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Abstract: The collision avoidance mechanism adopted by the IEEE 802.11 standard is not optimal. 1

The mechanism employs a binary exponential backoff (BEB) algorithm in the medium access control 2

(MAC) layer. Such an algorithm increases the backoff interval whenever a collision is detected to 3

minimize the probability of subsequent collisions. However, the expansion of the backoff interval 4

causes degradation of the radio spectrum utilization (i.e., bandwidth wastage). That problem worsens 5

when the network has to manage the channel access to a dense number of stations, leading to a 6

dramatic decrease in network performance. Furthermore, a wrong backoff setting increases the 7

probability of collisions such that the stations experience numerous collisions before achieving the 8

optimal backoff value. Therefore, to mitigate bandwidth wastage and, consequently, maximize the 9

network performance, this work proposes using reinforcement learning (RL) algorithms, namely Deep 10

Q Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), to tackle such a optimization 11

problem. As for the simulations, the NS-3 network simulator is used along with a toolkit known 12

as NS3-gym, which integrates a reinforcement-learning (RL) framework into NS-3. The results 13

demonstrate that DQN and DDPG have much better performance than BEB for both static and 14

dynamic scenarios, regardless of the number of stations. Moreover, the performance difference is 15

amplified as the number of stations increases, with DQN and DDPG showing a 27% increase in 16

throughput with 50 stations when compared to BEB. Furthermore, DQN and DDPG presented similar 17

performances. 18

19Keywords: Wi-Fi; contention-based access scheme; channel utilization optimization; machine learn-
ing; reinforcement learning; NS-3, NS3-gym 20

1. Introduction 21

The IEEE 802.11 or simply Wi-Fi is a set of wireless network standards designed and 22

maintained by the Institute of Electrical and Electronics Engineers (IEEE) that defines 23

MAC and physical layer (PHY) protocols for deploying wireless local area networks 24

(WLANs). Their MAC layer implements a contention-based protocol, known as carrier- 25

sensing multiple access with collision avoidance (CSMA/CA), for the nodes to access the 26

wireless medium (i.e., the channel) efficiently [1,2]. With CSMA/CA, the nodes compete to 27

access the channel as well as the radio resources [3,4]. 28

One of the most critical parameters of the CSMA/CA mechanism is the contention 29

window (CW) value, also known as back-off time, which is a random delay used for 30

reducing the risk of collisions. If the medium is busy, an about-to-transmit Wi-Fi device 31

selects a random number uniformly distributed within the interval [0, CW] as its back-off 32

value, which defers its transmission to a later time. CW doubles its value every time a 33

collision occurs (e.g., when an ACK was not received), reducing the likelihood of multiple 34

stations selecting the same back-off value. CW values range from the minimum contention 35

window (CWMin) value, generally equal to 15 or 31 depending on the Wi-Fi standard, to 36

the established maximum contention window (CWMax) value, which is equal to 1023. CW 37

is reset to CWMin when an ACK is received, or the maximum number of re-transmissions 38
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has been reached [5]. This deferring mechanism is also known as binary exponential 39

back-off (BEB) [6]. 40

In scenarios with few nodes, collisions will be less frequent and impactful, especially 41

in static scenarios, where the number of nodes remains the same. On the other hand, in 42

dynamic scenarios, where the number of nodes increases throughout time, collisions will be 43

commonplace. Furthermore, the high number of collisions reduces the network throughput 44

drastically since CW doubles its value when collisions are detected, leading to an inefficient 45

network operation. 46

As can be seen, optimizing the CW value could be beneficial for Wi-Fi networks 47

since the traditional BEB algorithm does not scale well when many nodes compete for the 48

medium [7]. Once network devices with high computational capabilities become increas- 49

ingly common, CW can be optimized through machine learning (ML) algorithms. The 50

most common ML paradigms are supervised, unsupervised, and reinforcement learning. 51

Supervised algorithms require a labeled dataset where the outcomes for the respective 52

inputs are known. Still, creating such a dataset requires a model and a solution to the 53

problem. Developing accurate models is, in several cases, a challenging and troublesome 54

task. Besides that, many solutions are suboptimal, and supervised ML algorithms learning 55

from datasets created with those solutions will never surpass its performance since the 56

algorithm tries to replicate the input to label mapping present in the dataset [8]. 57

Unsupervised learning occurs when the ML algorithm is trained using unlabeled data. 58

The idea behind this paradigm is to find hidden patterns in the data. Finally, reinforcement 59

learning occurs when the ML algorithm (a.k.a. agent in this context) interacts with the 60

environment through trial and error action attempts without requiring labels, only reward 61

information about the taken actions. This paradigm allows the agent to explore by taking 62

random actions and finding optimal solutions. Therefore, since there is no optimal solution 63

for the CW optimization (BEB is known to be suboptimal) [9–11], RL is the right choice for 64

the learning paradigm. 65

This paper proposes using DQN and DDPG reinforcement algorithms to optimize 66

the CW value and improve the performance of Wi-Fi networks by maintaining a stable 67

throughput and minimizing collisions. DQN was chosen because it is relatively simple 68

and has discrete action space. However, despite its simplicity, DQN generally displays 69

performance and flexibility that rivals other methods [12]. DDPG was selected since 70

it is a more complex method that represents actions as continuous values, yielding an 71

exciting comparison with DQN [13]. We propose an RL-aided centralized CW optimization 72

mechanism, which aims to maximize Wi-Fi networks’ throughput by properly setting CW 73

values. Therefore, the main contributions of this work are as follows: 74

1. A centralized mechanism for optimizing the CW in Wi-Fi networks using RL algo- 75

rithms. 76

2. Comparison of DQN and DDPG RL algorithms with the traditional BEB. 77

3. A comparison between RL algorithms with discrete and continuous action spaces, 78

namely, DQN and DDPG, respectively. 79

4. An optimization solution that applies to any of the 802.11 standards. 80

The remainder of the paper is organized as follows. Section II discusses related work. 81

Section III presents a brief machine learning overview. Section IV describes the materials 82

and methods used in the simulations. Section V presents the simulation results. Finally, 83

Section VI presents conclusions and future works. 84

2. Related Work 85

The literature presents adequate and excellent contributions of machine learning (ML) 86

methods applied to CW optimization in wireless networks. For example, in [14], the authors 87

propose a CW optimization mechanism for IEEE 802.11ax under dynamically varying 88

network conditions employing RL algorithms. The RL algorithms were implemented on 89

the NS-3 [15] simulator using the NS3-gym [16] framework, which enables integration 90

with python frameworks [16]. They proved to have efficiency close to optimal according 91

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2022                   doi:10.20944/preprints202211.0011.v1

https://doi.org/10.20944/preprints202211.0011.v1


3 of 16

to the throughput result that remained stable even when the network topology changed 92

dynamically. 93

To allow channel access and a fair share of the unlicensed spectrum between wireless 94

nodes, the authors in [17] propose an intelligent ML solution based on CWmin (minimum 95

CW) adaptation. The issue is that aggressive nodes, as they refer to in the paper, try to access 96

the medium by forcefully choosing low CWmin values, while CSMA/CA-based nodes 97

have a fixed CWmin set to 16, leading to an unfair share of the spectrum. The intelligent 98

CW ML solution consists of a random forest, which is a supervised classification algorithm. 99

Simulations were conducted on a C++ discrete-event-based simulator called CSIM [18] to 100

evaluate the algorithm’s performance. It was possible to obtain high throughput efficiency 101

while maintaining fair allocation of the unlicensed channels with other coexisting nodes. 102

In [19], the authors present a Deep Q-learning algorithm to dynamically adapt CWmin 103

to random access in wireless networks. The idea is to maximize a network utility function 104

(i.e., a metric measuring the fair use of the medium) [20] under dynamic and uncertain 105

scenarios by rewarding the actions that lead to high utilities (efficient resource usage). 106

The proposed solution employs an intelligent node, called node 0, that implements the 107

DQN algorithm to choose the CWmin for the next time step from historical observations. 108

The simulation was conducted on NS-3 to evaluate the performance against the following 109

baselines: optimal design, random forest classifier, fairness index, optimal constant, and 110

standard protocol (with its CWmin fixed at 32). Two scenarios were considered for the 111

simulation. The first scenario uses two states and follows a Markov process for CWmins of 112

all nodes except node 0. The RL algorithm and random forest classifier reach outstanding 113

performance for this case. The second scenario considers five states, and CWmins of all 114

nodes different from node 0 follows a more complex process. The RL algorithm achieves 115

utility close to optimal when compared to a supervised random forest classifier. 116

In [7], the authors propose an ML-based solution using a Fixed-Share algorithm to ad- 117

just the CW value to improve network performance dynamically. The algorithm comprises 118

CW calculation, Loss/Gain function, and sharing weights. The algorithm considers the 119

present and recent past conditions of the network. The NS-3 network simulator was used to 120

evaluate the proposed solution and the performance metrics used were average throughput, 121

average end-to-end delay, and channel access fairness. The Fixed-Share algorithm achieves 122

excellent performance compared to the other two conventional algorithms, namely binary 123

exponential backoff (BEB) and History-Based Adaptive Backoff (HBAB). 124

To optimize CW in a wireless local area network, [21] presents three algorithms based 125

on genetic fuzzy-contention window optimization (GF-CWO), which is a combination of 126

fuzzy logic controller and a genetic algorithm. The proposed algorithm is intended to solve 127

issues related to success ratio, packet loss ratio, collision rate, fairness index, and energy 128

consumption. Simulations were conducted in Matlab in order to evaluate the performance 129

of the proposed solution, producing better results when compared to the BEB. 130

To avoid packet collisions in Mobile ad hoc networks (MANETs) [22], the authors of 131

[23] propose a Q-learning-based solution to optimize the CW parameter in an IEEE 802.11 132

network. The proposed CW optimization method considers the number of packets sent 133

and the collision generated from each station. Simulation results show that selecting a good 134

CW value improves the packet delivery ratio, channel access fairness, throughput, and 135

time. The benefits are even more significant when the queue size is less or equal to 20. 136

In [24], a different approach to control the CW value, named contention window 137

threshold, is used. It employs deep reinforcement learning (DRL) principles to establish 138

a threshold value and learn the optimal settings under various network scenarios. The 139

method used is called the smart exponential-threshold-linear backoff algorithm with a deep 140

Q-learning network (SETL-DQN). Its results demonstrate that this algorithm can reduce 141

collisions and improve throughput. 142

The ML-based approaches presented in this section show how well ML algorithms 143

can be applied to reach optimal performance in the wireless network field. Therefore, this 144
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Figure 1. ML learning paradigms based on the type of training.

motivated us to study and propose an ML-based solution to reduce collisions by optimizing 145

CW in different scenarios. 146

3. Machine Learning Overview 147

ML algorithms, also called models, have been widely applied to solve different prob- 148

lems related to optimization in wireless network communications systems [25–28]. These 149

algorithms construct a model based on historical data, known as a training dataset, to 150

perform tasks, for example, solving optimization problems, without being explicitly pro- 151

grammed to do so [29,30]. ML algorithms can provide self-management, self-learning, and 152

self-optimizing solutions for an extensive range of issues in the context of dynamic resource 153

allocation, spectrum resource management, wireless network optimization, and so much 154

more [31]. 155

The learning process of an ML model is called training, and it is used for the model to 156

gain knowledge (i.e., infer a solution) and achieve the desired result. It is possible to classify 157

the ML model learning based on the type of its training, also called learning paradigm 158

[32]. The learning paradigms can be classified as: Supervised learning, Unsupervised 159

learning, and Reinforcement Learning (RL). Figure 1 shows the relations between the ML 160

paradigms. Therefore, next, we provide a brief overview of these learning paradigms. 161

3.1. Supervised Learning 162

In this paradigm, the ML model uses labeled data during the training phase. Each 163

input sample is accompanied by its desired output sample, called label. It is suitable for 164

applications that have plenty of historical data [33]. Some well-known algorithms following 165

this paradigm are linear and logistic regression, support vector machine (SVM), K-nearest 166

neighbors (KNN), and artificial neural networks (ANN). 167

3.2. Unsupervised Learning 168

Here in this paradigm the ML model learns to find (sometimes hidden) useful patterns 169

by exploring the input data without labels (i.e., without expected output values). The 170

model is trained to create a small representation of the data [33]. This learning paradigm 171

includes the following algorithms: K-means, isolation forest, hierarchical clustering and 172

expectation–maximization. 173
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Figure 2. An RL agent interacting with the environment.

3.3. Reinforcement Learning 174

In this learning paradigm, an agent, in this context, the ML model, learns by continu- 175

ously interacting with the environment and decides which action to take based on its own 176

experience, mapping the current observed state of the environment to an action. The agent 177

aims to learn a function, known as policy in this context, that models the environment and 178

maps observed states into the best actions. The agent performs a decision-making task 179

by trial and error in a self-learning manner [33]. This paradigm includes the following 180

algorithms: Q-learning, Deep Q-learning, policy gradient learning, deep deterministic 181

policy gradient, and the multi-armed bandit. 182

The environment is where the information (observed state and reward) is produced, 183

and it has a dynamic nature compared to supervised and unsupervised learning paradigms. 184

The Markov Decision Process (MDP) is generally adopted to represent the environment 185

because it has a mathematical structure suitable for modeling decision-making problems 186

[33]. It consists of a tuple of five elements M = {S, A, P, γ, R}, where S is the state space, 187

A is the action space, P is the transition probability, γ is the discount factor, and R is the 188

reward. A reward is a positive or negative numeric value that indicates the quality of the 189

action taken at a particular state [29]. The higher the reward, the better the action taken 190

at that state. Conversely, the lower the reward, the worse the action. RL algorithms aim 191

to find a policy that maximizes the total future reward. Figure 2 shows the interaction of 192

the agent with the environment, which occurs in the following way: the agent observes 193

(senses) the current state of the environment, St, based on this observation, the agent selects 194

an action, At, and executes the action in the environment, this action on the environment 195

returns information (i.e., results) in the form of reward, Rt+1 and next-state, St+1, reached 196

due to the action taken at the t-th time interval. Next, we explain how the policy is learned 197

through a process of exploration-exploitation of the environment. 198

Policy: is a rule that helps the agent select the best action in a specific state. The primary
objective of an RL algorithm is to learn a policy that maximizes the expected cumulative
reward. The policy is a function that gives the probability of taking a given action when the
environment is in a given state. The policy is learned by employing a method of exploring
unknown actions in a given state and exploiting the current acquired knowledge. There
must be trade-off between exploration of the environment and exploitation of the learned
policy [34]. Simple exploration-exploitation methods are the most practical and used ones.
One such method is the ϵ-greedy, where ϵ ∈ [0, 1] is a parameter controlling the amount of
exploration and exploitation [35]. Normally, ϵ is a fixed hyper-parameter, but it can have
its value decreased so that the agent explores the environment progressively less. Eq. 1
summarizes the ϵ-greedy exploration-exploitation mechanism used by RL algorithms to
learn the best policy.

Action =

{
Random action (Exploration), if random number < ϵ,
Best long-term action (Exploitation), otherwise.

(1)

Exploration: in this phase, the agent randomly selects an action from a uniformly 199

distributed random variable with the number of possible values equal to the number of 200
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Figure 3. DRL Structure.

actions. Non-optimal actions are chosen to explore the environment, i.e., uncharted actions 201

in a given state. 202

Exploitation: in this phase, the agent selects the action with the maximum quality 203

value for that given state, i.e., it selects the action that has the best long-term effect in 204

maximizing the expected cumulative reward. 205

3.4. Deep Reinforcement Learning 206

DRL is an improved extension of RL that integrates deep learning (DL), i.e., ANNs, 207

with reinforcement learning algorithms [36]. This integration happens because RL algo- 208

rithms present limitation problems related to space/action spaces, computational, and 209

sample complexity [37]. That is, RL algorithms are not scalable and are limited to low- 210

dimensional data issues, i.e., problems with small number of actions and states [38]. There- 211

fore, the integration with DL improves the scalability issue and makes RL algorithms 212

support high-dimensional data tasks. Compared to conventional RL, DRL explores a large 213

dimensional neural network to speed up convergence. Figure 3 shows the deep reinforce- 214

ment learning structure. The interaction with the environment occurs in the same way 215

as with the RL agent. The only difference is that now the agent is an ANN model. DRL 216

include the following algorithms: DQN, DDPG, Twin Delayed Deep Deterministic Policy 217

Gradient (TD3), and Double Deep Q-learning Network (DDQN). This work focus on the 218

study of using DQN and DDPG algorithms to assist in the optimization of CW with the 219

primary goal of reducing node collisions while improving network performance. This way, 220

next, we present a brief overview of these two DRL algorithms. 221

3.4.1. Deep Q Network 222

DQN is an off-policy DRL algorithm based on Q-learning with discrete action space, 223

and continuous state space [39]. It is the result of incorporating deep learning into RL 224

since, in many practical situations, the state space is high-dimensional and cannot be 225

solved by traditional RL algorithms. Being an off-policy algorithm means that DQN uses 226

an experience replay memory, where the agent learns from a batch of randomly selected 227

prior experiences instead of the most recent one [40]. This random set of past experiences 228

mitigates the bias that might stem from the fact that some environments have a sequential 229

nature [40]. Here the agent is represented by a deep neural network that uses the state as 230

the input of the neural network, and the output is the Q-value corresponding to a specific 231

action. 232

The Q-value represents the quality of the action in a given state. The idea is for the 233

neural network to output the highest Q-value for the action that maximizes the cumulative 234

expected reward. However, using a single neural network renders training very unstable 235

[36]. The trick to mitigate this problem and add stability to the training process is using 236

two neural networks, predictive and target networks. They have the same structure (i.e., 237

number of layers and neurons in each layer and activation functions) but have their weights 238

updated at different times. The weights of the target network are not trained. Instead, they 239

are periodically synchronized with the weights of the predictive network. The idea is that 240

fixing the target Q values (outputs of the target network) for several updates will improve 241
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the predictive network’s training stability. DQN employs batch training and experience 242

replay memory, making the agent learn from randomly sampled batch experiences. It also 243

employs the ϵ-greedy exploration-exploitation mechanism. 244

3.4.2. Deep Deterministic Policy Gradient 245

DDPG is another off-policy DRL algorithm with continuous action space proposed 246

in [41]. It is the result of the combination between deterministic policy gradient (DPG) 247

and DQN algorithms, the former related to the actor-critic algorithm [42,43]. DQN avoids 248

instability during the Q-function learning by employing a replay buffer and a target 249

network. DQN has a discrete action space, while DDPG extends it to a continuous action 250

space. The algorithm simultaneously learns a Q-function and a policy. Since DDPG inherits 251

from the actor-critic algorithm, it is a combination of both policy (actor) and Q-value (critic) 252

functions, where the actor takes actions according to a specific policy function, and the 253

critic plays the role of an evaluator of the action taken [43]. The Q-value obtained by the 254

critic indicates to the agent how good was the action for that policy. 255

DDPG consists of four networks: actor prediction, critic prediction, actor target, and 256

critic target networks. The target networks have their weights copied from the prediction 257

networks periodically. As with DQN, this procedure is adopted in order to stabilize the 258

learning process, moving the unstable problem of learning the action-value function to a 259

stable supervised learning problem [41]. 260

Similarly to DQN, DDPG uses an experience replay memory to minimize correlations 261

between samples. Regarding the policy aspect of exploration and exploitation, DDPG 262

differs from DQN. Since DDPG works in continuous action space, exploring such space 263

constitutes a significant problem. However, as it is an off-policy algorithm, the exploration 264

problem can be treated independently from the learning algorithm [41]. DDPG creates an 265

exploration policy that adds a noise value to the actor policy to solve this issue. By default, 266

the noise is added following the Ornstein-Uhlenbeck process [44]. 267

4. Applying DRL to the CW optimization 268

In order to apply DRL algorithms (DQN and DDPG) to the optimization of Wi-Fi 269

networks, we propose a centralized approach to solving the CW optimization in this work. 270

Our proposed approach consists of a centralized algorithm (i.e., the agent), which is a 271

module running on the Wi-Fi access point (AP) that observes the state of the network 272

(i.e., the environment) and chooses suitable CW values (i.e., the actions) to optimize the 273

network’s performance (i.e., the reward). 274

The agent is decided to run on the AP since it has a general view of the whole network 275

and then can control the stations associated with it through beacon frames in a centralized 276

way. 277

The current state, s, of the environment is the status of all stations associated with the 278

AP. So, it is impossible to get this information because of the nature of the problem. There- 279

fore, we model the problem as a partially observable Markov decision process (POMDP) 280

instead of an MDP one. POMDP assumes the environment’s state cannot be perfectly 281

observed [45]. 282

This proposal’s adopted action, a, corresponds to the CW value. As we compare DRL 283

algorithms with discrete and continuous action spaces, the actions are integer values be- 284

tween 0 and 6 in the discrete case and real values within the interval [0, 6] in the continuous 285

case. Therefore, the CW value to be broadcast to the stations can be obtained through 286

the application of (2). This interval is selected so that the action space is within 802.11 287

standard’s CW range, which ranges from 15 up to 1023. An action, a, taken by the agent 288

in the state, s, makes the environment switch to its next state, s′, with a given transition 289

probability, T(s′|s, a). 290

CW =
⌊

2a+4
⌋
− 1 (2)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2022                   doi:10.20944/preprints202211.0011.v1

https://doi.org/10.20944/preprints202211.0011.v1


8 of 16

The normalized network throughput, which can be observed at the AP, is used as the 291

agent’s reward, r, by taking action, a, in the state, s. Therefore, the reward is a real value in 292

the interval [0, 1]. This normalized metric is obtained by dividing the actual throughput by 293

the expected maximum. 294

For the observation, o, the normalized level of the transmission queue of each station, 295

QNL, is used, according to (3). It is normalized by the maximum queue size value of each 296

station. The normalized level of the transmission queue is adopted as the observation 297

because it offers the best possible information about the network status. 298

QNL =
Ql

Qmax
(3)

The measurement of QNL is carried out at predefined intervals and indicates the result 299

of the currently chosen CW value on the network’s performance. For example, a value close 300

to 1 indicates the queue is full, meaning the station cannot transmit packets as quickly as it 301

receives them. On the other hand, if it is close to 0, the queue is almost empty, indicating 302

the station can access the medium as frequently as necessary. A high QNL value indicates a 303

high number of collisions. Conversely, a low value indicates a small number of collisions. 304

The normalized level of the transmission queue of each station, QNL, is concatenated to 305

data frames sent to the AP so that the agent has access to this information. At the AP, the 306

agent normalizes the sum of QNL coming from the stations by the total number of stations 307

associated with the AP. 308

4.1. Centralized DRL-based CW Optimization Method 309

The proposed method has three stages. The first one is a pre-learning stage, where 310

the legacy Wi-Fi contention-based mechanism manages the network. This stage is used to 311

initialize the DRL algorithm being used (either DQN or DDPG). Next, in the learning stage, 312

the agent chooses CW values (i.e., actions) according to what is shown in Algorithm 1. 313

The mean, µ, and variance, σ2, of the history of recently observed normalized queue 314

levels are calculated as a preprocessing step. Moving average with window and stride of 315

fixed sizes is used to calculate both statistics. This calculation renders the observation into 316

a two-dimensional vector for each stride of the moving average. Therefore, the agent is 317

trained based on this two-dimensional vector of observations. 318

Exploration of the environment is enabled by adding a noisy factor to each action the 319

agent takes. This noisy factor decreases throughout the learning stage. This addition of 320

noise is different for each of the two considered DRL algorithms. When DQN is used, the 321

noisy factor corresponds to the probability of taking a random action instead of an action 322

predicted by the agent. In DDPG’s case, the noisy factor comes from a Gaussian-distributed 323

random variable and is added directly to the action taken by the agent. As mentioned, this 324

is done to find a trade-off between exploring the environment and exploiting the acquired 325

knowledge, which chooses the action that maximizes future rewards. 326

The last stage is called the operational stage. This stage starts when the training is 327

over. The user defines the training stage’s period. At this stage, the noisy factor is null, so 328

the agent always chooses the action it learned to maximize the reward. At this stage, as the 329

agent has already been trained, it does not receive any additional updates to its policy, so 330

rewards are unnecessary. 331

Finally, it is essential to mention that the hyperparameters of the DRL models (i.e., 332

learning rate, reward discount rate, batch size, epsilon decay) need to be fine-tuned for the 333

agent to achieve its optimal performance. Lastly, as both DQN and DDPG employ reply 334

memory, a size limit has to be configured for this memory buffer. The reply memory stores 335

past interactions of the agent with the environment, i.e., it records the current state, the 336

action taken at that state, the reward received in that state, and the next state resulting from 337

the action taken. When its limit is reached, the oldest record is overwritten by a new one 338

(i.e., it is implemented as a circular buffer). 339
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Algorithm 1 DRL-based CW Optimization

1: Initialize the observation buffer, O, with zeroes
2: Initialize the weights, θ, of the agent
3: Obtain the action function, Aθ , of the agent
4: Define NRP as the number of received packets
5: Get the queue level of each station
6: Specify envStepTime as the period of interaction with the environment
7: Define trainingFlag as a flag to tell the algorithm is in the training stage
8: Initialize the experience replay buffer, E
9:

10: lastUpdate← currentTime
11: s← vector of zeros
12: CW← 15
13:
14: for t = 1, ..., ∞ do
15: O.append(QNL)
16: if lastUpdate + envStepTime ≤ currentTime then
17: observation← preprocess(O)
18: a← Aθ(observation)
19: CW ← 2a+4 − 1
20: if trainingFlag==True then
21: tput← NRP

envStepTime
22: r ← normalize(tput)
23: E.append((observation, a, r, s))
24: s← observation
25: mb← get mini-batch samples from E
26: Update θ based on mb
27: end if
28: end if
29: end for
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Table 1. NS-3 Environment configuration parameters.

Configuration Parameter Value

Wi-Fi standard IEEE 802.11ax
Number of APs 1

Number of static stations 5,15, 30 or 50
Number of dynamic stations increases steadily from 5 to 50

Frame aggregation disabled
Packet size 1500 bytes Frequency 5 GHZ

Channel BW 20 MHz
Traffic constant bit-rate UDP

MCS HeMcs (1024-QAM with a 5/6
coding rate)

Guard Interval 800 [ns]
Propagation delay model ConstantSpeedPropagationDelayModel
Propagation loss model MatrixPropagationLossModel

Simulation time 10 [s]

4.2. Experimentation Scenario 340

The proposed centralized DRL-based CW optimization solution is implemented on 341

NS3-gym [16], which runs on top of the NS-3 simulator [15]. NS3-gym enables the commu- 342

nication between NS-3 (c++) and OpenAI gym framework (python) [46]. NS-3 is a network 343

simulator based on discrete events mainly intended for academic research. It contains the 344

implementation of several wired and wireless network standards [15]. In this work, we use 345

version NS-3.29 of the NS-3 simulator. The DRL algorithms used here were implemented 346

with tensorflow and pytorch. 347

The system model considered in this work is depicted in Figure 4. We consider a linear 348

topology comprised of one AP and several stations transmitting packets. The AP plays 349

the role of the DRL agent, selecting a new CW value according to the current observation. 350

The stations send data packets to the AP, and the deployment of the stations can happen 351

statically or dynamically. So, two scenarios are considered, one with static topology and 352

the other with dynamic topology. 353

Table 1 presents the NS-3 parameters necessary to create the environment in which 354

the agent will learn. Apart from those parameters, we assume single-user transmissions, a 355

packet load adjusted to saturate the network, instant and faultless transference of network 356

information, i.e., QNL, to the DRL agent, and that each station receives the selected CW 357

value instantly. The last two assumptions allow the assessment of the proposed solution in 358

an idealized scenario before going to more realistic ones. Realistic scenarios will require the 359

transmission of QNL from each station to the AP and the periodic broadcast of the chosen 360

CW to all stations through beacon frames. The only differences we foresee in the results 361

presented here are a slower convergence of the agent and a slightly smaller throughput 362

due to the transmission of the required overhead, i.e., QNL and CW. 363

Table 2 presents the agent parameters used in NS3-gym for the experiments. These 364

parameters were empirically found through several simulations. The network architecture 365

used by both DRL algorithms has one recurrent long short-term memory layer and two 366

fully connected layers leading to an 8× 128× 64 topology. The simulation experiment was 367

executed for 15 episodes of 60 seconds. This configuration was also found by employing 368

cross-validation strategies. The recurrent long short-term memory layer allows the DRL 369

algorithms to consider past observations when predicting the best action in a given state. 370

The moving average window is half the size of the observation history memory, and the 371

stride is a fourth of its size. 372

Each one of the experiments consisted of 15 executions of 60-second long simulations, 373

where the first 15 executions were part of the training stage, and the last one was the 374

operational stage. Each one of the simulations consisted of 10 [ms] interaction intervals. 375

Algorithm 1 was run between these interaction intervals. 376
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Table 2. NS3-gym agent configuration parameters.

Configuration Parameter Value

DQN’s learning rate 4x10−4

DDPG’s actor learning rate 4x10−4

DDPG’s critic learning rate 4x10−3

Reward discount rate 0.7
Batch size 32

Replay memory size 18,000
Size of observation history memory 300

envStepTime (i.e., interaction interval) 10 [ms]

Figure 4. Scenario for assessing the proposed centralized DRL-based CW optimization method.

5. Simulation Results 377

This section presents and discusses the results obtained during the experiments. The 378

performance of the proposed DRL algorithms is compared against the BEB algorithm, 379

which is used in 802.11 wireless networks. Simulations were executed on NS-3 and NS3- 380

gym simulators considering static and dynamic scenarios. The graphical results allow a 381

better evaluation of the network efficiency achieved by the proposed centralized DRL-based 382

CW optimization method in both scenarios. Next, we separate the results and discussion 383

into two sets, static and dynamic. 384

5.1. Static scenario 385

In this scenario, the number of stations associated with the AP is kept constant through- 386

out the experiment. As it is a static scenario, the optimal CW value should be constant, and 387

so should the throughput. Therefore, this scenario is used to prove this hypothesis and to 388

evaluate possible improvements over 802.11’s BEB algorithm. 389

Figure 5 shows the throughput achieved by the network for different numbers of 390

stations. As can be seen, the network throughput decreases when BEB is employed. On 391

the other hand, when either DQN or DDPG is used, it remains practically constant as the 392

number of stations increases, proving the hypothesis. The improvement over BEB varies 393

between 5.22% for 5 stations and up to 46.66% for 50 stations. DDPG has a slightly better 394

performance than DQN, which can be explained due to its capability to choose any real 395

CW value within the range [0, 6]. 396

Figure 6 shows the CW mean value for 15 simulation episodes when DQN or DDPG 397

is used. This experiment considers 30 stations in the static scenario. It is pretty clear that 398

the 14 episodes selected for the learning stage are adequate for the proposed solution to 399

converge to an optimal and practically constant CW value for both DRL algorithms. It 400

is also possible to see that the CW variance decreases along the learning stage, meaning 401

that initially, the algorithm explores the environment more (i.e., it takes uncharted actions). 402
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Figure 5. Comparison of the network throughput for the static scenario.
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Figure 6. Mean CW value for 30 stations in the static scenario.

Then, as the number of episodes progresses, it exploits more of the acquired knowledge, 403

which maximizes the received reward. Finally, the variance during the final episodes of the 404

learning stage is small because the proposed algorithm correctly selected the CW value, 405

which maximizes the throughput. 406

5.2. Dynamic scenario 407

In the dynamic scenario, the number of stations increases progressively throughout 408

the experiment, going from 5 to 50. The higher the number of stations, the higher the 409

collision probability. This experiment assessed whether the DRL algorithms appropriately 410

act upon network changes. 411

Figure 7 depicts the chosen CW value for the dynamic scenario, where the number of 412

stations progressively increases from 5 to 50. As shown, the chosen CW value increases 413

as the number of stations increases, meaning the back-off interval has to be increased to 414

accommodate the transmissions of the higher number of stations, mitigating the number of 415

collisions. As can be noticed, DQN jumps between discrete neighbor CW values. At the 416

same time, DDPG continuously increases the CW value, reaching a lower CW value for 50 417

stations, which positively reflects on the attained throughput. 418

Figure 8 compares the instantaneous network throughput in the dynamic scenario 419

when the number of stations grows from 5 to 50. The increased number of stations alters the 420

CW value, impacting the instantaneous network throughput. When the number of stations 421

associated with the AP reaches 50, the throughput of the BEB drops to approximately 27% 422

of that presented by DQN and DDPG. The proposed DRL algorithm (with either DQN or 423

DDPG) presents an almost constant behavior, keeping a high and stable throughput as the 424
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Figure 7. Selected CW value for different numbers of stations in dynamic scenario.
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Figure 8. Comparison of the instantaneous network throughput as the number of stations increases
from 5 to 50.

number of stations progressively increases. Both DRL algorithms present an approximately 425

constant throughput of around 38.7 Mb/s. 426

Finally, figure 9 shows that both DRL algorithms improve the network’s throughput 427

compared to the BEB algorithm. The improvement varies between 6.05% for 5 stations and 428

up to 23.75% for 50 stations. 429

6. Conclusions 430

Wireless network transmissions are prone to various impairments (e.g., interference, 431

path loss, channel noise, etc.) that lead to packet loss and collisions, making retransmission 432

and channel access mechanisms required. Furthermore, in environments with a dense 433

number of stations, more collisions will occur while the stations attempt to access the 434

wireless channel. Consequently, the network efficiency and channel utilization will both 435

degrade. This work proposes a centralized solution that employs DRL algorithms (i.e., 436

DQN and DDPG) to optimize the CW parameter from the MAC layer. Regarding the 437

number of stations associated with the AP, two experimental scenarios are considered 438

for assessing the proposed centralized DRL-based CW optimization solution: static and 439

dynamic. Simulation results show that the proposed solution outperforms the 802.11 default 440

BEB algorithm by maintaining a stable throughput while reducing collisions. Moreover, 441

the results attest to DQN’s and DDPG’s superior performance compared to BEB for both 442

scenarios, regardless of the number of stations associated with the AP. The difference 443

was amplified as the number of stations increased, with DQN and DDPG showing a 27% 444

increase in throughput with 50 stations compared to BEB. Furthermore, DQN and DDPG 445

had similar performances. Furthermore, the presented results show that the network’s 446
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Figure 9. Comparison of the network throughput for the dynamic scenario.

performance can be dramatically improved when CW is chosen based on information from 447

the network, such as the level of the transmission queues. It is also shown that a centralized 448

solution for selection CW outperforms decentralized ones, such as the standard 802.11 BEB 449

algorithm. 450

Future work could focus on using other ML algorithms to optimize CW, such as Soft 451

Actor Critic (SAC) and Proximal Policy Optimization (PPO). These two algorithms make 452

an interesting topic of investigation because they both use advantage instead of Q-Value 453

as the operator, with the difference between them being that SAC is off-policy and PPO 454

is on-policy. A study that included these methods could be interesting because DQN and 455

DDPG are both off-policy and use Q-value operator, which would contrast with SAC and 456

PPO, potentially providing precious insights into the effect of these different operators in 457

the final result. 458

Funding: This work was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais 459

(FAPEMIG) via grant number 2070.01.0004709/2021-28 and partially supported by the Coordenação 460

de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) and by RNP, with resources from 461

MCTIC, Grant No. 01250.075413/2018-04, under the Radiocommunication Reference Center (Centro 462

de Referência em Radiocomunicações - CRR) project of the National Institute of Telecommunications, 463

Brazil; by FCT/MCTES through national funds and when applicable co-funded EU funds under the 464

Project UIDB/EEA/50008/2020; and by the Brazilian National Council for Research and Development 465

(CNPq) via Grant No. 313036/2020-9. 466

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2022                   doi:10.20944/preprints202211.0011.v1

https://doi.org/10.20944/preprints202211.0011.v1


15 of 16

References 467

1. Guo, X.; Wang, S.; Zhou, H.; Xu, J.; Ling, Y.; Cui, J. Performance evaluation of the networks with Wi-Fi based TDMA coexisting 468

with CSMA/CA. Wireless Personal Communications 2020, 114, 1763–1783. 469

2. Auzinger, W.; Obelovska, K.; Dronyuk, I.; Pelekh, K.; Stolyarchuk, R. A Continuous Model for States in CSMA/CA-Based 470

Wireless Local Networks Derived from State Transition Diagrams. In Proceedings of the Proceedings of International Conference 471

on Data Science and Applications. Springer, 2022, pp. 571–579. 472

3. Wang, G.; Qin, Y. MAC protocols for wireless mesh networks with multi-beam antennas: A survey. In Proceedings of the Future 473

of Information and Communication Conference. Springer, 2019, pp. 117–142. 474

4. Beheshtifard, Z.; Meybodi, M.R. An adaptive channel assignment in wireless mesh network: the learning automata approach. 475

Computers & Electrical Engineering 2018, 72, 79–91. 476

5. Wang, S.C.; Helmy, A. Performance limits and analysis of contention-based IEEE 802.11 MAC. In Proceedings of the Proceedings. 477

2006 31st IEEE Conference on Local Computer Networks. IEEE, 2006, pp. 418–425. 478

6. Yazid, M.; Sahki, N.; Bouallouche-Medjkoune, L.; Aïssani, D. Modeling and performance study of the packet fragmentation in an 479

IEEE 802.11 e-EDCA network over fading channel. Multimedia Tools and Applications 2015, 74, 9507–9527. 480

7. Edalat, Y.; Obraczka, K. Dynamically Tuning IEEE 802.11’s Contention Window Using Machine Learning. In Proceedings of the 481

Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 482

2019, pp. 19–26. 483

8. Bjornson, E.; Giselsson, P. Two applications of deep learning in the physical layer of communication systems [lecture notes]. IEEE 484

Signal Processing Magazine 2020, 37, 134–140. 485

9. Anouar, H.; Bonnet, C. Optimal constant-window backoff scheme for IEEE 802.11 DCF in single-hop wireless networks under 486

finite load conditions. Wireless Personal Communications 2007, 43, 1583–1602. 487

10. Bender, M.A.; Fineman, J.T.; Gilbert, S.; Young, M. How to scale exponential backoff: Constant throughput, polylog access 488

attempts, and robustness. In Proceedings of the Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete 489

Algorithms. SIAM, 2016, pp. 636–654. 490

11. Al-Ammal, H.; Goldberg, L.A.; MacKenzie, P. Binary exponential backoff is stable for high arrival rates. In Proceedings of the 491

Annual Symposium on Theoretical Aspects of Computer Science. Springer, 2000, pp. 169–180. 492

12. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction; MIT press, 2018. 493

13. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep 494

reinforcement learning, 2015. https://doi.org/10.48550/ARXIV.1509.02971. 495
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