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Abstract: With increasing constraints on energy and resource markets and the non-decreasing
trend in energy demand, the need for relevant clean energy generation and storage solutions is
growing and is gradually reaching the individual home. But small-scale energy storage is still an
expensive investment in 2022 and the risk/reward ratio is not yet attractive enough for individual
homeowners. One solution is for homeowners not to store excess clean energy individually but to
produce hydrogen for mutual use. In this paper a collective production of hydrogen for a daily filling
of a bus is considered. Following our previous work on the subject, the investigation consists of
finding an optimal buy/sell rule to the grid, and the use of the energy with an additional objective:
mobility. The dominant technique in the energy community is reinforcement learning, which is
however difficult to use when the learning data is limited as in our study. We chose a less data-
intensive and yet technically well-documented approach. Our results show that rulebooks, different
but more interesting than the usual robust rule, exist and can be cost-effective. But they require
fine-tuning as to not deteriorate system performance. In some cases, it is worth missing the H2

production requirement in exchange for higher economic performance.

Keywords: Energy Management System, Digital Twins, General Additive Models, Green H2.

1. Introduction

With increasing constraints on energy and resource markets and the non-decreasing
trend in energy demand, the need for relevant clean energy generation and storage solutions
is growing and is gradually reaching the individual home [1,2]. But small-scale energy
storage is still an expensive investment in 2022 and the risk/reward ratio is not yet attractive
enough for individual homeowners. One solution is for homeowners not to store excess
clean energy individually but to produce hydrogen for mutual use.

In this paper a collective production of hydrogen for a daily filling of a bus is consid-
ered. Following our previous work on the subject [3], the investigation consists of finding
an optimal buy/sell rule to the grid, and the use of the energy with an additional objective:
mobility. The dominant technique in the energy community is reinforcement learning,
which is however difficult to use when the learning data is limited as in our study. We
therefore chose a less data-intensive and yet technically well-documented set of tools.

1.1. Context

The importance of Energy Management Systems (EMS) has increased over the years
and is drilling down to individual systems, like individuals or groups of dwellings, or solar
community. In a previous article [3] we have studied the opportunity of integrating energy
storage technologies for such scales. In this article we will focus on the generation of H2 in
sufficient volume to refuel a bus on a daily basis. We also investigate if an EMS could be
developed in order to deliver more interesting results than the usual robust strategy, which
does not seek to maximize profits but to make sure H2 is delivered. Machine learning has
shown its ability to take advantage of both volatile and exogenous information [4,5], the
kind of which is increasingly common for energy markets and for the behaviour of small
systems.
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1.2. Literature review

Numerous methods have been developed to build EMS systems and to monitor them
[6–8]. They can be regrouped in classical programming methods that have proven their
worth and are well understood, but suffer from convergence difficulties. Evolutionary
and stochastic methods are robust but can be costly in computation time. The Fuzzy logic
methods have been developed to manage the multi-control functions and to represent
uncertainty in the measured data. Neural Networks are used for control and energy
management due to their reliability, computational capability, and adaptability to handle
complex nonlinear systems [6]. Their development has given way to the rise of Deep
Reinforcement Learning [9]. The technique of Reinforcement Learning is employed to
solve sequential decision-making problems that learn by iterative trial and error through a
carefully defined reward scheme.

Digital Twins (DT) are a technology that has recently been brought to the front pages
[? ] of business deciders and is presented as a path to less waste, shorter times to market,
constant customer insights. In the literature [10–17], DTs are realized using either two
approaches model-based and data-based. Model-based DT requires a fine physical model
of the system, while the data-based or machine learning (ML) one requires sufficiently good
quality data on the real system, as well as an adequate fine-tuning of the hyperparameters,
both of which can be hard to achieve [11]. Accurate models aren’t always available for
the system of which we want to build a DT for its operating conditions. The problem of
the availability of data could possibly be solved using Generative Adversarial Networks
(GANs) [18–20] and/or transfer learning [21–25], but the technology is still maturing. For
this study, General Additive Models (GAMs) are used as they are a category of ML that
requires few to none hyperparameters tuning to approximates nonlinear relationships with
a combination of linear formulation of a series of smoothening functions [26].

1.3. Contributions to novelty

Several approaches are being developed for energy management systems [6–9,27,28].
The latest one, based on deep reinforced learning, while producing results and being de-
veloped in open-sourced frameworks [29–32] is considered a black-box model [33] and
the results are hard to explain, analyze and validate for domain experts. The approach
developed in this paper can be considered as a proxy for Off-Policy reinforcement learning
[34]. Off-Policy learning algorithms evaluate and improve a policy, called target policy,
distinct from the policy used for action selection, called behavior policy. An initial policy is
given and used by the system, usually a greedy policy. Then over the iterations, the result
of the actions taken following the behavior policy are evaluated as to update the target
policy that eventually becomes the new behavior policy [35,36].
Our approach is to create a digital twin of the system that is then used to evaluate different
trajectories of the system in the range of possible states that are then classified. The best
trajectory or strategy for each class is then chosen, and defines then a policy. The policy
is then applied throughout the runs of the simulation, but as operating conditions either
exogenous (prices, weather conditions), either endogenous (equipment efficiency, users’
behavior), evolve over time, the digital twins need to be re-evaluated. This re-evaluation
leads in turn to the need to re-evaluate the virtual system and its classification, thus up-
dating the policy. The trigger condition for such a policy update is not the discovery by
the system of better actions to take, but rather the evolution of the operating conditions,
that have potentially made the chosen actions non-optimal. In this work, the presented
approach appears as a proxy for reinforcement learning.
This approach is innovating in that it uses techniques known by domain experts to approx-
imate reinforcement learning methods, and thus can serve as a bridge between the two
domains. This approach can serve as a benchmark against which Deep Learning methods
can be compared in a way that can be interpreted by experts in the field.

After the presentation of the general context and the corresponding state of the art, we
will present the general methodology retained in our approach (§2). We will then present
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the chosen case study (§3), on which the general methodology will be applied; section
§4 will thus be dedicated to the details of this implementation. We will then analyze the
results obtained (§5) before drawing a conclusion.

2. Methodology

As exposed above, the goal of this article is to propose a method to improve the control
of a microgrid and to test it on a case study. The global idea is to create a virtual version of
an industrial system in order to create and evaluate an improved policy.

Digital twin fitting
and system
observation


Virtual system


Real system


Improved policy
application


Clustering
 Best strategy
identification


Improved
policy

Clusters

System
behavior


Figure 1. Proposed methodology

The general methodology is shown in Fig. 1. It is divided into four steps which allow
the identification of optimal control strategies (clustering and best strategy identification)
based on the observation of the real system. The system evolves under the effect of
the external instructions but also of the piloting orders recommended by the algorithm
(improved policy application). Since the optimization steps require the evaluation of a
large number of future trajectories, digital twins are used to represent the behavior of the
observed system.

These steps are repeated at intervals for two reasons. First, systems itself tend to
evolve through time (typically because their performances decline) and thus digital twins
need to be refitted. Second, the "optimal trajectory" evolves according to external conditions
that are out of control e.g., the actual electricity price rise and the foreseen reduction of
heating consumption are significant environmental changes.

2.1. Digital-twin fitting and system observation

The first step consists in the creation of the virtual system. The idea is to identify the
autonomous subsystems composing the microgrid. Each subsystem is then represented by
a digital twin. Variables can be exterior inputs to the microgrid (e.g meteorological values)
or decisions taken by the manager (send energy to one device or another). The role of
the digital twin is to return an approximation of the response of the sub-system (like the
temperature and the debit of a fluid flow outside of a heat pump).
During the same phase, it is important to record data on the environment and the state of
the system. They will serve as the basis to elaborate the clustered situations, as detailed in
the next section. These situations include: meteorological state, economic environment and
consumer needs inside the microgrid.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2022                   doi:10.20944/preprints202211.0029.v1

https://doi.org/10.20944/preprints202211.0029.v1


4 of 18

2.2. Clustering

Once digital twins have been trained accurately, and enough observations on the
system environment have been gathered, it is possible to build a virtual system. This
virtual version is confronted to a wide variety of situations it can encounter, based on
the observations made: relying only on real data is an option, but there exist numerous
methods of data augmentation allowing to present a larger set of situations to a clustering
algorithm.
Then comes the clustering phase: to each situation is associated a preferentially small
number of characteristics. Next, according to these characteristics, the situations are
gathered into a reduced number of typical groups called clusters. These clusters will serve
to identify the strategy to apply in a given situation.

2.3. Policy training

The policy training is quite simple: to each cluster previously created, the best strategy
to adopt is identified. Thus, during the daily monitoring, the only role of the manager
is to determine which cluster the current situation belongs to, and to apply the strategy
associated to this cluster.

3. Case study
3.1. Description of the microgrid

As illustrated in Fig. 2, the studied system is a purely electrical microgrid composed
of three elements: a 2 MW wind turbine, prosumers with roof PV and a system producing
hydrogen (an electrolyser and a storage tank). The energy produced by the system has 3
usages. The absolute priority is to cover the consumption of the households. Then, the
system has to deliver 30 kg of hydrogen each day in order to refuel a bus. The surplus of
energy, if any, is sold to the national electrical grid on the intraday market. Therefore, it is
possible to optimize the H2 production in order to benefit from the variability of electricity
prices. This installation is located in North-Western France (oceanic climate, quite windy,
around 1 MWh/m2/year of solar energy).
It is important to note that in our case, the "real system" is in fact simulated with physical
models and experimental data. This approach allows to test different hyper-parameters
and to compare the trained strategy to the basic one.
Concerning data, we rely on 3 years of data (2019-2021). It is important to note that the
same data-set is used both during the sizing and the policy training: then, the studied
microgrid should offer little room for maneuver. Consumption data are extracted from the
IHOGA software ([37]), electricity prices from EPEX spot and meteorological data from
[38], a tool recalculating (and publishing freely) weather conditions worldwide using real
data.
This case is very similar to the one investigated in a previous work. Then, to get further
details about final cost of hydrogen, self-sufficiency of the microgrid or physical models
(apart from the wind turbine, the electrolyser and the compressor), the reader is invited
to consult [3]. The same stands for the private homemade Python software used for
simulation.

Figure 2. Case illustration

3.2. Additional modeling information

The wind turbine, the electrolyser and the compressor being the only elements different
from our previous study, they are fully presented here.
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Figure 3. Wind turbine power curve

3.2.1. Wind turbine

The wind turbine is characterized by its nominal power PWT,nom at the rated wind
speed UWT,nom, as well as the start-up (UWT,min) and safety cut-off (UWT,max) speeds. The
relation giving the power as a function of the wind speed is taken from [39]:

PWT =



0 if U ≤ UWT,min

PWT,nom
U3 −U3

WT,min

U3
WT,nom −U3

WT,min
if UWT,min < U ≤ UWT,nom

PWT,nom if UWT,nom < U ≤ UWT,max
0 if U ≥ UWT,max

(1a)

These equations lead to a power curve presented in Fig. 3.

3.2.2. Electrolyser

The electrolyzer is characterized by its efficiency ηel :

ηel =
ṁel HHV
Pel

(2)

where ṁel is the mass flow rate of produced hydrogen and Pel the power consumption.
In our previous work, the electrolyser was modeled with a static efficiency. In this work,
we chose to use a dynamic value of efficiency relying on experimental data. The different
values are presented on Fig. 4: efficiency rises quickly from 0 to 5% of relative power usage
to reach 76% of efficiency. Then, efficiency decreases slowly to 65% when the electrolyser
works at full power. We took data from [40] and interpolated it with the dedicated function
of the Scipy Python library.

3.2.3. Compressor

In general, the H2 pressure level at the electrolyzer outlet is not compatible with the
pressure in the storage unit (which varies over time). The compression requires mechanical
work which adds to the energy balance of the system. This additional consumption is
calculated by applying an isentropic ratio (ratio between the specific work in the ideal-
reversible case and in the real case) to the reversible adiabatic (i.e. isentropic) transformation
from the pressure Pel (outlet of the electrolyser) to the pressure in the stock Pst:
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Figure 4. Experimental electrolyser efficiency curve

Pcomp =
γ

γ− 1
· R · T ·

(Pst

Pel

) γ−1
γ

− 1

 · ṁel

M̂
(3)

The evolution of the pressure Pst in the stock evolves dynamically as a function of
hydrogen production and consumption. The model is described in [3].

3.3. Sizing of the system

The sizing of the system, realized with the Skopt Python library, has 2 steps: a simplex
optimisation follows a bayesian one.

Bayesian optimization [41] use a prior belief about the objective function fobj and
updates the prior with samples drawn by an acquisition function that direct sampling in
towards an area where an improvement over the current best observation is likely. The
skopt package use by default for the acquisition function an expected improvement.

− EI(x) = −E[ fobj(x)− fobj(xbest)] (4)

Other acquisition functions are possible like the lower confidence bound and the
probability of improvement. Bayesian optimisation also uses an surrogate model, often a
Gaussian process, to approximate the objective function.

The Bayesian optimization quickly converge near the optimum but depending on its
hyper-parameters, we found that the final steps can be hard. To increase the robustness of
our approach, we limit the number of iterations of the Bayesian optimiser, wait until it is
near the optimum, then run a simplex algorithm to reach convergence on the optimum.

The Nelder-Mead algorithm is a classical adaptative-size Simplex algorithm [42]: In
a N-dimensions search domain, the N + 1 vertex of a simplex (i.e the generalization of a
triangle to an arbitrary dimension) is deformed and moved to the algorithm try encircle the
optimal location. The different transformations, affecting only one vertex at a time, can be
found in the literature [43].

The final optimisation criterion, εTot, must be minimized and is the combination of
three criteria: εhouses seeks to minimise the number of houses needed, εservice inflicts a
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heavy penalty if there is not enough H2 to refuel the bus and εEco measures the economic
performance of the system. The H2 storage tank is empty at the beginning of the simulation:
otherwise, the sizing could lead to a solution with a huge storage tank without any H2
production. Each criterion is multiplied by a coefficient C to balance the importance of each
criterion, as exposed in Eq. 5d. Their value was determined in the previous study: Chouses
value is 0.001, Cservice is 0.8 and Cmoney is 1.

εhouses = Nhouses · Chouses (5a)

εservice =
mlacking

H2

mbus
H2

· Cservice (5b)

εEco =
Mrealized

Mref
· Cmoney (5c)

ε
sizing
tot = εhouses + εservice − εEco (5d)

The sizing retained is the following:

• 90 houses, each one corresponding to 17 kW of solar power peak;
• an electrolyser of 325 kW;
• a tank accepting up to 1200 kg of hydrogen.

4. Method implementation
4.1. Digital twins fitting

Digital twins allow to create a virtual system which is the one used to identify im-
proved monitoring strategies. Households consumption, electricity prices and meteoro-
logical were simulated with 2019 data. Thus, it was necessary to get three different digital
twins:

• Energy produced: given the meteorological state (irradiation, wind speed, temperature,
ambient pressure), it returns the renewable energy production.

• H2 production: the H2 production for the total electricity consumed (electrolyser and
compressor)

• Electrolyser consumption: for a total electricity used to produce H2, this digital twin
returns the consumption of the electrolyser branch. It is separated from the previous
digital twin as it is needed to know which quantity to send in the electrolyser branch
and in the compressor branch separately.

We used the Pygam Python library to fit the digital twins. This library is an implemen-
tation of Generalized Additive Models (GAMs) in Python. GAMs are kind of an extension
of linear models: they try to build a model with more classical functions than polynomial
ones. Pygam proposes splines, exponential terms and a bi-variate product. It is able to
seek a function by itself but the user can indicate the form of the function to earn time or to
improve accuracy. Meanwhile, an important caveat with GAMs is that they tend to overfit,
i.e there is no guarantee of precision on predictions made outside of the space they already
explored.
Another choice made here is to limit the data taken into account to one year, for two reasons:
it reduces the computation time and it allows to follow the aging of the system.

4.2. Control strategies

Control strategies are the algorithms applied to manage the energy available for
distribution. The strategy used by the basic policy, detailed in Alg. 1, has the following
priorities: first, self-consumption; second, H2 delivery and, third, selling energy to the grid.
The basic policy has a robust approach, as it tends to fill as soon as possible the H2 tank to
secure the bus refueling. Unfortunately, this policy does not exploit the variations of prices.
In order to keep it simple and understandable, the trained strategy will only have the choice
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between two algorithms: the one previously presented and another one, Alg. 2, where
all energy is sold to the grid. The idea is that, whenever it is relevant, the trained policy
should be able to profit from the prices variability.

Algorithm 1 Storing strategy

∆E← C −Pr
if ∆E > 0 then

∆E← max(∆E−PH2
max · ∆t, 0)

end if
Pexchanges ← ∆E

Algorithm 2 Selling strategy

∆E← C −Pr
if ∆E > 0 then

Do Nothing
end if
Pexchanges ← ∆E

4.3. Clustering

In this part are defined three items: the elaboration of the situations the system could
encounter, the criteria used for clustering and the clustering method.
In our case, the situations encountered are a mix of weather, households consumption,
electricity prices and storage level. We had the following constraints: limit the observation
time needed to apply the methodology and explore numerous but probable situations.
Consequently, we retained the following method:

1. Observe the system during one full year, as it can be considered as a complete cycle
for meteorological and consumption variations.
Concerning the prices, they have been quite unstable in Europe over the last year and
it would be far beyond the scope of this article to make assumptions on their evolution.
Thus, the one-year-long observation is considered good enough, as it contains at least
the daily and seasonal variations.

2. Replicate this single year of observation several times.
3. Apply a gaussian noise to the several years long sequence.

This way allows to increase the variety of situations around the one already encountered
while avoiding irrelevant situations, like coinciding consumption and PV production peaks
(usually located respectively during winter evenings and summer afternoons). In our case,
we took data corresponding to the year 2019.

Once this long sequence is defined, we need to cut in little sequences. These little
sequences are the ones gathered in clusters. Each sequence is described by 3 parameters:

• Energy available: the quantity of energy produced minus the consumption, i.e. the
energy to be distributed between H2 production and electricity selling.

• Electricity price: the average electricity price over the sequence.
• H2 mass stored: the quantity of H2 available at the beginning of the session.

Last, the chosen clustering method is a classical least square k-means from the SciPy python
library. Once the different clusters are obtained, a difficulty persists: each cluster represents
a sequence, i.e. several consecutive values of available energy and prices while their centers
are only scalar values. Thus, we cannot use directly clusters centers to train the policy.
Instead, for each cluster, we use the sequence being the closest one to each center: the
distance is obviously calculated with the least square, as it is the norm used for clustering.
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4.4. Policy training

For each cluster, we assess the performance of the two strategies defined in section
4.2 using the criterion defined in Eq. 6 and we keep the best one. The evaluation is
based on the financial gain and the production of hydrogen. The parameter CH2 sets the
relative importance of H2 production compared to financial gain: the higher, the more H2
production is favoured. This approach is made possible because of the limited number of
strategies. In a more complex case, optimization tools could have been used to identify the
relevant strategy.

εEco =
Mrealized

Mref
(6a)

εH2 =
∆mtank

H2

mbus
H2
· l

24
(6b)

ε
strategy
tot = εEco + εH2 · CH2 (6c)

4.5. Performance assessment

Performance assessment consists in a 2-year-long simulation relying on 2020 and 2021
data applying a trained policy and assessing its score according to two metrics.
As stated before, the main goal of the system is to produce enough hydrogen to the daily
bus recharge. Thus, an heavy penalty is inflicted when hydrogen is lacking. The secondary
objective is to maximise financial earnings, by selling electricity to the grid at the best
moments. As the raw variation of money flows is of little sense, the achievable financial
gain is estimated relative to a defined baseline using the following procedure:

1. Calculate the money earned if no H2 was produced and all electricity was sold to the
grid

2. Sort the simulation rounds by increasing electricity prices
3. Calculate the total energy needed to produce H2
4. Deduce the minimum loss, i.e. the minimum money not sold to the grid to the

production of H2
5. Calculate the theoretical best money flow by subtracting the money loss due to H2

production from the money earned when no H2 is produced
6. The over-performance is thus equal to the difference between the theoretical best

money flow and the reference run money flow

This method ensures that the needed mass of hydrogen is produced overall but does not
take into account nor the daily delivery constraint nor the maximum storage limit: . Conse-
quently, as this gain may not be achievable, it’s not the maximum but only an upper bound
of the best gain. In our case, this estimation is equal to 7ke on 2 years.

4.6. Simulation plan

An important question in this work is the influence of parameters chosen for the
process. Three main parameters have been identified:

• Sequence length: the length of the sequences on which clustering is made
• Standard deviation: the standard deviation used in the gaussian noise applied to the

clustering sequence
• Relative weight of H2 production: the relative importance of H2 production when

identifying the best strategy

Tab. 1 presents the different values assessed for each parameter, for a total of 96 runs.
Concerning sequence length, there are 2 things to know: the software uses 1-hour long
time step and prices variations tend to follow a daily pattern. Thus, 2 hours appears as the
lowest sequence to consider (as it has only 2 steps) while 24 hours represents the maximum
length for financial gain optimization.
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The standard deviation set here is the one applied to environment variables (weather, prices
and consumption) during clustering. When it increases, situations used for clustering will
be more diverse but also more distant from the observed data. On the one hand, too low a
value limits the policy capacity to adapt to new environments. On the other hand, too high
a value leads to create a lot of situations the system will not encounter and thus dilute the
useful information. It ranges from 0, the absolute lower bound to 0.3, a value sufficient to
observe the dilution effect.
Last, the relative weight of H2 production ranges from 0 (where H2 production does not
count in the strategy assessment) to 0.75, where strategy always prefer to produce H2.

Table 1. Values explored in the sensitivity analysis

Sequence length Standard deviation Relative weight of H2
(h) (-) production (-)

2, 3, 6, 12, 18, 24 0, 0.1, 0.2, 0.3 0, 0.25, 0.5, 0.75

5. Results and discussion
5.1. Digital twins fitting

The first step of our approach is to create efficient digital twins. In Fig. 5 is presented
the digital twins predictions compared to the realized values. In this setting, the digital
twin model is re-evaluated each day.
We observed that for energy production, 2 months were enough to reach a satisfying accu-
racy, as illustrated by Fig. 5c. Meanwhile, as it can be seen around 1000h (approximately 7
weeks), GAMs only give satisfactory results in already encountered weather contexts.
Concerning the H2 production cost and the electrolyser consumption, 1 week of training
(168h) seems to be enough: unlike irradiation or wind, the variables are bounded by the
equipment limits (max power for the electrolyser and storage capacity for the H2 tank).
Then, the usage of the electrolyser at its full power during the first day allows the digital
twins to rapidly converge on a high level of precision.

5.2. Results of policy training

As explained before, the goal of this work is to evaluate the efficiency of the proposed
method and its robustness to parameters settings. Two aspects are analysed: the financial
gain and the potential default of H2 delivery.

5.2.1. Overall performance

At first glance, in 21 cases out of 96, H2 is not fully delivered. On the financial side,
in 8 runs, the trained policy is more than 5% worse compared to the estimated best over-
performance. This means that in these 29 runs (30%), the trained policy degrades the
microgrid performance. As observable on Fig. 6a and 6b, there is no run cumulating
undelivered H2 and poor financial performance. This phenomenon comes from the nature
of strategies proposed to the policy: either they store too much and thus degrade their
financial gain, either they sell too much and do not produce enough H2.
More worryingly, in 64 runs (67%), the financial difference is lower than 5% variation,
meaning that the training has no sensible effect. These observations made, 3 runs out of 96
improve significantly the performance of the microgrid, by improving its gain by 19, 16
and 8% of the best performance.
While the proportion of successful runs is very low, the proposed method is still able to im-
prove the system efficiency: for reminder, the method relies on a statistical approach based
itself on an approximation of the microgrid behavior. This result is even more interesting
if we consider the fact that the system had little room to maneuver. The system operates
exactly in the environment its sizing was optimized on, which is quite unlikely for a real
system, as industrial systems are often oversized to ensure a minimal performance and
enhance reliability.
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Figure 5. Comparison of values realized and predicted by the digital twins
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Figure 6. Overall results
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At second glance, knowing that the renewable H2 price revolves around 3-8$/kg
[44,45], it can be interesting to accept punctual delivery default: in some cases, the financial
gain reaches up to 42 e/kg as shown on Fig. 6c, i.e at least 5 times H2 price. Moreover,
it can be seen that these high values are found for relatively low values of undelivered
H2 (around 5 days/year of delivery failure). Consequently, it is very possible that the
microgrid manager finds that these policies are more interesting than the basic one: they
could buy H2 by other means or use electricity bought from the grid to produce a bit of H2
(while keeping in mind requirements for "green" H2 labels) to benefit from these policies
advantages without their disadvantages.

5.2.2. Sensitivity to parameters

Table 2. Sensitivity to sequence length

Sequence length (h) 2 3 6 12 18 24
Financial gain (ke) 1.7 2.6 1.8 5.4 4.1 6.8

Non-delivery (days/year) 3 26 23 67 52 79
Gain per undelivered H2 (e/kg) 17.0 3.3 2.6 2.7 2.7 2.9

First, the impact on sequence length can seem to be unclear regarding the performance
of the trained policies, as it can be seen in Tab. 2: for the 3 metrics, the evolution is not
monotonous. Meanwhile, it is possible to distribute the simulation results in 3 sequence
groups (separated by dashed lines): 2h; 3 and 6h; 12, 18 and 24h. With this grouping, it is
possible to identify a tendency: the shorter the better.
Beginning with bus refueling, shorter sequences lead to safer strategies, as undelivered
H2 quantity goes from 3 days/year to 79. If raw financial gain is globally increasing with
sequence length, the gain per undelivered H2 mass is far higher for 2h-long sequences
than for the others (17 e/kg compared to approximately 3). As explained in the previous
section, from a microgrid manager point of view, not delivering all the H2 is interesting
only if it can earn more than by selling H2: as green H2 prices are around 3-8$/kg, earning
3e instead of delivering H2 is a nonsense.

Table 3. Sensitivity to standard deviation

Standard deviation 0 0.1 0.2 0.3
Financial gain (ke) 6.7 1.4 1.6 5.2

Non-delivery (days/year) 77 13 18 59
Gain per undelivered H2 (e/kg) 2.9 3.8 3.0 2.9

Second, as observed in Tab. 3, standard deviation can have a positive effect on
performance but has to be used with caution.
With 10 and 20% of standard deviation, undelivered H2 reduce significantly: from 77
days/year with 0 standard deviation to 13 and 18 respectively. Meanwhile, if the financial
gain seems lesser (from 6.7 ke to 1.4 and 1.6), the relative gain per undelivered H2 is stable
(2.9 e/kg compared to 3.8 and 3.0). Thus, they globally improve the efficiency of trained
policies.
When standard deviation reaches 30%, however, performance decreases. If financial
performance is better than for 10 and 20% standard deviation (5.2 ke), the marginal gain
per undelivered H2 is still stable (2.9 e/kg). Undelivered H2, meanwhile, increases to 59
days/year, far more than the 10-20 days observed for lower standard deviations. In fact, in
this context, we observe that the situations used for clustering are too far from the ones
encountered. Thus, clusters cover too different situations and it is not possible anymore to
assign a single strategy efficient for all situations.
Consequently, using data augmentation methods, at least in the studied case, can improve
policies performance as long as it does not hamper strategy identification for clusters.
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Table 4. Sensitivity to stock coefficient

Stock coefficient 0 0.25 0.5 0.75
Financial gain (ke) 13.1 1.8 0.01 0

Non-delivery (days/year) 151 16 0 0
Gain per undelivered H2 (e/kg) 2.9 3.7 N/A N/A

The stock coefficient has the clearer impact on policies performance. When stock coef-
ficient is equal to 0, it means that H2 production is not taken into account. Unsurprisingly,
it results in a very high quantity of undelivered H2, 151 days/year, as the policy tends to
sell all electricity to the grid. On the other side of the specter, for coefficients of 0.5 and 0.75,
all H2 is delivered but no financial gain is made: the trained policy produces as much H2
as possible and imitates the basic policy.
Consequently, 0.25 seems to be the best value as it avoids these 2 extremes.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2022                   doi:10.20944/preprints202211.0029.v1

https://doi.org/10.20944/preprints202211.0029.v1


15 of 18

Conclusion

In this paper we have developed a methodology to evaluate and choose a best policy
regarding economic performance, product delivery and the evolution of the system degra-
dation over time. While the retained approach is not reinforcement learning, it is a proxy
for it or an explainable intermediary step to it, as it defines its policies with the current state
of the system and its updated estimated performance.
We have shown the existence of policies whose definition is not straightforward, but prove
to be economically interesting for the micro-grid operator. It remains true that the identi-
fication of their optimal parameters does not obey to any obvious rule. In some cases, it
is interesting to not always deliver the promised fuel, but instead to support the grid for
financial gains. More than policies, this means that the methodology applied in this study
is able to suggest shifts in the very business model of the micro-grid manager. Otherwise,
this information can be used to determine the penalty to apply for non-delivery.
The usage of GAMs model as numerical-twins is promising as it is fairly easy to deploy
(few to none hyperparameters) and has shown its ability to quickly gain a satisfactory
accuracy.

Depending on the use case, we have shown that it is possible to obtain a performing
strategy allowing, with a system sized around a nominal case, to obtain increased perfor-
mances in real non-nominal conditions. A remaining difficulty is that, in the current state
of our investigations, a prior definition of the parameters set of the method still seems out
of reach. However, these results clearly confirm our conviction, namely that it is possible
to improve the use of an existing system in an optimal way (according to a user-defined
criterion) under conditions different from those used for its design.
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Nomenclature

Latin symbols
A surface area, m2

C consumption, kWh
CP power coefficient, −
c specific heat capacity, J K−1 kg−1

E total energy, J or kWh
h specific enthalpy, J kg−1

l length of a sequence in clustering, h
LHV lower heating value, J m−3 or J kg−1

m mass, kg
M money flow, e
M̂ molar mass, kg mol−1

OPEX operational expenditures, e
P pressure, Pa
P power, W
Pr production, kWh
P price, e
Q heat, J or kWh
q flow-rate, m3 s−1 or L s−1

R individual ideal gas constant, J K−1 kg−1

SOC state of charge, %
T temperature, K or ◦C
t time, s or min
V volume, m3

Greek symbols
α ground roughness factor, −
η efficiency, − or %
ρ density, kg m−3

τ time constant, s
ε optimisation criterion, −

Subscripts and superscripts
a air
amb ambient
bot bottom
bui building
ch charge
cut cutoff
dis discharge
el electrical
Q heat
ht heating
inv inverter
nom nominal
out outdoor
pan panel
ref reference

Abbreviations
The following abbreviations are used in this manuscript:

DT digital twin
EMS energy management system
EPEX european power exchange
GAMs generalized additive models
ML machine learning
PV photo-voltaic
WT wind turbine
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