
‖[j1]E × [j2]E‖

= 0. (5)

For perfect 2-DoF joints and ideal IMU measurements, this constraint must be fulfilled 224

for each sampling instant. For biological joints, and when taking soft tissue motion and 225

measurement errors into account, the constraint is still valid in a least-squares sense when 226

considering a short motion sequence consisting of multiple samples. 227

However, the constraint as formulated in (5) uses the reference frame E and is only 228

suitable for use in combination with 9D inertial orientation estimation (IOE), i.e., with the 229

use of magnetometers. Since magnetic fields are often severely disturbed [43], we want 230

to avoid using magnetometer measurements and therefore only employ 6D sensor fusion 231

to estimate the sensor orientations, e.g., using the VQF algorithm [47]. This implies that 232

the heading of the estimated orientations is not well-defined. More precisely, this can 233

be described by the estimated orientations S1
E1

q and S2
E2

q being given in different global 234

reference frames E1 and E2, which are rotated around the vertical global z-axis, i.e., 235

E2
E1

q= (δ(t)@ [ 0 0 1 ]ᵀ) =
[
cos
(

δ(t)
2

)
0 0 sin

(
δ(t)

2

)]ᵀ
. (6)

1 Normalizing the axis was found to improve robustness compared to the constraint presented in [46].
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The heading offset δ(t) has an unknown initial value and then slowly drifts due to gyro- 236

scope bias [48]. Please note that both E1 and E2 have some unknown heading offset with 237

respect to a fixed frame E used in 9D sensor fusion and defined by gravity and the Earth’s 238

magnetic field. However, knowing those individual offsets is not necessary for calculating 239

relative orientations and joint angles. 240

We take the heading offset into account by evaluating the constraint (5) in one of the 241

slowly-drifting global frames (here E1), i.e., 242

(
[ω1]E1

− [ω2]E1

)

︸ ︷︷ ︸
=: ωrel

·
[j1]E1

× [j2]E1∥∥∥[j1]E1
× [j2]E1

∥∥∥
︸ ︷︷ ︸

=: jn/‖jn‖

= 0. (7)

This version of the constraint implicitly depends on δ, as we need the quaternion 243

S2
E1

q = E2
E1

q(δ) ⊗ S2
E2

q to transform ω2 and j2 to E1 coordinates. This means that instead 244

of (5) we can use (7) with magnetometer-free 6D orientations and that, in addition to the 245

joint axes coordinates, we also identify the current heading offset δ(t) as an additional 246

parameter. 247

4.2. Orientation-Based Kinematic Joint Constraint 248

As an alternative, we derive a second kinematic joint constraint. In contrast to the 249

constraint introduced in the previous section, this constraint is not based on the joint 250

rotation but on the joint orientation, i.e., the relative orientation between the two body 251

segments connected by the joint. 252

As in Section 4.1, assume that we have 6D sensor orientation estimates S1
E1

q(tk),
S2
E1

q(tk), 253

e.g., estimated with the VQF algorithm [47]. As before, our aim is to identify [j1]S1
, 254

[j2]S2
, and the heading offset δ(t). For any given estimate of those values, we are able to 255

calculate joint angles. If the joint follows the 2-DoF joint model introduced in Section 3, 256

the following statement holds true: With the correct sensor-to-segment orientation and the 257

correct heading offset, the second joint angle (for the elbow joint: the carrying angle) is 258

constant. 259

Mathematically, we can formulate this by calculating the joint orientation and then 260

decomposing this orientation into Euler angles. First, we determine the shortest-possible 261

rotations that align the estimated sensor axes with the joint axes: 262

B1
S1

q =
(

arccos
(
[ 0 0 1 ]ᵀ · [j1]S1

)
@ [ 0 0 1 ]ᵀ × [j1]S1

)
(8)

B2
S2

q =
(

arccos
(
[ 0 1 0 ]ᵀ · [j2]S2

)
@ [ 0 1 0 ]ᵀ × [j2]S2

)
(9)

and calculate the rotation quaternion between the reference frames 263

E2
E1

q = (δ @ [ 0 0 1 ]ᵀ). (10)

Using those quaternions we calculate the joint orientation 264

B2
B1

q = S1
B1

q⊗ E1
S1

q⊗ E2
E1

q⊗ S2
E2

q
︸ ︷︷ ︸

=
S2
S1

q

⊗ B2
S2

q, (11)

which depends on the sensor orientations, the estimated joint axes j1 and j2, and the 265

heading offset δ. 266
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Therefore, B2
B1

q =: [ qw qx qy qz ]ᵀ can be calculated from the measured data and the 267

estimated parameters. The second intrinsic z-x′-y′′ Euler angle of this quaternion, i.e., the 268

estimated carrying angle, is 269

β̂0 = arcsin
(
2qwqx + 2qyqz

)
. (12)

Due to the joint constraint, this angle has to be constant over the whole measurement 270

window, i.e., with the fixed constant carrying angle β0, 271

arcsin
(
2qwqx + 2qyqz

)
= β0. (13)

Similar to (7), the constraint (13) can be used to identify the joint axes coordinates and 272

the heading offset δ. Additionally, unless the actual value of the carrying angle β0 is known, 273

β0 has to be identified as an additional parameter. 274

4.3. Parametrization of Joint Axes 275

The aim of the anatomical calibration is to identify the joint axes j1 ∈ R3 and j2 ∈ R3
276

with ‖ji‖ = 1, i = 1, 2. Parametrizing the axes as Cartesian vectors in an optimization 277

problem is inconvenient as we would need an additional constraint to ensure unit length. 278

Therefore, we employ spherical coordinates and represent each axis by two parameters ϕi 279

and θi, e.g., 280

ji = [ sin θi cos ϕi sin θi sin ϕi cos θi ]
ᵀ, i = 1, 2. (14)

With the parametrization given in (14), ∂ji
∂ϕi

= 0 if sin θi = 0. To avoid this singularity, 281

we introduce an alternative spherical representation of the same joint axis direction, as 282

shown in Figure 4. During optimization, we always use a parametrization with | sin θi| � 283

0 by converting the axis to Cartesian coordinates and then to the other representation 284

whenever the current representation comes close (< 30°) to that singularity. 285

ji =




sin θi cos ϕi
sin θi sin ϕi

cos θi


 ji =




ji,x
ji,y
ji,z


 ji =




cos θi
sin θi sin ϕi
sin θi cos ϕi




|sin θi| < 1
2

|sin θi| < 1
2

Figure 4. Two spherical parametrizations are used to represent the joint axes ji, i = 1, 2, with two
parameters each, θi and ϕi. To avoid the derivative becoming close to zero, we convert the respective
axis to Cartesian coordinates and then to the other representation whenever | sin θi| < 0.5.

This approach ensures that the derivatives with respect to the joint axes are always 286

sufficiently sensitive. 287

4.4. Cost Function and Optimization 288

Sample selection is performed to fill a sample buffer of M data sets 289

{S1
E1

q(tk),
S2
E2

q(tk), [ω1 ]E1
(tk), [ω2 ]E2

(tk)
}

(15)

for the rotation-based constraint and 290

{S1
E1

q(tk),
S2
E2

q(tk)
}

(16)

for the orientation-based constraint from the 6D orientation quaternions and angular rates 291

measured at a (potentially very high) sampling frequency of fs. The proposed method 292

employs a regular (equidistant) sample selection strategy that stores one sample every 293

0.05 s. Note that this method can easily be extended by more sophisticated sample selection 294

strategies since the optimization procedure does not require equidistant sampling. 295
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In order to determine the joint axes and heading offset that best satisfy the rotation- 296

based constraint (7) in a least-squares sense, we define the error for each sampling instant 297

tk as 298

e(tk) := ωrel(δ) ·
jn(Φ)

‖jn(Φ)‖ , (17)

with the parameter vector Φ := [ θ1 ϕ1 θ2 ϕ2 δ ]ᵀ. Note that we assume the heading offset 299

δ(t) to be constant for all samples in the current buffer, which is valid for short window 300

lengths. 301

Similarly, for the orientation-based constraint (13), we define the error as 302

e(Φ) := arcsin
(
2qwqx + 2qyqz

)
− β0, (18)

with a parameter vector Φ := [ θ1 ϕ1 θ2 ϕ2 δ β0 ]
ᵀ that additionally includes the carrying 303

angle. 304

To estimate the joint axes j1 and j2 and the heading offset δ given a set of M samples, 305

we find the parameter vector Φ̂ that minimizes the sum of squares of the error using the 306

Gauss-Newton algorithm [49]. Appendix B gives details on the optimization algorithm, 307

provides analytical expressions for the gradients of the cost function, and introduces a 308

moving window approach for employing the proposed method in real-time applications. 309

As a result of the optimization step, we obtain the joint axes j1 and j2 in the coordinates 310

systems of sensors S1 and S2, respectively, and the heading offset δ between the reference 311

frames E1 and E2. 312

4.5. Joint Angle Calculation 313

Using the optimization results, we calculate FE and PS joint angles based on the ISB 314

recommendations [44]. Those joint angles are defined as intrinsic z-x′-y′′ Euler angles of 315

the forearm B2 relative to the upper arm B1, i.e., B2
B1

q, with B1 and B2 being the segment 316

coordinate systems as defined in [44]. 317

From 6D IOE, we get the sensor orientation quaternions S1
E1

q and S2
E2

q. After performing 318

the optimization, we know the coordinates of both joint axes j1 and j2 in local sensor coor- 319

dinates and the heading offset δ. Note that additional knowledge is needed to determine 320

the absolute value of the joint angles without any offset – for example, for the elbow joint, 321

which joint orientation corresponds to zero flexion and zero pronation is only a matter of 322

convention and not an inherent property of the 2-DoF joint. To obtain offset-free angles, we 323

employ reference values of the FE and PS joint angles at one arbitrary time instant tref, e.g., 324

obtained from a known pose or by exploiting the maximum range of motion of the joint. 325

With those values, the joint angles can be calculated by the algorithm described below: 326

First, we calculate E2
E1

q via (6) and use this to obtain S2
E1

q = E2
E1

q ⊗ S2
E2

q. Then we 327

determine rotations that ensure that the identified joint axes match the joint axes defined in 328

[44]: 329

B′1
S1

q = (arccos([0 0 1]ᵀ · j1)@ [0 0 1]ᵀ × j1) (19)

B′2
S2

q = (arccos([0 1 0]ᵀ · j2)@ [0 1 0]ᵀ × j2). (20)

Using those, we calculate the relative segment orientation 330

B′2
B′1

q =
(S1
E1

q⊗ B
′
1
S1

q
)−1
⊗ S2
E1

q⊗ B
′
2
S2

q. (21)
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For any quaternion q =: [ qw qx qy qz ]ᵀ, the z-x′-y′′ Euler angles (α, β, γ) can be calculated 331

as 332

α = atan2(2qwqz − 2qxqy, q2
w − q2

x + q2
y − q2

z), (22)

β = arcsin(2qwqx + 2qyq3), (23)

γ = atan2(2qwqy − 2qxqz, q2
w − q2

x − q2
y + q2

z). (24)

By calculating z-x′-y′′ Euler angles (α′, β′, γ′) of B
′
2
B′1

q, we obtain the FE angle α′ and the PS 333

angle γ′ that only differ from the well-defined joint angles according to [44] by a constant 334

offset that depends on the actual placement of the IMUs. 335

We can eliminate this offset by exploiting knowledge of the actual joint angles αref and 336

γref at t = tref. The segment-to-sensor orientations 337

B1
S1

q =
B′1
S1

q⊗
(
α′(tref)− αref @ [0 0 1]ᵀ

)
, (25)

B2
S2

q =
B′2
S2

q⊗
(
γref − γ′(tref)@ [0 1 0]ᵀ

)
(26)

allow us to calculate B2
B1

q = (S1
E1

q⊗ B1
S1

q)−1 ⊗ S2
E1

q⊗ B2
S2

q. The Euler angles (α, β0, γ) of B2
B1

q 338

are the offset-free FE and PS joint angles α and γ, respectively, and the carrying angle β0 (cf. 339

Figure 3), which is almost constant and rarely reported [44]. 340

To further improve the proposed method, in Appendix C, we introduce an optional 341

extension that allows for the rotation-based constraint to be used when only orientation 342

data is available (e.g., if on-chip sensor fusion is used), add a low-pass filter to reduce 343

the influence of soft tissue motion artifacts, and discuss options for how to resolve the 344

ambiguity in the signs of the joint axes. 345

5. Experimental Evaluation 346

We evaluate the proposed magnetometer-free anatomical calibration and joint angle 347

calculation methods based on two experiments. 348

The first experiment is designed to evaluate if the obtained joint axis estimates are 349

plausible and consistent. To this end, IMU data from two different motions is recorded 350

from five subjects and a mechanical joint, while carefully attaching the sensors in a known 351

orientation. Each trial is split into overlapping time windows to which the anatomical 352

calibration methods are applied. The obtained joint axis estimates are compared to the axes 353

obtained by the more restrictive method of careful manual sensor placement. 354

The second experiment is designed for the evaluation of the accuracy of the obtained 355

joint angles with the proposed self-calibrating magnetometer-free joint angle calculation 356

method. This experiment consists of recordings of natural everyday life motions of two 357

subjects. It uses marker-based OMC as a reference, which allows for the comparison of the 358

obtained joint angles to joint angles obtained from optical markers and from a conventional 359

9D IMU-based approach. As a further validation step, we consider the variability of the 360

expected-to-be-constant carrying angle as a metric for how well the estimated joint axes 361

describe the functional joint motion. 362

Note that in all experiments, the sensors are carefully attached in a known orientation 363

to facilitate a plausibility check of the obtained results. To still verify that the proposed 364

methods do not make assumptions regarding the sensor orientation, we simulate a random 365

sensor attachment by multiplying all gyroscope and accelerometer measurements with a 366

random rotation matrix that is different for each time window. 367

The extension for on-chip sensor fusion introduced in Section C.1 is always used, i.e., 368

the angular rates used for evaluating the rotation-based kinematic constraint are derived 369

from the orientation estimates. Since the impact on the results is negligible, the results 370

obtained using the actual gyroscope measurements are not shown separately. 371
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5.1. Robustness of Joint Axis Estimation 372

The first experiment is performed to answer the following two research questions: 373

1. Are the estimated joint axes plausible, i.e., do they agree with the values expected 374

based on careful manual placement? 375

2. Are the estimated joint axes consistent, i.e., do we always obtain the same result when 376

using different parts of the trial? 377

Data from five healthy subjects is recorded. Inertial sensors (Xsens MTw, Xsens 378

Technologies B.V., Netherlands) are placed on the upper arm close to the elbow and on the 379

forearm close to the wrist. The sensors are placed in a defined orientation on the skin so 380

that one local sensor axis coincides roughly with the functional joint axis. 381

We define two different motions: 382

1. The simple motion consists of FE of the elbow and PS of the forearm, performed 383

alternatingly while keeping the arm in the frontal plane of the shoulder. 384

2. For the complex motion, we ask the subject to perform random combinations of FE and 385

PS, allowing for 3D rotation of the shoulder including humeral rotation. 386

Each subject performs both motions for approximately one minute. 387

In addition to the five human subjects, an additional data set is recorded using a 388

mechanical joint. This joint has dimensions similar to the human arm and consists of two 389

hinge joints as shown in Figure 3. During the recordings, the joint was held in hand and 390

moved in a way that mimics the motions performed by the five subjects. 391

For each recording, the proposed methods are used on 21 partially overlapping moving 392

windows w, w = 1, 2, . . . , 21, of length 10 s with data sets recorded every 0.05 s. Note that 393

we will later investigate the effect of window length and sampling time and show that this 394

window length is usually sufficient to identify the joint axes and that collecting data sets 395

more frequently does not significantly improve the robustness. 396

α
εw

axis obtained
via manual sensor
attachment jatt

estimated
joint axes jw

mean

Figure 5. Variability angle εw and misalignment angle α used to evaluate the axis estimation results.
εi is the angle between the estimated axis for a single window and the mean estimate. α is the angle
between the mean estimate and the axis obtained by careful manual sensor attachment. For a good
anatomical calibration method, εi should be small, showing that the estimates are consistent, and α

should be within 30°, showing that the estimates are plausible.

Since the only available ground truth are approximate axis coordinates that we know 397

due to the orientation in which the sensor was attached, we define suitable evaluation 398

metrics that allow us to quantify the consistency and plausibility of the estimates. See 399

Figure 5 for an illustration of the definitions. First, denote the estimated joint axes jw, with 400

w being the index for the estimation window.2 To assess if the estimates are consistent, we 401

define the variability angle 402

εw = ^(jw, jmean), (27)

2 For a compact notation, we now omit the segment index, denoting whether the axis is a FE axis or a PS axis.
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where ^ denotes the angle between two 3D vectors and 403

jmean =
1

21

21

∑
w=1

jw (28)

is the mean of all estimates. In other words, εw is the angular deviation between the 404

estimate for window w and the mean of all estimates. If this angle is always small, the 405

estimation results agree well for all time windows. 406

To also check if this result is plausible, we introduce the misalignment angle 407

α = ^(jmean, jatt), (29)

with jatt being the joint axis obtained via careful manual sensor attachment. Therefore, α 408

is the angle between the mean estimation result and the axis obtained via manual sensor 409

attachment. While precise manual sensor attachment is hard and error-prone, we can at 410

least expect both axes to coincide roughly and therefore consider the result plausible if 411

α ≤ 30°. 412

Figure 6 shows the results obtained in the first experiment with the rotation-based and 413

orientation-based constraints. In general, we see that the proposed methods for anatomical 414

calibration produce good results: with both constraints, the methods are able to determine 415

plausible FE and PS joint axes from 10-second recordings, and in all cases except for 416

subject 2 with the orientation-based constraint and the complex motion, the median of 417

the variability angle εw is below 10°. In other words, almost all time windows lead to axis 418

estimates within the expected range. As a main result, it is noticeable that the rotation-based 419

constraint performs better than the orientation-based constraint and that a slight increase 420

in the variability angles εw can be observed in the complex motion. This is likely due to soft 421

tissue motion caused by humeral rotation. Furthermore, the randomness of the complex 422

motion can lead to longer periods of motion that do not excite both degrees of freedom of 423

the joint. 424

The results obtained with the mechanical joint agree very well with the expected axes 425

(α ≤ 2°), and the joint axis estimates are more consistent than for the biological elbow joints. 426

This is to be expected since precisely attaching the sensors is easier with the mechanical 427

joints, there are no soft tissue motion artifacts, and the mechanical joint constructed with 428

two hinge joints follows the kinematic model (Figure 3) more precisely than the human 429

elbow. 430

To facilitate an intuitive understanding of the results, Figure 7 shows the estimated and 431

expected joint axes in a 3D visualization of the respective IMU coordinate systems. We can 432

see that, for both FE and PS, the joint axis estimates of all overlapping time windows agree 433

well. While the PS axis agrees very well with the axis expected due to sensor alignment, a 434

systematic disagreement of ∼17° between the estimated and expected axes is noticeable. 435

Since all estimates are very consistent, this is most likely due to an imprecise manual 436

attachment of the sensor, causing the y-axis to disagree with the functional PS axis of the 437

joint. In general, we see in Figure 6 that the misalignment angle α is larger for the FE axis j1 438

than for the PS axis j2. This is plausible, given the fact that the longitudinal x-axis of the 439

IMU is much easier to precisely align with the longitudinal axis of the forearm, whereas 440

aligning the y-axis of the upper arm IMU, corresponding to a much shorter dimension of 441

the sensor case, with the functional FE axis was found to be much harder while conducting 442

the experiments. 443

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2022                   doi:10.20944/preprints202211.0035.v1

https://doi.org/10.20944/preprints202211.0035.v1


13 of 28

(a) rotation-based constraint
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(b) orientation-based constraint
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Figure 6. Consistency and plausibility results for the first experiment with the (a) rotation-based
constraint and the (b) orientation-based constraint, for two motion types and for five human subjects
and a mechanical joint (m). The proposed methods estimate plausible axes for all subjects and all
motions. The rotation-based constraint yields more consistent estimates than the orientation-based
constraint, and the simple motion leads to better results than the complex motion.

upper arm forearm

expected FE axis j1

estimated FE axes j1

expected PS axis j2

estimated PS axes j2

Figure 7. 3D visualization of the estimation results for an exemplary trial (subject 2, simple motion,
rotation-based constraint). The joint axis estimates from all windows agree well (blue arrows). The PS
axis agrees very well with the expected value (red arrow), while for the FE axis there is a misalignment
of 17°, most likely due to imprecise manual sensor attachment.

However, it is noticeable that also for the variability angle εw, the values are typically 444

much larger for the FE axis than for the PS axis, indicating that it is not only harder to per- 445

form a precise manual alignment of this axis but it is also harder for the proposed methods 446

to accurately and consistently estimate this axis. This effect is especially pronounced for 447

the complex motion. 448
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To investigate one potential effect, we take a closer look at subject 2 and the rotation- 449

based constraint. In the complex motion trials, subject 2 stands out as the range of motion 450

of the upper arm IMU is significantly lower than for the other subjects (more specifically, 451

the mean pairwise orientation difference within a window is 16° for subject 2 and between 452

46° and 56° for the other four subjects) while the FE axis deviations are larger than for 453

all other subjects. In Figure 8, we visualize the estimated FE joint axes (Figure 8a) and 454

notice that all estimates lie approximately within the y-z-plane of the sensor. During the 455

trial, the x-axis of the upper arm IMU was approximately vertical, i.e., the y-z-plane is 456

approximately horizontal. When calculating the angle of the joint axis in this y-z-plane and 457

plotting this angle together with the estimated heading offset δ in Figure 8b, we notice that 458

there is an obvious correlation. 459

upper arm forearm

estimated FE axes j1 estimated PS axes j2 −20 0 20
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y = 51.2 − 0.82x
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Figure 8. Investigation into the variability of the FE axis estimates (subject 2, complex motion,
rotation-based constraint). (a) 3D visualization of the axis estimates for all windows. (b) Plot of the
estimated heading offset δ and the angle of the FE axis in the (approximately horizontal) y-z-plane
of the upper arm IMU coordinate system. There is an obvious correlation, indicating that without
sufficient upper arm movement, the kinematic constraint does not allow for distinguishing between
a heading rotation of the joint axis and a heading offset between the sensor orientations.

This correlation can be explained when considering the kinematic constraint in (7) for 460

the special case in which the upper arm does not move, i.e., the orientation B1
E1

q is constant, 461

ω1 = 0, and the coordinates of [j1]E1
are constant. In this case, there is no difference 462

between a change in δ, i.e., the heading offset between E1 and E2, and a rotation of the joint 463

axis estimate j1 around the vertical axis. The observation in Figure 8 is likely caused by the 464

real situation being too close to this singular case. To mitigate this, care should be taken to 465

avoid calibration motions during which one of the body segments is always stationary. 466

In summary, the evaluation of the first experiment has shown that the proposed 467

methods yield consistent and plausible joint axis estimates. The rotation-based constraint 468

performs better than the orientation-based constraint. To ensure that the axes converge, 469

the subject’s motion should include sufficient motion from both the upper arm and the 470

forearm. 471

To further enrich the evaluation, we use the data from the first experiment to investi- 472

gate the influence of the the cutoff frequency for the low-pass filter, the sample selection 473

frequency, and the window duration. The results are presented in Appendix D. 474

5.2. Accuracy of Magnetometer-Free Joint Angle Tracking 475

The second experiment is performed to validate that the proposed methods can be 476

used to obtain accurate elbow joint angles for functional motions without relying on a 477

precisely known sensor attachment and without relying on the magnetic field. An optical 478

motion capture system (Vicon Motion Systems Ltd. UK) is used as reference. In addition to 479

the two inertial sensors positioned as in the previous experiment, optical markers are placed 480

on bony landmarks in a way that facilitates joint angle measurement as recommended by 481

the ISB [44]. Note that by placing reflective markers on anatomical landmarks and not, like 482
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many previous works, on the IMUs, we ensure that we compare against the gold standard 483

for measuring joint angles, taking soft tissue motion into account. 484

Two healthy subjects performed two motions: 485

1. During the pick-and-place motion, the subject placed a small box in a sequence of 486

predefined orientations and locations on a table. 487

2. The drinking motion consists of the subject repeatedly placing the hand on a table, 488

grabbing a cup, simulating a drinking motion, and then placing the cup back on the 489

table. 490

Each of the four subjects repeats the two motions four times (twice slow and twice fast), 491

resulting in a total of 16 trials, with durations between 14 and 44 s. 492

For each trial, calculate four different joint angles. 493

1. The OMC-based ground truth angles are derived from the optical markers placed on 494

anatomical landmarks and calculated as described in [44]. 495

2. Conventional IMU-based joint angles are calculated using 9D sensor fusion (with the 496

VQF algorithm [47]), i.e., using the magnetic field to determine the heading, and 497

relying on the careful placement of the sensors on the body. 498

3. In contrast, the proposed IMU-based joint angles use 6D sensor fusion (with the VQF 499

algorithm [47]), and the joint axes and heading offset are identified from the trial 500

motion using the 501

• rotation-based joint constraint and the 502

• orientation-based joint constraint. 503

Note that the application of the proposed methods tests the most challenging case, i.e., 504

we use a standard everyday motion to identify both the joint axes and the heading offset 505

without requiring a separate calibration phase. 506
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(magnetometer-free, arbitrary attachment)(with magnetometers,
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Figure 9. Joint angle estimation errors for all trials with a conventional 9D approach and with the
proposed plug-and-play magnetometer-free methods, using OMC-based angles as ground truth. The
numbers below the axis labels indicate the mean root mean square error (RMSE) for all 16 trials. The
proposed method with the rotation-based constraint yields the same accuracy as the much more
restrictive conventional 9D method.

To determine the sign and the required offset for the joint angles, we use the OMC- 507

based angles. The IMU-based joint angles obtained by the different methods are compared 508
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Figure 10. Joint angle trajectories for an exemplary (a) drinking and (b) pick-and-place trial obtained
with the proposed IMU-based method (and the rotation-based constraint), the conventional 9D
IMU-based approach, and the OMC ground truth. While being much less restrictive, the proposed
method is able to obtain FE and PS joint angles that agree well with the angles obtained with the
other two methods.

to the OMC-based ground truth, and the RMSE is calculated. Results from all trials are 509

shown in Figure 9. 510

When comparing the two variants of the proposed method, we see that the rotation- 511

based constraint outperforms the orientation-based constraint. This coincides with the 512

results of the first experiment presented in Section 5.2. It is noteworthy that for many trials 513

the accuracy achieved with both constraints is comparable and the difference in the mean 514

accuracy is caused by several outliers obtained with the orientation-based constraint, which 515

is consistent with the lower robustness observed for this constraint in Figure 6. 516

However, when considering the results obtained with the proposed method and 517

the rotation-based constraint, the accuracy is similar to the conventional 9D IMU-based 518

method. For the FE angles, the mean RMSE of 2.1° is 0.2° lower than for the conventional 519

method, while for the PS angles, the mean RMSE of 3.7° is 0.1° larger. In contrast to the 520

results with the orientation-based constraint, there are no outliers, and the maximum 521

RMSE of the proposed method and the conventional method is comparable. Note that 522

the conventional method relies on properly calibrated magnetometer measurements, a 523

controlled environment without ferromagnetic material or electric devices, and a precise 524

and known sensor attachment and is therefore much more restrictive than the proposed 525

magnetometer-free plug-and-play method. 526
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To illustrate the performed motions and the obtained results, Figure 10 shows the 527

OMC ground truth joint angles, the conventional IMU-based joint angles, and the proposed 528

joint angles with the rotation-based constraint for two exemplary trials. As can be seen, the 529

joint angles obtained with the proposed plug-and-play method agree well with both the 530

conventional IMU-based joint angles and the OMC-based ground truth angles. 531

Note that the joint constraint is only used for identifying the joint axes and that the 532

joint angle calculation uses standard Euler angles and therefore not directly restricted by 533

this constraint. As a result, the obtained carrying angles, which are also shown in Figure 10 534

but rarely reported in practice, are not perfectly constant. 535

We can use the carrying angle as an indicator of how well the measured joint motion 536

adheres to the 2-DoF joint model (Figure 3). For a perfect 2-DoF joint, we would expect a 537

perfectly constant carrying angle, while a 3-DoF joint will show significant movement in all 538

three joint angles. Also, if the joint is in fact a 2-DoF joint but the joint axis estimates are 539

wrong, the Euler decomposition will cause variability in all three joint angles. 540

Therefore, we calculate the standard deviation of the carrying angle as a measure 541

of variability, which is shown in Figure 11 for all 16 trials and all four angle calculation 542

methods. With both constraints, the median of the standard deviations is slightly lower 543

than for the conventional IMU-based joint angles and the OMC-based ground truth. This 544

indicates that the joint axis estimates automatically obtained with the proposed method are 545

better suited to describe the functional motion of the joint than the axes obtained via careful 546

IMU placement and the axes obtained via the placement of optical markers on anatomical 547

landmarks. This agrees with previous research showing that anatomical joint axes defined 548

based on anatomical landmarks do not coincide with the rotation axes of functional joint 549

motion [50]. For joint angle calculation, the use of functional rotation axes seems preferable 550

in order to minimize kinematic cross-talk. 551

In summary, the evaluation of the second experiment has shown that for the challeng- 552

ing case of using recordings of everyday motions for calibration, the proposed methods are 553

able to obtain joint angles with the same accuracy as a conventional IMU-based approach, 554

while not relying on precise sensor placement or magnetometer measurements. As also 555

shown via the first experiment, the rotation-based constraint performs better than the 556

orientation-based constraint and should therefore be used for anatomical calibration. 557

orientation-based
constraint

rotation-based
constraint

conventional
IMU

OMC
ground truth

joint angle calculation method
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2

3
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Figure 11. Standard deviation of the carrying angle for all trials with the different angle calculation
methods. The proposed method induces the smallest variation in the assumed-to-be-constant carrying
angle. This indicates that the estimated joint axes describe the functional motion axes better than the
axes obtained via careful manual IMU placement (conventional IMU) and via placing markers on
anatomical landmarks (OMC ground truth).
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6. Conclusions 558

The present contribution introduced methods for automatic anatomical calibration for 559

2-DoF joints, such as the elbow, that do not require the subject to perform precise calibration 560

movements but instead work on arbitrary motions by exploiting one of two kinematic 561

constraints: a rotation-based constraint for the angular rates and an orientation-based 562

constraint. The methods do not make use of magnetometer measurements. Instead, the 563

heading offset is simultaneously estimated via the kinematic constraint, which facilitates 564

plug-and-play magnetometer-free joint angle estimation. 565

The proposed methods were evaluated using two experiments. The first experiment, 566

without OMC ground truth, showed that the proposed methods yield consistent and 567

plausible joint axis estimates from only ten seconds of motion data. The second experiment, 568

performed with OMC as ground truth, showed that the proposed plug-and-play method 569

can estimate accurate joint angles while being much less restrictive than a conventional 570

IMU-based approach. In both experiments, the rotation-based joint constraint performed 571

better than the orientation-based joint constraint. 572

The proposed methods overcome mounting and calibration restrictions and facilitate 573

magnetometer-free motion tracking. Therefore, they are highly suitable for indoor environ- 574

ments and improve the practical usability of IMU-based motion tracking in many clinical 575

and biomedical applications. 576

To further advance the proposed methods, it should be evaluated if combining the 577

rotation-based and the orientation-based constraint can increase the robustness and con- 578

sistency of the joint axes estimates. Furthermore, introducing and evaluating metrics to 579

quantify the estimation uncertainty and methods for automatic (re-)triggering of the calibra- 580

tion when suitable motions are detected are important next steps to increase the usability 581

of the method. 582
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6D sensor fusion with gyroscope and accelerometer data
9D sensor fusion with gyroscope, accelerometer, and magnetometer data
DoF degrees of freedom
FE flexion and extension
IMU inertial measurement unit
IOE inertial orientation estimation
ISB International Society of Biomechanics
MCP metacarpophalangeal joint
OMC optical motion capture
PS pronation and supination
RMSE root mean square error

600

Appendix A. Transforming Any General 2D Joint Model to Euler Angles 601

The proposed methods for automatic anatomical calibration use z-y′-x′′ Euler angles 602

to decompose the relative segment orientation into joint angles. This decomposition was 603

chosen because it is recommended by the ISB for the elbow [44]. However, this choice is 604

not restrictive in any way. In the following, we show that any joint model with two degrees 605

of freedom can be transformed to fit the chosen Euler angle representation. For example, 606

instead of using regular Euler angles, we could consider modeling a 2-DoF joint with axes 607

that are all potentially non-orthogonal (including the carrying angle axis), i.e., 608

B′2
B′1

q =
(
α′(t)@ j′1

)
⊗
(

β′0 @ j′β
)
⊗
(
γ′(t)@ j′2

)
, (A1)

or assume that the relative segment orientation is a sequence of two non-orthogonal 609

rotations (which is a special case of the above model with β′ = 0). Furthermore, the 610

joint model might include additional fixed rotations, similar to the carrying angle, at the 611

beginning or at the end of the rotation sequence. 612

To capture all those possibilities, we start with a very general model of a joint with 613

two degrees of freedom, described as the decomposition of the relative body segment 614

orientation quaternion 615

B′2
B′1

q = q1 ⊗ (α @ j1)⊗ q2 ⊗ (γ @ j2)⊗ q3. (A2)

The 3D vectors j1 and j2 are arbitrary but constant joint rotation axes, α(t) and γ(t) are the 616

two time-varying joint angles, and q1, q2 and q3 are arbitrary but constant rotations. 617

Without loss of generality, we can write (α @ j1) = q4 ⊗ (α @ [ 0 0 1 ]ᵀ) ⊗ q−1
4 and 618

(γ @ j2) = q5 ⊗ (α @ [ 0 1 0 ]ᵀ) ⊗ q−1
5 , with some constant rotations q4, q5 that rotate 619

between the given joint axes and the z-axis and y-axis, respectively. Inserting this into (A2) 620

gives 621

B′2
B′1

q = q1 ⊗ q4 ⊗ (α @ [ 0 0 1 ]ᵀ)⊗ q−1
4 ⊗ q2 ⊗ q5 ⊗ (γ @ [ 0 1 0 ]ᵀ)⊗ q−1

5 ⊗ q3. (A3)

Since we can decompose any quaternion into Euler angles, we can write 622

q−1
4 ⊗ q2 ⊗ q5 = (α0 @ [ 0 0 1 ]ᵀ)⊗ (β0 @ [ 1 0 0 ]ᵀ)⊗ (γ0 @ [ 0 1 0 ]ᵀ). (A4)

Furthermore, we can define new body segment coordinate systems B1 and B2: 623

B1
B′1

q = q1 ⊗ q4 (A5)

B′2
B2

q = q−1
5 ⊗ q3. (A6)
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Putting (A4), (A5) and (A5) into (A3) yields 624

B2
B1

q = (α @ [ 0 0 1 ]ᵀ)⊗ q−1
4 ⊗ q2 ⊗ q5 ⊗ (γ @ [ 0 1 0 ]ᵀ) (A7)

= (α + α0 @ [ 0 0 1 ]ᵀ)⊗ (β0 @ [ 1 0 0 ]ᵀ)⊗ (γ + γ0 @ [ 0 1 0 ]ᵀ). (A8)

This represents z-x′-y′′ Euler angles as recommended for the elbow by [44], with a constant 625

carrying angle β0. The time-varying joint angles in the generic model (A2) and in the Euler 626

angle model (A8) are only shifted by constant offsets α0 and γ0. Therefore, without loss of 627

generality, all joints that can be represented with two sequential rotations around arbitrary 628

but constant axes can be described using z-x′-y′′ Euler angles. 629

Appendix B. Details on the Optimization Procedure 630

Appendix B.1. Gauss-Newton Algorithm 631

To estimate the joint axes j1 and j2 and the heading offset δ given a set of M samples, 632

we find the parameter vector Φ̂ that minimizes the sum of squares, i.e., 633

Φ̂ = arg min
Φ

∑
tk∈B

e(tk)
2 = arg min

Φ

eᵀe, (A9)

with e ∈ RM×1 being the error vector and B denoting the set of sampling times tk in the 634

buffer. 635

For any given parameter vector, we can evaluate the Jacobian J ∈ RM×5 with 636

[J]ij =
∂ei
∂Φj

. (A10)

Analytical expressions for all elements of J that only depend on the parameters Φ and 637

on the measurements are given in Appendix B.3 for the rotation-based constraint and in 638

Appendix B.4 for the orientation-based constraint. 639

The Gauss-Newton algorithm [49] is used to minimize the error. Starting with an 640

initial parameter vector Φ0, we iteratively obtain the estimate by 641

Φi+1 = Φi + αpi with JᵀJpi = Jᵀe, (A11)

until convergence is achieved, with the iteration index i, the step direction pi, and the step 642

length α = 1. In between iterations, we switch from one joint axis representation to the 643

other via Cartesian coordinates if | sin θi| < 1
2 , i = 1, 2 (cf. Figure 4). As a result of the 644

optimization step, we obtain the joint axes j1 and j2 in the coordinates systems of sensors 645

S1 and S2, respectively, and the heading offset δ between the reference frames E1 and E2. 646

Appendix B.2. Moving Window Approach for Real-Time Applications 647

Note that the proposed optimization method can not only be applied to recorded 648

datasets but is also suitable for real-time application. In the simplest case, samples are 649

saved while the subject performs a motion and afterward, the optimization is performed on 650

the stored samples, and the resulting calibration parameters are applied to all subsequent 651

samples. For an improved online implementation that continuously updates the axes 652

estimates (if desired) and that starts to provide estimates as early as possible, the method 653

can be extended to the following moving window approach: 654

1. New samples are continuously selected every 0.05 s and stored in a ring buffer con- 655

taining M = 200 data sets, i.e., old data sets are automatically discarded. 656

2. As soon as the buffer is half-full, optimization starts. 657

3. One Gauss-Newton step is performed every time a sample is added to the buffer (to 658

continuously update the solution while spreading the computational load over time). 659
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Note that it is also possible to keep the parameters for the joint axes θ1, ϕ1, θ2, and ϕ2 fixed 660

after the initial estimate and only track the heading offset δ. 661

Appendix B.3. Gradient of Rotation-Based Cost Function 662

For efficient optimization using the rotation-based joint constraint introduced in 663

Section 4.2, we need to calculate the elements of the Jacobian J, i.e., 664

[J]ij =
∂ei
∂Φj

= ωrel ·
∂

∂Φj

jn

‖jn‖
+

jn

‖jn‖
· ∂

∂Φj
ωrel. (A12)

The derivative of the normalized axis is 665

∂

∂Φj

jn

‖jn‖
=

∂
∂Φj

jn

‖jn‖
− jn

jn · ∂
∂Φj

jn

‖jn‖3 . (A13)

All necessary subsequent derivatives are detailed in the following. Note that, while jn 666

depends on all parameters in Φ, the relative angular rate ωrel only depends on δ. 667

Appendix B.3.1. Derivative with Respect to the Joint Axes 668

We exploit the fact that the product rule holds for quaternion multiplication [51, p. 24].3 669

∂jn

∂θ1, ϕ1
=

(
S1
E1

q⊗ ∂

∂θ1, ϕ1
j1 ⊗ S1

E1
q−1

)
× [j2]E1

(A14)

∂jn

∂θ2, ϕ2
= [j1]E1

×
(
S2
E1

q⊗ ∂

∂θ2, ϕ2
j2 ⊗ S2

E1
q−1

)
(A15)

Deriving the axes in local sensor coordinates with respect to θ and ϕ as defined in (14) is 670

straightforward: 671

∂ji

∂θi
= [ cos θi cos ϕi cos θi sin ϕi − sin θi ]

ᵀ, (A16)

∂ji

∂ϕi
= [− sin θi sin ϕi sin θi cos ϕi 0 ]ᵀ, i = 1, 2. (A17)

The same is possible for the alternative joint axis parametrization. 672

Appendix B.3.2. Derivative with Respect to the Heading Offset 673

Instead of quaternion multiplication, we can make use of Rodrigues’ rotation formula 674

to express the transformation of a vector v ∈ R3 from E2 to E1, i.e., 675

[v]E1 = E2
E1

q⊗ [v]E2
⊗ E2
E1

q−1 (A18)

= [v]E2
cos(δ) +

(
[ 0 0 1 ]ᵀ × [v]E2

)
sin(δ)

+ [ 0 0 1 ]ᵀ
(
[ 0 0 1 ]ᵀ · [v]E2

)
(1− cos(δ)). (A19)

3 Similarly, we could argue that the rotation can be expressed using a rotation matrix and make use of the
product rule for matrix multiplication.
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This allows us to calculate the derivatives 676

∂ωrel
∂δ

= − ∂

∂δ
[ω2]E1

(A20)

= [ω2]E2
sin(δ)−

(
[ 0 0 1 ]ᵀ × [ω2]E2

)
cos(δ)

− [ 0 0 1 ]ᵀ
(
[ 0 0 1 ]ᵀ · [ω2]E2

)
sin(δ) (A21)

and 677

∂jn

∂δ
= [j1]E1

× ∂

∂δ
[j2]E1

with (A22)

∂

∂δ
[j2]E1

= −[j2]E2 sin(δ) +
(
[ 0 0 1 ]ᵀ × [j2]E2

)
cos(δ)

+ [ 0 0 1 ]ᵀ
(
[ 0 0 1 ]ᵀ · [j2]E2

)
sin(δ). (A23)

Appendix B.4. Gradient of Orientation-Based Cost Function 678

Analogously to the derivation in Section B.3, we now show how to calculate the 679

elements of the Jacobian J for the orientation-based constraint introduced in Section 4.2, i.e., 680

[J]ij =
∂ei
∂Φj

=
∂

∂Φj

(
arcsin

(
2qwqx + 2qyqz

)
︸ ︷︷ ︸
=: s(θ1,ϕ1,θ2,ϕ2,δ)

−β0

)
, (A24)

with B2
B1

q =: [ qw qx qy qz ]ᵀ. 681

Trivially, the derivative with respect to the fixed carrying angle β0 is 682

∂ei
∂β0

= −1. (A25)

For the derivatives with respect to the other parameters, we make use of the fact that 683

∂

∂Φj
arcsin s(Φj) =

∂
∂Φj

s(Φj)
√

1− s(Φj)2
(A26)

and that 684

∂

∂Φj
s(Φj) = 2

(
∂qx

∂Φj
qw + qx

∂qw

∂Φj
+

∂qy

∂Φj
qz + qy

∂qz

∂Φj

)
. (A27)

To determine the derivative of the quaternion components qw, qx, qy, and qz, remember 685

that the relative segment orientation B2
B1

q, as defined in (11), is the multiplicative concatena- 686

tion of five quaternions: 687

B2
B1

q = S1
B1

q(θ1, ϕ1)⊗ E1
S1

q⊗ E2
E1

q(δ)⊗ S2
E2

q⊗ B2
S2

q(θ2, ϕ2). (A28)

Since for each parameter, only a single of those five quaternions depends on the respective 688

parameter, the other four quaternions are constant factors, i.e., 689

∂

∂θ1, ϕ1

B2
B1

q =

(
∂

∂θ1, ϕ1

S1
B1

q
)
⊗ E1
S1

q⊗ E2
E1

q⊗ S2
E2

q⊗ B2
S2

q (A29)

∂

∂δ
B2
B1

q = S1
B1

q⊗ E1
S1

q⊗
(

∂

∂δ
E2
E1

q
)
⊗ S2
E2

q⊗ B2
S2

q (A30)

∂

∂θ2, ϕ2

B2
B1

q = S1
B1

q⊗ E1
S1

q⊗ E2
E1

q⊗ S2
E2

q⊗
(

∂

∂θ2, ϕ2

B2
S2

q
)

. (A31)
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Appendix B.4.1. Derivative with Respect to the Joint Axes 690

The sensor-to-segment orientation for the first segment can be expressed as 691

S1
B1

q =

[
cos(ψ

2 )

sin(ψ
2 )

v
‖v‖

]
, with ψ = arccos(j1,z) and v = j1 ×




0
0
1


 =




j1,y
−j1,x

0


. (A32)

For the scalar part of the quaternion, 692

∂

∂θ1, ϕ1
cos
(

ψ

2

)
= −1

2
sin
(

ψ

2

)
∂ψ

∂θ1, ϕ1
(A33)

and 693

∂

∂θ1, ϕ1
ψ = −

∂j1,z
∂θ1,ϕ1√
1− j21,z

. (A34)

The derivative of the vector part of the quaternion is 694

∂

∂θ1, ϕ1
sin
(

ψ

2

)
v
‖v‖ =

1

‖v‖2

(
v‖v‖∂ sin(ψ

2 )

∂θ1, ϕ1
+ sin

(
ψ

2

)
‖v‖ ∂v

∂θ1, ϕ1
− sin

(
ψ

2

)
v

∂‖v‖
∂θ1, ϕ1

)
,

(A35)

with 695

∂

∂θ1, ϕ1
sin
(

ψ

2

)
=

1
2

cos
(

ψ

2

)
∂ψ

∂θ1, ϕ1
(A36)

and 696

∂

∂θ1, ϕ1
‖v‖ = 1

‖v‖

(
j1,y

∂j1,y

∂θ1, ϕ1
− j1,x

∂j1,x

∂θ1, ϕ1

)
. (A37)

For the derivatives of the Cartesian joint axis vector j1 with respect to θ1 and ϕ1, refer 697

to Appendix B.3. 698

The derivative with respect to θ2 and ϕ2 follows analogously for the second sensor-to- 699

segment orientation 700

B2
S2

q =

[
cos(ψ

2 )

sin(ψ
2 )

v
‖v‖

]
, with ψ = arccos(j2,x) and v =




0
1
0


× j2 =




j1,z
0
−j1,x


. (A38)

Appendix B.4.2. Derivative with Respect to the Heading Offset 701

The derivative of the heading offset quaternion 702

E2
E1

q =
[
cos( δ

2 ) 0 0 sin( δ
2 )
]ᵀ

(A39)

with respect to the heading offset δ is 703

∂

∂δ
E2
E1

q =
[
− 1

2 sin( δ
2 ) 0 0 1

2 cos( δ
2 )
]ᵀ. (A40)

Appendix C. On-Chip Sensor Fusion, Soft Tissue Motions, and Axis Ambiguity 704

Appendix C.1. Extension to On-Chip 6D Sensor Fusion 705

Especially in wireless inertial sensor networks, it is desirable to perform on-chip sensor 706

fusion, potentially with a high sampling rate of the gyroscopes, and then to only transmit 707
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the orientation quaternions at a regular (and typically much lower) sampling rate to the 708

processing unit. However, the constraint (7) is based on angular rates, i.e., on the gyroscope 709

measurements. 710

Instead of transmitting the gyroscope measurements as well, which requires extra 711

bandwidth, increases power consumption, and might not be possible without changing 712

hardware and/or the communication protocol, the angular rates can easily be approximated 713

from the change of orientation 714

[ S i(tk)
S i(tk−1)

q
]
E i

=
S i(tk)
E i

q⊗ S i(tk−1)
E i

q−1 =: [ qw qx qy qz ]
ᵀ, i = 1, 2, (A41)

by 715

[ω(tk)]E i
=

2
Ts

arccos(qw)
[ qx qy qz ]ᵀ∥∥[ qx qy qz ]ᵀ

∥∥ . (A42)

Note that due to the order of quaternion multiplication, we already obtain the angular rate 716

in each sensor’s global frame, thus avoiding another transformation step. 717

Of course, when the gyroscope and accelerometer readings are available, it is equally 718

possible to perform 6D sensor fusion in the processing unit, e.g., using the VQF algorithm 719

[47], and directly employ the angular rates measured by the gyroscopes for evaluation of 720

the kinematic constraint. Therefore, this proposed extension is not restrictive but instead 721

broadens the scope of applicability of the method. 722

Note that the orientation-based constraint is already quaternion-based and does not 723

require any other measurement data. Therefore, employing the proposed extension is not 724

necessary when using this constraint. 725

Appendix C.2. Measurement and Soft Tissue Motion Artifact Reduction 726

Measurement anomalies, such as the sensor accidentally touching objects, or soft 727

tissue motion can cause artifacts in the measured angular rates ω1 and ω2. This leads to 728

high-frequency disturbances (compared to the frequency of the functional joint motions) 729

that often violate the rotation-based constraint (7) and therefore deteriorate the estimation 730

accuracy. Low-pass filtering of the angular rates used for evaluating the rotation-based 731

constraint with a cutoff frequency of fc = 5 Hz improves the accuracy and robustness of 732

the anatomical calibration. 733

Appendix C.3. Ambiguity in the Signs of the Joint Axes 734

The joint constraints cannot be used to determine the signs of the joint rotation axes, 735

as for any pair of axes, the value of the cost function for (j1, j2), (−j1,−j2) and also (j1,−j2) 736

is exactly the same. Correspondingly, whether, for example, supination is defined as a 737

positive or negative rotation around an axis pointing proximally along the right forearm is 738

only a matter of convention. 739

In practical applications, it is essential to ensure that a specific definition is always 740

followed, e.g., [44]. In order to determine the sign, two approaches are practical: The first 741

is to ensure a sensor placement that is roughly known, i.e., the half-space in which each 742

joint axis points is predetermined. Another way is to exploit the joint’s range of motion 743

in combination with the offset-removal method described in Section 4.5. For example, by 744

defining that an extended and supinated elbow corresponds to α = 0, γ = 0 and choosing 745

the signs of the axes so that the mean joint angles during calibration are positive, we ensure 746

that we follow the definitions given in [44]. 747

Appendix D. Sensitivity to Cutoff Frequency, Sample Selection Frequency, and Window 748

Duration 749

As a further part of the evaluation, we consider the three main degrees of freedom in 750

applying the proposed methods and investigate the influence of those parameters: 751
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• the cutoff frequency fc for measurement and soft tissue motion artifact reduction 752

(employed value: 5 Hz, cf. Appendix C.2, rotation-based constraint only) 753

• the sample selection frequency (employed value: 20 Hz, Ts = 0.05 s) 754

• the duration of the measurement window (employed value: 10 s). 755

We apply the proposed methods to all trials of the five subjects of the first experiment 756

for different values of the respective parameter while keeping the other two parameters at 757

the previously employed default value. In order to condense the obtained information (cf. 758

Figure 6), we calculate the mean and the 99th percentile of the variability angles εw of all 759

windows of all trials. 760
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Figure A1. Variability of the obtained axis estimates (mean and 99th-percentile of εw, relative to
minimum value) for different values of the cutoff frequency of the soft tissue motion artifact reduction
low pass filter. Low-pass filtering of the angular rates increases the consistency of the axis estimates,
but for too low cutoff frequencies, important information gets lost, and the deviations increase.
Choosing a cutoff frequency of 5 Hz gives robust estimates.

For the angular rate cutoff frequency fc for measurement and soft tissue motion artifact 761

reduction, the obtained results are shown in Figure A1. If the cutoff frequency is chosen 762

too low ( fc = 2 Hz), the mean and 99th-percentile of εw increase compared to the smallest 763

possible value. At those frequencies, valuable information about the movement gets lost, 764

leading to more inconsistent estimation results. However, when choosing 3 Hz ≤ fc ≤ 7 Hz, 765

the results are more consistent than without low-pass filter. Therefore, we can conclude 766

that low-pass filtering of the angular rates helps to increase robustness and that fc = 5 Hz 767

is a reasonable choice for the cutoff frequency. 768

To determine how much data is needed to get consistent estimates, we repeat the 769

same evaluation for the other two parameters, i.e., window duration and sample selection 770

frequency, which is shown for both constraints in Figure A2. As expected, using more 771

data in the optimization, i.e., increasing the window duration or increasing the sample 772

selection frequency, leads to more consistent estimates. However, this comes at a cost. 773

Longer window durations cause inconvenience for the subject that has to perform the 774

movements and limit the applicability of the method. Therefore, the duration of 10 s was 775

chosen as a compromise between ease of use and accuracy and to demonstrate that such 776

short durations lead to good results. If the data is available, employing longer motion 777

sequences should be considered (up to a point where the assumption of δ being constant 778

is not valid anymore due to integration drift). The sampling selection frequency is less 779

critical as it only affects the computational time. However, the results show that increasing 780

the frequency past 10 Hz does not significantly affect the results. The chosen frequency 781

of 20 Hz is more than sufficient while still considerably removing the number of data sets 782

compared to typical IMU raw data sampling rates of 50–500 Hz. 783
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(a) rotation-based constraint
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(b) orientation-based constraint
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Figure A2. Variability of the obtained axis estimates (mean and 99th-percentile of εw, relative to
minimum value) for different values of the window duration and the sample selection frequency for
the (a) rotation-based constraint and the (b) orientation-based constraint. In general, using more data
(long windows at high sampling rates) leads to more consistent estimates but increases inconvenience
for the subject and processing time.
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